Théorie des ensembles Feuille 2.

I. Bons ordres et suites strictement décroissantes.

Soit (A, <) un ensemble totalement ordonné. Prouver l'équivalence suivante : < est un bon ordre sur A si, et seulement si, il n'existe pas de suite $(a_n)_{n\geq 0}\in A^{\mathbb{N}}$ strictement décroissante pour <. Avez-vous utilisé l'axiome du choix?

II. Axiome du choix et analyse.

Donner une démonstration des deux résultats classiques d'analyse suivants :

- (a) Soit X un espace métrique et F une partie de X. Alors F est fermé si, et seulement si, toute suite convergente d'éléments de F a sa limite dans F.
- (b) Soit X un espace métrique et $f: X \to \mathbb{R}$ (muni de sa topologie usuelle). Alors f est continue (i.e l'image réciproque par f d'un fermé de \mathbb{R} est un fermé de X) si, et seulement si, pour toute suite $(x_n)_{n\in\mathbb{N}}$ qui converge vers $x \in X$ on a $\lim f(x_n) = f(x)$.

Que pensez-vous de vos démonstrations? Pourriez-vous convaincre quelqu'un qui ne croit pas à l'axiome du choix que les résultats sont corrects?

Avez-vous vraiment besoin de l'axiome du choix ou d'une version plus faible (si oui, en donner un énoncé; on ne demande pas de prouver que cet énoncé est *vraiment* plus faible que l'axiome du choix...)?

III. Cantor-Bernstein dans ZF.

A. Soit A un ensemble, $f: A \to A$ une application injective, et B tel que $f(A) \subset B \subset A$. On veut montrer ici que B est alors en bijection avec A.

On pose $A_n = f^n(A)$, $B_n = f^n(B)$ et $C_n = A_n \setminus B_n$.

A.1) On pose $C = \bigcup_{n>0} C_n$, $D = A \setminus C$. Montrer que $B = f(C) \cup D$, et faire un dessin.

A.2) On pose maintenant, pour $x \in A$:

$$g(x) = \begin{cases} f(x) & \text{si } x \in C \\ x & \text{si } x \in D \end{cases}$$

Montrer que g est une bijection de A sur B.

- B. Considérons maintenant deux ensembles X, Y et deux injections $f: X \to Y$ et $g: Y \to X$.
- B.1) En utilisant le fait que $(g \circ f)(X) \subset g(Y) \subset X$ et la question précédente, prouver qu'il existe une bijection de X sur g(Y).
- B.2) En déduire une preuve du théorème de Cantor-Bernstein.

IV. Cantor Bernstein dans ZFC.

Utiliser le résultat du I.4) de la 1ère feuille pour obtenir une preuve (dans ZFC) du théorème de Cantor-Bernstein.

V. Arithmétique cardinale.

Rappelons que les opérations arithmétiques cardinales sont définies par :

 $\lambda + \mu = \operatorname{card}(\lambda \sqcup \mu); \ \lambda \cdot \mu = \operatorname{card}(\lambda \times \mu); \ \lambda^{\mu} = \operatorname{card}(\{f : \mu \to \lambda\}).$

1) Montrer que, si λ et μ sont des cardinaux finis, ces opérations coïncident avec les opération ordinales.

On définit l'ordre de Gödel $<_G$ sur les couples d'ordinaux par :

$$(\alpha,\beta) <_G (\alpha^{'},\beta^{'}) \Leftrightarrow \begin{cases} \sup(\alpha,\beta) < \sup(\alpha^{'},\beta^{'}) \\ \text{ou} \\ \sup(\alpha,\beta) = \sup(\alpha^{'},\beta^{'}) \text{ et } \beta < \beta^{'} \\ \text{ou} \\ \sup(\alpha,\beta) = \sup(\alpha^{'},\beta^{'}) \text{ et } \beta = \beta^{'} \text{ et } \alpha < \alpha^{'} \end{cases}.$$

- 2) Montrer que $<_G$ est un bon ordre sur la classe des ordinaux.
- 3) Montrer que cet ordre sur $\lambda \times \lambda$, où λ est un cardinal infini, est isomorphe à un ordinal inférieur ou égal à λ .
- 4) En déduire que pour tout cardinal infini λ on a $\lambda + \lambda = \lambda \cdot \lambda = \lambda$.

VI. Cardinaux réguliers et cofinalité.

Dans tout cet exercice on se place dans ZFC.

Un cardinal λ est dit régulier si pour tout sous-ensemble a de λ de cardinal strictement inférieur à λ on a $\sup(a) \in \lambda$.

1. Montrer que tout cardinal fini est régulier, ainsi que \aleph_0 . Le cardinal \aleph_ω est-il régulier?

Pour deux ordinaux α et β on dit que α est cofinal à β s'il existe une fonction $f: \beta \to \alpha$ strictement croissante et dont l'image n'est pas strictement majorée dans α (autrement dit, pour tout $\gamma \in \alpha$ il existe $\delta \in \beta$ tel que $f(\delta) \geq \gamma$).

- 2. Montrer que pour tout ordinal α il existe un plus petit ordinal β tel que α est cofinal à β . On appelle cofinalité de α , et on note $cof(\alpha)$, cet ordinal.
- 3) Montrer que, pour tout ordinal α , $cof(\alpha)$ est un cardinal.
- 4) Que peut-on en déduire sur les ordinaux α tels que $cof(\alpha) = \alpha$?
- 5) Quels sont les ordinaux de cofinalité 1?
- 6) Montrer que $cof(cof(\alpha)) = cof(\alpha)$ pour tout ordinal α .
- 7) Montrer qu'un cardinal λ infini est régulier si et seulement si $cof(\lambda) = \lambda$.