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taining the formula: vo = b. Let Pb,B,A = Pb,B n F(A). If q E S(A) we say 
b realizes q in B if q = Pb,B,A- Clearly, every b e B realizes some point of 
S(A). By the Completeness Theorem every p E S(A) is realized in some 
extension of A. Suppose B1, B2C -4(7T), B1 B2 2A and bi C B1, b2 C B2; 
then the map: A U { b1i - A U { b2I which is the identity on A and maps 
b1 to b2 is a monomorphism if and only if b1 and b2 realize the same point 
in S(A). Thus, S(A) is the set of "isomorphism types of elements with 
respect to A." 

LEMMA 2.1. If A C _41(T) then there is a model of T, B, B D A such that 
each p C S(A) is realized in B. 

Proof. Let {pa; a < y I be a well-ordered list of the points of S(A) . We 
assert there exists an increasing chain { Ba; a < y I of models of T such that 
each B. D A and each p# with f < a is realized in Ba. The proof is by 
induction on a. Assume the sequence exists for all A < a. If a is a limit 
ordinal let Ba = U <a,B# and the result follows from 1.2(b). Suppose 
a = ( + 1. By the Completeness Theorem there is a model of T, C, C D A 
such that p# is realized in C. By 1.2(d) there is a model of T, D, and mono- 
morphisms fA: C -* D and f2: Bo -* D such that fA = f2 on A. If we identify 

Bo with f2(BO) then D may be taken as Ba. B, is the B satisfying the 
theorem. 

Suppose that A, B E =A(T) and f: A -* B is a monomorphism. Then f 
induces a monomorphism f: F(A) -* F(B) defined by: f(') is the formula 
obtained by substituting (for each a E A) f(a) for each occurrence of a 
in ,6. In turn, f induces a map f*: S(B) - S(A) defined by f*(p) = f1(p). 
The map f* is continuous (cf. [14]), indeed f*l(U*) = UT(,,); the map f* 
is onto S(A), for if q E S(A) there is some p C S(B) with p D f(q). If, in 
particular, BD A and iAB: A -* B is the identity map(1) and p C S(B) 
then iAB(P) =pnF(A). 

Let .1(7) = { S(A); A C _(T ) and (T) = (f*:S(B) -- S(A)); A,B 
C-4A(T) and f: A -, B a monomorphism . Then 1(T) is a category of 
continuous onto maps with object class S(T). It is "dual" to the cate- 
gory of monomorphisms between members of -,4/(T). Therefore, corre- 
sponding to each of 1.2(b), (c) and (d) there is a dual statement which 
holds in the category 1(T). It should be especially noted that since a 
formula, Ap, involves only a finite number of individual constants, for each 

U. in the basis of S(A) there is some finite B C A such that Up is the 
inverse image under iBA of a member of the basis of S(B). 

The next definition is a generalization of the usual definition of derived 
spaces to a definition involving a class of spaces and a category of maps 
between them. Though we shall deal explicitly only with the category 

(11) Henceforth, whenever A CB the identity map of A into B will be denoted by iAB- 



520 MICHAEL MORLEY [February 

Z'(T), it will be obvious that Definition 2.2 and many of the following 
results and proofs remain valid in many other categories of continuous 
onto maps betweem compact spaces. 

DEFINITION 2.2. For each ordinal a and each S(A) E St(T), subspaces 
Sa(A) and Tr"(A) are defined inductively by: 

(1) Sa(A) = S(A) - U ,<aTr(A) 
(2) p E Tra(A) if (i) p C Sa(A) and (ii) for every map (f*: S(B) -* S(A)) 

c-!T),fr-I(p) n Sa(B) is a set of isolated points in Sa(B). 
p C S(A) is algebraic if p C Tr0(A); p is transcendental in rank a if 

p C Tra(A) (12). 

THEOREM 2.3. (a) Sa(A) is a closed and hence compact subspace of S(A). 
(b) If (f*: S(B) > S(A)) Cf(T) then (i) f*(S(B)) = Sa(A), and (ii) 

if p E S"(A) then p E Tra(A) if and only if f*-l(p)) Sa(B) c Tra(B). 

Proof. (a) The proof is by induction on a. Suppose a = ,B + 1. Then 
Sc(A) = SO(A) - TrN(A). Tr8(A) is a set of isolated points in S#(A) and 
is therefore open in SO(A). So Sa(A) is closed. 

Suppose a = 3. Then S'(A) = nA,<6S(A) and is closed since it is the 
intersection of closed sets. 

(b) Notice first that, since Tra(A) = Sa(A) - Sa-`(A), (b)(ii) will follow 
immediately from (b) (i). We shall use the following topological result. 

PROPOSITION. Suppose G is a compact space, H a Hausdorff space, f: 
G -+H a continuous onto map, and p C H, a limit point of H; then f-1(p) 
contains a limit point of G. 

Proof of proposition. If f-1(p) contained only isolated points then G 
-f-1(p) would be closed and hence compact. Then f(G - f-(p)) = H 
- p would be compact and hence closed, so p would not be a limit 
point of H. 

The proof of (b) (i) is by induction on a. Assume result for all ,3 < a. 
We first show that f *(Sa(B)) C Sa(A); that is, we show for each : < a that 
if q C Sa(B) then f*(q) = p f Tr#(A). Since q $ Trfl(B) there is some 
(g*: S(C) -S(B)) e f-(T) such that g*-l(q) fi Sf(C) contains a limit 
point, say r. Then (f*g*: S(C) - 8S(A)) CS(I) and r E (f*g*)g (p) so 
p i Tr'(A). 

Finally, to prove that f*(Sa(,3)) D Sa(A) we must show for each p e Sa(A) 
that f*-1(p) nSa(B) # 0. Suppose the contrary for some p C Sa(A). 

Since f* is onto, f*-1(p) is closed and compact and therefore there is a 
largest f (necessarily <a) such that f*-1(p) n)S(B) #0. Then f*-1(p) 

(12) The terminology algebraic and transcendental are suggested by the theory of algebraically 
closed fields of characteristic 0, see Example I below. Our notion of algebraic is also related to a 
generalized notion of algebraic extension considered by J6nsson [6]. 
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U01, U10, U1i such that i*lA( U1) q S T(A2) = Uj0 U U,1 (j = 0, 1). As be- 
fore we may take A2 to be finite. We proceed inductively to find an in- 
creasing chain of systems I An; n < w } such that each An e A4(T), is finite, 
each SaT(An) may be decomposed into 2n disjoint nonempty components 

Ujo ...n-1 (jk= 0,1) and 

iAnAn+i(Lio.. jn1) n S T(An+1) = Ujo.. *n-10 U Ujo ..in-11 

Let A U nAn For each tC 2w, Let Vt= nnfiAnA(Ut(o)...t(nl1)) nSa8l(A). 
Then Vt s 0 since it is the intersection of closed nonempty sets. Obviously, 
tl $ t2 implies V,1 nV,2 = 0. Thus SaT(A) has power 2'0 though A is 

countable. 
We shall conclude this section with three examples. In each case we 

shall describe the theory 2 such that T = 2 *. We shall then describe S(A) 
for each A EC -I4(T). To do this it is convenient to know when a con- 
sistent set of formulas of F(A) is contained in a unique p E S(A). We 
give the following sufficient condition: 

A consistent set of formulas, Q c F(A), is contained in a unique p E S(A) 
if whenever B is a model of T, B D A, and b, b' E B satisfy every formula 
of Q, then there is an automorphism of B carrying b to b' and leaving each 
element of A fixed("4). 

For suppose p and p' were points of S(A) which contain Q. By 2.1 
there is a model of T, B, B D A, and with b, b' E B realizing p and p' 
respectively. Our condition then asserts that there is an automorphism of 
B having A fixed and carrying b to b'. Therefore b and b' realize the same 
point of S(A), that is p = p'. 

EXAMPLE I. Let 2 be the theory of algebraically closed fields of charac- 
teristic 0(15). As mentioned earlier this theory is categorical in very un- 
countable power but not in power No. Suppose A CA J(T), let A(A) be 
the field generated by A. Suppose Q(vo) is a polynomial with coefficients 
in a (A) and irreducible over az(A). By the condition above the formula: 
Q(vo) = 0 determines a unique point of S(A). Since this point is determined 
by a single formula it is an isolated point of S(A). Let P be the set of all 
formulas: Q(vo) /- 0 where Q(vo) is a polynomial with coefficients in A(A). 
Then all the formulas of P are satisfied precisely by those elements trans- 
cendental (in the usual field-theoretical sense) over A(A). Therefore, by 
our condition and the Steinitz theorems P is included in a unique p C S(A). 
Obviously, the above are all the points of S(A). Since S(A) is infinite 
and compact it must have a limit point which can only be the point deter- 

(14) If we weaken this condition to assert that there is a model of T,CD B, such that C has an 
automorphism carrying b to b' and leaving each element of A fixed, then this condition is also 
necessary; cf. [10]. 

(15) For a more detaied discussion of this case see Abraham Robinson, Complete theories, 
North-Holland, Amsterdam, 1956. 
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The result is a set of sentences, say I, extending I. 
To prove the theorem it is sufficient to prove z consistent. Suppose z 

is inconsistent. Then there is an inconsistent 1 C z such that 11 = z to- 
gether with a finite number of sentences of type (I) and (II). Let the 
sentences of type (II) appearing in 11 be: 

'1[4 XI 1 + * 4'1[ -XI .1 v* *vm 
[ 
XI m +- Am[ X] m, 

where the notation [x] is an abbreviation for a sequence of constants 

Xo, * X n-l1 

Consider first the case where each [ xIJ has the same number of elements, 
say n. Let A be an infinite model of z and "< `" a linear ordering of 
A I (in general, having nothing to do with any of the original relations 

of A). If [a] and [a]' are n-tuples of I A I which are properly ordered 
by < * then we say 

[a]; [a]' if -A A4'j[a]+-Ij[a]". 
j'm 

This equivalence -+ partitions I A (n) into (at most) 2m equivalence classes. 
Applying Ramsey's theorem, we may find some infinite subset YlIAI 
such that y(n) lies entirely within one equivalence class. That is, if [a] 
and [a]' are properly ordered n-tuples of Y then [a] Z [a]'. Since z 

contains only a finite number of sentences of type (I) and (II), it contains 
of the new constants added to L, only those corresponding to some finite 
subset of X, say X1. We may now pick in Y a finite subset, Y1, which is 
order-isomorphic to X1. Then (A,a)a Ey1 is a model of 11, contradicting 
its inconsistency. 

Consider the general case where all the [x]j's do not necessarily have 
the same number of elements. Notice that it is sufficient to prove the 
theorem for X, a linearly ordered set without maximal elements, since any 
linearly ordered set can be imbedded in such a one. Now, let N be the 
maximum number of elements in any [x]; (j < m). Then a properly 
ordered [x] = (xo, . -, xn1) may be imbedded in a properly ordered set 
(xo, . .., xn-1, xn, * , XN-1). The general result then follows from the first 

considered case. 
The next theorem expresses the well-known fact that one can eliminate 

existential quantifiers by the use of operation symbols. A proof may be 
found in the first chapter of [4]. 

THEOREM 3.3. Suppose z is a theory in a countable language, L; then 
there is a countable generalized language, L# D L and a theory 10 of L# such 
that: 

(i) every a E # is a universal sentence, and 
(ii) for every sentence, A of L, F! 4p if and only if [-4. 
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Proof(16). Let (XK, <) be a linearly ordered set having the order type of 
initial ordinal K. Apply Theorem 3.4 to z *# to get B and let A = M(XK, B) 1 L. 
Suppose Y is a countable subset of I A l. Then Y C M(X0, A) for some 
countable subset XO C XK. For each a E A there is some term t(vO, * *, vn) 
in L*# and elements xo, * *, Xn E XK such that a = tA(xo, * *, xvn). By 3.6(a) 
the elementary equivalence class of a over Y is determined by t(vO, * *, vn) 

and the ordering relations between xo, - .-, xn and XO. L *# is a countable 
language and has only a countable number of distinct terms. Xo is a count- 
able well-ordered set and so there are only a countable number of ways 
of interpolating a finite set into it. Therefore A has only a countable 
number of equivalence classes over Y. 

THEOREM 3.8. If T is categorical in some power K > No then T is totally 
transcendental. 

Proof("7). Suppose T were not totally transcendental. Then by 2.8 there 
would be a countable C C-4(T) with K(S(C)) > No. So we could certainly 
have a model of T, B, such that K(B) = K, B D C, and an uncountable num- 
ber of points of S(C) are realized in B. This B is clearly not isomorphic 
to the model of power K proven to exist in Theorem 3.7. 

A theory T may be categorical in power XO and not be totally transcen- 
dental. For example, consider the theory of dense linearly ordered sets 
without end points. Let A be a linearly ordered set having the order type 
of the rationals. It can be shown that distinct Dedekind cuts in A corre- 
spond to distinct points in S(A) so K(S(A)) = 2"O. By 2.8 the theory can- 
not be totally transcendental. Theorem 3.9, below, is proved by a gener- 
alization of this argument. 

Suppose A is a model of T, R a relation of degree n of A, X C I A l, and 
Sn the permutation group on (0, ..., n - 1). Following Ehrenfeucht [1] 
we define R to be connected over X if for every sequence of n distinct ele- 
ments xo, ---, xn1 of X there is an S E Sn such that [A R(xs(o), ,Xs(n-1))- 
R is anti-symmetric over X if for every sequence of n distinct elements 
Xo , x,n1 of X there is an s C S& such that -A - R(xS(o), -, Xs(n-l))- 

THEOREM 3.9. If T is totally transcendental and A a model of T, then no 
relation of A is connected and anti-symmetric over any infinite X C| A (18). 

(16) For the case X=0, this result was obtained by Ehrenfeucht [2]. Indeed, he showed that 
if equivalence of two elements of A is defined to mean that there is an automorphism of A 
mapping one to the other, there is still a model of ; of power K which has only a countable num- 
ber of equivalence classes. The proof is similar to that of 3.7 but X must be taken as a somewhat 
more complicated linear ordering. 

(17) The crux of this proof, that S(C) is countable for every countable CE/A(T), was estab- 
lished by Vaught [10] for the case where T is categorical in power K=KXO. 

(18) For the case where T is categorical in power 2K, this result was obtained by Ehrenfeucht 

[1]. Dana Scott (unpublished), by a different and simpler proof, extended the result to theories 
categorical in power KKO. 
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But every ,6 E F(A) and consistent with T(A) (i.e., m U in the Boolean 
algebra F(A)) is satisfied in B. Hence, a necessary and sufficient condition 
that A be a model of T is that every ,6 # 0 in F(A) be satisfied in A, which 
is equivalent to the condition that some point in each of the sets U4, 
= {p CS(A); pCp} is realized in A. But the sets U; (46 CF(A)) form 
a basis for S(A), and the lemma is proved. 

LEMMA 4.2. If T is totally transcendental then for every A ( xt(7T) the 
isolated points are dense in S(A); indeed if U is an open set of S(A) and 
p E U is a point of the minimal transcendental rank of the points of U, then 
p is an isolated point in S(A). 

Proof. Suppose p C U is of the minimal transcendental rank, say a, of 
the points of U. By definition there is a neighborhood V of p such that 
vn Sa(A) = Ip}. But Un S(A) = U. So vn Sa(A) n U= Vn U= Ap}, 
and p is isolated. 

Suppose A B EA(T), B D A, and B is a model of T. B is prime over A 
if for every model of T, B', and monomorphism f: A -* B', there is a 
monomorphism g: B -* B' with f = g on A. 

THEOREM 4.3. Suppose T is such that for every A C E-4(7) the isolated 
points are dense in S(A), then every A C -4'(7) has a model of T prime 
over it(0). 

Proof. Let A C -IV(T) and K = K(A) + No. Then S(A) has at most K 

isolated points. Let Ipa; a< K be a listing (possibly with repetitions) of 
the isolated points of S(A). Choose some increasing chain {Aa; a< K of 
members of A#(T) such that: (1) A0 = A, (2) A, = U 0<,Ab, (3) Aa+ =Aa 
if Pa is realized in Aa, and (4) if Pa is not realized in A,, then A,+1 - Aa 
has a single element, aa, which realizes some isolated point q in S(Aa) 
such that q D Pa. 

If C is a model of T and fo: A -* C is a monomorphism then there is a 
sequence of monomorphisms (fa: Aa ->-* C); a < K such that for a' > a, 

fa' extends fa. This is proved by induction on a. The induction is trivial 
in cases (1), (2), and (3) above. In case (4) suppose fa: Aa, C is a monomor- 
phism and aa C Aa+, - Aa satisfies the isolated point q in S(Aa). Then 

f.*-1(q) is an open set in S(C) and by hypothesis contains an isolated 
point, say q'. By 4.1 there is a c C C realizing q'. Let fa+i(aa) = c and 
the monomorphism is extended. 

AK = Ua<K Aa then realizes every isolated point in S(A) and every 
monomorphism of A into a model of T can be extended to a monomor- 
phism of AK. We may now list the isolated points of S(AK) and repeat the 
above process to get an AK.2 realizing every isolated point in S(AK) and 

(2) For the case where A is countable the existence of a prime model over A was proved under 
a somewhat weaker hypothesis in [18]. 
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From 4.1 we see that if B E A"(T) is saturated, then B is a model of T. 
Saturated systems were considered in [10], and the following result was 
established(2). 

THEOREM 5.1. If A and B are saturated models of T of the same power, 
then A is isomorphic to B. 

Thus a sufficient condition for T to be categorical in power K is that 
every model of T of power K be saturated(23). 

Suppose B e A7(T) is an uncountable system. B is saturated over counta- 
ble subsystems if for every countable A C B, B realizes every point of S(A). 
By 4.1, every B E- V(T) which is saturated over countable subsystems 
is a model of T. 

THEOREM 5.2. If T is totally transcendental and K > No, then there is a 
model of T of power K which is saturated over countable subsystems(24). 

Proof. Let Bo be an arbitrary model of T of pwer K. Then S(Bo) = K 

by 2.7. Therefore, there is a model of T, B1 D Bo such that K(B,) = K and 
every point of S(Bo) is realized in B1. Proceeding inductively, we see that 
there is an increasing chain of models of T of power K, { Ba; a < w1 } such 
that every point of S(B,) is realized in Bai+ (for all a < wh). Then B 
= Ua<,i B,a is a model of T of power K which is saturated over countable 
subsystems. For if A is a countable subsystem of B, then there is an 
a < w, such that A C B,a; then every p E S(A) is realized in Ba+, and, 
a fortiori, in B. 

LEMMA 5.3. Suppose T is totally transcendental and B is an uncountable 
model of T which is not saturated. Then there is a countable model of T, 
A c B, with a subsystem A' C A such that (i) there is an infinite set Y C I A I 
- IA' I of elements indiscernible over A', and (ii) there is a q E S(A') which 
is not realized in A. 

(22) In [10] universal homogeneous systems are considered. This is a terminology of J6nsson 
[5]. If K is a class of similar relational systems and A EK then: (1) A is universal for K if A con- 
tains an isomorphic image of every B(3K with K(B) 'K(A), (2) A is homogeneous in K if when- 
ever B1, B2 E K, Bl, B2CA. K(Bi)< K(A),andf:B1B2 is an isomorphism, then f may be ex- 
tended to an automorphism of A. Jonsson showed that under certain simple conditions on K that 
any two universal homogenous systems of the same power are isomorphic. In the case that K 
=4'(T), universal-homogeneous is equivalent to saturated. This was shown in the countable case 
by Vaught [18] and in the uncountable case by Keisler (Theorem A2 of [8]). 

( ) That the problem of categoricity in power could be approached this way was noticed by 
Vaught. He proved [10;17] (assuming the generalized continuum hypothesis) that if T is cate- 
gorical in an increasing sequence of powers then it is categorical in the limit power. 

(24) In the case K = K , this result was proved in [10] without the assumption that T is 
totally transcendental. However, it is possible to give an example of a theory T which is not 
totally transcendental and a cardinal K > X0 with K 

No 
X K such that no model of T of power K 

is countably saturated. 
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need only to show that there are only a countable number of isomorphism 
types of finite members of A4(T). We prove inductively for each n C w 
that there are only a countable number of isomorphism types of members 
of JIV(7) of power n. For n = 0 there is obviously only one. (Strictly, 
the empty set is not a subsystem. But since we can define F(0), there 
is no harm in treating it as a member of AV(T).) Assume only a countable 
number of isomorphism types of systems of power m. By 2.7 there are 
only a countable number of ways of adding an element to each system 
of power m, so there are only a countable number of isomorphism types 
of members of Afr(7) of power m + 1. 

Another question is: 
(7) What model-theoretical conditions on T imply that aT iS finite? 
Plausible possiblilities are T being categorical in some power, or T= * 

with z finitely axiomatizable. 
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