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Overview

THEME: Suppose M is a countable first-order structure with a ‘rich’
automorphism group Aut(M). Study Aut(M) as a group and as a
topological group.

Involves a mixture of model theory, group theory, combinatorics, basic
topology and descriptive set theory.

Rich: homogeneous structures such as the random graph or the
rational numbers as an ordered set; ω-categorical structures; the free
group of rank ω, ...
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Lecture 1

Background
The topology of the symmetric group
Automorphism groups
Baire category arguments
Homogeneous structures; amalgamation classes
Fraïssé’s theorem and generalisations.
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1.1 Notation and Basics: permutation groups
G is a group acting on a set X and a ∈ X .

the G-orbit which contains a is {ga : g ∈ G} ⊆ X .
If there is a unique G-orbit on X we say that G is transitive on X .
Ga = {g ∈ G : ga = a} is the stabilizer of a in G.
There is a canonical bijection, respecting the G-action, betweeen
the set of left cosets of Ga in G and the G-orbit containing a, given
by

gGa 7→ ga.

In particular, the index of Ga in G is the cardinality of the G-orbit
which contains a. ( Orbit- Stabilizer Theorem.)
Also consider G acting on X n (for n ∈ N) or the power set P(X ).
If A ⊆ X the pointwise stabilizer of A in G is
G(A) = {g ∈ G : ga = a ∀a ∈ A}.

Exercise: If X is countable and A is a finite subset of X , then G(A) is a
subgroup of countable index in G.
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Notation and basics: model theory

L: first-order language (usually countable).
We do not distinguish between an L-structure M and its domain.
If M is an L-structure then Aut(M) is the automorphism group of
M.

DEFINITION: Say that a countably infinite L-structure M is
ω-categorical if it is determined up to isomorphism amongst countable
L-structures by its theory Th(M).

RYLL-NARDZEWSKI THEOREM For a countably infinite L-structure M
TFAE: (1) M is ω-categorical;
(2) Aut(M) has finitely many orbits on Mn for all n ∈ N.

The orbits are ∅-definable sets
Say that G ≤ Sym(X ) is oligomorphic if it has finitely many orbits
on X n ∀n.
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1.2 The topology of Sym(X )

Regard the symmetric group Sym(X ) as a topological group: open sets
are unions of cosets of pointwise stabilizers of finite sets.

If G ≤ Sym(X ) we give this the relative topology. So the basic open
sets in G ≤ Sym(X ) are of the form gG(A) for A ⊆fin X and g ∈ G. Note
here that

G(A) = {h ∈ G : ha = a ∀a ∈ A}

so
gG(A) = {h ∈ G : h|A = g|A}.

Each basic open set is also closed. So G is totally disconnected.
If X is countable, there are countably many of these basic open
sets (each is determined by a map between finite subsets of X ):
so G is second countable.
In particular, if X is countable then G is separable.
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Closed subgroups

LEMMA: Suppose G ≤ Sym(X ). Then the closure of G in Sym(X ) is

Ḡ = {g ∈ Sym(X ) : gY = Y for all G-orbits Y on X n, ∀n}.

Proof.
Show that if Y ⊆ X n then {g ∈ Sym(X ) : gY = Y} is closed.
So {g ∈ Sym(X ) : gY = Y for all G-orbits Y on X n, ∀n} is closed
and clearly it contains G. So it contains Ḡ.
Suppose g ∈ Sym(X ) preserves the G-orbits on X n for all n. An
open neighbourhood O of g is specified by g|ȳ for some finite
tuple ȳ . As gȳ is in the same G-orbit as ȳ there is h ∈ G with
gȳ = hȳ . Thus h ∈ O. This shows that g ∈ Ḡ.
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Closed subgroups (2)
COROLLARY: A subgroup G of Sym(X ) is closed iff G is the
automorphism group of some first-order structure on X .

Proof.
A first-order structure on X is specified by relations and functions on
X . So the automorphsim group is the intersection of the setwise
stabilisers of certain subsets of Mn for various n. This is a closed
subgroup.
Conversely, if G ≤ Sym(X ) consider the structure on X which has a
relation for each G-orbit on X n, for each finite n. The automorphism
group of this structure is Ḡ. So if G is closed, the automorphism group
is G.

REMARK: The structure on X with relations the G-orbits on X n is called
the canonical structure for G on X . If G is oligomorphic this is an
ω-categorical structure.
EXERCISE: Suppose G ≤ Sym(X ). Then G is compact iff G is closed
in Sym(X ) and all G-orbits on X are finite.
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Metrizability

If X is countable (say X = N), the topology on Sym(X ) is separable
and complete metrizable.

Consider d given by, for g1 6= g2,

d(g1,g2) = 1/n where n is as small as possible with g1n 6= g2n.

This is a metric for the topology, but it is not complete. To obtain a
complete metric, consider

d ′(g1,g2) = d(g1,g2) + d(g−1
1 ,g−1

2 ).

This is a complete metric for the topology. So if X is countable, then
any closed G ≤ Sym(X ) is a Polish group (a topological group which is
separable and complete metrizable).
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1.3 Using the topology

Let S∞ = Sym(N). Note that |S∞| = 2ℵ0 .

THEOREM: Suppose G ≤ S∞ is closed. Then either |G| = 2ℵ0 or there
exists a finite Y ⊆ N with G(Y ) = 1.

Proof.
Consider the isolated points in G.
As G is a topological group, either all points are isolated or no points
are isolated (i.e. G is perfect).
In the first case, the identity element is isolated so there is a basic
open set contained in {1}; the only way this can happen is if G(Y ) = 1
for some finite Y .
In the second case, G is a non-empty perfect complete space, so
contains a copy of the Cantor set. In particular |G| = 2ℵ0 .
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Baire Category

DEFINITIONS: Suppose W is a topological space.
Z ⊆W is nowhere dense if its closure Z̄ contains no non-empty
open subset of W . Equivalently, W \ Z̄ is dense in W .
Y ⊆W is meagre if it is a countable union of nowhere dense sets.
X ⊆W is comeagre if its complement is meagre. So this means
that X contains the intersection of a countable family of dense
open sets.

REMARKS: A countable union of meagre sets is meagre and the
meagre subsets of W form a σ-ideal in the algebra of subsets of W ; so
we may think of them as ‘small’ subsets of W .

THEOREM: (Baire Category Theorem) Suppose W is a complete
metrizable space. Then every comeagre subset of W is dense in W .
Equivalently, the intersection of any countable family of dense open
subsets of W is dense in W .
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An application

COROLLARY: Suppose G ≤ S∞ is closed and H is a closed subgroup
of G. If |G : H| ≤ ℵ0 then H is open in G, that is, H ≥ G(A) for some
finite set A.

Proof.
Suppose H does not contain G(A) for any finite A.
So the complement of H is dense; therefore it is a dense open set.
The same is true for each coset of H.
If there are only countably many cosets their complements form a
countable family of dense open subsets of G with empty intersection.
This contradicts BCT.
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2.1 Homogeneous structures
DEFINITION: An L-structure M is homogeneous if isomorphisms
beteween finitely generated substructures extend to automorphisms of
M.
That is: if A1,A2 ⊆ M are f.g. substructures and f : A1 → A2 is an
isomorphism, then there exists g ∈ Aut(M) such that g|A1 = f .

REMARKS:
1 (Warning) Suppose M is any structure. Let M+ be the canonical

structure for Aut(M) acting on M. Then M+ is homogeneous and
has automorphism group Aut(M).

2 If L is a finite relational language, then there are only finitely many
isomorphism types of L-structure of any finite size. So if M is a
homogeneous L-structure, then Aut(M) is oligomorphic on M.

3 Let L consist of a single 2-ary relation symbol and consider the
L-structure M = (Q;≤), the rationals with their usual ordering.
This is a homogeneous L-structure (use piecewise linear
automorphisms).
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Amalgamation classes
DEFINITION: A non-empty class A of finitely generated L-structures is
a (Fraïssé) amalgamation class if:

1 (IP) A is closed under isomorphisms;
2 (Hereditary Property, HP) A is closed under f.g. substructures;
3 (Joint Embedding Property, JEP) if A1,A2 ∈ A there is C ∈ A and

embeddings fi : Ai → C (i = 1,2);
4 (Amalgamation Property, AP) if A0,A1,A2 ∈ A and fi : A0 → Ai are

embeddings, there is B ∈ A and embeddings gi : Ai → B with
g1 ◦ f1 = g2 ◦ f2.

REMARKS:
1 If ∅ ∈ A then JEP follows from AP.
2 Example: The class A of all finite graphs is an amalgamation

class (where L = {R}). For AP, regard f1, f2 as inclusions and let B
be the disjoint union of A1 and A2 over A0 with edges RA1 ∪ RA2 .
Take g1,g2 to be the natural inclusions.
We refer to B as the free amalgam of A1,A2 over A0.
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Fraïssé’s Theorem
DEFINITION Suppose M is an L-structure. The age of M, Age(M) is the
class of structures isomorphic to some f.g. substructure of M.

THEOREM: (Fraïssé’s Theorem)
1 If M is a homogeneous L-structure, then Age(M) is an

amalgamation class.
2 Conversely, if A is an amalgamation class of countable

L-structures, with countably many isomorphism types, then there
is a countable homogeneous L-structure M with A = Age(M).

3 Suppose A is as in (2) and M is a countable homogeneous
L-structure with age A. Then M has the property that if A ⊆ M is
f.g. and f : A→ B is an embedding with B ∈ A, then there is an
embedding g : B → M with g(f (a)) = a for all a ∈ A. This property
determines M up to isomorphism amongst countable structures
with age A.

DEFINITION: The structure M is determined up to isomorphism by A
and is referred to as the Fraïssé limit, or generic structure of A.

David Evans (UEA) Models and Groups 3: Oct ’14 15 / 24



Examples 1

The class of all finite graphs is an amalgamation class. The
Fraïssé limit is the random graph.
If n ≥ 3, let Kn denote the complete graph on n vertices. The class
of all finite graphs which do not embed Kn is an amalgamation
class and the Fraïssé limit is sometimes called the generic Kn-free
graph.
(Henson digraphs) We construct continuum many homogeneous
directed graphs. A tournament is a directed graph with the
property that for every two vertices a,b, one of (a,b), (b,a) is a
directed edge. There is an infinite set S of finite tournaments with
the property that if A,B are distinct elements of S then A does not
embed in B. If T is a subset of S, the class A(T ) of finite directed
graphs which do not embed any member of T is an amalgamation
class (free amalgamation); the Fraïssé limit H(T ) determines T .
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Examples 2

The class of all finite linear orders is an amalgamation class (but
we cannot use free amalgamation). The Fraïssé limit is
isomorphic to (Q;≤).
The class of all finite partial orders is an amalgamation class.
The class of all finite groups is an amalgamation class. The
generic structure is Philip Hall’s universal locally finite group.
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Sketch proof of Fraïssé’s Theorem (2,3)
GIVEN: countable amalgamation class A.
CONSTRUCTION: Build M inductively as the union of a chain of
structures in A:

A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ . . . .

When doing this we ensure that:
if C ∈ A, then C embeds into some Ai ;
if A is a f.g. substructure of Ai and f : A→ B ∈ A, then there is
j > i such that there is an embedding g : B → Aj with g(f (a)) = a
for all a ∈ A.

Countably many tasks to perform here.
A task of the first form can be performed using JEP.
For the second, suppose the construction has reached stage k > i . At
the next stage we can take Ak+1 which solves the amalgamation
problem A→ Ak (inclusion), f : A→ B. Specifically, using AP we
obtain h : Ak → Ak+1 (which can be taken as inclusion), and
g : B → Ak+1 with g(f (a)) = h(a) = a for all a ∈ A, as required.
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Homogeneity of M

Suppose M1,M2 are countable and have the property that if
A ⊆ Mi is f.g. and f : A→ B is an embedding with B ∈ A, then
there is an embedding g : B → Mi with g(f (a)) = a for all a ∈ A.
Suppse Ai is a f.g. substructure of Mi and h : A1 → A2 is an
isomorphism.
Use a back-and-forth argument to show that h extends to an
isomorphism g : M1 → M2.
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2.2 An extension

GIVEN:
Class K of f.g L-structures
A distinguished class of f.g. substructures A v B (‘A is a nice
substructure of B’

If B ∈ K, an embedding f : A→ B is a v-embedding if f (A) v B.
ASSUME: v satisfies:

(N1) If B ∈ K then B v B (so isomorphisms are v-embeddings);
(N2) If A v B v C (and A,B,C ∈ K), then A v C (so if f : A→ B and

g : B → C are v-embeddings, then g ◦ f : A→ C is a
v-embedding).

(N3) Suppose A v B ∈ K and A ⊆ C ⊆ B with C ∈ K. Then A v C.
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Nice amalgamation classes
Say that (K,v) is an amalgamation class if:
K is closed under isomorphisms and has countably many
isomorphism types (and countably many embeddings between
any pair of elements);
K is closed under v-substructures;
K has the JEP for v-embeddings;
K has AP for v-embeddings: if A0,A1,A2 are in K and
f1 : A0 → A1 and f2 : A0 → A2 are v-embeddings, there is B ∈ K
and v-embeddings gi : Ai → B (for i = 1,2) with g1 ◦ f1 = g2 ◦ f2.

REMARKS:
1 If v is just ‘substructure’ this is as before.
2 The notion A v B is only defined when B is f.g.

If M is a countable L-structure and there are f.g. Mi ⊆ M (with
i ∈ N) such that M = ∪i∈NMi and M1 v M2 v M3 v . . .. Then for
f.g. A ⊆ M we define A v M to mean that A v Mi for some i ∈ N.
The condition N3 guarantees that this does not depend on the
choice of Mi .
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The generalization

THEOREM: Suppose (K,v) is an amalgamation class of finitely
generated L-structures and v satisfies (N1, N2, N3). Then there is a
countable L-structure M and f.g. substructures Mi ∈ K (for i ∈ N) such
that:

1 M1 v M2 v M3 v . . . and M = ∪i∈NMi ;
2 every A ∈ K is isomorphic to a v-substructure of M;
3 (Extension Property) if A v M is f.g. and f : A→ B ∈ K is a
v-embedding then there is a v-embedding g : B → M such that
g(f (a)) for all a ∈ A.

Moreover, M is determined up to isomorphism by these properties and
if A1,A2 v M are f.g. and h : A1 → A2 is an isomorphism, then h
extends to an automorphsim of M.

The proof is essentially the same as that of Fraïssé’s Theorem.
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Examples

1 (2-out digraphs) Let K consist of the set of finite directed graphs
where every vertex has at most 2 directed edges coming out of it.
For A ⊆ B ∈ K write A v B if whenever a ∈ A and a→ b is a
directed edge in B, then b ∈ A. Then v satisfies N1, N2, N3 and
(K,v) is an amalgamation class (where the amalgamation is just
free amalgamation).

2 (Free groups) Let K be the class of finitely generated free groups.
For f.g. A ⊆ B ∈ K write A v B to mean that A is a free factor of B.
This clearly satisfies N1, N2 and N3 also holds (cf. Magnus,
Karrass, Solitar, Ex 2.4.31). Moreover (K,v) is an amalgamation
class and the generic structure is the free group of rank ω.
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The Hrushovski construction

Suppose A is a finite graph.
δ(A) = 2|A| − |Edges(A)| (Predimension)
K = {A : δ(X ) ≥ 0 for all X ⊆ A}.
If A ⊆ B ∈ K write A v B to mean δ(A) ≤ δ(B′) whenever
A ⊆ B′ ⊆ B.

This satisfies N1, N2, N3 and (K,v) is an amalgamation class (where
the amalgamation can be taken as free amalgamation).
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