Preliminaries: Model-theoretic setting A question Key tools More recent work

Representations of finite Morley rank

Adrien Deloro

Université Paris 6

March 29 $^{\rm th}$, 2014

Preliminaries: Model-theoretic setting A question Key tools More recent work

In this talk:

- Preliminaries: Model-theoretic setting
- 2 A question
 - Main question
 - A digression: Abstract Linearity
- 3 Key tools
 - Hrushovski's analysis
 - Linearization principles
 - Summary
- 4 More recent work
 - Restricting the question
 - Restrictions on A
 - Restrictions on G

A question Key tools More recent work

Algebra, geometry, and logic

- Representation theory studies some interactions between algebra and geometry. Main idea: "linearize", eg. ρ : G → GL(V).
- Model theory analyses structures through their definable sets.
- Model theory has applications to algebra ("model-theoretic algebra"),
- and to geometry ("geometric model theory").

I shall try to say something about group representations in model theory.

Definable sets

The context is that of model theory:

- we consider a structure *M* in some language *L*.
 Eg. a group *G*, in the language of groups {1, ·, ⁻¹}.
- we look at *definable* subsets ⊆ Mⁿ, that is subsets for which one could write a "first-order" definition.
 - the centraliser $C_G(g)$ is defined by $x \cdot g = g \cdot x$.
 - If $H \leq G$ is definable, so is its normaliser $N_G(H)$.
 - If H ≤ G is definable, so is the quotient space G/H. (In more precise terms, "interpretable".)

• In
$$GL_2(\mathbb{C})$$
, the subgroup $\left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$ is definable...

• but $GL_2(\mathbb{R})$ is not.

A question Key tools More recent work

Finite Morley rank

Let \mathcal{D} be the collection of all definable subsets of $\mathcal{M}, \ldots, \mathcal{M}^n, \ldots$ \mathcal{M} has *finite Morley rank* if there is a function $\mathsf{rk} : \mathcal{D} \to \mathbb{N}$ satisfying "expected" properties of a dimension.

Example

$$\begin{split} \mathsf{GL}_2(\mathbb{C}) \text{ has finite Morley rank (in } \mathcal{L} = \{1,\cdot,^{-1}\}) \text{ and} \\ \mathsf{rk}\,\mathsf{GL}_2(\mathbb{C}) = 4. \\ \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \mathit{ad} - \mathit{bc} \neq 0 \right\} \end{split}$$

Note for model theorists

In general \mathcal{M} can be nasty. But *if* \mathcal{M} *is a group*, everything goes well ("ranked grps = grps of finite MR").

Morley, Zariski, Zilber

- If \mathbb{K} is an alg. closed field, the group $(GL_n(\mathbb{K}), \cdot)$ has fMR.
- An "algebraic group" (matrix group defined by polynomials) has fMR. (Geometers call its rank the *Zariski dimension*.)
- Zilber's original conjecture: if \mathcal{M} has fMR, then it can be analysed and "interesting" bits come from alg. geometry. It's an "atomistic" view of fMR structures.
- Key example: in $GL_2(\mathbb{C})$ one can recover the field $(\mathbb{C},+,\cdot)$.
- Original conjecture is not quite true (Hrushovski, Hrushovski-Zilber).

Sum up

- Structures are studied through their definable sets.
- Sometimes definable sets have a dimension (the Morley rank).
- Eg.: a matrix group on an alg. closed field $\mathbb{K}.$
- The dogma: where there's a dimension there's a geometry.
- If G is a fMR group, one can often define an alg. closed field in G (Zilber; see later).
- This is an indication that (despite Hrushovski) Zilber's dogma remains likely for groups.

A question Key tools More recent work

The Cherlin-Zilber Conjecture

Idea: rk function should make G an object of alg. geometry.

Conjecture (Cherlin-Zilber)

A simple infinite group of finite Morley rank is the \mathbb{K} -points of some alg. group ($\mathbb{K} \models \mathsf{ACF}$).

- Large amount of work.
- Conjecture is about "abstract groups" of finite MR.
- This talk does not relate to the conjecture.

Key tools More recent work Main question A digression: Abstract Linearity

"Concrete" fMR groups

- In nature groups do not "pop up" as abstract groups, they appear as permutation groups, i.e. groups with an action. Groups fMR are no exception.
- So one should study the general setting:

G acts on Ω , everything definable in a fMR structure.

 MacPherson-Pillay: one can often reduce to the case where Ω is an abelian group.

Key tools More recent work Main question A digression: Abstract Linearity

fMR Modules

Definition

A module of fMR is a pair (G, A) where:

- G is a group
- A is a connected, *abelian* group
- G acts on A
- everything is definable in a fMR structure.

(Or: the semi-direct product $G \ltimes A$ has fMR and G, A are definable.)

We'll always assume:

- G connected ($G = G^{\circ}$),
- G almost faithful $(C_G(A)$ is finite),
- A *irreducible*° aka *G-minimal*: A has no proper, non-trivial, *G*-submodules.

Key tools More recent work Main question A digression: Abstract Linearity

An aside: Abstract Linearity

Question

Which groups of finite MR are linear/definably linear?

(In a sense this amounts to being able to choose A.)

- Building on earlier work by Poizat (see later), Mustafin 2004 has studied definable subgroups of $GL_n(\mathbb{K})$ for \mathbb{K} a field fMR. But we still do not know everything we could want.
- Frécon has studied sections of abstract fMR *G* which can be linearized definably.
- His student Tindzogho Ntsiri has studied definable linearity of so-called *K*-groups.

Key tools More recent work Main question A digression: Abstract Linearity

Pure Linearity

Altınel and Wilson have been working on (non-definable) linearity.

Theorem (Altinel-Wilson, 2009)

Every torsion-free nilpotent group G of finite Morley rank has a faithful linear representation over a field of characteristic 0.

Theorem (consequence of Altınel-Wilson, 2011)

Every centerless, solvable group of finite Morley rank with torsion-free Fitting subgroup G has a faithful linear representation over a field of characteristic 0.

Of course the question remains for simple groups. (Is it any simpler than Cherlin-Zilber?)

Preliminaries: Model-theoretic setting Key tools More recent work The question The question

Suppose one has a definable module of finite Morley rank $G \ltimes A$. (We assume G connected and A G-minimal.)

Question

- Is G definably linear on A? That is, is there a field structure \mathbb{K} with $A \simeq \mathbb{K}^n_+$ and $G \hookrightarrow GL(A)$ definably?
- Is the action algebraic? That is, is G Zariski-closed in GL(A)?

We now review some classical results.

Preliminaries: Model-theoretic setting A question

Hrushovski's analysis ∟inearization principles Summary

Groups on sets: Hrushovski's analysis

One may wish to embed the question into the study of permutation groups of finite MR.

More recent work

That is, one may drop the assumption that A is an abelian group and do model theory.

Theorem (Hrushovski's analysis, 1989)

Let G be non-solvable and faithful on a strongly minimal set X (rk $X = \deg X = 1$). Then there is a field \mathbb{K} with $G \simeq \mathsf{PSL}_2(\mathbb{K})$ on $X = \mathbb{K} \cup \{\infty\}$.

The article is actually in a very model-theoretic vein.

Preliminaries: Model-theoretic setting A question

Hrushovski's analysis Linearization principles Summary

More recent work

Hrushovski's analysis, continued

Corollary

If connected G has a definable subgroup H of corank (rk G – rk H) 1 with $\bigcap_{g \in G} H^g = 1$, then $G \simeq \mathsf{PSL}_2(\mathbb{K})$.

The corollary is actually a reconstruction of the Bruhat decomposition of PSL_2 . It generalizes Cherlin's 1977 paper.

Remark (on the case where G acts on set X of rank 2)

- Gropp (1992) has studied it from a purely model-theoretic point of view.
- Wiscons (2013) is writing a different and more algebraic analysis.
- This is essentially harder to use than Hrushovski.

Linearization principles 1: Zilber's Field Theorem

More recent work

Zilber's Field Theorem is a powerful linearization principle.

Theorem (Zilber's Field Theorem, 1977)

Suppose $G = A \rtimes T$ has finite Morley rank, where:

- A and T are definable, abelian, connected, infinite
- $C_T(A) = 0$
- A is T-minimal, that is no non-trivial proper T-invariant definable subgroups

Then there is a field structure \mathbb{K} with $A \simeq \mathbb{K}_+$, $T \hookrightarrow \mathbb{K}^{\times}$.

This is only local as it requires abelian T! Different field structures obtained at different places may not match!

Preliminaries: Model-theoretic setting A question More recent work

A digression: bad fields

Zilber's FT led to the question of so-called bad fields.

Definition

A bad field is a structure $(\mathbb{K}, 0, 1, +, \cdot, \ddot{U})$ of finite Morley rank consisting of a field and a proper infinite subgroup $\ddot{U} < \mathbb{K}^{\times}$.

- Have been proved to exist in char. 0 (Baudisch, Hils, Martin-Pizarro, Wagner; 2009).
- Still open in char *p*.

The possibility of bad fields has considerably complicated the inner analysis of abstract groups of finite Morley rank.

Preliminaries: Model-theoretic setting A question

Hrushovski's analysis Linearization principles Summary

More recent work

Linearization principles 2: Canada Dry

Theorem (Loveys, Wagner; 1993)

Suppose G is simple, and A is G-minimal and torsion-free. Then there is a field \mathbb{K} such that $A \simeq \mathbb{K}^n_+$ and $G \hookrightarrow GL_n(\mathbb{K})$.

Remark

The proof is not valid for torsion A, meaning that there is no such thing in characteristic p.

This is *not* the end of the story in char. 0, as one still can ask about algebraicity.

Preliminaries: Model-theoretic setting A question

More recent work

Algebraization principles

Theorem (Poizat, 2001)

Let \mathbb{K} be a field of fMR with char $p \neq 0$. Then every simple, def. subgrp of $GL_n(\mathbb{K})$ is definably isomorphic to an alg. group over \mathbb{K} .

Theorem (Poizat, 2001 says it's mostly Macpherson-Pillay, 1995)

Let \mathbb{K} be a field of fMR with char 0, and G a simple, definable subgroup of $GL_n(\mathbb{K})$ not Zariski closed. Then all elements of G are semi-simple, and solvable subgroups are abelian-by-finite.

Theorem (Borovik-Burdges, 2008 preprint)

Same setting. G has no involutions.

A disaster - could there be a linear bad group?

Preliminaries:	Model-theoretic setting A question	question Hrushovski's analysis Linearization principles
	More recent work	

Summary

Question

Let $A \rtimes G$ have finite Morley rank where A is abelian, irreducible^{\circ}. Then what?

Toolbox

- Hrushovski's analysis deals with strongly minimal set A.
- Zilbers' FT is purely local.
- Loveys'-Wagner's Canada Dry linearizes in char. 0.
- Poizat's Quelques modestes remarques can algebraize linear G ≤ GL_n(K) in char. p.

The rest does not quite work for our purposes.

Preliminaries: Model-theoretic setting A question Key tools

Restricting the question Restrictions on A Restrictions on G

Two directions

The previous slide and the possibility of (linear!) bad groups suggests that one should not be too ambitious. There are mostly two restrictions one could make:

- Restrictions on the module, assuming rk A is controlled; or on the action, assuming G is sufficiently transitive.
 Then do *simultaneous* identification: of G, and of the action.
- Restrictions on G, assuming it is already known, say algebraic. Then prove A is a representation of G.

Preliminaries: Model-theoretic setting A question Key tools Restrictions on A Restrictions on G

Restrictions on A and simultaneous identification

Theorem (2009)

If $\mathsf{rk} A = 2$ and G not solvable, then there is a field structure \mathbb{K} with $A \simeq \mathbb{K}^2_+$ and $G \simeq \mathsf{SL}_2(\mathbb{K})$ or $\mathsf{GL}_2(\mathbb{K})$ natural on A.

Question

What if rk A = 3?

This is at work with Borovik. Partial results for the moment.

- If G is 2[⊥], bad groups appear (if they exist). Perhaps even a linear one.
- If $S^{\circ} \simeq \mathbb{Z}_{2^{\infty}}$, $G \simeq \mathsf{PSL}_2$ in its "adjoint action" on $A \simeq \mathbb{K}^3_+$.
- in bigger Prüfer rank, we don't know yet (Conjecturally $G \simeq SL_3(\mathbb{K})$ or $GL_3(\mathbb{K})$ natural.)

Preliminaries: Model-theoretic setting A question Key tools

Restricting the question Restrictions on A Restrictions on G

Pseudoreflection groups

Berkman and Borovik assume that the "local" behaviour of G on A is excellent.

Theorem (Berkman-Borovik, 2012)

Let $G \ltimes A$ be a faithful, irreducible module of fMR. Suppose rk V = n and G contains a copy of $\mathbb{Z}_{2^{\infty}}^n$ (that is, $\Pr_2(G) \ge \text{rk V}$). Then there is a field \mathbb{K} with $A \simeq \mathbb{K}_+^n$ and $G \simeq GL_n(\mathbb{K})$ natural.

This is an important step towards highly transitive modules (Berkman-Borovik, at work).

Preliminaries: Model-theoretic setting A question Key tools Restrictions on A Restrictions on G

An "algebraic rigidity" conjecture

In order to avoid a discussion of Cherlin-Zilber, we now strongly restrict the structure of G by assuming *it is already algebraic*.

Question

Let $G = \mathbb{G}_{\mathbb{K}}$ be the \mathbb{K} -points of a quasi-simple alg. group \mathbb{G} , viewed as an abstract group of finite MR. Let A be a definable G-module.

- **1** Does A bear a \mathbb{K} -vector space structure making G linear?
- ② Are there a K-rational representation V of G and definable automorphisms φ_i of K with A ≃ V^{\(\varphi\)} ⊗ · · · ⊗ V^{\(\varphi\)}?

In other words: how much bigger is the category of fMR reps of G compared to that of its *algebraic* reps? In other words: is there a fMR Steinberg tensor theorem?

Restricting the question Restrictions on A Restrictions on G

Evidence for the conjecture

Conj. Let $G = \mathbb{G}_{\mathbb{K}}$ be the \mathbb{K} -points of a simple alg. group and A be a definable G-module. Then A is an alg. representation, modulo definable automorphisms.

- The Borel-Tits Theorem, which indicates that group-theoretic morphisms tend to be algebraic.
- Orollary to Loveys-Wagner (+BT): conjecture holds in car. 0.
- The following theorem:

Theorem (Poizat, 2001)

Let \mathbb{K} be a field of fMR of char $p \neq 0$. Then every simple, definable subgroup of $GL_n(\mathbb{K})$ is definable in the language of fields expanded by a finite number of definable automorphisms.

Main difficulty: no Canada Dry in car. p, so linearizing in the first place could be as expensive as directly proving algebraicity.

Preliminaries: Model-theoretic setting A question Key tools Restrictions on A Restrictions on G

fMR representations of algebraic groups

Theorem (Cherlin-D, 2012)

Let $G = (P) SL_2(\mathbb{K})$ and A have rank $\leq 3 \text{ rk } \mathbb{K}$. Then (A is a \mathbb{K} -vector space and) either $A \simeq \mathbb{K}^2$ natural, or $A \simeq \mathbb{K}^3$ "adjoint".

Theorem (Tindzogho Ntsiri, 2013)

Let $G = (P) SL_2(\mathbb{K})$ and suppose $C_A(T) = 0$ (T the torus). Then A is a direct sum of T-minimal submodules of rank rk \mathbb{K} .

A first step towards a weight space decomposition?

Hopeful Corollary; OK for rk $\mathbb{K} = 1$

Let $G = (P) \operatorname{SL}_2(\mathbb{K})$ with $\operatorname{rk} A \leq 4 \operatorname{rk} \mathbb{K}$. Then (A is a \mathbb{K} -vector space and) either $A \simeq \mathbb{K}^4$ rational, or $A \simeq \mathbb{K}^2 \otimes (\mathbb{K}^2)^{\varphi}$ for some def. automorphism φ of \mathbb{K} .

Preliminaries: Model-theoretic setting A question Key tools

Restricting the question Restrictions on A Restrictions on G

A final request to model-theorists

Problem

What's a nice model-theoretic setting enabling Lie correspondence (group \leftrightarrow Lie algebra)? Is it any helpful?

That's all! My apologies for being so technical!