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Outline.

Suppose M is a countable first-order structure with a ‘rich’ automorphism group Aut(M).
We will study Aut(M) both as a group and as a topological group, where the topology
is that of pointwise convergence. This involves a mixture of model theory, group theory,
combinatorics, descriptive set theory and topological dynamics. Here, ‘rich’ is undefined
and depends on the context, but examples which we are interested in include: homogeneous
structures such as the random graph or the rational numbers as an ordered set; ω-categorical
structures; the free group of rank ω. The plan for the lectures is:

Lecture 1: Background. The topology of the symmetric group; automorphism groups; Baire
category arguments. Homogeneous structures; amalgamation classes; Fräıssé’s theorem and
generalisations.

Lectures 2 and 3: A quick tour through some major results. Time permitting, we will look
at: The small index property (work of Hodges, Hodkinson, Lascar and Shelah and others);
extreme amenability and the Ramsey property (work of Kechris, Pestov and Todorcevic);
normal subgroup structure of automorphism groups (work of Lascar, Macpherson - Tent,
and Tent - Ziegler).

General background on model theory can be found in standard texts such as [7] or [16].
Introductory material on ω-categoricity can be found in the introduction to [8] (and many
other places), and the book [2] focuses on the connections with permutation groups. The
notes [1] are a nice introduction to infinite permutation groups. Macpherson’s MALOA
lectures [14], and the paper [15], give an extensive survey of work on homogeneous structures
and their automorphism groups, including much of what is covered in these talks. The
introduction to [3] surveys work on classification of homogeneous structures; more recent
work can be found amongst the papers on Cherlin’s webpage. A slightly different perspective
on the material, in terms of Polish group actions, can be found in Kechris’ survey [12]. The
notes [4] from a previous series of lectures cover a different selection of material.

These notes are quite rough in places and many important references are omitted. I may
update them after the talks.

∗Lectures given at ’Models and Groups 3’, Istanbul, October 2014. Version: 20 October 2014.
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1 Permutation groups as topological groups

1.1 Notation and terminology

If G is a group acting on a set X and a ∈ X then the G-orbit which contains a is {ga :
g ∈ G} ⊆ X. (Note that our groups always act on the left.) This is the equivalence class
containing a for the equivanece relation a ∼ b ⇔ (∃g ∈ G)(ga = b). If there is a unique
G-orbit on X we say that G is transitive on X. If a ∈ X, then let Ga = {g ∈ G : ga = a}
be the stabilizer of a in G. There is a canonical bijection, respecting the G-action, betweeen
the set of left cosets of Ga in G and the G-orbit containing a, given by

gGa 7→ ga.

In particular, the index of Ga in G is the cardinality of the G-orbit which contains a. (This
is sometimes called the Orbit- Stabilizer Theorem.)

If G is acting on X, then it also has natural actions on various other sets associated with X.
For example, if n ∈ N, then G acts coordinatewise on the set Xn of n-tuples from X and
also on the set of subsets of X of size n.

If A ⊆ X the pointwise stabilizer of A in G is G(A) = {g ∈ G : ga = a ∀a ∈ A}.
Exercise: Show that if X is countable and A is a finite subset of X, then G(A) is a subgroup
of countable index in G.

Most of the examples of permutation groups we will consider will be automorphism groups
of first-order structures, so we review the terminology and notation for this.

Throughout L will denote a first-order language (usually countable). This will always in-
clude a symbol for equality, which all structures will interpret as true equality. We will not
distinguish between an L-structure M and its domain. If ā = (a1, . . . , an) is a finite tuple of
elements of M , we might write ā ∈M (rather than ā ∈Mn).

If M is an L-structure then Aut(M) is the automorphism group of M . We think of this as
acting on the left: so if g ∈ Aut(M) and a ∈M then we write ga or g(a) (rather than ag or
ag). We also think of Aut(M) as acting on Mn via the diagonal action: gā = (ga1, . . . , gan).

If B ⊆M the pointwise stabilizer of B in Aut(M) is

Aut(M/B) = {g ∈ Aut(M) : gb = b ∀b ∈ B}.

1.2 The topology on the symmetric group

If X is any non-empty set, the symmetric group S = Sym(X) is the group of all permutations
of X. We regard this as a topological group with open sets being unions of cosets of pointwise
stabilizers of finite sets. A permutation group G on X is just a subgroup of Sym(X) and we
give this the relative topology. In other words, the basic open sets in G ≤ Sym(X) are of
the form gG(A) for A ⊆fin X and g ∈ G. Note here that

G(A) = {h ∈ G : ha = a∀a ∈ A}
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so

gG(A) = {h ∈ G : h|A = g|A}.

Note also that each of these basic open sets is also closed as the complement is the union of
the other cosets. So G is totally disconnected. Also note that if X is countable, then there
are countably many of these basic open sets as each is determined by a map between finite
subsets of X: so G is second countable. In particular, G is separable (meaning: there is a
countable dense subset).

Lemma 1.1. Suppose G ≤ Sym(X). Then the closure of G in Sym(X) is

Ḡ = {g ∈ Sym(X) : gY = Y for all G-orbits Y on Xn, ∀n}.

Proof. First, suppose Y is a subset of Xn. We show that {g ∈ Sym(X) : gY = Y } is
closed. If gY 6⊆ Y there is some ȳ ∈ Y with gȳ 6∈ Y ; so if g′ ∈ gGȳ then g′Y 6⊆ Y .
So the complement of {g ∈ Sym(X) : gY ⊆ Y } is open and therefore this set is closed.
Similarly {g ∈ Sym(X) : gY ⊇ Y } is closed so {g ∈ Sym(Y ) : gY = Y } is closed. Thus the
intersection of these over all Y is closed and Ḡ is therefore contained in this intersection.

It follows that {g ∈ Sym(X) : gY = Y for all G-orbits Y on Xn, ∀n} is closed and clearly
it contains G. So it contains Ḡ.

Finally suppose g ∈ Sym(X) preserves the G-orbits on Xn for all n. An open neighbourhood
O of g is specified by g|A for some finite A ⊆ X. Enumerate A as the tuple ȳ. As gȳ is in
the same G-orbit as ȳ there is h ∈ G with gȳ = hȳ. Thus h ∈ O. This shows that g ∈ Ḡ.

Corollary 1.2. A subgroup G of Sym(X) is closed iff G is the automorphism group of some
first-order structure on X.

Proof. A first-order structure on X is specified by relations and functions on X and the au-
tomorphisms are the permutations which preserve these. Note that a permutation preserves
a function iff it stabilizes (setwise) its graph. So the automorphsim group is the intersection
of the setwise stabilisers of certain subsets of Mn for various n. As in the proof of the lemma,
this is a closed subgroup.

Conversely, if G ≤ Sym(X) consider the structure on X which has a relation for each G-
orbit on Xn, for each finite n. By the proof of the lemma, the automorphism group of this
structure is Ḡ. So if G is closed, the automorphism group is G.

Remarks 1.3. The structure on X constructed above (with relations the G-orbits on Xn)
is sometimes called the canonical structure for G on X. Note that if G is oligomorphic (and
X is countably infinite) this is an ω-categorical structure (see section 2.3).

We leave the following as an exercise.

Lemma 1.4. Suppose G ≤ Sym(X). Then G is compact iff G is closed in Sym(X) and all
G-orbits on X are finite.
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IfX is countable (sayX = N), the topology on Sym(X) is separable and complete metrizable.
To see the latter, consider d given by, for g1 6= g2,

d(g1, g2) = 1/n where n is as small as possible with g1n 6= g2n.

This is a metric for the topology, but it is not complete. To obtain a complete metric,
consider

d′(g1, g2) = d(g1, g2) + d(g−1
1 , g−1

2 ).

This is a complete metric for the topology. So if X is countable, then any closed G ≤ Sym(X)
is a Polish group (a topological group which is separable and complete metrizable).

1.3 Topological arguments

We give some results which illustrate the usefulness of the topology.

Denote by S∞ the symmetric group of countable degree Sym(N). Note that |S∞| = 2ℵ0 .

Theorem 1.5. Suppose G ≤ S∞ is closed. Then either |G| = 2ℵ0 or there exists a finite
Y ⊆ N with G(Y ) = 1.

Proof. This can be proved fairly directly, but here is an argument which uses some results
from general topology. Consider the isolated points in G. As G is a topological group, either
all points are isolated or no points are isolated (i.e. G is perfect). In the first case, the
identity element is isolated so there is a basic open set contained in {1}; the only way this
can happen is if G(Y ) = 1 for some finite Y . In the second case, G is a non-empty perfect
complete space, so contains a copy of the Cantor set ([10], I.6.2). In particular |G| = 2ℵ0 .

Definition 1.6. Suppose W is a topological space. A subset Z ⊆ W is nowhere dense if
its closure Z̄ contains no non-empty open subset of W . Equivalently, W \ Z̄ is dense in
W . We say that Y ⊆ W is meagre if it is a countable union of nowhere dense sets. Note
that by definition, a countable union of meagre sets is meagre. A set X is comeagre if its
complement is meagre. So this means that X contains the intersection of a countable family
of dense open sets.

It’s easy to see that the meagre subsets of W form a σ-ideal in the algebra of subsets of W ;
so we may think of them as ‘small’ subsets of W .

Theorem 1.7. (Baire Category Theorem [10], I.8.4) Suppose W is a complete metrizable
space. Then every comeagre subset of W is dense in W . Equivalently, the intersection of
any countable family of dense open subsets of W is dense in W .

Corollary 1.8. Suppose G ≤ S∞ is closed and H is a closed subgroup of G. If |G : H| ≤ ℵ0

then H is open in G, that is, H ≥ G(A) for some finite set A.

Proof. Suppose H does not contain G(A) for any finite A. So the complement of H is dense;
therefore it is a dense open set. The same is true for each coset of H. If there are only
countably many cosets their complements form a countable family of dense open subsets of
G with empty intersection. This contradicts BCT.
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We will improve on this result and discuss it further when we talk about the small index
property.

2 Fräıssé’s Theorem and Extensions

2.1 Amalgamation classes and homogeneous structures

We are interested in (countable) structures with ‘large’ automorphism groups. One possible
interpretation of this is the following.

Definition 2.1. An L-structure M is homogeneous if isomorphisms beteween finitely gen-
erated substructures extend to automorphisms of M , that is: if A1, A2 ⊆ M are f.g. sub-
structures and f : A1 → A2 is an isomorphism, then there exists g ∈ Aut(M) such that
g|A1 = f .

Remarks 2.2. 1. (Warning) Suppose M is any L-structure. For each n ∈ N and each
Aut(M)-orbit S on Mn, introduce a new n-ary relation symbol RS into the language.
Call the resulting language L+. We regard M as an L+-structure M+ by interpreting
a new relation symbol RS as the orbit S. Then M+ is a homogeneous L+-structure
and the automorphism group of M+ is still Aut(M).

2. If L is a finite relational language, then there are only finitely many isomorphism types
of L-structure of any finite size. So if M is a homogeneous L-structure, then Aut(M)
has finitely many orbits on Mn for all n ∈ N.

3. Let L consist of a single 2-ary relation symbol and consider the L-structureM = (Q;≤),
the rationals with their usual ordering. This is a homogeneous L-structure (one way
to see this: use piecewise linear automorphisms).

Definition 2.3. A non-empty class A of finitely generated L-structures is a (Fräıssé) amal-
gamation class if:

1. (IP) A is closed under isomorphisms;

2. (Hereditary Property, HP) A is closed under f.g. substructures;

3. (Joint Embedding Property, JEP) if A1, A2 ∈ A there is C ∈ A and embeddings
fi : Ai → C (i = 1, 2);

4. (Amalgamation Property, AP) if A0, A1, A2 ∈ A and fi : A0 → Ai are embeddings,
there is B ∈ A and embeddings gi : Ai → B with g1 ◦ f1 = g2 ◦ f2.

Remarks 2.4. 1. Note that if ∅ ∈ A then JEP follows from AP.

2. As an example, let L consist of a 2-ary relation symbol R and A the class of all
finite graphs (considered as vertex sets with R interpreted as adjacency). This is an
amalgamation class. To verify AP, regard f1, f2 as inclusions and let B be the disjoint

5



union of A1 and A2 over A0 with edges RA1 ∪ RA2 . Take g1, g2 to be the natural
inclusions. We refer to B as the free amalgam of A1, A2 over A0 (and sometimes
denote it by A1

∐
A0
A2).

Definition 2.5. Suppose M is an L-structure. The age of M , Age(M) is the class of
structures isomorphic to some f.g. substructure of M .

Theorem 2.6. (Fräıssé’s Theorem)

1. If M is a homogeneous L-structure, then Age(M) is an amalgamation class.

2. Conversely, if A is an amalgamation class of countable L-structures, with countably
many isomorphism types, then there is a countable homogeneous L-structure M with
A = Age(M).

3. Suppose A is as in (2) and M is a countable homogeneous L-structure with age A.
Then M has the property that if A ⊆ M is f.g. and f : A → B is an embedding with
B ∈ A, then there is an embedding g : B → M with g(f(a)) = a for all a ∈ A. This
property determines M up to isomorphism amongst countable structures with age A.

Definition 2.7. In the above, the structure M is determined up to isomorphism by A and
is referred to as the Fräıssé limit, or generic structure of A. The property in (3) is sometimes
called the Extension Property

Examples 2.8. We give some examples of amalgamation classes and homogeneous struc-
tures. In each case, the language is the ‘natural’ language for the structures.

1. The class of all finite graphs is an amalgamation class. The Fräıssé limit is the random
graph.

2. If n ≥ 3, let Kn denote the complete graph on n vertices. Consider the class of all finite
graphs which do not embed Kn. This is an amalgamation class (free amalgamation
gives AP) and the Fräıssé limit is sometimes called the generic Kn-free graph.

3. As with graphs, the class of all finite directed graphs is an amalgamation class. We can
use a similar idea to (2) to construct continuum many homogeneous directed graphs.
Recall that a tournament is a directed graph with the property that for every two
vertices a, b, one of (a, b), (b, a) is a directed edge. There is an infinite set S of finite
tournaments with the property that if A,B are distinct elements of S then A does not
embed in B. If T is a subset of S, consider the class of finite directed graphs which do
not embed any member of T . This is an amalgamation class (use free alamgamation);
call the Fräıssé limit H(T ). It is easy to see that the elements of S which are in
Age(H(T )) are the elements of S \ T . So the H(T ) are all non-isomorphic. These are
called the Henson digraphs.

4. The class of all finite linear orders is an amalgamation class (but we cannot use free
amalgamation). The Fräıssé limit is isomorphic to (Q;≤).
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5. The class of all finite partial orders is an amalgamation class.

6. The class of all finite groups is an amalgamation class. The generic structure is Philip
Hall’s universal locally finite group.

7. (Cherlin, [3]) Let L consist of 3 binary relation symbols G,R,B and consider the class
of finite L-structures where R,G,B are symmetric, and for every pair of elements,
exactly one of R,G,B holds. So these are complete graphs where each edge is coloured
R,G or B. Consider the subclass of structures which omit the triangles:

RBB,GGB,BBB.

This is an amalgamation class. Amalgamation can be performed using only R,G edges,
but a single edge colour will not suffice.

Proof of Theorem 2.6: We sketch a few details of the proof of Fräıssé ’s Theorem.

1. Suppose M is a homogeneous L-structure. We show that Age(M) is an amalgamation
class and that M has the Extension Property in 2.6(3). It is easy to see that Age(M) has
IP, HP and JEP, so we verify AP.

Use the notation in the Definition. Without loss we can assume that A1, A2 ⊆ M and
f1 : A0 → A1 is the inclusion map. Thus f2 : A0 → A2 is an embedding between subsets of
M . Call the image B0. So we have (from f2) an isomorphism A0 → B0. By homogeneity this
extends to an automorphism h of M . Let B be the substructure generated by A1 ∪h−1(A2),
let g1 : A1 → C be inclusion and g2 : A2 → C be h−1|A2. If a ∈ A0 then g2(f2(a)) = a =
g1(f1(a)), as required.

The proof of EP is similar. There is some embedding k : B → M . Let A′ = k(A).
Then k gives an isomorphism A → A′, which extends to an automorphism h of M . Let
g = h−1 ◦ k : B →M . Then g(a) = a for all a ∈ A, as required.

2. Suppose M,M ′ are countable L-structures with age A and which have EP. Suppose
A ⊆ M and A′ ⊆ M ′ are f.g. substructures and k : A → A′ is an isomorphism. Using a
back-and-forth argument, we can show that that k extends to an isomorphism between M
and M ′. This shows that any two countable structures with EP are isomorphic, and that
any countable structure with EP is homogeneous.

3. To finish the proof, it therefore remains to show that if A is an amalgamation class of
countable L-structures with countably many isomorphism types, then there is a countable
structure M with age A which has EP.

Note first that if A,B ∈ A, then there are countably many embeddings A → B. We build
M inductively as the union of a chain of structures in A:

A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ . . . .

When doing this we ensure that:

• if C ∈ A, then C embeds into some Ai;
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• if A is a f.g. substructure of Ai and f : A → B ∈ A, then there is j > i such that
there is an embedding g : B → Aj with g(f(a)) = a for all a ∈ A.

Note that there are countably many tasks to perform here; as we have a countable number of
steps at our disposal, it therefore suffices to show that any one of these can be performed. A
task of the first form can be performed using JEP. For the second, suppose the construction
has reached stage k > i. At the next stage we can take Ak+1 which solves the amalgamation
problem A → Ak (inclusion), f : A → B. Specifically, using AP we obtain h : Ak → Ak+1

(which can be taken as inclusion), and g : B → Ak+1 with g(f(a)) = h(a) = a for all a ∈ A,
as required. �

2.2 An extension of Fräıssé’s Theorem

We give a generalization of Fräıssé ’s Theorem 2.6. Further generalizations are possible
(though the basic structure of the proof is always the same). For example a general category-
theoretic version of the Fräıssé construction can be found in [5] and Section 2.6 of [13].

We shall work with a class K of finitely generated L-structures and a distinguished class of
f.g. substructures A v B, pronounced ‘A is a nice substructure of B’ (the terminology is
not standard). If B ∈ K, then an embedding f : A→ B is a v-embedding if f(A) v B. We
shall assume that v satisfies:

(N1) If B ∈ K then B v B (so isomorphisms are v-embeddings);

(N2) If A v B v C (and A,B,C ∈ K), then A v C (so if f : A → B and g : B → C are
v-embeddings, then g ◦ f : A→ C is a v-embedding).

We say that (K,v) is an amalgamation class if:

• K is closed under isomorphisms and has countably many isomorphism types (and
countably many embeddings between any pair of elements);

• K is closed under v-substructures;

• K has the JEP for v-embeddings;

• K has AP for v-embeddings: if A0, A1, A2 are in K and f1 : A0 → A1 and f2 : A0 → A2

are v-embeddings, there is B ∈ K and v-embeddings gi : Ai → B (for i = 1, 2) with
g1 ◦ f1 = g2 ◦ f2.

Remarks 2.9. 1. If v is just ‘substructure’ then this is the same as what was previously
defined as a (Fräıssé ) amalgamation class.

2. The notion A v B is only defined when B is finitely generated and it will be convenient
to extend this to the situation where B is the union of a v-chain of f.g. substructures.
We can do this as follows.
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Suppose M is a countable L-structure and there are f.g. Mi ⊆ M (with i ∈ N) such
that M = ∪i∈NMi and M1 v M2 v M3 v . . .. Then for f.g. A ⊆ M we define A v M
to mean that A v Mi for some i ∈ N. Note that a priori this depends on the choice
of Mi, though the notation does not reflect this.

A condition on (K,v) which guarantees that this does not depend on the choice of the Mi

is:

(N3) Suppose A v B ∈ K and A ⊆ C ⊆ B with C ∈ K. Then A v C.

Indeed, suppose this holds and we also write M as the union of a v-chain

M ′
1 vM ′

2 vM ′
3 v . . . .

Suppose A vMi. There exist j, k such that

Mi ⊆M ′
j ⊆Mk.

As Mi vMk and M ′
j ∈ K, (N3) implies that Mi vM ′

j, so A vM ′
j.

The generalisation of the amalgamation construction is:

Theorem 2.10. Suppose (K,v) is an amalgamation class of finitely generated L-structures
and v satisfies (N1) and (N2). Then there is a countable L-structure M and f.g. substruc-
tures Mi ∈ K (for i ∈ N) such that:

1. M1 vM2 vM3 v . . . and M = ∪i∈NMi;

2. every A ∈ K is isomorphic to a v-substructure of M ;

3. (Extension Property) if A v M is f.g. and f : A → B ∈ K is a v-embedding then
there is a v-embedding g : B →M such that g(f(a)) for all a ∈ A.

Moreover, M is determined up to isomorphism by these properties and if A1, A2 v M are
f.g. and h : A1 → A2 is an isomorphism, then h extends to an automorphsim of M (which
can be taken to preserve v).

Note that in the above v is with respect to the chain of Mi. When we apply the result
here, the v will satisfy (N3) so this dependence is irrelevant. We refer to the property in
the ‘Moreover’ part as v-homogeneity and say that M is the generic structure of the class
(K,v).

Proof of Theorem 2.10: This is very similar to the proof of Theorem 2.6 so we will only give
an outline.

Existence of M : Build the Mi inductively ensuring that:

• if C ∈ K there is an i and a v-embedding f : C →Mi;
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• if A v Mi is f.g. and A v B ∈ K then there is j ≥ i and a v-embedding g : B → Mj

with g(a) = a for all a ∈ A.

To perform tasks of the first type, we use JEP; for the second type we can use AP as in the
proof of 2.6. There are only countably many tasks to perform, so we can arrange that all
are completed during the construction of the Mi.

Uniqueness and v-homogeneity: Suppose M ′
1 vM ′

2 v . . . is a v-chain whose union M ′ also
satisfies (1-3). Write v′ for v in M ′ with respect to the M ′

i . As in the proof of 2.6, one uses
the Extension Property to show that

S = {f : A→ A′ : f an isomorphism and A vM, A′ v′ M ′ f.g.}

is a back-and-forth system (which is non-empty because of JEP).

It follows that if f : A → A′ is in S then there is an isomorphism h : M → M ′ which
extends f . Moreover, the back-and-forth construction of h will ensure that h(Mi) v′ M ′ and
h−1(M ′

i) vM for all i, so h(B) v′ M ′ ⇔ B vM (for f.g. B ⊆M). �

Examples 2.11. (1) (2-out digraphs) Let K consist of the set of finite directed graphs where
every vertex has at most 2 directed edges coming out of it. For A ⊆ B ∈ K write A v B if
whenever a ∈ A and a→ b is a directed edge in B, then b ∈ A. Then v satisfies N1, N2, N3
and (K,v) is an amalgamation class (where the amalgamation is just free amalgamation).

(2) (Free groups) Let K be the class of finitely generated free groups. For f.g. A ≤ B ∈ K
write A v B to mean that A is a free factor of B. This clearly satisfies N1, N2 and N3 also
holds (cf. Magnus, Karrass, Solitar, Ex 2.4.31). Moreover (K,v) is an amalgamation class
and the generic structure is the free group of rank ω.

(3) (Hrushovski construction) If A is a finite graph, let δ(A) be twice the number of vertices
minus the number of edges in A. Let K consist of those A with δ(X) ≥ 0 for all X ⊆ A. If
A ⊆ B ∈ K write A v B to mean δ(A) ≤ δ(B′) whenever A ⊆ B′ ⊆ B. This satisfies N1,
N2, N3 and (K,v) is an amalgamation class (where the amalgamation can be taken as free
amalgamation).

As with Theorem 2.6, there is a converse statement. We omit the proof.

Theorem 2.12. Suppose M is a countable L-structure and (K,v) (satisfying (N1), (N2))
is such that M = ∪i∈NMi for Mi ∈ K with Mi v Mi+1. Suppose also that K is the class of
isomorphism types of v-substructures of M and that M is v-homogeneous (with respect to
the v-chain). Then Then (K,v) is an amalgamation class. �

Remarks 2.13. Suppose K in Theorem 2.10 has only finitely many isomorphism types of
structure of each finite size. Suppose also that there is a function F : N → N such that if
B ∈ K and A ⊆ B with |A| ≤ n, then there is C v B with A ⊆ C and |C| ≤ F (n). Then
the generic structure M is ω-categorical.

To see this we note that Aut(M) has finitely many orbits on Mn and apply the Ryll-
Nardzewski Theorem, Theorem 2.16. Indeed, by v-homogeneity there are finitely many
orbits on {c̄ ∈MF (n) : c̄ vM} and any ā ∈Mn can be extended to an element of this set.
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2.3 ω-categoricity

The following material will not be covered in the talks, but is included as background.

Suppose L is a first-order language. By the cardinality of L we mean the cardinality of the
set of L-formulas. We shall usually work with countable languages. Recall that a closed
L-formula (or L-sentence) is an L-formula without free variables. If M is an L-structure
then a closed formula σ makes an assertion about M which is either true or false (written
M |= σ and M 6|= σ respectively). The theory of M , denoted by Th(M), is the set of closed
formulas which are true in M .

Of course, if M is finite, then Th(M) determines M (up to isomorphism). However, if M is
infinite, then, by the Löwenheim - Skolem Theorems, Th(M) will have at least one model
of every cardinality greater than or equal to the cardinality of L.

Definition 2.14. Suppose L is a countable language and M is a countably infinite L-
structure. We say that M (or Th(M)) is ω-categorical if every countable model of Th(M)
is isomorphic to M .

Proposition 2.15. Suppose L is countable relational language and M is a countably infinite
homogeneous L-structure. Suppose further that for each n ∈ N, there are finitely many
isomorphism types of substructures of M with n elements. Then M is ω-categorical.

Proof. This will follow from the Ryll-Nardzewski Theorem below, but it’s perhaps instructive
to give a direct proof. For simplicity we do this when the language has only finitely many
relation symbols.

First, note that Th(M) specifies the age of M : for each n we have a closed formula (of the
form (∀x1 . . . xn) . . .) specifying what the isomorphism type of an n-set can be; moreover we
have formulas (of the form (∃x1 . . . xn) . . .) saying that all these are represented.

Second, note that Th(M) also specifies the Extension Property. For each A ⊆ B ∈ Age(M)
we have in Th(M) the closed formula:

(∀x̄)(∃ȳ)(∆A(x̄)→ ∆A,B(x̄, ȳ))

where x̄ is a tuple of variables of length |A| and ∆A(x̄) is the basic diagram of A, indicating
the isomorphism type of A; similarly x̄ȳ has length |B| and ∆A,B(x̄ȳ) is the basic diagram
of B where the variables x̄ pick out the substructure A.

It follows that if M ′ is a model of Th(M) then M ′ has the same age as M and has the
extension property. So if M ′ is countable, then it is isomorphic to M .

We recall some model-theoretic terminlogy. Suppose M is an L-structure and θ(x1, . . . , xn)
an L-formula with free variables amongst x1, . . . , xn. Let

θ[M ] = {(a1, . . . , an) ∈Mn : M |= θ(a1, . . . , an)}.

This is called a ∅-definable subset of Mn. We say that formulas θ(x̄) and ψ(x̄) are equivalent
(modulo Th(M)) if they define the same subset of Mn. Equivalently (∀x̄)(θ(x̄) ↔ ψ(x̄)) ∈
Th(M).
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More generally if C ⊆M , a C-definable subset of Mn is of the form

η[M, c̄] = {ā ∈Mn : M |= η(ā, c̄)}

for some L-formula η(x̄, ȳ) and tuple c̄ of elements of C. The c̄ here are called parameters,
and η(x̄, c̄) is a formula with parameters from C.

Suppose ā is an n-tuple of elements of M and C ⊆M . The type of ā over C (in M), written
tpM(ā/C) is the set of formulas η(x̄, c̄) with parameters from C such that M |= η(ā, c̄). Note
that if g ∈ Aut(M/C) then tpM(gā/C) = tpM(ā/C).

Theorem 2.16. (Ryll-Nardzewski, Svenonius, Engeler) Suppose L is a countable first-order
language and M a countably infinite L-structure. Then the following are equivalent:

1. M is ω-categorical;

2. Aut(M) has finitely many orbits on Mn for all n ∈ N;

3. For each n ∈ N, every n-type of Th(M) is principal;

4. For each n ∈ N there are only finitely many equivalence classes of L-formulas with n
free variables (modulo Th(M)).

Remarks 2.17. 1. For a proof, see for example ([?], 4.4.1). One way to organise the
proof is

(2)⇒ (4)⇒ (3)⇒ (1)⇒ (3)⇒ (2).

All but one of these are either straightforward or an application of compactness. The
exception is (1)⇒ (3) which uses the Omitting Types Theorem.

2. A type is principal if it contains a formula which implies all of the other formulas in
it.

3. It is clear that (2)⇒ (1) gives Proposition 2.15.

4. We say that a group G acting on a set X is oligomorphic if G has finitely many orbits
on Xn for all n ∈ N.

Example 2.18. We give an example of how amalgamation constructions can sometimes be
used to produce ω-categorical structures (and oligomorphic groups) with prescribed proper-
ties.

Suppose (kn : n ∈ N) is a given sequence of natural numbers. We construct an ω-categorical
structure M such that for every n ∈ N, the number of orbits of Aut(M) on Mn is at least
kn. Consider a language L which has kn n-ary relation symbols for each n. Let A consist
of finite L-structures C such that for each relation symbol R, if C |= R(c1, . . . , cn), then
c1, . . . , cn are distinct. This is an amalgamation class (use free amalgamation) and for each
n there are only finitely many, but at least kn, isomorphism types of structures of size n in
A. So the Fräıssé limit M is ω-categorical and has the required property.

Corollary 2.19. Suppose M is ω-categorical.
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1. Two n-tuples are in the same Aut(M)-orbit iff they have the same type over ∅ in M .

2. The ∅-definable subsets of Mn are precisely the Aut(M)-invariant subsets of Mn, that
is, unions of Aut(M)-orbits on Mn.

3. If C ⊆ M is finite, then the C-definable subsets of Mn are precisely the Aut(M/C)-
invariant sets.

Proof. (1) The direction ⇒ is true in general; the other direction is part of the proof of
(3)⇒ (2) in the above.

(2) It is clear that a ∅-definable subset of Mn is Aut(M)-invariant, so is a union of Aut(M)-
orbits on Mn. It follows that it is enough to show that each such Aut(M)-orbit X is definable.
But this follows from (1) and the fact that types are principal.

(3) Expand the language to the language L(C) by adding new constants for the elements of
C. Regard M as an L(C)-structure (M ;C) in the obvious way and note that a C-definable
subset of Mn is the same thing as a ∅-definable subset of the L(C)-structure (M ;C). The
automorphism group of the latter is Aut(M/C) and as C is finite, this has finitely many
orbits on n-tuples for all n. So (M ;C) is ω-categorical and (3) follows from (2).

The following characterization of homogeneous structures amongst the ω-categorical struc-
tures is worth noting. Recall that an L-structure M (or its theory Th(M)) is said to have
quantifier elimination (QE) if for every n ≥ 1, every L-formula θ(x1, . . . , xn) is equivalent
(modulo Th(M)) to a quantifier-free formula η(x1, . . . , xn).

Theorem 2.20. Suppose M is an ω-categorical L-structure. Then Th(M) has quantifier
elimination iff M is homogeneous.

Proof. (⇒:) Suppose A1, A2 are f.g. substructures of M and f : A1 → A2 is an isomorphism.
So by ω-categoricity, A1, A2 are finite. Let ā1 enumerate A1 and ā2 = f(a2). Then ā1,
ā2 satisfy the same quantifier-free formulas in M . By QE, it follows that tpM(ā1/∅) =
tpM(ā2/∅). By Corollary 2.19(1), there is g ∈ Aut(M) with gā1 = ā2. Thus g extends f , as
required.

(⇐:) If ā, ā′ are tuples in M with the same quantifier free type, then ā 7→ ā′ extends to an
isomorphism f : A → A′ between the substructures generated by ā, ā′. By homogeneity,
there is an automorphism of M extending f and so ā, ā′ have the same type over ∅ in M .
So quantifier-free types determine types (over ∅) in M ; as all types are principal it follows
that every formula is equivalent to a quantifier free formula (in M).

We conclude this subsection with some comments on algebraic closure.

Definition 2.21. Suppose M is an L-structure and A ⊆ M . The algebraic closure acl(A)
of A in M is the union of the finite A-definable subsets of M . In general, acl(A) contains
the substructure generated by A and acl is a closure operation on M .

Lemma 2.22. Suppose M is ω-categorical. Then acl is a uniformly locally finite closure
operation on M : there is a function α : N→ N such that if A ⊆M is finite, then |acl(A)| ≤
α(|A|).
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Proof. By the previous corollary, acl(M) is the union of the finite Aut(M/A)-orbits on M ,
so is finite. Note that if g ∈ Aut(M) then acl(gA) = gacl(A). So as there are only finitely
many orbits on finite sets of any given size, there is a uniform bound on the size of the
algebraic closures of these sets.

In particular, if M is ω-categorical there is a uniform bound on the size of n-generator
substructures, for all n ∈ N (of course, if L is a relational language, this is not saying very
much).

We say that algebraic closure in M is trivial if acl(A) = A for all finite A ⊆ M . If M is
homogeneous, this can be expressed as a condition on its age:

Lemma 2.23. Suppose L is a countable relational language and M is a homogeneous L-
structure which is ω-categorical. Then algebraic closure in M is trivial iff A = Age(M)
satisfies:

(Strong Amalgamation Property) if A0, A1, A2 ∈ A and fi : A0 → Ai are embeddings, there
is B ∈ A and embeddings gi : Ai → B with g1 ◦f1 = g2 ◦f2 and g1(A1)∩g2(A2) = g1(f1(A0)).

Proof. First, suppose A has the strong amalgamation property. Let B ⊆ M be finite and
c 6∈M . We have to show that c is in an infinite Aut(M/B)-orbit, so we show that for every
n ∈ N there are at least n elements in this orbit. Let C be the substructure B ∪ {c}. By
strong amalgamation there is a structure D in A which consists of n distinct copies of C
amalgamated over B; so D = B ∪ {c1, . . . , cn}. We can assume C ⊆ D (say c = c1) and
using the Extension Property of M , we can assume that D ⊆ M . Then the B ∪ {ci} are
isomorphic (over B), so by homogeneity, the ci are in the same Aut(M/B)-orbit.

Conversely, suppose algebraic closure is trivial in M . We modify the proof of AP given
in Theorem 2.6. Use the notation in the Definition. Without loss we can assume that
A1, A2 ⊆ M and f1 : A0 → A1 is the inclusion map. Thus f2 : A0 → A2 is an embedding
between subsets of M . Call the image B0. So we have (from f2) an isomorphism A0 → B0.
By homogeneity this extends to an automorphism h of M . So h−1(A2) ⊇ A0. By Neumann’s
lemma (after applying an element of Aut(M/A0)) we can assume that h−1(A2) ∩ A1 = A0.
Let B = A1 ∪ h−1(A2), let g1 : A1 → C be inclusion and g2 : A2 → C be h−1|A2. If a ∈ A0

then g2(f2(a)) = a = g1(f1(a)), as required.

The proof made use of the following (see Corollary 4.2.2 of [7] for a proof):

Theorem 2.24. (Neumann’s Lemma) Suppose G is a group acting on a set X and all G-
orbits on X are infinite. Suppose B,C are finite subsets of X. Then there is some g ∈ G
with B ∩ gC = ∅.

Examples 2.25. We list some examples of ‘natural’ ω-categorical structures. The first three
have trivial algebraic closure, the rest, non-trivial.

1. A pure set (M ; =). So the language just has equality; the automorphism group is the
full symmetric group Sym(M).
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2. A countable structure (M ;E) with an equivalence relation E which has infinitely many
classes, all of which are infinite.

3. The countable, dense linear ordering without endpoints (Q;≤).

4. The countable atomless boolean algebra (B; 0, 1,∧,∨,¬).

5. A vector space V (ℵ0, q) of dimension ℵ0 over a finite field Fq with q elements. Note
that the usual language for vector spaces over a field K consists of +,−, 0, λa(a ∈ K)
where λa is a function symbol for scalar multiplication by a.

6. Any countable abelian group of finite exponent.

7. A classical (symplectic, orthgonal or Hermitian) space (V (ℵ0, q) : +,−, 0, ...) over a
finite field, where ... consists of the extra structure, such as the bilinear or quadratic
form.

Remarks 2.26. Other ways of constructing ω-categorical structures include interpretation
and boolean powers. The survey [6] discusses the latter in detail.

3 Selected topics

In this section we look at some results on the small index property, extreme amenability and
normal subgroup structure for autmorphism groups. This is not a comprehensive survey and
the presentation is often very similar to the lecture notes of Macpherson [14].

3.1 The small index property

We say that a countable structure M (or its automorphism group Aut(M)) has the small
index property (SIP) if whenever H is a subgroup of G = Aut(M) of index less than 2ℵ0 , then
H is open. In other words, if |G : H| < 2ℵ0 , then there is a finite X ⊆ M with H ≥ G(X).
(Note that the first formulation makes sense in an arbitrary topological group.)

Remarks 3.1. (1) If H ≤ G is open then |G : H| ≤ ℵ0.

(2) The SIP implies that we can recover the topology on G from its group-theoretic structure:
the open subgroups are precisely the subgroups of small index and the cosets of these form
a base for the topology.

(3) For a countable ω-categorical structure M the topological group Aut(M) determines M
up to biinterpretability - see the notes [4] for an explanation of this. The following example
shows that we cannot expect to recover M completely. Consider M with automorphism
group G = Sym(M). This acts on N , the set of subsets of size 2 from M . Let G1 ≤ Sym(N)
be the set of permutations induced by by this action. It can be shown that this is closed,
so we can regard G1 as the automorphism group of a structure on N . The isomorphism
G → G1 (given by the identity map) is a homeomorphism (check this!). So the structures
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M and N have isomorphic topological automorphism groups even though they are different
structures.

(4) (Automatic continuity) Suppose M,N are countable structures and M has the SIP. If
α : Aut(M)→ Aut(N) is a homomorphism of groups, then SIP implies that α is continuous
(Exercise). If α is an isomorphism, then a result about Polish groups implies that α is a
homeomorphism.

(5) (An ω-categorical structure without SIP) The following example is due to Cherlin and
Hrushovski. Consider a language L which has a 2n-ary relation symbol En for each n ∈ N.
Let C be the class of finite L-structures A in which En is an equivalence relation on n-tuples
of distinct elements of A with at most 2 equivalence classes. This is an amalgamation class;
call the generic structure M . So for each n there are two equivalence classes of distinct n-
tuples from M . Every permutation of these equivalence classes extends to an automorphism
of M . So G = Aut(M) has a closed normal subgroup G0 consisting of automorphisms which
fix all equivalence classes and the quotient group is topologically isomorphic to the direct
product Cω

2 (where C2 is the cyclic group with 2 elements). Assuming the Axiom of Choice,
this has non-open subgroups of index 2.

(6) (Caveat) Sometimes a different definition of SIP in terms of strong automorphisms is
used.

It is an open question whether the construction in (5) is essentially the only obstruction
to the SIP for an ω-categorical structure. More specifically, say that an ω-categorical M is
G-finite if for every open subgroup H ≤ Aut(M), the intersection of the open subgroups of
finite index in H is of finite index in H.

Question 3.2. If M is a countable ω-categorical structure which is G-finite, does M have
the SIP?

The SIP was originally proved for Sym(N) by Dixon, Neumann and Thomas (1986). Their
method was subsequently adapted to prove SIP for general linear groups and classical groups
over countable fields (Evans, 1986, 1991) and Aut(Q;≤) (Truss, 1989). A different method
(applicable to the first two of these) was introduced by Hodges, Hodkinson, Lascar and
Shelah (1993) and used to prove SIP for the random graph. This approach was extended to
general Polish groups by Kechris and Rosendal (2007) and we follow their presentation (as
in [14]).

In the following we consider the action of a topological group G on the direct product Gn

by conjugation:

(g1, . . . , gn)
h7→ (hg1h

−1, . . . , hgnh
−1).

If we give Gn the product topology, this is a continuous action, which we refer to as the
conjugation action.

Definition 3.3. Suppose G is a Polish group. We say that G has ample homogeneous
generics (ahg’s) if for each n > 0, there is a comeagre orbit of G on Gn (with the conjugation
action).
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Theorem 3.4. (Kechris - Rosendal ([11], 6.9); Hodges, Hodkinson, Lascar and Shelah)
Suppose G is a Polish group with ample homogeneous generics. Then G has the SIP.

Remarks 3.5. Having ample homogeneous generics is a strong property and implies other
properties, including uncountable cofinality and the Bergman property. It does not hold for
Aut(Q;≤): the property fails for n = 2 (an observation of Hodkinson).

The following is a useful way of showing the existence of ahg’s.

Suppose (K,v) is an amalgamation class of f.g. L-structures and v satisfies N1, N2, N3
(as in Section 2.2). Let M be the generic structure of the class and G = Aut(M). Denote
by A(M) the set of f.g. A v M . For the rest of this section, by a partial automorphism
of M we mean an isomorphism f : A1 → A2 where Ai ∈ A(M). Note that every partial
automorphism of M extends to an automorphism of M .

Theorem 3.6. With the above notation, suppose that the following two conditions hold:

(i) (Amalgamation property for partial automorphisms) Suppose A v Bi ∈ A(M) (for
i = 1, 2). Then there is g ∈ G(A) with the following property. If f1, f2 are in Aut(B1)
and Aut(gB2) respectively and stabilize A, and f1|A = f2|A, then f1 ∪ f2 extends to an
automorphism of M .

(ii) (Extension property for partial automorphisms) If f1, . . . , fn are partial automorphisms
of M then there is B ∈ A(M) containing their domains and images and gi ∈ Aut(B) such
that fi ⊆ gi for all i ≤ n.

Then G = Aut(M) has ample homogeneous generics.

Proof. (Sketch) Say that (g1, . . . , gn) ∈ Gn is generic if

(a) The set of A ∈ A(M) such that gi(A) = A for all i ≤ n is cofinal in A(M); and

(b) Suppose A ∈ A(M) and gi(A) = A for all i; let A v B ∈ A(M) and hi ∈ Aut(B) extend
gi|A. Then there is α ∈ G(A) such that αgiα

−1 ⊇ hi (for i ≤ n).

We claim that: (1) the set of generics in Gn is comeagre; and (2) any two generics in Gn lie
in the same G-orbit.

For (2) Suppose (g1, . . . , gn) and (h1, . . . , hn) are generic. We can build an element of G
which cojugates one to the other by using a back-and-forth argument and the following
obervation:

Claim: If A v B ∈ A(M), and A is invariant under the hi, gi, and gi|A = hi|A for all i,
there is β ∈ G(A) with βgiβ

−1|B = hi|B.

To see the claim, note that using (a) for the hi, we may assume hi(B) = B for all i. Now
use (b) for the gi.

To show (1) we write the set of generics in Gn as a countable intersection of dense open sets.

For A ∈ A(M) let

X(A) = {(g1, . . . , gn) ∈ Gn : ∃B ∈ A(M) with A v B and giB = B ∀I ≤ n}.
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It is easy to see that X(A) is open. It follows from (ii) that X(A) is dense. Note that⋂
A∈A(M)

X(A)

is the set of elements of Gn which satisfy (a).

Suppose A v B ∈ A(M) and h1, . . . , hn ∈ Aut(B) satisfy hiA = A. Let

Y (A,B, h̄) = {(g1, . . . , gn) ∈ Gn : if (∀i)(gi|A = hi|A) then (∃α ∈ G(A)) (∀i)(αgiα−1|B = hi)}.

The intersection of these consists of elements of Gn which satisfy (b).

Each Y (A,B, h̄) is easily seen to be open. For denseness, consider a basic open set specified
by partial automorphisms (f1, . . . , fn). By (ii) we can assume these all have the same domain
and image C and we can also assume harmlessly that they extend the hi. Using (i), there
is β ∈ G(A) and automorphisms gi such that gi ⊇ fi ∪ βhiβ−1. Then (g1, . . . , gn) is in the
required open set and is in Y (A,B, h̄). This shows the denseness and so gives (1).

It is worth noting that (i), (ii) can be translated directly into properties of the class (K;v)
as in the following examples.

Examples 3.7. (1) Let K be the class of finite graphs (and v is just embedding). So the
generic structure M is the random graph. For the amalgamation property for automor-
phisms, note that if D is the free amalgmation of B1 and B2 over A and fi ∈ Aut(Bi)
stabilize A and have the same restriction to A, then their union is an automorphism of D.
The Extension Property for this class is a theorem of Hrushovski - see ([14], Lemma 3.13)
for a short proof and further references. It follows that the random graph has the SIP. The
result generalises to other free amalgamation classes: see [14] for details and references.

(2) Let K be the class of finitely generated free groups and v dentote being a free factor. The
free product with amalgamation gives the amalgamation property for partial automorphisms.
For the Extension Property we can take B to be any free factor of M which contains the
domains and images of the fi. So the free group of rank ω has the SIP (Bryant and Evans,
1997).

3.2 Extreme amenability and structural Ramsey theory

We discuss some results from the paper of Kechris, Pestov and Todorcevic [9].

Definition 3.8. Suppose G is a topological group.

(1) A G-flow is a non-empty, compact (Hausdorff) space Y with a continuous G-action
G× Y → Y .

(2) We say that G is extremely amenable if whenever Y is a G-flow, there is a G-fixed point
in Y .
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Remarks 3.9. (1) Suppose G ≤ Sym(X) is closed and H ≤ Y is open. Then the left
coset space Z = G/H is discrete and for k ∈ N, the space Y = {1, . . . , k}Z of functions
f : Z → {1, . . . , k} with the product topology is a G-flow (the action is (gf)(z) = f(g−1z)).
Note that here, as G is transitive on Z, the only fixed points are the constant functions. We
think of Y as the space of colourings of Z with ≤ k colours.

(2) The group G is amenable if every G-flow has an invariant finitely additive probability
measure.

(3) An alternative way of expressing extreme amenability is that the universal minimal
G-flow M(G) is a point.

(4) If G ≤ Sym(X) then {0, 1}X2
is a G-flow, as is every closed G-invariant subset of this.

We can think of this as the set of all binary relations on X. Let

LO(X) = {R ∈ {0, 1}X2

: R is a linear order on X}.

This is a closed, G-invariant subset. So we obtain:

Lemma 3.10. If G ≤ Sym(X) is extremely amenable, then there is a G-invariant linear
order on X.

So, for example, Sym(X) is not extremely amenable.

Theorem 3.11. (Kechris, Pestov, Todorcevic, 2005) Suppose G ≤ Sym(X) is closed. The
following are equivalent:

(1) G is extremely amenable;

(2) Suppose H is an open subgroup of G and Z = G/H. If c : Z → {1, . . . , k} and A ⊆ Z
is finite, there is g ∈ G and i ≤ k such that c(ga) = i for all a ∈ A.

(3) G preserves a linear ordering on X and G has the Ramsey property.

I will first discuss the equivalence of (1) and (2) here and then say what the Ramsey property
is.

(1) ⇒ (2): Consider the G-flow {1, . . . , k}Z . Let Y be the closure in this of the G-orbit
{gc : g ∈ G}. This is a G-flow, so must contain a G-fixed point. So it contains a constant
function fi(z) = i (for some i ≤ k). In other words, fi is in the closure of {gc : g ∈ G}. This
translates into the condition in (2).

(2) ⇒ (1): This is a bit harder, but not excessively so. The proof shows that to decide
whether G is extremely amenable, it suffices to consider G-flows whch are closed subflows of
{1, . . . , k}G/H (for H ≤ G open and k ∈ N). In fact, we can restrict to k here and take H
from a base of open neighbourhoods of 1.

Example 3.12. Let X = Q and G = Aut(Q). We verify (2). Take H = G(C) where C is
a subset of Q of size n. Then we can identify Z with the set of n-tuples b1 < b2 < · · · < bn
from Q, or, indeed, the set [Q]n of subsets of Q of size n.

So we can think of a function c : Z → {1, . . . , k} as a k-colouring of [Q]n. By the classical
Ramsey Theorem there is an infinite Y ⊆ Q such that c is constant on [Y ]n. Given a finite
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A ⊆ Z let S be the elements of Q appearing in tuples in A. So S is a finite subset of Q and
we can find g ∈ G with gS ⊆ Y . Then c is constant on gA, as required for (2). It follows:

Corollary 3.13. (Pestov) Aut(Q;≤) is extremely amenable.

We now define the Ramsey property.

Definition 3.14. Suppose G ≤ Sym(X).

(1) A G-type σ is a G-orbit on finite subsets of X. If σ, ρ are G-types, write ρ ≤ σ iff for
all F ∈ ρ there is F ′ ∈ σ with F ⊆ F ′.

(2) Suppose ρ ≤ σ ≤ τ are G-types.

(i) If F ∈ σ let
(
F
ρ

)
= {F ′ ⊆ F : F ′ ∈ ρ}.

(ii) If k ∈ N write
τ → (σ)ρk

to mean that for every F ∈ τ and colouring c :
(
F
ρ

)
→ {1, . . . , k} there is F0 ∈

(
F
σ

)
which is monochromatic for c (that is, c|

(
F0

ρ

)
is constant).

(3) We say that G has the Ramsey property if for all k and G-types ρ ≤ σ there is a G-type
τ ≥ σ such that τ → (σ)ρk.

Exercise: G = Aut(Q;≤) has the Ramsey property - this is the finite Ramsey theorem.

We now look at the proof of (2) ⇒ (3) in the Theorem 3.11 (the proof of (3) ⇒ (2) is also
reasonably straightforward).

Suppose (2) holds. We have to show that the Ramsey property holds. Suppose not - so there
are k ∈ N and G-types ρ ≤ σ such that for no τ do we have τ → (σ)ρk.

Let F0 ∈ σ. For every finite E ⊇ F0 the set

CE = {c :

(
E

ρ

)
→ {1, . . . , k} : no monochrome F ∈

(
E
σ

)
}

is non-empty. Restriction gives a directed system CE′ → CE for E ′ ⊇ E. By König’s lemma
there is therefore c : ρ→ {1, . . . , k} with no monochrome F ∈ σ. This contradicts (2).

The investigation of classes of (finite) structures with the Ramsey property is an area of
combinatorics known as structural Ramsey Theory. A nice summary of some of the results is
contained in ([14], Section 4). Note that by Theorem 3.11 we should expect such structures to
carry an ordering. The following shows that there is a strong connection with homogeneous
structures:

Theorem 3.15. Suppose C is a class of finite ordered structures for a finite relational lan-
guage and C is closed under substructures and has JEP. If C is a Ramsey class, then C has
the amalgamation property.

See [14], 4.8 for references and a proof.

Examples of countable homogeneous ordered structures with extremely amenable automor-
phism group include ordered versions of: the random graph, the universal homogeneous
Kn-free graphs, the Henson digraphs.
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3.3 Normal subgroup structure

We begin with some ‘classical’ results.

Theorem 3.16. (J. Schreier and S. Ulam, 1933) Suppose X is countably infinite. If g ∈
Sym(X) moves infinitely many elements of X, then every element of Sym(X) is a product
of conjugates of g. In particular, Sym(X)/FSym(X) is a simple group.

Theorem 3.17. (A. Rosenberg, 1958). Suppose V is a vector space of countably infinite
dimension over a field K. If FGL(V ) denotes the elements of GL(V ) which have a fixed
point space of finite codimension, then GL(V )/(K×.FGL(V )) is a simple group.

Theorem 3.18. (G. Higman, 1954). The non-trivial, proper normal subgroups of G =
Aut(Q;≤) are the left-bounded automorphisms, L = {g ∈ G : ∃a g|(−∞, a) = id}, the
right-bounded automorphisms R = {g ∈ G : ∃a g|(a,∞)} and B = L ∩R.

Theorem 3.19. (J. Truss, 1985). Let Γ be the countable random graph. Then Aut(Γ) is
simple.

It is tempting to conjecture from these that automorphism groups of ‘nice’ countable struc-
tures should not have any non-obvious normal subgroups. This is false:

Theorem 3.20. (M. Droste, C. Holland, D. Macpherson, 1988(?)) The automorphism
group of a countable, homogeneous semilinear order has 22ℵ0 normal subgroups.

However, there are some general results. The ones I want to focus on here are all descendants
of the following.

Theorem 3.21. (D. Lascar, 1992) Suppose M is a countable saturated structure with
a ∅-definable strongly minimal set D. Suppose that M = acl(D). Suppose g ∈ G =
Aut(M/acl(∅)) is unbounded, i.e. for every n ∈ N there is some X ⊆ D with dim(gX/X) >
n. Then G is generated by the conjugates of g.

Remarks 3.22. 1. This implies the results for Sym(X) and GL(V ).

2. The proof uses Polish group arguments.

3. The ideas were used by T. Gardener (1995) to prove an analogue of Rosenberg’s result
for classical groups over finite fields.

4. The result was used by Z. Ghadernezhad and K. Tent (2012) to prove simplicity of the
automorphism groups of certain generalized polygons and so obtain new examples of
simple groups with a BN -pair.

Some of the ideas from Lascar’s paper were used to prove:

Theorem 3.23. (D. Macpherson and K. Tent, 2011) Suppose M is a countable, transitive
homogeneous relational structure whose age has free amalgamation. Suppose Aut(M) 6=
Sym(M). Then
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(a) Aut(M) is simple;

(b) (Melleray) if 1 6= g ∈ Aut(M) then every element of G is a product of 32 conjugates of
g±1.

Note: This implies Truss’ result and unpublished results of M. Rubin (1988).

K. Tent and M. Ziegler (2012) generalized this to the case where M has a stationary inde-
pendence relation |̂ and used this to prove:

Theorem 3.24. Suppose U is the Urysohn rational metric space. If g ∈ Aut(U) is not
bounded, then every automorphism of U is a product of 8 conjugates of g.

We will now discuss what is meant by a stationary independence relation.

For the rest of this section we use the following notation:

• M is a countable first-order structure;

• G = Aut(M);

• cl is a G-invariant, finitary closure operation on subsets of M ;

• If X ⊆fin M and a is fixed by G(X), then a ∈ cl(X) (where G(X) = {g ∈ G : gx =
x ∀x ∈ X}).

• X = {cl(A) : A ⊆fin M};

• F consists of all maps f : X → Y with X, Y ∈ X which extend to automorphisms of
M . Call these partial automorphisms.

Example: Take cl to algebraic closure in M . So, for example, if M is the Fräıssé limit of a
free amalgamation class, then acl(X) = X for all X ⊆M .

In what follows, |̂ is a relation between subsets A,B,C of M : written A |̂
B
C and pro-

nounced ‘A is independent from C over B.’

Definition 3.25. We say that |̂ is a stationary independence relation compatible with cl
if for A,B,C,D ∈ X and finite tuples a, b:

1. (Compatibility) We have a |̂
b
C ⇔ a |̂

cl(b)
C and

a |̂
B

C ⇔ e |̂
B

C for all e ∈ cl(a,B)⇔ cl(a,B) |̂
B

C.

2. (Invariance) If g ∈ G and A |̂
B
C, then gA |̂

gB
gC.

3. (Monotonicity) If A |̂
B
C ∪D, then A |̂

B
C and A |̂

B∪C D.
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4. (Transitivity) If A |̂
B
C and A |̂

B∪C D, then A |̂
B
C ∪D

5. (Symmetry) If A |̂
B
C, then C |̂

B
A.

6. (Existence) There is g ∈ GB with g(A) |̂
B
C.

7. (Stationarity) Suppose A1, A2, B, C ∈ X with B ⊆ Ai and Ai |̂ B C. Suppose h : A1 →
A2 is the identity on B and h ∈ F . Then there is some k ∈ F which contains h ∪ idC
(where idC denotes the identity map on C).

Remarks 3.26. 1. For all a ∈ M and finite X we have a |̂
X

cl(X). Moreover a |̂
X
a

iff a ∈ cl(X).

2. Tent and Ziegler consider this where acl(X) = X and cl(X) = X ∀X. Write A |̂
B
C

to mean A ∩ C ⊆ B. This satisfies (1-6), but not necessarily (7).

3. Suppose M is the Fräıssé limit of a free amalgamation class (of relational structures).
Let cl(X) = X ∀X. Define A |̂

B
C to mean A ∩ C ⊆ B and A ∪B, C ∪B are freely

amalgamated over B. This is a stationary independence relation on M .

4. Suppose M is a countable-dimensional vector space over a countable field K. So
G = GL(M). Let cl be linear closure and take A |̂

B
C to mean that cl(A ∪ B) ∩

cl(C ∪B) = cl(B). This gives a stationary independence relation.

Definition 3.27. Say that g ∈ G moves almost maximally if for all B ∈ X and a ∈M there
is a′ in the G(B)-orbit of a such that

a′ |̂
B

ga′.

Example 3.28. Suppose (M ; cl; |̂ ) is the vector space example. If g ∈ G does not move
almost maximally, then for some finite dimensional subspace B, for all v ∈ M we have
gv ∈ 〈v,B〉. Thus g acts as a scalar α on M/B. So (α−1g − 1)v ∈ B for all v and it follows
that g is a scalar multiple of a finitary transformation.

Lemma 3.29. Suppose (M ; cl; |̂ ) is the free amalgamation example. Suppose also that
G = Aut(M) is transitive on M and G 6= Sym(M). If 1 6= g ∈ G, then

(1) g moves infinitely many points of each G(B)-orbit (for each finite B ⊆M); and

(2) there is h ∈ G such that [g, h] = g−1h−1gh moves almost maximally.

The following is a generalization of the result of Tent and Ziegler (though the proof is almost
the same).

Theorem 3.30. (Evans, Ghadernezhad, Tent, 2013) Suppose M is a countable structure
with a stationary independence relation compatible with a closure operation cl. Suppose that
G = Aut(M) fixes every element of cl(∅). If g ∈ G moves almost maximally, then every
element of G is a product of 16 conjugates of g.

Remarks 3.31. 1. If cl(X) = X ∀X, this is proved in the paper of Tent and Ziegler.
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2. As observed by Tent and Ziegler, it implies the result of Macpherson and Tent for the
free amalgamation example.

3. Following Lascar’s paper, the proof uses the topology on G which has a base of open
neighbourhoods of the form {g ∈ G : g(x) = f(x) ∀x ∈ X} for f : X → Y a partial
automorphism (X, Y ∈ X ). This is complete metrizable, but not necessarily separable.
A trick from Lascar’s paper allows one to work in separable closed subgroups and then
the proof of Tent and Ziegler works.

4 A short Appendix on Model Theory

4.1 First-order languages and structures

In a first-order language one has an alphabet of symbols and certain finite sequences of
these symbol (the formulas of the language) are the objects of interest. The symbols are
connectives ∧ (and), ∨ (or), ¬ (not); quantifiers ∀ and ∃; punctuation (parentheses and
commas); variables; and constant, relation and function symbols, with each of the last two
coming equipped with a finite ‘arity’ specifying how many arguments it has. The number of
these constant, relation and function symbols (together with their arities) is referred to as
the signature of the language.

The terms of the language are built inductively. Any variable or constant symbol is a term
and if f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is also a term
(all terms are built in this way).

Now we can build the formulas of the language. Again, this is done inductively. If R is an
n-ary relation symbol in the language and t1, . . . , tn are terms then R(t1, . . . , tn) is a formula
(an atomic formula). If φ, ψ are formulas and x a variable, then (φ) ∧ (ψ), (φ) ∨ (ψ), ¬(φ),
∀x(φ), ∃x(φ) are formulas (of higher ‘complexity’). A formula not involving any quantifiers
is called quantifier free or open. There is a natural notion of a free variable in a formula, and
when we write a formula as φ(x1, . . . , xm) we mean that its free variables are amongst the
variables x1, . . . , xm. A formula with no free variables is called a sentence. For more details
the reader could consult ([7], Section 2.1).

If L is a first-order language then an L-structure consists of a set M equipped with a
constant (that is, a distinguished element of M), n-ary relation (that is, a subset of Mn),
and n-ary function Mn → M for each constant symbol and n-ary relation and function
symbol in L. If φ(x1, . . . , xm) is an L-formula and a1, . . . , am ∈ M then one can ‘read’
φ(a1, . . . , am) as a statement about the behaviour of a1, . . . , am and these constants, relations
and functions (interpreting each constant, relation or function symbol as the corresponding
constant, relation or function of M), which is either true or false. If it is true, then we write

M |= φ(a1, . . . , am).

All of this can of course be made completely precise (defined inductively on the complexity
of φ): see ([7], Section 2.1) again. We shall always have = as a binary relation symbol in L
and interpret it as true equality in any L-structure.

24



If Φ is a set of L-sentences and M an L-structure we say that M is a model of Φ (and write
M |= Φ) if every sentence in Φ is true in M . If there is a model of Φ we say that Φ is
consistent. The set of L-sentences true in M is called the theory of M . Two L-structures
M1 and M2 are elementarily equivalent if they have the same theory. This is written as
M1 ≡ M2. Thus in this case the structures M1 and M2 cannot be distinguished using the
language L. The following basic result of model theory shows that one should not expect
first-order languages to be able to completely describe infinite structures.

Theorem 4.1. (Löwenheim-Skolem) Let L be a first-order language with signature of car-
dinality λ. Let µ, ν be cardinals with µ, ν ≥ max(λ,ℵ0), and suppose M1 is an L-structure
with cardinality µ. Then there exists an L-structure M2 elementarily equivalent to M1 and
of cardinality ν.

The ‘upward’ part of this result (where ν ≥ µ) follows easily from the fundamental theorem
of model theory:

Theorem 4.2. (The Compactness Theorem) Let L be a first-order language and Φ a set of
L-sentences. If every finite subset of Φ is consistent, then Φ is consistent.

The original version of this is due to Gödel (1931). Proofs (using a method due to Henkin
(1949)) can be found in ([7], Theorem 6.1.1). Algebraists may prefer the proof using ultra-
products and the theorem of  Los ([7], Theorem 9.5.1).

If M , N are L-structures with M ⊆ N and the distinguished relations, functions (and
constants) of N extend those of M , then we say that M is a substructure of N . If also for
every L-formula φ(x1, . . . , xm) and a1, . . . , am ∈M we have

M |= φ(a1, . . . , am)⇔ N |= φ(a1, . . . , am)

then we say that M is an elementary substructures of N (and that N is an elementary
extension of M) and write M � N . A stronger version of the Löwenheim-Skolem Theorem
(4.1) is true: the smaller of M1, M2 may be taken to be an elementary substructure of the
larger. Proofs can be found in ([7], Corollaries 3.1.5 and 6.1.4).

4.2 Definable sets; types

Suppose L is a first-order language and M an L-structure. Let n ∈ N. A subset A
of Mn is called (parameter) definable if there exist b1, . . . , bm ∈ M and an L-formula
φ(x1, . . . , xn, y1, . . . , ym) with

A = {ā ∈Mn : M |= φ(ā, b̄)}.

If the parameters b̄ can be taken from the subset X ⊆ M then A is said to be X-definable.
The union of the finite X-definable subsets of M is called the algebraic closure of X, denoted
by acl(X), and the union of the X-definable singleton subsets of M is the definable closure
of X, denoted by dcl(X). It is not hard to check that both of these are indeed closure
operations on M .
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So the definable subsets of Mn are the ones which can be described using L-formulas (and
parameters). Conversely one could take a particular n-tuple ā ∈Mn and a set of parameters
A ⊆ M and ask what the language L can say about ā (in terms of A and M). This gives
the notion of the type of ā over A, which by definition is

tpM(ā/A) = {φ(x1, . . . , xn, b1, . . . , bm) : b1, . . . , bm ∈ A, M |= φ(ā, b̄)}

(the superscript M is dropped if this is clear from the context). It is sometimes useful
to consider the type of ā (over A) using only certain L-formulas. For example, for the
quantifier free type of ā over A one takes only quantifier free φ in the above definition. It
is also possible to define the type of an infinite sequence of elements of M . The reader can
consult ([7], Section 6.3) for further details here.

More generally, a (complete) n-type over A is a set of L-formulas with parameters from A
equal to tpN(ā/A) for some elementary extension N of M and some ā ∈ Mn. There is no
reason to suppose, for arbitrary M and A, that this type should be realised in M , that
is, there exists ā′ ∈ Mn with tpM(ā′/A) = tpN(ā/A). For example, this would clearly be
impossible if A = M and ā 6∈ Mn. However, it can happen that for some infinite cardinal
κ if |A| < κ then every complete n-type over A is realised in M : in this case M is called
κ-saturated, and if κ = |M | then M is saturated. The reader should consult ([7], Chapter
10) for more on this.
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