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Lectures 2, 3

A quick tour through some major results.

The small index property (work of Hodges, Hodkinson, Lascar and
Shelah and others);
Extreme amenability and the Ramsey property (work of Kechris,
Pestov and Todorcevic);
Normal subgroup structure of automorphism groups (work of
Lascar, Macpherson - Tent, and Tent - Ziegler).
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3.1 The small index property

DEFINITION: A countable structure M (or its automorphism group
Aut(M)) has the small index property (SIP) if whenever H is a
subgroup of G = Aut(M) of index less than 2ℵ0 , then H is open.
In other words, if |G : H| < 2ℵ0 , then there is a finite A ⊆ M with
H ≥ G(A).
(Note that the first formulation makes sense in an arbitrary topological
group.)
REMARKS:

1 If H ≤ G is open then |G : H| ≤ ℵ0.
2 The SIP implies that we can recover the topology on G from its

group-theoretic structure: the open subgroups are precisely the
subgroups of small index and the cosets of these form a base for
the topology.
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Biinterpretability

For a countable ω-categorical structure M the topological group
Aut(M) determines M up to biinterpretability.

We cannot expect to recover M completely.
Consider M with automorphism group G = Sym(M).
This acts on N, the set of subsets of size 2 from M.
Let G1 ≤ Sym(N) be the set of permutations induced by by this action.
It can be shown that this is closed, so we can regard G1 as the
automorphism group of a structure on N.
The isomorphism G→ G1 (given by the identity map) is a
homeomorphism (check this!).
So the structures M and N have isomorphic topological automorphism
groups even though they are different structures.
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Examples and History

SIP proved for Sym(N) by Dixon, Neumann and Thomas (1986).
SIP for general linear groups and classical groups over countable
fields (Evans, 1986, 1991)
SIP for Aut(Q;≤) (Truss, 1989).
Different method introduced by Hodges, Hodkinson, Lascar and
Shelah (1993) and used to prove SIP for the random graph.
Approach extended to general Polish groups by Kechris and
Rosendal (2007).

In what follows we will follow the presentation of Kechris and Rosendal.
There is also work of M Rubin on recovering an ω-categorical structure
from its automorphism group.
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A counterexample
An ω-categorical structure without SIP (Cherlin and Hrushovski):

Language L: 2n-ary relation symbol En for each n ∈ N.
C: the class of finite L-structures A in which En is an equivalence
relation on n-tuples of distinct elements of A with at most 2 classes.

This is an amalgamation class; call the generic structure M.

For each n there are two equivalence classes of distinct n-tuples from
M and every permutation of these equivalence classes extends to an
automorphism of M.

So G = Aut(M) has a closed normal subgroup G0 consisting of
automorphisms which fix all equivalence classes and the quotient
group is topologically isomorphic to the direct product Cω

2 (where C2 is
the cyclic group with 2 elements).

Assuming the Axiom of Choice, this has non-open subgroups of index
2.
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A question

Is the Cherlin - Hrushovski construction essentially the only obstruction
to the SIP for an ω-categorical structure?

DEFINITION: Say that an ω-categorical M is G-finite if for every open
subgroup H ≤ Aut(M), the intersection of the open subgroups of finite
index in H is of finite index in H.

Note that in the example, the intersection of the open subgroups of
finite index in G is G0.

Question
If M is a countable ω-categorical structure which is G-finite, does M
have the SIP?
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Generic automorphisms
Consider the action of a topological group G on the direct product Gn

by conjugation:

(g1, . . . ,gn)
h7→ (hg1h−1, . . . ,hgnh−1).

If we give Gn the product topology, this is a continuous action, which
we refer to as the conjugation action.

DEFINITION: Suppose G is a Polish group. We say that G has ample
homogeneous generics (ahg’s) if for each n > 0, there is a comeagre
orbit of G on Gn (with the conjugation action).

Theorem
(Kechris - Rosendal; Hodges, Hodkinson, Lascar and Shelah)
Suppose G is a Polish group with ample homogeneous generics. Then
G has the SIP.

REMARKS: Ahg is a strong property. It does not hold for Aut(Q;≤)
(fails for n = 2).
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Finding ahg’s
(K,v): an amalgamation class of f.g. L-structures (and N1, N2, N3
hold).
M: generic structure of (K,v); G = Aut(M).
A(M): the set of A v M with A ∈ K.
A partial automorphism of M is an isomorphism f : A1 → A2 where
Ai ∈ A(M).

Theorem
Suppose the following two conditions hold:
(i) (Amalgamation property for partial automorphisms) Suppose
A v Bi ∈ A(M) (for i = 1,2). Then there is g ∈ G(A) with the following
property. If f1, f2 are in Aut(B1) and Aut(gB2) respectively and stabilize
A, and f1|A = f2|A, then f1 ∪ f2 extends to an automorphism of M.
(ii) (Extension property for partial automorphisms) If f1, . . . , fn are
partial automorphisms of M then there is B ∈ A(M) containing their
domains and images and gi ∈ Aut(B) such that fi ⊆ gi for all i ≤ n.
Then G = Aut(M) has ample homogeneous generics.
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Examples 1

Let K be the class of finite graphs (and v is just embedding).
So the generic structure M is the random graph.

Amalgamation property for patial automorphisms: If D is the free
amalgmation of B1 and B2 over A and fi ∈ Aut(Bi) stabilize A and have
the same restriction to A, then their union is an automorphism of D.

Extension Property: a theorem of Hrushovski.

The result generalises to other free amalgamation classes.
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Examples 2

Let K be the class of finitely generated free groups and v dentote
being a free factor.

The free product with amalgamation gives the amalgamation property
for partial automorphisms.

For the Extension Property we can take B to be any free factor of M
which contains the domains and images of the fi .

So the free group of rank ω has the SIP (Bryant and Evans, 1997).
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Sketch proof of Theorem

GIVEN: (K,v) with generic structure M such that APPA and EPPA
hold.

SHOW: G has a comeagre orbit on Gn in conjugation action.

Say that (g1, . . . ,gn) ∈ Gn is generic if

(a) The set of A ∈ A(M) such that gi(A) = A for all i ≤ n is cofinal in
A(M); and

(b) Suppose A ∈ A(M) and gi(A) = A for all i ; let A v B ∈ A(M) and
hi ∈ Aut(B) extend gi |A. Then there is α ∈ G(A) such that αgiα

−1 ⊇ hi
(for i ≤ n).

Claim that:

(1) the set of generics in Gn is comeagre; and

(2) any two generics in Gn lie in the same G-orbit.
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Proof of (2)

Suppose (g1, . . . ,gn) and (h1, . . . ,hn) are generic. We can build an
element of G which conjugates one to the other by using a
back-and-forth argument and the following obervation:

Claim: If A v B ∈ A(M) is invariant under the gi and hi and gi |A = hi |A
for all i , there is β ∈ G(A) with βgiβ

−1|B = hi |B.

To see the claim, note that using (a) for the hi , we may assume
hi(B) = B for all i . Now use (b) for the gi .
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Proof of (1)

To show (1), write the set of generics in Gn as a countable intersection
of dense open sets.

For A ∈ A(M) let

X (A) = {(g1, . . . ,gn) ∈ Gn : ∃B ∈ A(M) with A v B and giB = B ∀i ≤ n}.

It is easy to see that X (A) is open. It follows from (ii) that X (A) is
dense. Note that ⋂

A∈A(M)

X (A)

is the set of elements of Gn which satisfy (a).

David Evans (UEA) Models and Groups 3: Oct ’14 14 / 33



Proof of (1) cont.

Suppose A v B ∈ A(M) and h1, . . . ,hn ∈ Aut(B) satisfy hiA = A.
Let Y (A,B, h̄) = {(g1, . . . ,gn) ∈ Gn :

if (∀i)(gi |A = hi |A) then (∃α ∈ G(A)) (∀i)(αgiα
−1|B = hi)}.

The intersection of these consists of elements of Gn which satisfy (b).
Each Y (A,B, h̄) is easily seen to be open.

For denseness, consider a basic open set specified by partial
automorphisms (f1, . . . , fn).
By EPPA we can assume these all have the same domain and image
C and we can also assume harmlessly that they extend the hi .

Using APPA, there is β ∈ G(A) and automorphisms gi such that
gi ⊇ fi ∪ βhiβ

−1. Then (g1, . . . ,gn) is in the required open set and is in
Y (A,B, h̄). This shows the denseness and so gives (1).
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Extreme amenability and structural Ramsey theory

Discuss some results of Kechris, Pestov and Todorcevic (2005).

DEFINITION: Suppose G is a topological group.
(1) A G-flow is a non-empty, compact (Hausdorff) space Y with a
continuous G-action G × Y → Y .
(2) We say that G is extremely amenable if whenever Y is a G-flow,
there is a G-fixed point in Y .

EXAMPLE: Suppose G ≤ Sym(X ). The product space {0,1}X is a
G-flow.

More generally: Suppose G ≤ Sym(X ) is closed and H ≤ Y is open.
Then the left coset space Z = G/H is discrete and for k ∈ N, the
space Y = {1, . . . , k}Z of functions f : Z → {1, . . . , k} with the product
topology is a G-flow (the action is (gf )(z) = f (g−1z)). Note that here,
as G is transitive on Z , the only fixed points are the constant functions.
We think of Y as the space of colourings of Z with ≤ k colours.
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Remarks

(1) The group G is amenable if every G-flow has an invariant finitely
additive probability measure.
(2) An alternative way of expressing extreme amenability is that the
universal minimal G-flow M(G) is a point.

David Evans (UEA) Models and Groups 3: Oct ’14 17 / 33



Invariant orderings

If G ≤ Sym(X ) then {0,1}X 2
is a G-flow, as is every closed G-invariant

subset of this. We can think of this as the set of all binary relations on
X . Let

LO(X ) = {R ∈ {0,1}X 2
: R is a linear order on X}.

This is a closed, G-invariant subset. So we obtain:

Lemma
If G ≤ Sym(X ) is extremely amenable, then there is a G-invariant linear
order on X.

So, for example, Sym(X ) is not extremely amenable.
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A Theorem

Theorem (Kechris, Pestov, Todorcevic, 2005)
Suppose G ≤ Sym(X ) is closed. The following are equivalent:

1 G is extremely amenable;
2 Suppose H is an open subgroup of G and Z = G/H. If

c : Z → {1, . . . , k} and A ⊆ Z is finite, there is g ∈ G and i ≤ k
such that c(ga) = i for all a ∈ A.

3 G preserves a linear ordering on X and G has the Ramsey
property.

First discuss the equivalence of (1) and (2) here and then say what the
Ramsey property is.
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Equivalence of (1) and (2)

(1)⇒ (2): Consider the G-flow {1, . . . , k}Z . Let Y be the closure in
this of the G-orbit {gc : g ∈ G}. This is a G-flow, so must contain a
G-fixed point. So it contains a constant function fi(z) = i (for some
i ≤ k ). In other words, fi is in the closure of {gc : g ∈ G}. This
translates into the condition in (2).

(2)⇒ (1): This is a bit harder, but not excessively so. The proof shows
that to decide whether G is extremely amenable, it suffices to consider
G-flows whch are closed subflows of {1, . . . , k}G/H (for H ≤ G open
and k ∈ N). In fact, we can restrict to k = 2 here and take H from a
base of open neighbourhoods of 1.
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An Example

Let X = Q and G = Aut(Q). We verify (2).

Take H = G(C) where C is a subset of Q of size n. Then we can
identify Z = G/H with the set of n-tuples b1 < b2 < · · · < bn from Q,
or, indeed, the set [Q]n of subsets of Q of size n.

So we can think of a function c : Z → {1, . . . , k} as a k -colouring of
[Q]n. By the classical Ramsey Theorem there is an infinite Y ⊆ Q such
that c is constant on [Y ]n.

Given a finite A ⊆ Z let S be the elements of Q appearing in tuples in
A. So S is a finite subset of Q and we can find g ∈ G with gS ⊆ Y .
Then c is constant on gA, as required for (2).
It follows:

Corollary (Pestov)
Aut(Q;≤) is extremely amenable.
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The Ramsey Property

DEFINITION: Suppose G ≤ Sym(X ).
(1) A G-type σ is a G-orbit on finite subsets of X . If σ, ρ are G-types,

write ρ ≤ σ iff for all F ∈ ρ there is F ′ ∈ σ with F ⊆ F ′.
(2) Suppose ρ ≤ σ ≤ τ are G-types.

(i) If F ∈ σ let
(F
ρ

)
= {F ′ ⊆ F : F ′ ∈ ρ}.

(ii) If k ∈ N write
τ → (σ)ρk

to mean that for every F ∈ τ and colouring c :
(F
ρ

)
→ {1, . . . , k}

there is F0 ∈
(F
σ

)
which is monochromatic for c (that is, c|

(F0
ρ

)
is

constant).

(3) We say that G has the Ramsey property if for all k and G-types
ρ ≤ σ there is a G-type τ ≥ σ such that τ → (σ)ρk .

EXERCISE: G = Aut(Q;≤) has the Ramsey property - this is the finite
Ramsey theorem.
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Equivalence of (2) and (3)

(2)⇒ (3):

Suppose (2) holds. We have to show that the Ramsey property holds.
Suppose not - so there are k ∈ N and G-types ρ ≤ σ such that for no τ
do we have τ → (σ)ρk .

Let F0 ∈ σ. For every finite E ⊇ F0 the set

CE = {c :

(
E
ρ

)
→ {1, . . . , k} : no monochrome F ∈

(E
σ

)
}

is non-empty. Restriction gives a directed system CE ′ → CE for
E ′ ⊇ E . By König’s lemma there is therefore c : ρ→ {1, . . . , k} with no
monochrome F ∈ σ. This contradicts (2).

The proof of (3)⇒ (2) is also straightforward.
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Examples of Ramsey Classes
We can make a similar definition for classes of finite structures -
instead of G-types we have structures in the class.
Structural Ramsey Theory investigates classes of (finite) structures
with the Ramsey property.
Note that we should expect such structures to carry an ordering. The
following shows that there is a strong connection with homogeneous
structures:

Theorem
Suppose C is a class of finite ordered structures for a finite relational
language and C is closed under substructures and has JEP. If C is a
Ramsey class, then C has the amalgamation property.

Examples of countable homogeneous ordered structures with
extremely amenable automorphism group include ordered versions of:
the random graph, the universal homogeneous Kn-free graphs, the
Henson digraphs.
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3.3 Normal subgroup structure
Some classical results:
THEOREM (J. SCHREIER AND S. ULAM, 1933) Suppose X is
countably infinite. If g ∈ Sym(X ) moves infinitely many elements of X ,
then every element of Sym(X ) is a product of conjugates of g. In
particular, Sym(X )/FSym(X ) is a simple group.

THEOREM (A. ROSENBERG, 1958). Suppose V is a vector space of
countably infinite dimension over a field K . If FGL(V ) denotes the
elements of GL(V ) which have a fixed point space of finite
codimension, then GL(V )/(K×.FGL(V )) is a simple group.

THEOREM (G. HIGMAN, 1954). The non-trivial, proper normal
subgroups of G = Aut(Q;≤) are the left-bounded automorphisms,
L = {g ∈ G : ∃a g|(−∞,a) = id}, the right-bounded automorphisms
R = {g ∈ G : ∃a g|(a,∞)} and B = L ∩ R.

THEOREM (J. TRUSS, 1985). Let Γ be the countable random graph.
Then Aut(Γ) is simple.
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Warning

TEMPTING IDEA: Automorphism groups of ‘nice’ countable structures
should not have any non-obvious normal subgroups.

This is false:

Example (M. Droste, C. Holland, D. Macpherson)
The automorphism group of a countable, homogeneous semilinear
order has 22ℵ0 normal subgroups.
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A general result

Theorem (D. Lascar, 1992)
Suppose M is a countable saturated structure with a ∅-definable
strongly minimal set D. Suppose that M = acl(D). Suppose
g ∈ G = Aut(M/acl(∅)) is unbounded, i.e. for every n ∈ N there is
some X ⊆ D with dim(gX/X ) > n. Then G is generated by the
conjugates of g.

Implies the results for Sym(X ) and GL(V ).
Proof uses Polish group arguments.
Ideas used by T. Gardener (1995) to prove analogue of
Rosenberg’s result for classical groups over finite fields.
Used by Z. Ghadernezhad and K. Tent (2012) to prove simplicity
of automorphism groups of certain generalized polygons and so
obtain new examples of simple groups with a BN-pair.
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Recent general results

THEOREM (D. MACPHERSON AND K. TENT, 2011): Suppose M is a
countable, transitive homogeneous relational structure whose age has
free amalgamation. Suppose Aut(M) 6= Sym(M). Then
(a) Aut(M) is simple;
(b) (Melleray) if 1 6= g ∈ Aut(M) then every element of G is a product of
32 conjugates of g±1.

NOTE: This implies Truss’ result and unpublished results of M. Rubin
(1988).

K. Tent and M. Ziegler (2012) generalized this to the case where M
has a stationary independence relation |̂ and used this to prove:

THEOREM: Suppose U is the Urysohn rational metric space. If
g ∈ Aut(U) is not bounded, then every automorphism of U is a product
of 8 conjugates of g.
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Stationary independence relations
NOTATION/ TERMINOLOGY:

M is a countable first-order structure;
G = Aut(M);
cl is a G invariant, finitary closure operation on subsets of M;
If X ⊆fin M and a is fixed by GX , then a ∈ cl(X ) (where
GX = {g ∈ G : gx = x ∀x ∈ X}).
X = {cl(A) : A ⊆fin M};
F consists of all maps f : X → Y with X ,Y ∈ X which extend to
automorphisms of M. Call these partial automorphisms.

EXAMPLE: Take cl to algebraic closure in M. So, for example, if M is
the Fraïssé limit of a free amalgamation class, then acl(X ) = X for all
X ⊆ M.

In what follows, |̂ is a relation between subsets A,B,C of M: written
A |̂

B
C and pronounced ‘A is independent from C over B.’
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DEFINITION:
We say that |̂ is a stationary independence relation compatible with
cl if for A,B,C,D ∈ X and finite tuples a,b:

1 (Compatibility) We have a |̂
b

C ⇔ a |̂
cl(b)

C and

a |̂
B

C ⇔ e |̂
B

C for all e ∈ cl(a,B)⇔ cl(a,B) |̂
B

C.

2 (Invariance) If g ∈ G and A |̂
B

C, then gA |̂
gB

gC.

3 (Monotonicity) If A |̂
B

C ∪ D, then A |̂
B

C and A |̂
B∪C

D.
4 (Transitivity) If A |̂

B
C and A |̂

B∪C
D, then A |̂

B
C ∪ D

5 (Symmetry) If A |̂
B

C, then C |̂
B

A.
6 (Existence) There is g ∈ GB with g(A) |̂

B
C.

7 (Stationarity) Suppose A1,A2,B,C ∈ X with B ⊆ Ai and Ai |̂ B
C.

Suppose h : A1 → A2 is the identity on B and h ∈ F . Then there is
some k ∈ F which contains h ∪ idC (where idC denotes the
identity map on C).
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Remarks and examples

1 For all a ∈ M and finite X we have a |̂
X

cl(X ). Moreover a |̂
X

a
iff a ∈ cl(X ).

2 Tent and Ziegler consider this where acl(X ) = X and
cl(X ) = X ∀X .

3 Suppose M is the Fraïssé limit of a free amalgamation class (of
relational structures). Let cl(X ) = X ∀X . Define A |̂

B
C to mean

A ∩ C ⊆ B and A ∪ B, C ∪ B are freely amalgamated over B. This
is a stationary independence relation on M.

4 Suppose M is a countable-dimensional vector space over a
countable field K . So G = GL(M). Let cl be linear closure and
take A |̂

B
C to mean that cl(A ∪ B) ∩ cl(C ∪ B) = cl(B). This

gives a stationary independence relation.
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Moving almost maximally
DEFINITION: Say that g ∈ G moves almost maximally if for all B ∈ X
and a ∈ M there is a′ in the GB-orbit of a such that

a′ |̂
B

ga′.

EXAMPLE 1: Suppose (M; cl; |̂ ) is the vector space example. If g ∈ G
does not move almost maximally, then for some finite dimensional
subspace B, for all v ∈ M we have gv ∈ 〈v ,B〉. Thus g acts as a scalar
α on M/B. So (α−1g − 1)v ∈ B for all v and it follows that g is a scalar
multiple of a finitary transformation.

EXAMPLE 2: Suppose (M; cl; |̂ ) is the free amalgamation example.
Suppose also that G = Aut(M) is transitive on M and G 6= Sym(M). If
1 6= g ∈ G, then g moves infinitely many points of each GB-orbit (for
each finite B ⊆ M) and using a back-and-forth argument, one shows
that there is h ∈ G such that [g,h] = g−1h−1gh moves almost
maximally.
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Theorem (Evans, Ghadernezhad, Tent (2013))
Suppose M is a countable structure with a stationary independence
relation compatible with a closure operation cl. Suppose that
G = Aut(M) fixes every element of cl(∅). If g ∈ G moves almost
maximally, then every element of G is a product of 16 conjugates of g.

REMARKS:
1 If cl(X ) = X ∀X , this is proved in the paper of Tent and Ziegler.
2 As observed by Tent and Ziegler, it implies the result of

Macpherson and Tent for the free amalgamation example.
3 Proof is essentialy the same as the the Tent - Ziegler result (plus a

trick of Lascar in the case where F is not countable).
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