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CATEGORICITY IN POWERC()

BY
MICHAEL MORLEY

Introduction. A theory, =, (formalized in the first order predicate cal-
culus) is categorical in power « if it has exactly one isomorphism type of
models of power «. This notion was introduced by Los | 9] and Vaught [ 16]
in 1954. At that time they pointed out that a theory (e.g., the theory of
dense linearly ordered sets without end points) may be categorical in power
N, and fail to be categorical in any higher power. Conversely, a theory may
be categorical in every uncountable power and fail to be categorical in
power X, (e.g., the theory of algebraically closed fields of characteristic
0). Lo$ then raised the following question.

Is a theory categorical in one uncountable power necessarily categorical in
every uncountable power?

The principal result of this paper is an affirmative answer to that question.
We actually prove a stronger result, namely: If a theory is categorical in
some uncountable power then every uncountable model of that theory is
saturated. (Terminology used in the Introduction will be defined in the
body of the paper; roughly speaking, a model is saturated, or universal-
homogeneous, if it contains an element of every possible elementary type
relative to its subsystems of strictly smaller power.) It is known(®) that a
theory can have (up to isomorphism) at most one saturated model in each
power. It is interesting to note that our results depend essentially on an
analogue of the usual analysis of topological spaces in terms of their derived
spaces and the Cantor-Bendixson theorem.

The paper is divided into five sections.

In §1 terminology and some meta-mathematical results are summarized.
In particular, for each theory, 2, there is described a theory, 2*, which
has essentially the same models as 2 but is “neater” to work with.

In §2 is defined a topological space, S(A), corresponding to each sub-
system, A, of a model of a theory, 2; the points of S(A) being the “isomor-
phism types” of elements with respect to A. With each monomorphism
(= isomorphic imbedding), f: A — B, is associated a ‘‘dual” continuous
map, f*:S(B) —S(A). Then there is defined for each S(A) a decreasing
sequence {S*(A)} of subspaces which is analogous to (but different from)

Presented to the Society, March 28, 1962; received by the August 5, 1963.

(1) Except for minor emendations this paper is identical with the author’s doctoral dis-
sertation submitted to the University of Chicago in August 1962.

() Cf. [10] where the result was shown to follow from the more general result of [5].
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the usual sequence of derived spaces in a topological space(®). The basic
difference is that for us the definition of ‘“derived space’ will involve not
only S(A) but all of its inverse images under maps of the type, f*:S(B)
—S(A); that is, not only A but every system A can be imbedded into.
It is well known that those topological spaces whose ath derived space
vanishes at some ordinal « have particularly simple properties. Similarly,
those theories, 2, such that for some ordinal «, S*(A) vanishes for every
A which is a subsystem of a model of T have particularly simple properties.
We have chosen to call such theories totally transcendental. Theorem 2.8,
which is an analogue of the Cantor-Bendixson theorem, states that totally
transcendental theories are characterized by a certain countability condition.

§3 gathers together some results depending on Ramsey’s theorem. In
particular, Theorem 3.8 states that any theory categorical in an uncount-
able power is totally transcendental. Much of §3 is related to the results
of Ehrenfeucht and Mostowski [3] and Ehrenfeucht [1] and [2].

Some properties of models of totally transcendental theories are estab-
lished in §4. These have to do with the existence of prime models and the
existence of sets of indiscernible elements.

Finally §5 applies the results of the preceding sections to solve the pro-
blem of Los.

This paper was written while the author was at the University of Cali-
fornia at Berkeley. It is a pleasant duty to acknowledge the more than
usual debt he owes for the advice and encouragement of Professor S.
MacLane of the University of Chicago and Professor R. L. Vaught of the
University of California.

1. Preliminaries. Ordinals are defined so that each ordinal is equal to the
set of smaller ordinals. Cardinals are those ordinals not set-theoretically
equivalent to any preceding ordinal. We use the Greek letters «,8,7v,---
to denote ordinals, reserving 6 for limit ordinals; A and « will always denote
cardinals and m and n non-negative integers. x* denotes the least cardinal
> «. The cardinality of a set X is denoted by x(X). An infinite cardinal «
is regular if for every B < x and every well-ordered set [ \,; « < 8] of cardi-
nals with each X\, <«,)_.<sA, <« In much that follows finite cardinals
will present anomalous cases; therefore, we shall use the notation « = «’
(modulo R;) to mean « + Ry = «" + No.

A relational system, A = (|A|, Rf)ic; is a set |A| together with an
indexed set { Rf}ic; of finitary relations on |A|. Then |A| is the universe
of A,x(A) =«(|A]), the power of A, R# the ith relation of A, and I the
index set of A. If 1 € ' and each R# is a r(i)-ary relation, then 7 is the
similarity type of A. Suppose A and B are systems of similarity type r.
Then a map f:|A| —|B| is a monomorphism if f is one-one, and, for each

(®) As defined, for example, in [ 7, pp. 126-134].
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i€l and ay,---,a,, € A, Rfay, ---,a,, if and only if R%f(ay), ---,f(a,¢).
If a monomorphism maps A onto B it is an isomorphism and A is isomor-
phic to B(A =~ B). If |A| C|B| and the identity map is a monomorphism
of A into B then A is a subsystem of B(A C B). Corresponding to each
X C|A]|, there is a unique subsystem of A with universe X, denoted
by A| X.

In certain auxiliary constructions it is convenient to consider generalized
relation systems which have in addition to finitary relations, a set of dis-
tinguished elements and a set of finitary operations. The preceding concepts
may be extended to generalized relation systems in an obvious fashion.
In particular, a subsystem will always contain all the distinguished ele-
ments and be closed under all the operations.

Corresponding to each similarity type r is a first order (with identity)
language, L,. The symbols of L, are the usual logical connectives: ~,
V, A, —, e; quantifiers: 3, V; an equality sign: = ; a denumerable set of
variables: vy, v, --+; and a 7 (i)-ary relation symbol, R; for each i & I.
(Corresponding to generalized relation systems we have generalized lan-
guages which have, in addition to the preceding symbols, individual con-
stants and operation symbols.) The language, L, is countable if it has only
a countable number of symbols. The reader is assumed familiar with the
notion of term and formula in such a language. An open formula is a formula
containing no quantifiers. A sentence is a formula with no free variables.
A universal sentence is a sentence in prenex form containing no existential
quantifiers. If ¢ is a formula of L, with no free variables other than v,,
<«+,Un_1, A is a system of type 7, and ay, ---,a,_; € A; then |4 ¢(ay, ---,a,_1)
means that aq, - --,a,_, satisfies ¢ in A (in the usual sense) when v, denotes
an. If t(vy,---,v,) is a term of L, and | 4a0 = t(a,, ---,a,), then we say a,
is the value of the term ¢ when v, denotes a,(m <n) and write a,=
t*(ay, ---,a,). A consistent set, =, of sentences of L is a theory of L,. A
system, A (of similarity type 7), is a model of Z if for every ¢ © 2, }40. If
¥ is a sentence of L,, ;¢ means that for every model A of Z, }-4¢. The
theory T is complete if for every sentence ¢ of L, either }-z¢ or Fz~¢. If
2 is a theory having an infinite model and « is an infinite cardinal then =
is categorical in power « (x-categorical) if all models of = of power « are
isomorphic. By a result of Vaught [16] and Lo$ [9], if = is x-categorical
and has no finite models then Z is complete.

If A is a system of type r and X C|A| we may form a new system
(A,a),cx by taking each element of X as a distinguished element. We
denote by L(A) the language corresponding to the similarity type of
(A,a)ocia. (The symbols of L(A) are the symbols of L together with a new
individual constant @ for each a € A(*).) The diagram of A, (A), is the

(4) To avoid all ambiguities one should write at rather than a; however, in our uses the A
will always be clear from context.
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set of all open sentences (i.e., formulas without variables) of L(A) which
are valid in (A4, a).c4. If A and B are systems of type r then A is elementary
equivalent to B if A and B are models of the same complete theory of L,
(A =B). If XC|A] and f is a mapping of X into | B| then f is an elementary
monomorphism ((A,x).cx = (B,f(x)).ex) if for every xp,.--,%x,E X and
every formula, ¢, of L,, Fay(x,, ---,x,) implies Fpy(f(xo), - - -, f(x)).

Suppose A = (A, R{")ic, is a relation system of type r. For each formula y
of L, if m is the smallest number such that the free variables of y are among
Vo, *++,Um_1, then we denote by ¢* the m-ary relation on |A| such that
Yiay, - -,an_, if and only if F 4¢(ao, --+,an—1). Then define

A*= (A, ¢Y e formulas of L..

Let r* be similarity type of A*. If 2 is a theory in L, define =* as those
sentences y of L,- such that | 4.y for every model A of . The next lemma
follows easily from these definitions.

LemMMA 1.1. (a) A’ is a model of =* if and only if there is a model A of =
suchthat A* = A’.

(b) A ~ B if and only if A* ~ B*.

(c) If A and B are models of =, X C|A|, and f a map of X into B, then
(A, x).ex= (B, f(x))cx if and only if the map f: A*| X — B* is a monomor-
phism.

(d) = is x-categorical if and only if =* is x-categorical.

(e) If = is a theory in L, and ¢ is a formula in L,- having no free variables
other than v, ---,0,_,, then there is a relation symbol R of degree n in L
such that b3y (vo, « - -, Un_1) <> R(vg, « -+, Up_1).

For the case that Z is a complete theory the following results were
established in [ 10].

LEMMA 1.2. Suppose = is a complete theory in L,. Denote by #(Z*) the
class of subsystems of models of =*.

(a) =* is a complete theory in L.

(b) If {A;a <3} is an increasing chain of members of #(Z*) then
Ua<,;Aa€/V(E*). If each A, is a model of =* then the union is a model
of =*.

(c) If Ay, A, & _H(Z*) then there is an A;& A#(2*) and monomorphisms
fi:Ai—Asand fy,: Ay — As.

d) If Ap, A, A, € AH(2*) and g,: Ay— A, and g,: Ay— A, are monomor-
phisms, then there is an A3 & #(2*) and monomorphisms f,: A,— A, and
f2: A;— Ay such that fig, = f,8().

(5) In [5] Jonsson considered classes of relation systems satisfying certain condition which
he numbered I-VI. In order to apply Jénsson’s result to an arbitrary complete theory, [10]
devised the =* theory and showed that #(=*) satisfied Josson’s conditions. In Theorem 1.2,
(b), (c) and (d) assert respectively that #(Z*) satisfies Jonsson’s conditions V, III, and IV.
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A notion that we shall find convenient is that of a category of maps.
If & is a class of mathematical objects(®) then a category which object
class &is a class, &, of triples called maps (denoted by f: A — B) where
A,BE ¥ f is a function of |A| into |B|, and such that (i) (identity:
A—A)E Y for each AE ¥ and (ii) if (f:A—B) and g:B—-0) ¥
then (gf: A - C) € €. A is the domain and B the co-domain of f: A — B(").

2. Transcendence in rank. We shall be interested in elementary mono-
morphisms among subsystems of a complete theory Z. By 1.1(c) it is there-
fore convenient to consider Z* instead of =. Throughout the rest of this
paper we shall adopt the following convention: T will always denote a com-
plete theory in a countable language, L, T' has an infinite model, and there
is a theory T such that T = =*. We will denote the class of subsystems
of models of T by #(T).

If A€ _A#T) it follows from 1.1(e) that T(A) = TU D(A) is a com-
plete theory in L(A)(®). We denote by F(A) the set of formulas of L(A)
which have no free variable other than v,. If the formulas of F(A) which
are equivalent in the theory T'(A) are identified (i.e., ¢ is identified with
¥ if F (V) = ¢’) (°) then F(A) may be considered as a Boolean algebra
with A, V, and ~ as N, U, and complementation respectively (*Y). A maxi-
mally consistent set of formulas in F(A) will be a dual prime ideal (ultra-
filter) in F(A) considered as a Boolean algebra. The set of such dual
prime ideals is the Stone space of F(A) and will be denoted by S(A).
S(A) is a Boolean space with a basis consisting of the sets.

U={peS);vEp} WEFQA)).

It follows that S(A) has a basis of power = x(4) (modulo N).

The space S(A) may be thought of as the ways of extending T(A) to a
complete theory in a language having one more individual constant than
L(A) has. Suppose A,B& #(T),BD A,b& B, and b is the constant in
the L(B) corresponding to b. We denote by p; s the unique p € S(B) con-

(6) A “mathematical object,” A, is a set |A| with some associated structure. In every case
in this paper an object is either a relational system or a topological space.

(7) It is more usual to abstract the composition properties of the maps and define a category
as a class of elements with a binary operation defined for some pairs of elements and which
satisfies certain axioms. Since we are interested not in categories, per se, but in certain in-
stances of them, the definition we have given is more convenient.

(8) We could have chosen to present this entire section ‘‘syntactically’” by considering,
instead of the class #(T), the class of all complete extensions of T in languages which are
extensions of L by the addition of new individual constants.

(9) It follows from 1.1(e) that we would get the same Boolean algebra if we assumed that
F(A) contained only open formulas. Notice that for open formulas |-4 is equivalent to |-7(4),
but for formulas in general the two are not equivalent unless A is a model of T.

(10) The close relationship between the properties of the various Boolean algebras of formulas

of the language L and the model-theoretic properties of 7' has been observed by several authors.
See especially [13] and [18].
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taining the formula: vy=b. Let p,ps=pssMN F(A). If & S(A) we say
b realizes q in B if ¢ = pypa. Clearly, every b & B realizes some point of
S(A). By the Completeness Theorem every p & S(A) is realized in some
extension of A. Suppose B, B, € #(T),B,B;,D2A and b, E B, b, € By;
then the map: A U {b;}— A U {b,} which is the identity on A and maps
b, to b, is a monomorphism if and only if b, and b, realize the same point
in S(A). Thus, S(A) is the set of “isomorphism types of elements with
respect to A.”

LemMA 2.1. If A € A1) then there is a model of T,B,BD A such that
each p € S(A) is realized in B.

Proof. Let {p,;a <~} be a well-ordered list of the points of S(4). We
assert there exists an increasing chain {B,,; a< 7} of models of T such that
each B,DO A and each p; with 8 < a is realized in B,. The proof is by
induction on «. Assume the sequence exists for all 8 <«. If « is a limit
ordinal let B, = U s<aBs and the result follows from 1.2(b). Suppose

= 84 1. By the Completeness Theorem there is a model of 7,C,C2 A
such that p; is realized in C. By 1.2(d) there is a model of T, D, and mono-
morphisms f,: C— D and f,: Bs— D such that f; = f, on A. If we identify
B; with fy(B;) then D may be taken as B,. B, is the B satisfying the
theorem.

Suppose that A, BE/V(T) and f:A—Bis a monomorphlsm Then f
induces a monomorphism f F(A) — F(B) defined by: f(\//) is the formula
obtained by substltutmg (for each a € A) f(a) for each occurrence_ of a
iny. In turn, f induces a map f*:S(B) — S(A) defined by f*(p) = f Y(p).
The map f* is continuous (cf. [14]), indeed f*~'(U,) = Uy,; the map f*
is onto S(A), for if ¢ € S(A) there is some p &€ S(B) with p D f(g). If, in
particular, BD A and isp: A — B is the identity map(") and p € S(B)
then i}x(p) = p N F(A).

Let #(T) ={S(A); A€ #(T)} and £(T) ={(f*:S(B)—S(4)); A, B
€ A#(T) and f:A— B a monomorphism|. Then % (T) is a category of
continuous onto maps with object class (7). It is “dual” to the cate-
gory of monomorphisms between members of _#(T). Therefore, corre-
sponding to each of 1.2(b), (¢) and (d) there is a dual statement which
holds in the category %(T). It should be especially noted that since a
formula, ¥, involves only a finite number of individual constants, for each
U, in the basis of S(A) there is some finite BC A such that U, is the
inverse image under i, of a member of the basis of S(B).

The next definition is a generalization of the usual definition of derived
spaces to a definition involving a class of spaces and a category of maps
between them. Though we shall deal explicitly only with the category

(11) Henceforth, whenever AC B the identity map of A into B will be denoted by izp.
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¥(T), it will be obvious that Definition 2.2 and many of the following
results and proofs remain valid in many other categories of continuous
onto maps betweem compact spaces.

DEFINITION 2.2. For each ordinal « and each S(A) € S(T), subspaces
S§*(A) and Tr*(A) are defined inductively by:

(1) 8+(4) = S4) — U, Tr'(4)

(2) pE€ Tr*(A) if (i) p € S*(A) and (ii) for every map (f*:S(B) — S(4))
EZ(T),f*(p) NS*(B) is a set of isolated points in S*(B).

p € S(A) is algebraic if p & Tr'(A); p is transcendental in rank o if
p €Tr(A)(®).

THEOREM 2.3. (a) S“(A) is a closed and hence compact subspace of S(A).
() If (f*:S(B)—S(A)) € L(T) then (i) f*(S*(B)) = S*(A), and (ii)
if p&S“(A) then p&ETr(A) if and only if f*~'(p) NS*“(B) < Tr*(B).

Proof. (a) The proof is by induction on «. Suppose « =8+ 1. Then
S*(A) = S(A) — Tr’(A). Tr’(A) is a set of isolated points in S°(A) and
is therefore open in S?(A). So S*(A) is closed.

Suppose « = . Then S*(A) = N 5<s9°(A) and is closed since it is the
intersection of closed sets.

(b) Notice first that, since Tr*(4) = S*(4) — S*T!(A), (b)(ii) will follow
immediately from (b)(i). We shall use the following topological result.

ProrosiTiON. Suppose G is a compact space, H a Hausdorff space, f:
G— H a continuous onto map, and p € H, a limit point of H; then f~'(p)
contains a limit point of G.

Proof of proposition. If f~'(p) contained only isolated points then G
— f(p) would be closed and hence compact. Then f(G—f'(p)) =H
— {p} would be compact and hence closed, so p would not be a limit
point of H.

The proof of (b)(i) is by induction on . Assume result for all 8 < a.
We first show that f*(S*(B)) C S*(A); that is, we show for each 8 < « that
if & S*(B) then f*(q) = p ¢ Tr’(A). Since g¢& Tr’(B) there is some
(g*:S(C) - S(B)) € £(T) such that g* '(q9) NS?’(C) contains a limit
point, say r. Then (f*g*:S(C)—S(A)) €% (T) and r& (f*g*) '(p) so
p & Tr’(A).

Finally, to prove that f*(S*(8)) 2 S*(A) we must show for each p € S*(4)
that f* '(p) N S*“(B) #@. Suppose the contrary for some p & S°(A).
Since f* is onto, f* !(p) is closed and compact and therefore there is a
largest 8 (necessarily < a) such that f*7'(p) NS°(B) #@. Then f* !(p)

(*» The terminology algebraic and transcendental are suggested by the theory of algebraically
closed fields of characteristic 0, see Example I below. Our notion of algebraic is also related to a
generalized notion of algebraic extension considered by Joénsson [6].
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N S*(B) CTr¥(B). Since p & Tr’(A) there is some (g*:S(C)—S(A))
€ Z(T) such that g*~'(p) N S°(C) contains a limit point of S*(C), say r.
By 1.2(d) there is a D& A#(T) and monomorphisms h;: B—D and hy:
C— D such that h,f = h,g. By the induction assumption, 2} maps S?(D)
onto S?(C). By the proposition above, hf '(r) contains a limit point of
S*(D) say s. Then hi(s) € S*(B) N\ f* (p) but hi(s) & Tr*(B) from 2.2.
This contradicts f*~'(p) N S?(B) C Tr*(B) and the result is established.

CorOLLARY 2.4. If p & Tr*(A) then there is a finite FC A such that
ifa(p) € Tr(F).

Proof. S(A) has a neighborhood U such that S*(4) N U= {p}. As
remarked earlier, since U is determined by some formula there is some
finite F € A such that S(F) has a neighborhood V with U = i#'(V). By
2.3 (b) (i), ifa(@) = i#a(U N S*(A)) = VN S*(F). Therefore, if4(p) € Tr*(F).

THEOREM 2.5. (a) If p € Tr*(A) there is an integer n such that for every
(f*: S(B) » S(A)) € £(T) the set f*'(p) NS*(B) has power =<n. The
least such integer will be called the degree of p(*)

(b) If p € Tr(A) and (f*:S(B) — S(A)) € L (T) then degree p =
Y., degree q(g € f*~'(p) N Tr*(B)).

Proof. (a) Suppose the opposite for some p & Tr*(A). Then there would
be, for each n € w, a B, & #(T) and monomorphisms f,: A— B, such that
*~1(p) M S*(B,) has power > n. By iterative applications of 1.2(d) to these
B,’s there is a sequence A CTA; C A,--- such that i;},n,(p) M S*(A,) has
power greater than n. Let A’ = U ncoAn. Then if3/(p) NS*(A’) is in-
finite and since it is compact, has a limit point. So p € Tr*(4) contradict-
ing the assumption.

(b) For each ¢& Tr*(B) N f* '(p) there is some C,&_#(T) and a
monomorphism g,: B— C, such that g} '(¢q) N S*(C,) has power degree q.
Similarly there is some C,& #(T) and a monomorphism g,: A — C, such
that gx~'(p) N S*(C,) has power degree p. By repeated applications of
1.2(d) there is a CE-#(T) and a monomorphism g: B— C such that
g* @) NS*(C) has power degree g (for each ¢& f* '(p) N S*(B)) and
(f*g*) ~'(p) N S*(C) has power degree p. But

(2" () NSYC) = Ug* U NSO (@& '(p) N S*(B))
q
and the result follows.

Lemma 2.6. (a) There is an ordinal ar < (2%°)* which is the least ordinal

(13) It is possible to combine the rank and degree into a single new rank by varying the
Definition 2.2 slightly. To do so replace in 2.2(2) the words “‘set of isolated points” by “a
single point.”
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such that for all A& A#(T) and all 8> ap, ST(A) = S*(A).
(b) If S°T(A) = @ for some A & A(T), then ar is not a limit ordinal and
for every B& A#(T), S’(B) =@ and S*(B) =@ for any 8 < ap.

Proof. (a) From 2.4 it follows that Tr®(A) is empty for every A &.#(T)
if it is empty for every finite A € #(T). There are at most 2%’ isomor-
phism types of finite systems €©_#(7T) and for each such finite system
«(S(4)) = 2%,

(b) Suppose A,B&_A#(T) and S’(A) =@ Then by 1.2(c) and 2.3(b)
S?(B) = @. That the least ordinal at which this occurs cannot be a limit
ordinal follows from 2.3(a) and the compactness of S(A).

We say T is totally transcendental if S°T(A) =@ for some (and hence
every) A &€ MNT).

TueoreMm 2.7. If T 1is totally transcendental then «(S(A)) = «(A)
(modulo R,) for every A & MT).

Proof. For every p € Tr*(A) we may choose a member U(p) of the basis
of S(A) such that U(p) NS*(A) ={p}. Clearly if p=p’ then U(p)
# U(p’). Since T is totally transcendental, every p & S(A) is transcen-
dental in some rank. Thus the correspondence of p to U(p) is a one-one
correspondence between S(A) and a subset of the basis of S(A). So «(S(A))
< «(A) 4+ R,. On the other hand, the formula: v, =@a, determines for each
a € A a unique element of S(A); so x(S(A)) = «(A).

The next theorem is an analogue of the Cantor-Bendixson theorem and
the proof is similar to proofs of that theorem.

TueEOREM 2.8. T is totally transcendental if and only if S(A) is countable
for every countable A & #(T).

Proof. If T is totally transcendental then S(A) is countable for countable
A by Theorem 2.7.

Conversely, suppose T is not totally transcendental. Then for every A
& MT),S°T(A) =@. There is some A &E _#(T) such that S°T(A) has
more than one point; for otherwise, every p € S°T(A) would be transcen-
dental in rank a7, and by definition, there are no points transcendental in
rank ar. Thus, there is some A; & _#(T) such that S°7(A,) may be divided
into two disjoint nonempty components (closed-open sets), say U, and U,.
As remarked earlier, U, and U, are determined by finite subsets of A,.
Hence, without loss of generality we take A; to be finite. There must be
some BE A#(T),BD A,, such that i}l;}( U, N S“T(B) has more than one
point; for otherwise, each p € U, would be transcendental in rank ar
Similarly for U;. By 1.2(d) we may find an A, D A, such that if,(U,)
N S*“T(A,) and i:l‘Al2 (U) NS*“T(A3) both have more than one point. Thus
we may decompose S°T(A,) into four disjoint nonempty components, Uy,
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Uo, Ui, Uy such that i}lj,lz(Uj) NST(A) = UpyU U, (j=0,1). As be-
fore we may take A, to be finite. We proceed inductively to find an in-
creasing chain of systems {A,;n <w} such that each A, & A#(T), is finite,
each S°7(A,) may be decomposed into 2" disjoint nonempty components
UfO"‘fu—l (jk = O, 1) and

i:n_Aln+l(l]f0"'fn-—l) N SaT(A"H) = Ujo--~in—10 U U.io---fn—ll’

Let A= U ,A, For each tc 2* Let V,= ﬂ,,ij;,:(U,@...,(n_n) N S“1(A).
Then V, # @ since it is the intersection of closed nonempty sets. Obviously,
t, #t, implies V, N\ V,=@. Thus S°T(A) has power 2% though A is
countable.

We shall conclude this section with three examples. In each case we
shall describe the theory = such that T'= =*. We shall then describe S(A)
for each A € _#(T). To do this it is convenient to know when a con-
sistent set of formulas of F(A) is contained in a unique p € S(A). We
give the following sufficient condition:

A consistent set of formulas, Q C F(A), is contained in a unique p € S(A)
if whenever B is a model of T,BD A, and b,b’ € B satisfy every formula
of Q, then there is an automorphism of B carrying b to b’ and leaving each
element of A fixed(*).

For suppose p and p’ were points of S(A) which contain Q. By 2.1
there is a model of T,B,BD A, and with b,b’ € B realizing p and p’
respectively. Our condition then asserts that there is an automorphism of
B having A fixed and carrying b to b’. Therefore b and b’ realize the same
point of S(A), that is p =p’.

ExaMpPLE 1. Let = be the theory of algebraically closed fields of charac-
teristic 0(*®). As mentioned earlier this theory is categorical in very un-
countable power but not in power NX,. Suppose A € _#(T), let A(A) be
the field generated by A. Suppose Q(vy) is a polynomial with coefficients
in A(A) and irreducible over A(A). By the condition above the formula:
Q(vy) = 0 determines a unique point of S(A). Since this point is determined
by a single formula it is an isolated point of S(A4). Let P be the set of all
formulas: Q(vy) # 0 where Q(vy) is a polynomial with coefficients in A(A).
Then all the formulas of P are satisfied precisely by those elements trans-
cendental (in the usual field-theoretical sense) over A(A). Therefore, by
our condition and the Steinitz theorems P is included in a unique p € S(A).
Obviously, the above are all the points of S(A). Since S(A) is infinite
and compact it must have a limit point which can only be the point deter-

(14) If we weaken this condition to assert that there is a model of 7,C2 B, such that C has an
automorphism carrying b to b’ and leaving each element of A fixed, then this condition is also
necessary; cf. [10].

(15) For a more detailed discussion of this case see Abraham Robinson, Complete theories,
North-Holland, Amsterdam, 1956.
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mined by P. Thus S(A) consists of: (1) isolated points corresponding to
the distinct elements of A(A) and to the algebraic extensions of A(A),
and (2) a single limit point corresponding to the transcendental extensions
of A(A). If BD A then any element algebraic over A(A) is a fortiori alge-
braic over A(B). So if p & S(A) is an isolated point, then i}z'(p) is a set
of isolated points; hence p & Tr’°(A). For each A &€ #(T),S'(A) is then
a single point so S'(A) = Tr'(A). Thus T is totally transcendental and
ap= 2.

ExampLE II. Suppose there are two relation symbols: R,, a one-ary
relation symbol, and R,, an (n + 1)-ary relation symbol and let the formulas
of = assert that in any model of = A = (|A|, R}, R{):

(1) |A| is infinite, and

(2) the set of pairs (ao, (ai, - - -,a,)) such that Rfay,ay, ---,a,is a one-one
correspondence between |A| — R§ and the n-tuples of distinct elements
of R4.

This theory is obviously categorical in every infinite power.

For each n-tuple of distinct elements of Rj,ay,---,a, let {(a;,---,an)
denote the unique a, such that Rf aga, ---,a,. Suppose B& A#(T).
By 2.1 there is a model of T, A D B, such that every p € S(B) is realized
in A. Denote by B the closure of B in A; more precisely, B is the smallest
subsystem such that BC BC A, and (a,,---,a,) € B if and only if a,
...,0,EB. Itis easy to see that every a & B is characterized by a unique
formula of F(B), and so each a & B realizes an isolated point of S(B).

Notice that every one-one map of Rf — B onto itself induces an auto-
morphism of A which leaves B fixed. So every element of R} — B realizes
the same point of S(B). Similarly, two elements (a,,---,a,) and (ai,---,az)
realizes the same point of S(B) if and only if for all 1 < i < n,q; = a/ when-
ever a; or a/E B. Call a point p € S(B) of type m if it is realized by an
element (a,, ---,a,) and exactly m of the a’s € B;

Suppose CE€ MT), ADCDB, {(a,---,a,)EA,m of the a’sE B,
and m 4+ 1 of the a/s& C. Then {(ay,---,a,) realizes a point of type m
in S(B) and of type m + 1 in S(C). Thus, for every B& #(T) we can
find a C D B such that for every p & S(B) of type m < n,i}:'(p) contains
an infinite set of points of type m + 1.

From the above considerations it is easy to show that: (1) the points of
S(B) realized by elements of B & Tr’(B), (2) the point of S(B) realized by
the elements of R — B is transcendental in rank 1, and (3) the points of
S(B) of type m are transcendental in rank n — m. Therefore, T is totally
transcendental and ar=n + 1.

ExampLE II1. Consider the Cantor set, i.e., 2° with the product topology.
Let Y be a closed nonempty subset of 2°. There will be a denumerable set
R, (n Ew) of singulary relation symbols and the theory = will assert



1965] CATEGORICITY IN POWER 525

that for any model of =, A, and any two finite sets K, K| C w, N nekKy RA
N ﬂ,,eKO(|A| — R2) is empty or infinite depending on whether

fre vi At =14 A 1) =0}
nckK; nEKy

is empty or nonempty. Thus the points of Y correspond to the isomor-
phism types of single element subsystems of models of =. If A & _#(T),
then the points of S(A) realized by elements of A are isolated, indeed
algebraic points; while the points realized by elements not in A form a
space homeomorphic to Y. None of the latter points can be algebraic
since each one could be realized by an infinite set of elements in some
BDA. So S'(A) is homeomorphic to Y, and, if BD A,i}; maps S'(B)
homeomorphically onto S'(4). A point p € S'(A) will be in S'**(A) if
and only if the corresponding point of Y is in Y@, the ath derived set of
Y. The theory is totally transcendental if and only if Y has a vanishing
perfect kernel, that is, if Y is countable. If ay is the least ordinal such that
Y® = Y™ then ar=1+ ay.

3. Results depending on Ramsey’s theorem. In this section we have
gathered together some results depending on the following theorem of
Ramsey [12].

THEOREM 3.1 (RAMSEY). Suppose Y is an infinite set and Y™ the set of
subsets of Y having exactly n elements. If Y™ = C,U --- U C,, is a partition
of Y™ into a finite number of mutually disjoint sets, then there is a j <m and
an infinite set Y, C Y such that Y{" C C;.

Much of this section is related to results of Ehrenfeucht and Mostowski
[3] and Ehrenfeucht [1], [2]. In particular, Theorems 3.2, 3.4 and 3.5
below are only slight variants of the results of [3].

THEOREM 3.2. Suppose 2 is a (generalized) theory in a language L,Z has
an infinite model, and (X, <) is an arbitary linearly ordered set. Then there
is a model of Z,A, such that |A| 2 X and whenever n € w,xy < -+ < X,_;
and x{ < --- < x},_; are contained in X and ¢ is a formula of L with no free
variables other than vy, ---,v,_1, then |ay(xg, -+, %, 1) o P(xd, -+, x0_1).

Proof. Suppose there is added to L a new constant, ;, for each x &€ X,
and there is added to = the sentence

(I) ‘(x_l ?f x_27’

for each pair x,, x, of distinct elements of X. Suppose further that whenever
nNEwxg< -+ <X,_;and x{ < --- <x,_; and ¢ is a formula of L with free
variables among vy, - - -,V,_;, there is added to = the formula

(1) Yoy -+ X 1) Yy o, ).
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The result is a set of sentences, say Z, extending Z. _

To prove the theorem it is sufficient to prove X consistent. Suppose =
is inconsistent. Then there is an inconsistent =; C 2 such that Z,=Z to-
gether with a finite number of sentences of type (I) and (II). Let the
sentences of type (II) appearing in Z; be:

“‘pl[ E] 14—)‘//1[}] i’”, i '1“‘I/M[§]m<—)‘l/m[§] :m”
where the notation [x] is an abbreviation for a sequence of constants
-x_O’ ] In— 1. _

Consider first the case where each [ x]; has the same number of elements,
say n. Let A be an infinite model of £ and “< *”’ a linear ordering of
|A| (in general, having nothing to do with any of the original relations
of A). If [a] and [a]’ are n-tuples of |A| which are properly ordered
by < * then we say

la]l~[a]” if Fa Avla]eyla]”
Jj=m

This equivalence — partitions |A|™ into (at most) 2™ equivalence classes.

Applying Ramsey’s theorem, we may find some infinite subset Y C|A|
such that Y™ lies entirely within one equivalence class. That is, if [a]
and [a]’ are properly ordered n-tuples of Y then [a]~ [a]’. Since =
contains only a finite number of sentences of type (I) and (II), it contains
of the new constants added to L, only those corresponding to some finite
subset of X, say X;. We may now pick in Y a finite subset, Y;, which is
order-isomorphic to X;. Then (A,a),cy, is a model of Z,, contradicting
its inconsistency.

Consider the general case where all the [x]’s do not necessarily have
the same number of elements. Notice that it is sufficient to prove the
theorem for X, a linearly ordered set without maximal elements, since any
linearly ordered set can be imbedded in such a one. Now, let N be the
maximum number of elements in any [x]; (j <m). Then a properly
ordered [x]= (xo,---,%,_;) may be imbedded in a properly ordered set
(Xg, **+, Xn_1,%n, - -+, Xn_1). The general result then follows from the first
considered case.

The next theorem expresses the well-known fact that one can eliminate
existential quantifiers by the use of operation symbols. A proof may be
found in the first chapter of [4].

THEOREM 3.3. Suppose = is a theory in a countable language, L; then
there is a countable generalized language, L* D L and a theory =* of L* such
that:

(i) every o & =* is a universal sentence, and

(ii) for every sentence, y of L, F5* y if and only if }sy.
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Thus, if A is a model of =*, then A 1L (A restricted to the relations
corresponding to symbols of L) is a model of =.

Suppose A is a model of =* and X C|A|. The set of elements a € A
such that there is a term, t(v,---,v,) in L* and x,---,x,E X witha =
t4(xy, - -+, x,) is by 3.3(i) the universe of a model of =*, denoted by M(X, A).

THEOREM 3.4. If 2 is a theory of L, has an infinite model, and (X, <)
is an arbitrary linearly ordered set; then there is a model of =¥, A, with X C|A|
such that if: (1) to(vo, - +,Vn), -+, tm(Vo, -+, Un,) are termsin L*, (ii) Xjk
and x, (j =m,k = n) are elements of X and the mapping of x, to x}, is an
order isomorphism between them, and (iii) ¢ is a formula of L* with free
variables among v, - - -,v,; then

l‘A‘I/(tg(xOO7 ] xOno)y R} t:r‘t(xInO, tty xmnm))
« ‘I/(tA(xOO, n{)) tA(me’ Tt xl/nnm)) .
Proof. Apply Theorem 3.2 to =*.

THEOREM 3.5. Suppose = is a theory with an infinite model and (X, <)
is an arbitrary linearly ordered set. Then there is a model of =,B,|B| 2 X,
such that any order endomorphism (automorphism) of X may be extended
to an endomorphism (automorphism) of B.

Proof. Extend = to =* and apply Theorem 3.4 to get a model of =* con-
taining X. Take B=M(X,A)1L. If f:X—X is an order endomor-
phism, deﬁnef M(X, A) —» M(X, A) by f(tA(xg, - - -, %)) = tA(f( o), - - -, f(x).
By 3.4 f is well defined and is a monomorphism; it is obviously onto if
f is onto.

The preceding two theorems may be strengthened by extending = to
=*# rather than =*. Using 1.1(c) this will then prove:

THEOREM 3.6. (a) For formulas, ¢, of L, Theorem 3.4 remains valid if
in the last line |-, is replaced by \yx a)-

(b) Under the hypothesis of Theorem 3.5 there is a model of =, B,|B| 2 X,
such that any order endomorphism (automorphism) of X may be extended to
an elementary endomorphism (automorphism) of B.

Suppose A is a model of £, X C|A|, and a,a’ €EA. We say a is ele-
mentarily equivalent over X with respect of A to a’ if the map : X U {a}
— X U {a’} which is the identity on X and maps a to a’ is an elementary
monomorphism.

THEOREM 3.7. Suppose Z is a theory in a countable language, L, and =
has an infinite model. Then for every infinite « there is a model of =, A, «(A)
=k, such that for every countable X C|A|,A contains only a countable
number of elementary equivalence classes over X.
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Proof(*°). Let (X,, <) be a linearly ordered set having the order type of
initial ordinal x. Apply Theorem 3.4 to =*#to get B and let A = M(X,,B) 1 L.
Suppose Y is a countable subset of | A|. Then Y C M(X,, A) for some
countable subset X, C X,. For each a © A there is some term t(vy, - - -, Uy,)
in L** and elements x, ---, x, & X, such that a = t*(x, ---,x,). By 3.6(a)
the elementary equivalence class of a over Y is determined by t(vo, - - -, V,)
and the ordering relations between xo, ---,x, and X,. L** is a countable
language and has only a countable number of distinct terms. X, is a count-
able well-ordered set and so there are only a countable number of ways
of interpolating a finite set into it. Therefore A has only a countable
number of equivalence classes over Y.

THEOREM 3.8. If T is categorical in some power x> X, then T is totally
transcendental.

Proof(*"). Suppose T were not totally transcendental. Then by 2.8 there
would be a countable C & _#(T) with «(S(C)) > R,. So we could certainly
have a model of T, B, such that x(B) = x, BD C, and an uncountable num-
ber of points of S(C) are realized in B. This B is clearly not isomorphic
to the model of power « proven to exist in Theorem 3.7.

A theory T may be categorical in power X, and not be totally transcen-
dental. For example, consider the theory of dense linearly ordered sets
without end points. Let A be a linearly ordered set having the order type
of the rationals. It can be shown that distinct Dedekind cuts in A corre-
spond to distinct points in S(A) so «x(S(A4)) = 2%, By 2.8 the theory can-
not be totally transcendental. Theorem 3.9, below, is proved by a gener-
alization of this argument.

Suppose A is a model of T, R a relation of degree n of A, X C|A]|, and
S, the permutation group on (0,---,n — 1). Following Ehrenfeucht [1]
we define R to be connected over X if for every sequence of n distinct ele-
ments X, ---,%,_; of X there is an s & S, such that }4R(x,), -, Xsn-1)-
R is anti-symmetric over X if for every sequence of n distinct elements
Xg,+++,%,_; of X there is an s& S, such that p4~ R(xyq), -+, Xs_1).

THEOREM 3.9. If T is totally transcendental and A a model of T, then no
relation of A is connected and anti-symmetric over any infinite X C|A|(*).

(*%) For the case X=, this result was obtained by Ehrenfeucht [2]. Indeed, he showed that
if equivalence of two elements of A is defined to mean that there is an automorphism of A
mapping one to the other, there is still a model of = of power x which has only a countable num-
ber of equivalence classes. The proof is similar to that of 3.7 but X must be taken as a somewhat
more complicated linear ordering.

(17) The crux of this proof, that S(C) is countable for every countable CE_#(T), was estab-
lished by Vaught [10] for the case where T is categorical in power x=«Xo.

(18) For the case where T is categorical in power 2°, this result was obtained by Ehrenfeucht
[1]. Dana Scott (unpublished), by a different and simpler proof, extended the result to theories
categorical in power X0,
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Proof. Suppose some relation of degree n of A, say R, were connected
and anti-symmetric over an infinite set X C|A|. Impose an arbitrary
linear order on X and say that two properly ordered n-tuples of X are

equivalent, (xo, ---;%,_1) =~ (x5, - -+, %71 if
Fa /\ R(xs0), -« -, Xsa—1)) <> R ({0, + + +, Xfn—1) -
sESy

Then “=" partitions the properly ordered r-tuples of X into a finite number
of equivalence classes. By Ramsey’s theorem we may find an infinite Y C X
such that every properly ordered n-tuple of Y is in the same equivalence
class. That is, S, may be decomposed into two sets S; and S, such that
for any y, < --- <y, €Y,
(I Fa /\+R(ys(0), o Ysm-1) A\ AN~ R(Yy0), -+ 5 Ysn—1) -

sESy sESy,
R is connected and anti-symmetric on Y so neither S; norS, is empty.
Hence there exists an s, € S;f, s, S,, and a cycle (m — 1,m) such that
s1=8-(m—1,m).

Using the Completeness Theorem one easily shows that the existence of
Y implies that for any arbitrary order type, v, there is a model of T, B,
containing an ordered set, Y, of type v and such that any y, < --- <y,_;
€ Y satisfies (I). In particular, let Y have the order type of the real num-
bers and let ZC Y be a countable dense subset. We assert that distinct
elements in Y realize distinct points in S(Z). For suppose y <y €Y.
Pick n — 1 elements of Z,2y, -+, 2n_1,2m41, * - +» 251 Such that

< K2y <Y< 2y <Y < Zpg1 < -+ <2Zp_1.

Then (2, -+, 2m—1,Y ,2Zm41, -+ -, 2n—1) Will, after permutation by s;, satisfy
R. But (20, +,2m—1,¥ Zms1, -+ *,2n—1) will, after permutation by s, not
satisfy R, since its proper order will now be permuted by s,. So «(S(Z))
= 2% and T cannot be totally transcendental.

4. Models of totally transcendental theories. A neat characterization of
models of a theory T is given by the following lemma.

LeMMA 4.1. A& A#(T) is a model of T if and only if the points of S(A)
which are realized in A form a dense subset of S(A).

Proof. By 2.1 there is a B D A such that B is a model of T" which realizes
every point in S(A). By 1.1(c) a necessary condition for A to be a model
of T is that i,p be an elementary monomorphism. Trivially, this is also a

sufficient condition. By a theorem of Tarski(*®) a necessary and sufficient
condition that i,z be an elementary monomorphism is that every formula

of F(A) which is satisfied by some b & B be also satisfied by some a € A.

(*%) Theorem 1.10 of [15].
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But every y € F(A) and consistent with T(A) (i.e., =0 in the Boolean
algebra F(A)) is satisfied in B. Hence, a necessary and sufficient condition
that A be a model of T is that every ¢ = 0 in F(A) be satisfied in A, which
is equivalent to the condition that some point in each of the sets U,
={pES(A);y Ep} is realized in A. But the sets U, (y € F(4)) form
a basis for S(A), and the lemma is proved.

LeEmMA 4.2. If T is totally transcendental then for every A & A(T) the
isolated points are dense in S(A); indeed if U is an open set of S(A) and
p € Ulis a point of the minimal transcendental rank of the points of U, then
p is an isolated point in S(A).

Proof. Suppose p € U is of the minimal transcendental rank, say «, of
the points of U. By definition there is a neighborhood V of p such that
VN S(A) ={p}. Bt UNS*(A) = U. So VNSA) NU=VNU={p},
and p is isolated.

Suppose A,B&€ A#(T),B2 A, and B is a model of T. B is prime over A
if for every model of T,B’, and monomorphism f:A — B’, there is a
monomorphism g: B— B’ with f=g on A.

TuEOREM 4.3. Suppose T is such that for every A & A(T) the isolated
points are dense in S(A), then every A & A#(T) has a model of T prime
over it(%).

Proof. Let A& _A#(T) and « = x(A) + X,. Then S(A) has at most «
isolated points. Let {p,;a <«} be a listing (possibly with repetitions) of
the isolated points of S(A). Choose some increasing chain {A, a <«| of
members of _#(T) such that: (1) Aj= A4, (2) A, = UM,A,,, 3) A=A,
if p, is realized in A,, and (4) if p, is not realized in A,, then A,,; — A,
has a single element, a,, which realizes some isolated point ¢ in S(A,)
such that ¢ D p,.

If C is a model of T and fy: A — C is a monomorphism then there is a
sequence of monomorphisms {(fa:Aa—+C);a <«} such that for o« >a,
f. extends f,. This is proved by induction on «. The induction is trivial
in cases (1), (2), and (3) above. In case (4) suppose f,: A,— C is a monomor-
phism and a,E A,,; — A, satisfies the isolated point ¢ in S(A,. Then
*~1(g) is an open set in S(C) and by hypothesis contains an isolated
point, say q’. By 4.1 there is a ¢ € C realizing ¢’. Let f,;i(a,) =c and
the monomorphism is extended.

A = U,,<K A, then realizes every isolated point in S(A) and every
monomorphism of A into a model of T can be extended to a monomor-
phism of A,. We may now list the isolated points of S(A,) and repeat the
above process to get an A,., realizing every isolated point in S(A,) and

(20) For the case where A is countable the existence of a prime model over A was proved under
a somewhat weaker hypothesis in [18].
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such that every monomorphism of A into a model of T may be extended
to a monomorphism of A,.,. Iterating « times we obtain
Ax.u = U Ax.n
nEw

such that any monomorphism of A into a model of T can be extended
to a monomorphism of A,.,, and A,., realizes every isolated point in S(A,.,)
for each n € w. But the topology on S(A,.,) is that induced by the S(A,.,)’s;
for each formula ¢y &€ F(A,.,) must be already in some F(A,.,), hence the
neighborhood U, of S(A,..) is the inverse image of the corresponding
neighborhood in S(A4,.,). So, A,., realizes every isolated point in S(A4,..)
and is by 4.1 a model of T.

For the next theorem we shall need some results about increasing se-
quences of systems and the corresponding sequence of Boolean spaces. We
summarize these in the next lemma.

LEMMA 4.4. Suppose T is totally transcendental. (a) If {A;a <y} is an
increasing sequence of members of MT), A = U‘,,<7 A, and {p;a <~}
a sequence such that p, € S(A,) and i} s(py) = pa (a <8 <) then:

(i) there is an «y < vy such that for all «, if ag < a < vy then transcendental
rank and degree of p, equal the transcendental rank and degree of p., and

(i) there is a unique p & S(A) such that

pE N i ip).

a<y

This point will have transcendental rank and degree equal to that of the p,,
defined in (i).

(b) If {A,,; a <~} is an increasing sequence of members of #(T) and p is
an isolated point in S(A,), then there is a sequence {p,;a <~} of points such

that p.€S(A) (a <%), Po=D, iaaPy) = P. (e <B<%) and each p, is
isolated in S(A,).

Proof. (a) If y =8+ 1 then A = A; and the result is trivial. Suppose
vy = a limit ordinal 5. By 2.3, 8 = « implies transcendental rank p, < trans-
cendental rank p,. Since there can be no infinite decreasing sequence of
ordinal numbers, the transcendental rank must remain constant from some
a on. By a similar argument (now using 2.5), the transcendental rank
and degree must remain constant from some «, on. Let p,, have trans-
cendental rank » and degree n. By 2.3, n,m,ijfa;‘(pa) can have no point
of rank > », and is(p.) MNS’(A) is not empty; but by 2.5(b) iZ(;)ha(Pao)
NS'(A,) = {p.} (for a2« and so
N iz p) NS(A) = i3 h(p.) NS (A).

a<é

We assert that na<6i:aj41(p,,) can contain only one point. For suppose
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it contained distinct points p, and p,. Then there would be a formula
v € F(A) such that y € p, and “¢ € p,. There is some a <& such that
vE F(A,) and so ¢y € p, and JE p. which is impossible. (Topologically,
this argument amounts to the statement that S(A) is a Hausdorff space
with its topology determined by that of the S(A,)’s.) By 2.5 this unique
p € S(A) must have degree equal to the degree of P, and (a) is proved.

(b) There is no loss of generality in assuming that for limit ordinals
5,A; = UK& A,; for whenever it is not so for some § we may interpolate
U,,Q A, into the sequence. Consider a sequence { Do a < y} such that for
each a,p, &€ S(A,) and p, is a point of minimal transcendental rank in

§<a i:ﬂ;i(p,g). We show inductively that such a sequence exists and
that it satisfies (b). Assume a sequence defined and satisfying (b) for
B<a. Ifa=p8+1, then by 4.2 any point of minimal transcendental rank
in i}, (py) is isolated.

If « =6 then by (a) and its proof

ﬂ i5,4(p) = i3 4P NS(A)

and is a single point, say p,. The point p,, is isolated in S(A,) so i, Aé(pao)
is an open set in S(A;). Thus to prove p; isolated in S(A,) it will sufﬁce
to show that if Aé(pao) NS(A,) =i} 0Aﬁ(pao) Suppose this equality did
not hold. Then there would be a p’ & lAa Aé(pao) with transcendental
rank of p’ < v. By the argument used in the proof of (a) there would be a
B, a0 < B < 6, such that i3,,,(p’) # i4;4,(Ps) = ps- Since pﬂ has transcendental
rank and degree the same as p., and zAﬂAb(p )Eia oA ﬁ(p,,o) by 2.5 trans-
cendental rank of LAﬂAé(p ) < transcendental rank (pao) = transcendental
rank (ps). This contradicts the assumption that p; is of minimal rank in
n B’ <B i:‘;}iﬂ (pﬂ’)

THEOREM 4.5. Suppose T is totally transcendental and {A,;a <~} is an
increasing chain of members of #(T) such that for each limit ordinal 6 < v,
A,=U __,A.. Then there is an increasing chain {Biya<v} of models
of T such that B, is prime over A, (for each « < v) and for each limit ordinal
5 <7, B;=U.4B.(*.

Proof. Let A = anA,,. We shall show inductively that there exists
an increasing sequence of systems { C,; « < v} and of models of T, { B,; « < v}
such that (i) C, = A U B,, (i) B,2 A,, (ii)) B, = U, B, (for limit ordinals
6<v),and (iv) if Disa model of T, «a =8+ 1, o’ Za and f: A, U B;— D
is a monomorphism then there is a monomorphism g: A, U B,— D with
gD f. The sequence |{B, a <v{ will then satisfy the theorem.

(21

) It may be shown by example that the assumption that T is totally transcendental is
stronger than the assumption that the isolated points are dense in S(A) for every AC_#T).
Theorem 4.3 was proved under the weaker assumption but we have been unable to do the same
for Theorem 4.5.
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Assume the sequence {Cg;ﬁ < a} satisfying ()-(iv). If a=46 let C;
=U,,C and B,= U,_,B,.

If o = 8+ 1 we proceed as in the proof of Theorem 4.3. Let {p,;v <«}
be a list of the isolated points of S(A,\U By). By 4.4 we may find a se-
quence of points {pg,;a <7 <+v} such that py,= poPo, is an isolated
point of S(A,UBy and »’>7 implies po,Dpo, Let gqo= U,,<,p0,,,.
If there is an element of C; realizing g, denote it by a,; otherwise add an
element satisfying g, to C; and denote it by a,. By the method of the proof
of 4.3 we may iterate this process « - « times and find a sequence {a,;» <« - 0}
such that A,UB,U{a,;» <« - w} is a model of T, and for each o’
(e <&’ <7v) a, realizes an isolated point in S(A.,U Bs;U{a,;v" <v}).
This latter condition implies (by the same argument used in the proof
of 4.3) that (iv) holds for «.

Let C,= CﬂU{a,,;u <k -w} and B, = B;;U{a,,;u <k -w}.

Using condition (iv), above, a simple induction shows that any monomor-
phism of A, into a model of T' may be extended to a monomorphism of
B, into the same model, i.e., B, is prime over A,. Theorem 4.5 is proved.

Suppose A,BE #(T),A C B, and X C|B| —|A|. X is a set of elements
indiscernible over A if every one-one map of

JA|UX —|A|UX

which is the identity on |A| is a monomorphism. That is, for any open

formula, ¢, of L, any a,,---,a,& A, and any two sets of distinct elements
Xiy o ooy Xp and xi""’x;t e X; \b(a’l"”’am, xla”')xn) if and only if
¢(al: e, A, xi, Tty x:t)-

THEOREM 4.6. Suppose T is totally transcendental, A,B& #(T),A C B,
and «(A) < «(B) = «. Then (i) if « is a regular uncountable cardinal, there
is an X C|B| —|A| such that «(X) =« and X is a set of elements indis-
cernible over A; (ii) if « is uncountable but not regular there is still for each
A<«ka set XC|B| —|A| such that «(X) >\ and X is a set of elements
indiscernible over A.

Proof. Since for every infinite A\, A" is regular, (ii) will follow immediately
from (i) by choosing some C,A C CC B and «(C) regular.

So assume « regular. Suppose C & _#(T),x(C) <« and A CCC B. By
2.7 k(S(C)) < «, and from the regularity of « it follows that there is some
p € S(C) which is realized by « distinct elements of B. From the set of all
pairs (C,p) satisfying the above conditions we pick one, say (Cy,po), such
that transcendental rank of p, is the minimum, say », and the degree of
Do is the minimum, say n, among those having rank ».

Suppose C' & A(T), «(C’) <« and C,C C’ T B. Then %P0 has
power <« and hence must contain some point, p’, which is realized by «
elements of B. Since » is the minimal transcendental rank of such points,
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transcendental rank (p’) = v. But by 2.3 transcendental rank (p’) < trans-
cendental rank (po) =». A similar argument may be made for degree, so
transcendental rank (py) = transcendental rank (p’) and degree (po)
= degree(p’). By 2.5 there is only one such point in izo‘cf o). Thus,
i%,c(Po) has exactly one point realized by « elements and that point has
transcendental rank v and degree n.

We show that inductively that there exists a set of « distinct elements
{2 <k} C|B| —|Co| such that, letting C,= CoU{%;8<af and p,
& S(C,) the point realized by x,,p. is the unique point of rank » and
degree n in i&c.(py). For if {x458 < a} is defined, then by the discussion
of the preceding paragraph there are « elements of B which realize p, and
we pick x, to be one of these. Notice that g8 < « implies if;,ca(l)a) = ps
and hence x, realizes p, for all 8 < a.

Suppose 8; < -+ < Brpand B} < --- < Br. Denote by D,, and D}, the sys-
tems having universe |Co| U { %4, -+, %4,} and |Co| U {xy, - -+, X4, } Tespec-
tively. We assert that the map f,: D,— D}, which is the identity on C,
and carries X5, to x4 (i < m) is an isomorphism. Then proof is by induction
on m. Assume f,_,:D,_1— D}_; is an isomorphism. Let ¢ be the point
of S(D,_,) realized by x5, and ¢’ the point of S(D;_,) realized by x4
To prove f, to be an isomorphism it is sufficient to show that fx_1(¢’) = gq.
Since x;, realizes a point (namely po) of transcendental rank » and degree
n in S(Cy) and a point (namely ps; ) of transcendental rank » and degree
nin S(C;) and C,E D,_, S G4, it follows from 2.3 and 2.5 that ¢ is of
transcendental rank » and degree n. As proved above, there is a unique
point of transcendental rank » and degree n in if;, ,(pod), and ¢ must be
this point. Similary, ¢’ must be the unique point of rank » and degree n
in i{p,_,(po). Since f,_, is the identity on C,,

fr-1Gm, (P = iZbBi,,_,l(Po)-
Therefore f5_1(¢’) = ¢ and f, is an isomorphism.

Finally, we assert that X is indiscernible over A, indeed over C,.
Consider an open formula ¢ of L,a,,---,a,& C,, and sequences of dis-
tinct elements (x,,---,x,) and (x,,---,%,) in X. We must show that
v(ay, - -, am %y, --+,x,) if and only if y(ay,---,am%xs, -+, x;). We have
already shown this in the case when 8, < --- < 8, and 8; < --- < 8;. But by
3.9, v(ay, ---,a,, X, -+, %;) cannot depend on the order of the 8;s. (We
actually apply 3.9 to the theory T({a,,---,a,}) which extends T by add-
ing a,,---,a, as “distinguished elements” but by 2.8, T({ay,---,a.})
is totally transcendental if T is.) Theorem 4.6 is now proved.

5. Saturated models and categoricity in power. Suppose B is an infinite
system € #(T). B is saturated if for every A C B with «(A) < x(B), every
point of S(A) is realized in B.
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From 4.1 we see that if B& _#(T) is saturated, then B is a model of T.
Saturated systems were considered in [10], and the following result was
established(%).

THEOREM 5.1. If A and B are saturated models of T of the same power,
then A is isomorphic to B.

Thus a sufficient condition for T to be categorical in power « is that
every model of T' of power « be saturated(*).

Suppose B & _#(T) is an uncountable system. B is saturated over counta-
ble subsystems if for every countable A C B, B realizes every point of S(A).
By 4.1, every B& #(T) which is saturated over countable subsystems
is a model of T.

THEOREM 5.2. If T is totally transcendental and « > N, then there is a
model of T of power x which is saturated over countable subsystems(*).

Proof. Let B, be an arbitrary model of T of pwer «. Then S(B,) =«
by 2.7. Therefore, there is a model of T, B; 2 B, such that «(B;) = « and
every point of S(B,) is realized in B;,. Proceeding inductively, we see that
there is an increasing chain of models of T of power «, {B,;a < w;} such
that every point of S(B,) is realized in B,,; (for all @ < ;). Then B
= Ua@l B, is a model of T of power « which is saturated over countable
subsystems. For if A is a countable subsystem of B, then there is an
a < w; such that A C B,; then every p & S(A) is realized in B,,, and,
a fortiori, in B.

LeEMMA 5.3. Suppose T is totally transcendental and B is an uncountable
model of T which is not saturated. Then there is a countable model of T,
A C B, with a subsystem A’ C A such that (i) there is an infinite set Y C|A]|
—|A’| of elements indiscernible over A’, and (ii) there is a ¢ & S(A’) which
is not realized in A.

(*) In [10] universal homogeneous systems are considered. This is a terminology of Jénsson
[5]. If K is a class of similar relational systems and A& K then: (1) A is universal for K if A con-
tains an isomorphic image of every BE K with «(B) =«(A), (2) A is homogeneous in K if when-
ever B;, BE K, B;, BT A. «(B;) <«(A),and f: B;— By is an isomorphism, then f may be ex-
tended to an automorphism of A. Jonsson showed that under certain simple conditions on K that
any two universal homogenous systems of the same power are isomorphic. In the case that K
=_#(T), universal-homogeneous is equivalent to saturated. This was shown in the countable case
by Vaught [18] and in the uncountable case by Keisler (Theorem A2 of [8)).

(23) That the problem of categoricity in power could be approached this way was noticed by
Vaught. He proved [10;17] (assuming the generalized continuum hypothesis) that if T is cate-
gorical in an increasing sequence of powers then it is categorical in the limit power.

** In the case x=«", this result was proved in [10] without the assumption that T is
totally transcendental. However, it is possible to give an example of a theory T which is not
totally transcendental and a cardinal «> Ry with « ®o ¢« such that no model of T of power «
is countably saturated.
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Proof. Since B is not saturated there is some CC B,«(C) < «(B), and
a p € S(C) which is not realized in B. By 4.6 there is a countable infinite
set, Y, of elements indiscernible over C contained in |B| —|C|. By the
Lowenheim-Skolem theorem there is a countable submodel of B, A, such
that A;D Y. For each a € A, let p, be the point of S(C) realized by a.
Then no p, = p since no element of B realizes p. Hence, there is for each
aE Ay a formula ¢y, € F(C) such that y,Ep, and ~ ¢, E p. Since ¢,
involves only a finite number of sysmbols we may find for each some
finite C,C C such that y,E F(C). Let Aj = U.csC.. Thenmnoa€ 4,
realizes if;o(p) in S(A7). Let A, be a countable submodel of B such that
A, D A U A{. By iteration we may find a sequence of countable models,
AyC ... A,C ..., and a sequence of systems, A{C ...A,C ..., such
that A,C A,NC and no a& A, realizes i},“hﬂc(p) in S(A/;). Let A
=U,c.A, and A’ =U,c AL Then YC|A| —|A’| is a set of ele-
ments indiscernible over A’ and no a & A realizes i} ¢(p) in S(A’).

THEOREM 5.4. Suppose T is totally transcendental and has an uncounta-
ble model which is not saturated. Then for each « > Xy, T has a model of
power k which is not saturated over countable subsystems.

Proof. Let A,A’, and Y be as in Lemma 5.3 and ¢ & S(A’) be not realized
in A. By the completeness theorem there is an A,& #(T) such that
A, DA’ UY and A, — A’ is a set of « elements indiscernible over A’. (For
we can assert the existence of such an A, by a set = (of power «) of sen-
tences, and the existence of A’ Y shows that every finite subset of X,
and therefore X, is consistent.) Let {y,;a <«} be a well-ordering of A,
— A’, and A, = A" U {ys;8 <a}. Apply Theorem 4.5 to get an increasing
chain of models of T, {8,;a <«{, with B, prime over A, and for each
limit ordinal & <«, B;= U, B..

We assert that ¢ is not realized in any B,. The proof is by induction
on a. For a < w, the existence of the model A D A’ U Y and not realizing
g, implies B, does not realize q. If a« = 4, the induction hypothesis implies
no B; (8 <é) realizes ¢ and, hence, B, = Uﬂ<5 B; does not realize gq.
Finally, if « =8+ 1 > w, then by the indiscernibility of A, — A’ over A’,
there is an isomorphism of A, onto A, which is the identity on A’. So
there is a monomorphism of B, into B; which is the identity on A’. By
the induction hypothesis B, does not realize g, therefore B, does not
realize q.

B, = U,,«Ba is of power « and does not realize g.

THEOREM 5.5. If T is categorical in some power «k >N, then every un-
countable model of T is saturated.

Proof. By 3.8, T is totally transcendental. By 5.2, there is a model of T
of power « which is saturated over countable subsystems. If T had an un-
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countable model which was not saturated, then by 5.4 it would have a
model of power « which was not saturated over countable subsystems, and
T would not be categorical in power «.

THEOREM 5.6. If T is categorical in one uncountable power then T is
categorical in every uncountable power.

Proof. The proof is immediate from 5.1 and 5.5.

We shall conclude by mentioning some open questions(*). The first
two questions are about theories categorical in uncountable powers but
not in power X,.

(1) Does every such theory have exactly N, isomorphism types of
countable models?

(2) Is any such theory finitely axiomatizable?

The next two questions concern theories in languages with an uncounta-
ble number of symbols.

(3) If k> N,, 2 is a theory in a language having < « symbols, and =
is categorical in some power >, is = necessarily categorical in every
power > «?

(4) If « > R, and every model of £ has power =« can X be categorical
in power «?

We return to theories in countable languages. From 4.3 and 4.6 it follows
that if T is totally transcendental and « > N, we may find a model of
T,A, and a set X C|A| with «(X) = x(A) = « such that any one-one map
of X into itself may be extended to an endomorphism of A. This raises
the following question.

(5) If T is totally transcendental and « = N, is there always a model
of T, A, with a set X C|A| such that x(A) = «(X) = « and any one-one
map of X onto itself may be extended to an automorphism of A?

Notice this would follow from 3.5 and 3.9 if whenever T were totally
transcendental we could find a T* which was totally transcendental. In
[1], Theorem 2 asserts the affirmative of this question for theories cate-
gorical in power 2, but Vaught has pointed out a fallacy in the proof given.

Finally, we consider some questions about the ordinal ar defined in 2.6.
In 2.6 we showed that ar < (2%0)*. The first question is:

(6) Is ar ever uncountable?

We can answer this question in one case.

THEOREM 5.7. If T is totally transcendental, ar < w,.

Proof. By 2.4 if p & Tr*(A) there is a finite BC A such that ifs(p)
€ Tr*(B). By 2.7 S(B) is countable for every finite B& #(T). Thus we

(25) Problems (1) through (4) below are not due to the author; they seem to have been con-
sidered by several people. Problem (5) has recently been answered affirmatively by Jack Silver.
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need only to show that there are only a countable number of isomorphism
types of finite members of #(T). We prove inductively for each n € w
that there are only a countable number of isomorphism types of members
of #(T) of power n. For n =0 there is obviously only one. (Strictly,
the empty set is not a subsystem. But since we can define F(#), there
is no harm in treating it as a member of #(T).) Assume only a countable
number of isomorphism types of systems of power m. By 2.7 there are
only a countable number of ways of adding an element to each system
of power m, so there are only a countable number of isomorphism types
of members of #(T) of power m + 1.

Another question is:

(7) What model-theoretical conditions on T imply that «p is finite?

Plausible possiblilities are T being categorical in some power, or T'= =*
with Z finitely axiomatizable.
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