Automorphism groups of metric structures 1. Polish groups; the space of actions.

J. Melleray

Institut Camille Jordan (Lyon)

Istanbul - March 26, 2015

Polish groups: some examples

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

• Topological group: $(g,h)\mapsto gh$ and $g\mapsto g^{-1}$ are continuous.

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

- Topological group: $(g,h)\mapsto gh$ and $g\mapsto g^{-1}$ are continuous.
- Completeness implies that one can use the Baire category theorem a countable intersection of dense open sets is dense.

• $(\mathbb{R}^n, +)$; any separable Banach space.

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).
- Homeomorphism groups of compact metric spaces.

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).
- Homeomorphism groups of compact metric spaces.
- The group S_∞ of permutations of the integers.

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).
- Homeomorphism groups of compact metric spaces.
- The group S_∞ of permutations of the integers.
- The unitary group $\mathcal{U}(\ell_2)$ of a separable Hilbert space.

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).
- Homeomorphism groups of compact metric spaces.
- The group S_∞ of permutations of the integers.
- The unitary group $\mathcal{U}(\ell_2)$ of a separable Hilbert space.
- The group $Aut(\mu)$ of measure-preserving bijections of [0,1].

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).
- Homeomorphism groups of compact metric spaces.
- The group S_∞ of permutations of the integers.
- The unitary group $\mathcal{U}(\ell_2)$ of a separable Hilbert space.
- The group $Aut(\mu)$ of measure-preserving bijections of [0,1].
- Isometry groups of complete, separable metric spaces, and their closed subgroups.

- $(\mathbb{R}^n, +)$; any separable Banach space.
- Any locally compact metrizable group (e.g. Lie groups).
- Homeomorphism groups of compact metric spaces.
- The group S_∞ of permutations of the integers.
- The unitary group $\mathcal{U}(\ell_2)$ of a separable Hilbert space.
- The group $Aut(\mu)$ of measure-preserving bijections of [0,1].
- Isometry groups of complete, separable metric spaces, and their closed subgroups.
- and so on.

The group of permutations of the integers is denoted by ${\it S}_{\infty}.$ It admits a natural distance:

$$d(\sigma,\tau) = \inf\{2^{-n} \colon \forall i < n \ \sigma(i) = \tau(i)\}$$

The group of permutations of the integers is denoted by S_{∞} . It admits a natural distance:

$$d(\sigma,\tau) = \inf\{2^{-n} \colon \forall i < n \ \sigma(i) = \tau(i)\}$$

A basis of neighborhoods of 1 is thus given by sets of the form

$$\{\sigma \colon \forall i < n \ \sigma(i) = i \}$$

The group of permutations of the integers is denoted by $S_\infty.$ It admits a natural distance:

$$d(\sigma,\tau) = \inf\{2^{-n} \colon \forall i < n \ \sigma(i) = \tau(i)\}$$

A basis of neighborhoods of 1 is thus given by sets of the form

$$\{\sigma \colon \forall i < n \ \sigma(i) = i \}$$

• These are actually subgroups.

The group of permutations of the integers is denoted by $S_\infty.$ It admits a natural distance:

$$d(\sigma,\tau) = \inf\{2^{-n} \colon \forall i < n \ \sigma(i) = \tau(i)\}$$

A basis of neighborhoods of 1 is thus given by sets of the form

$$\{\sigma \colon \forall i < n \ \sigma(i) = i \}$$

- These are actually subgroups.
- One checks easily that group operations are continuous.

The group of permutations of the integers is denoted by S_{∞} . It admits a natural distance:

$$d(\sigma,\tau) = \inf\{2^{-n} \colon \forall i < n \ \sigma(i) = \tau(i)\}$$

A basis of neighborhoods of 1 is thus given by sets of the form

$$\{\sigma \colon \forall i < n \ \sigma(i) = i \}$$

- These are actually subgroups.
- One checks easily that group operations are continuous.
- Is the distance *d* complete?

Recall that $d(\sigma, \tau) = \inf\{2^{-n} : \forall i < n \ \sigma(i) = \tau(i)\}$. Define

$$\sigma_i(n) = \begin{cases} n+1 & \text{if } n \leq i \\ 0 & \text{if } n=i \\ n & \text{otherwise} \end{cases}$$

 (σ_i) is a Cauchy sequence, which does not converge in S_{∞} .

Recall that $d(\sigma, \tau) = \inf\{2^{-n} : \forall i < n \ \sigma(i) = \tau(i)\}$. Define

$$\sigma_i(n) = \begin{cases} n+1 & \text{if } n \leq i \\ 0 & \text{if } n = i \\ n & \text{otherwise} \end{cases}$$

 (σ_i) is a Cauchy sequence, which does not converge in S_{∞} .

However, ρ defined by $\rho(\sigma, \tau) = d(\sigma, \tau) + d(\sigma^{-1}, \tau^{-1})$ is complete.

Recall that $d(\sigma, \tau) = \inf\{2^{-n} : \forall i < n \ \sigma(i) = \tau(i)\}$. Define

$$\sigma_i(n) = egin{cases} n+1 & ext{if } n \leq i \ 0 & ext{if } n=i \ n & ext{otherwise} \end{cases}$$

 (σ_i) is a Cauchy sequence, which does not converge in S_{∞} .

However, ρ defined by $\rho(\sigma, \tau) = d(\sigma, \tau) + d(\sigma^{-1}, \tau^{-1})$ is complete.

Observation

Let G be a Polish group. Then G admits a complete left-invariant metric if, and only if, all left-invariant metrics are complete.

Recall that $d(\sigma, \tau) = \inf\{2^{-n} : \forall i < n \ \sigma(i) = \tau(i)\}$. Define

$$\sigma_i(n) = egin{cases} n+1 & ext{if } n \leq i \ 0 & ext{if } n=i \ n & ext{otherwise} \end{cases}$$

 (σ_i) is a Cauchy sequence, which does not converge in S_{∞} .

However, ρ defined by $\rho(\sigma, \tau) = d(\sigma, \tau) + d(\sigma^{-1}, \tau^{-1})$ is complete.

Observation

Let G be a Polish group. Then G admits a complete left-invariant metric if, and only if, all left-invariant metrics are complete.

Theorem

Let G be a Polish group, and d be a left-invariant metric on G. Then d' defined by $d'(g,h) = d(g,h) + d(g^{-1},h^{-1})$ is complete.

 $U(\ell_2)$ denotes the unitary group of a separable Hilbert space. It is a Polish group when endowed with the pointwise convergence topology.

 $U(\ell_2)$ denotes the unitary group of a separable Hilbert space. It is a Polish group when endowed with the pointwise convergence topology.

A basis of neighborhoods of 1 is given by sets of the form

$$\{U\colon \forall x\in F \,\,\|\, U(x)-x\|<\varepsilon\}$$

Above *F* is finite and $\varepsilon > 0$ (these are not subgroups!).

 $U(\ell_2)$ denotes the unitary group of a separable Hilbert space. It is a Polish group when endowed with the pointwise convergence topology.

A basis of neighborhoods of 1 is given by sets of the form

$$\{U\colon \forall x\in F \,\,\|\, U(x)-x\|<\varepsilon\}$$

Above *F* is finite and $\varepsilon > 0$ (these are not subgroups!).

It is tempting to use the operator norm: it is complete, bi-invariant... and nonseparable: permutations of a Hilbert basis provide a continuum of group elements pairwise at distance $\sqrt{2}$.

 (X, μ) denotes a standard probability space (i.e. [0, 1] endowed with the Lebesgue measure). Automorphisms of (X, μ) are measure-preserving bijections (identified if they coincide outside a nullset).

 (X, μ) denotes a standard probability space (i.e. [0, 1] endowed with the Lebesgue measure). Automorphisms of (X, μ) are measure-preserving bijections (identified if they coincide outside a nullset).

The first topology one may think of is given by the measure of the support:

$$d(S, T) = \mu(\{x \colon S(x) \neq T(x)\})$$

This is again complete, bi-invariant... and nonseparable: think of (X, μ) as a unit circle, and consider rotations with different angles.

 (X, μ) denotes a standard probability space (i.e. [0, 1] endowed with the Lebesgue measure). Automorphisms of (X, μ) are measure-preserving bijections (identified if they coincide outside a nullset).

The first topology one may think of is given by the measure of the support:

$$d(S, T) = \mu(\{x \colon S(x) \neq T(x)\})$$

This is again complete, bi-invariant... and nonseparable: think of (X, μ) as a unit circle, and consider rotations with different angles.

To understand the Polish topology, notice first that $Aut(\mu)$ acts isometrically on the mesure algebra $MALG_{\mu}$ endowed with the metric

$$d(A,B) = \mu(A\Delta B)$$

 (X, μ) denotes a standard probability space (i.e. [0, 1] endowed with the Lebesgue measure). Automorphisms of (X, μ) are measure-preserving bijections (identified if they coincide outside a nullset).

The first topology one may think of is given by the measure of the support:

$$d(S, T) = \mu(\{x \colon S(x) \neq T(x)\})$$

This is again complete, bi-invariant... and nonseparable: think of (X, μ) as a unit circle, and consider rotations with different angles.

To understand the Polish topology, notice first that $Aut(\mu)$ acts isometrically on the mesure algebra $MALG_{\mu}$ endowed with the metric

$$d(A,B) = \mu(A\Delta B)$$

The Polish topology commonly used in ergodic theory is the corresponding pointwise convergence topology.

Theorem

Given a Polish group G, there always exists a left-invariant metric d on G. Then G is a closed subgroup of the isometry group $lso(\widehat{(G,d)})$ (endowed with the pointwise convergence topology).

Theorem

Given a Polish group G, there always exists a left-invariant metric d on G. Then G is a closed subgroup of the isometry group $lso(\widehat{(G,d)})$ (endowed with the pointwise convergence topology).

The choice of left-invariant distance is not essential: any two such distances are uniformly equivalent (the isometry group of (G, d) might change, but not the topology induced on G).

Theorem

Given a Polish group G, there always exists a left-invariant metric d on G. Then G is a closed subgroup of the isometry group $lso(\widehat{(G,d)})$ (endowed with the pointwise convergence topology).

The choice of left-invariant distance is not essential: any two such distances are uniformly equivalent (the isometry group of (G, d) might change, but not the topology induced on G).

Theorem (Gao–Kechris)

Any Polish group is (isomorphic to) the isometry group of a Polish metric space.

Definition The Urysohn space ${\mathbb U}$ is the unique Polish metric space which is:

The Urysohn space ${\mathbb U}$ is the unique Polish metric space which is:

• universal (it contains a copy of any separable metric space) and
The Urysohn space ${\mathbb U}$ is the unique Polish metric space which is:

- universal (it contains a copy of any separable metric space) and
- ultrahomogeneous (isometries between finite subsets extend to isometries of the whole space).

The Urysohn space ${\mathbb U}$ is the unique Polish metric space which is:

- universal (it contains a copy of any separable metric space) and
- ultrahomogeneous (isometries between finite subsets extend to isometries of the whole space).

Theorem (Uspenskij)

Any Polish group is isomorphic to a closed subgroup of $Iso(\mathbb{U})$.

Baire category methods

Locally compact groups are a classical object of study, which was investigated in depth already during the first part of the 20th century. It is well-known and important that locally compact groups admit a (essentially unique) Haar measure, which is preserved by (say) left translation.

Locally compact groups are a classical object of study, which was investigated in depth already during the first part of the 20th century. It is well-known and important that locally compact groups admit a (essentially unique) Haar measure, which is preserved by (say) left translation.

Conversely, a Polish group admitting a measure which is quasi-preserved by translations must be locally compact (Weil).

Locally compact groups are a classical object of study, which was investigated in depth already during the first part of the 20th century. It is well-known and important that locally compact groups admit a (essentially unique) Haar measure, which is preserved by (say) left translation.

Conversely, a Polish group admitting a measure which is quasi-preserved by translations must be locally compact (Weil).

Baire category notions provide a well-behaved notion of largeness that can be used to replace some measure-theoretic arguments in the context of non locally compact groups.

Leaning to love G_{δ} subsets

Theorem (Alexandrov)

Let X be a Polish topological space, and Y be a metric space containing X. Then X is a G_{δ} subset of Y: that is, X is a countable intersection of open subsets of Y.

Conversely, if X is Polish and $A \subseteq X$ is G_{δ} , then A is Polish.

Leaning to love G_{δ} subsets

Theorem (Alexandrov)

Let X be a Polish topological space, and Y be a metric space containing X. Then X is a G_{δ} subset of Y: that is, X is a countable intersection of open subsets of Y.

Conversely, if X is Polish and $A \subseteq X$ is G_{δ} , then A is Polish.

Theorem

Let G be a Polish group, and H be a subgroup which is Polish in the induced topology. Then H is closed in G.

Leaning to love G_{δ} subsets

Theorem (Alexandrov)

Let X be a Polish topological space, and Y be a metric space containing X. Then X is a G_{δ} subset of Y: that is, X is a countable intersection of open subsets of Y.

Conversely, if X is Polish and $A \subseteq X$ is G_{δ} , then A is Polish.

Theorem

Let G be a Polish group, and H be a subgroup which is Polish in the induced topology. Then H is closed in G.

Proof.

Let X be a Polish space.

• A is meagre if it is contained in a countable union of closed sets, each of which has empty interior.

Let X be a Polish space.

- A is meagre if it is contained in a countable union of closed sets, each of which has empty interior.
- A is comeagre or generic if A contains a countable intersection of dense open sets (the complement of A is meagre).

Let X be a Polish space.

- A is meagre if it is contained in a countable union of closed sets, each of which has empty interior.
- A is comeagre or generic if A contains a countable intersection of dense open sets (the complement of A is meagre).

Theorem (Baire)

A comeagre set of a Polish space is dense.

Let X be a Polish space.

- A is meagre if it is contained in a countable union of closed sets, each of which has empty interior.
- A is comeagre or generic if A contains a countable intersection of dense open sets (the complement of A is meagre).

Theorem (Baire)

A comeagre set of a Polish space is dense.

A meagre set can be dense! A countable intersection of comeagre sets is again comeagre; they should be thought of as analogues of sets of full measure.

Let X be a Polish space. $A \subseteq X$ is Baire-measurable if there exists a Borel set B such that $A \Delta B$ is meagre.

Let X be a Polish space. $A \subseteq X$ is Baire-measurable if there exists a Borel set B such that $A \Delta B$ is meagre.

This is equivalent to saying that there exists an open set O such that $A\Delta O$ is meagre (and that is how we will use it). Thus, if A is Baire-measurable and not meagre, there exists a nonempty open $O \subseteq X$ such that A is comeagre in O, i.e. $O \setminus A$ is meagre.

Let X be a Polish space. $A \subseteq X$ is Baire-measurable if there exists a Borel set B such that $A \Delta B$ is meagre.

This is equivalent to saying that there exists an open set O such that $A\Delta O$ is meagre (and that is how we will use it). Thus, if A is Baire-measurable and not meagre, there exists a nonempty open $O \subseteq X$ such that A is comeagre in O, i.e. $O \setminus A$ is meagre.

Just like measurable sets, Baire-measurable sets form a σ -algebra which contains all Borel sets. There are more...

Definition

A subset A of a Polish space X is analytic if there exists a Polish space Y, and a continuous map $f: Y \to X$ such that A = f(Y).

Definition

A subset A of a Polish space X is analytic if there exists a Polish space Y, and a continuous map $f: Y \to X$ such that A = f(Y).

These sets do not form a σ -algebra.

Definition

A subset A of a Polish space X is analytic if there exists a Polish space Y, and a continuous map $f: Y \to X$ such that A = f(Y).

These sets do not form a σ -algebra.

Theorem (Suslin)

A subset A of a Polish space is Borel iff both A and its complement are analytic.

Definition

A subset A of a Polish space X is analytic if there exists a Polish space Y, and a continuous map $f: Y \to X$ such that A = f(Y).

These sets do not form a σ -algebra.

Theorem (Suslin)

A subset A of a Polish space is Borel iff both A and its complement are analytic.

Theorem (Lusin-Sierpinski)

Analytic subsets of Polish spaces are Baire-measurable.

Definition Let X be a Polish space and A be a subset of X.

Let X be a Polish space and A be a subset of X.

• We write $\forall^* x A(x)$ to signify that A is comeagre in X.

Let X be a Polish space and A be a subset of X.

- We write $\forall^* x A(x)$ to signify that A is comeagre in X.
- Similarly $\exists^* x A(x)$ means that A is not meagre in X.

Let X be a Polish space and A be a subset of X.

- We write $\forall^* x A(x)$ to signify that A is comeagre in X.
- Similarly $\exists^* x A(x)$ means that A is not meagre in X.

Theorem (Kuratowski–Ulam)

Let X, Y be Polish spaces and $A \subseteq X \times Y$ a Baire-measurable subset. The following are equiveridical:

Let X be a Polish space and A be a subset of X.

- We write $\forall^* x A(x)$ to signify that A is comeagre in X.
- Similarly $\exists^* x A(x)$ means that A is not meagre in X.

Theorem (Kuratowski–Ulam)

Let X, Y be Polish spaces and $A \subseteq X \times Y$ a Baire-measurable subset. The following are equiveridical:

• $\forall^*(x,y) \in X \times Y A(x,y).$

Let X be a Polish space and A be a subset of X.

- We write $\forall^* x A(x)$ to signify that A is comeagre in X.
- Similarly $\exists^* x A(x)$ means that A is not meagre in X.

Theorem (Kuratowski–Ulam)

Let X, Y be Polish spaces and $A \subseteq X \times Y$ a Baire-measurable subset. The following are equiveridical:

- $\forall^*(x,y) \in X \times Y A(x,y).$
- $\forall^* x \in X \ (\forall^* y \in Y \ A(x, y)).$

Let X be a Polish space and A be a subset of X.

- We write $\forall^* x A(x)$ to signify that A is comeagre in X.
- Similarly $\exists^* x A(x)$ means that A is not meagre in X.

Theorem (Kuratowski–Ulam)

Let X, Y be Polish spaces and $A \subseteq X \times Y$ a Baire-measurable subset. The following are equiveridical:

- $\forall^*(x,y) \in X \times Y A(x,y).$
- $\forall^* x \in X \ (\forall^* y \in Y \ A(x, y)).$

This is the category analogue of Fubini's theorem.

When X, Y are Polish and $f: X \rightarrow Y$ is continuous, f preserves category if it satisfies one of the following equivalent conditions;

• For any comeagre $A \subseteq Y f^{-1}(A)$ is comeagre.

- For any comeagre $A \subseteq Y f^{-1}(A)$ is comeagre.
- For any dense open $O \subseteq Y f^{-1}(O)$ is dense.

- For any comeagre $A \subseteq Y f^{-1}(A)$ is comeagre.
- For any dense open $O \subseteq Y f^{-1}(O)$ is dense.
- For any nonempty open $U \subseteq X f(U)$ is not meagre.

- For any comeagre $A \subseteq Y f^{-1}(A)$ is comeagre.
- For any dense open $O \subseteq Y f^{-1}(O)$ is dense.
- For any nonempty open $U \subseteq X f(U)$ is not meagre.
- For any nonempty open $U \subseteq X f(U)$ is somewhere dense.

When X, Y are Polish and $f: X \rightarrow Y$ is continuous, f preserves category if it satisfies one of the following equivalent conditions;

- For any comeagre $A \subseteq Y f^{-1}(A)$ is comeagre.
- For any dense open $O \subseteq Y f^{-1}(O)$ is dense.
- For any nonempty open $U \subseteq X f(U)$ is not meagre.
- For any nonempty open $U \subseteq X f(U)$ is somewhere dense.

Clearly, any continuous open map (for instance, a projection map) between Polish spaces preserves category.

When X, Y are Polish and $f: X \rightarrow Y$ is continuous, f preserves category if it satisfies one of the following equivalent conditions;

- For any comeagre $A \subseteq Y f^{-1}(A)$ is comeagre.
- For any dense open $O \subseteq Y f^{-1}(O)$ is dense.
- For any nonempty open $U \subseteq X f(U)$ is not meagre.
- For any nonempty open $U \subseteq X f(U)$ is somewhere dense.

Clearly, any continuous open map (for instance, a projection map) between Polish spaces preserves category.

These maps come up in a variety of settings and under different guises.

Theorem (M–Tsankov)

Let X, Y be Polish spaces, $f: X \to Y$ be continuous and category-preserving and A be a Baire-measurable subset of X. Then the following are equiveridical:
Theorem (M–Tsankov)

Let X, Y be Polish spaces, $f: X \to Y$ be continuous and category-preserving and A be a Baire-measurable subset of X. Then the following are equiveridical:

•
$$\forall^* x \in X A(x)$$

Theorem (M–Tsankov)

Let X, Y be Polish spaces, $f: X \to Y$ be continuous and category-preserving and A be a Baire-measurable subset of X. Then the following are equiveridical:

- $\forall^* x \in X A(x)$
- $\forall^* y \in Y (\forall^* x \in f^{-1}(\{y\}) A(x))$

Theorem (M–Tsankov)

Let X, Y be Polish spaces, $f: X \to Y$ be continuous and category-preserving and A be a Baire-measurable subset of X. Then the following are equiveridical:

- $\forall^* x \in X A(x)$
- $\forall^* y \in Y (\forall^* x \in f^{-1}(\{y\}) A(x))$

When f is a projection map, this is the Kuratowski–Ulam theorem; this is in some sense analoguous to the measure disintegration theorem (here category is split along the fibers of f).

Definition

Let X be a Polish space, and A a subset of X. We let U(A) denote the union of all open subsets O of X such that $O \setminus A$ is meagre.

Definition

Let X be a Polish space, and A a subset of X. We let U(A) denote the union of all open subsets O of X such that $O \setminus A$ is meagre.

Theorem

Let A be a subset of a Polish space X. Then $U(A) \setminus A$ is meagre; and A is Baire-measurable iff $A \setminus U(A)$ is meagre.

Definition

Let X be a Polish space, and A a subset of X. We let U(A) denote the union of all open subsets O of X such that $O \setminus A$ is meagre.

Theorem

Let A be a subset of a Polish space X. Then $U(A) \setminus A$ is meagre; and A is Baire-measurable iff $A \setminus U(A)$ is meagre.

Thus we have a canonical witness of the fact that A is Baire measurable.

Lemma (Pettis) Let G be a Polish group, and $A, B \subseteq G$. Then

 $U(A) \cdot U(B) \subseteq A \cdot B$.

Lemma (Pettis) Let G be a Polish group, and $A, B \subseteq G$. Then

 $U(A) \cdot U(B) \subseteq A \cdot B$.

Hence, if A is Baire-measurable and nonmeagre, then $U(A) \cdot U(A)^{-1}$ is a neighborhood of 1.

Lemma (Pettis) Let G be a Polish group, and $A, B \subseteq G$. Then

 $U(A) \cdot U(B) \subseteq A \cdot B$.

Hence, if A is Baire-measurable and nonmeagre, then $U(A) \cdot U(A)^{-1}$ is a neighborhood of 1.

Theorem (Banach)

Let G,H be Polish groups and $\varphi\colon G\to H$ be a Baire-measurable homomorphism. Then φ is continuous.

```
Lemma (Pettis)
Let G be a Polish group, and A, B \subseteq G. Then
```

 $U(A) \cdot U(B) \subseteq A \cdot B$.

Hence, if A is Baire-measurable and nonmeagre, then $U(A) \cdot U(A)^{-1}$ is a neighborhood of 1.

Theorem (Banach)

Let G,H be Polish groups and $\varphi\colon G\to H$ be a Baire-measurable homomorphism. Then φ is continuous.

In particular, if τ, τ' are two Polish topologies on the same group *G*, and one is contained in the other (or even: all τ -open sets are τ' -Borel), then they are equal.

Topologically transitive actions on Polish spaces.

Definition

Let G be a group acting by homeomorphisms on a Polish space X. The action is topologically transitive if, for any nonempty open U, V there exists $g \in G$ such that $gU \cap V \neq \emptyset$.

Topologically transitive actions on Polish spaces.

Definition

Let G be a group acting by homeomorphisms on a Polish space X. The action is topologically transitive if, for any nonempty open U, V there exists $g \in G$ such that $gU \cap V \neq \emptyset$.

Proposition

The action of G on X is topologically transitive iff there exist (a comeagre set of) points with a dense G-orbit.

Topologically transitive actions on Polish spaces.

Definition

Let G be a group acting by homeomorphisms on a Polish space X. The action is topologically transitive if, for any nonempty open U, V there exists $g \in G$ such that $gU \cap V \neq \emptyset$.

Proposition

The action of G on X is topologically transitive iff there exist (a comeagre set of) points with a dense G-orbit.

Proof.

Theorem (0–1 topological law)

Assume that G is a group acting by homeomorphisms on a Polish space X, that the action is topologically transitive, and that A is a Baire-measurable subset of X which is G-invariant. Then A is either meagre or comeagre.

Theorem (0–1 topological law)

Assume that G is a group acting by homeomorphisms on a Polish space X, that the action is topologically transitive, and that A is a Baire-measurable subset of X which is G-invariant. Then A is either meagre or comeagre.

• Thus when G is a Polish group acting on itself by conjugation, and there is a dense conjugay class in G, every Baire-measurable conjugacy invariant set (for instance, every conjugacy class) is either meagre or comeagre.

Theorem (0–1 topological law)

Assume that G is a group acting by homeomorphisms on a Polish space X, that the action is topologically transitive, and that A is a Baire-measurable subset of X which is G-invariant. Then A is either meagre or comeagre.

- Thus when G is a Polish group acting on itself by conjugation, and there is a dense conjugay class in G, every Baire-measurable conjugacy invariant set (for instance, every conjugacy class) is either meagre or comeagre.
- This applies for instance for the groups S_{∞} , $U(\ell_2)$, $Aut(\mu)$, $Iso(\mathbb{U})$.