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Structures

Definition
A (classical) structure M is given by the following data:

• A set M (the universe of the structure).

• A family of relations (Ri )i∈I , where each Ri is a subset of some Mki .
= is always part of our list and will not be mentioned.

• A family of functions (fj)j∈J , where each fj is a function from some
M lj to M.

• A family of constants (ck)k∈K .

We say that (Ri , ki )i∈I , (fj , lj)j∈J and (ck)k∈K make up the language of
the structure.

We may go the other way: given a language, consider a structure in that
language. In what follows, all our languages will be (at most) countable,
and the same will apply to structures.
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The permutation group topology

Definition
Let M be a countable structure. Its automorphism group is the group of
all bijections g of M which fix the constants of M, and preserve the
relations and functions:

• ∀i ∈ I ∀x̄ ∈ Mki x̄ ∈ Ri ⇔ g(x̄) ∈ Ri .

• ∀j ∈ J ∀x̄ ∈ M lj g(fj(x̄)) = fj(g(x̄)).

• ∀k ∈ K g(ck) = ck .

Observation
Assume the universe of M is ω. The automorphism group Aut(M) is a
closed subgroup of S∞.
As such it is a nonarchimedean Polish group: a Polish group in which 1
has a basis of neighborhoods consisting of open subgroups.
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Ultrahomogeneous structures

Definition
We say that M is ultrahomogeneous if it has the following property:
whenever A,B are finitely generated substructures of M, and g : A→ B
is an isomorphism, there is h ∈ Aut(M) which extends g .

Proposition
Every nonarchimedean Polish group is the automorphism group of some
ultrahomogeneous first-order structure.

Proof.
The proof is in two steps: fix a basis of neighborhoods of 1 made up of
open subgroups (Un). Each action of G on G/Un induces a
homomorphism of G to S∞, and from this we realize G as a closed
subgroup of S∞.
Then, once G ≤ S∞, give a name to each orbit for the diagonal action of
G on ωk (for all k); the corresponding structure has G as its
automorphism group.
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Fräıssé theory I.

Definition
Given a language L, and a countable L-structure M, the age KM of M
is the class of all finitely generated L-structures which embed in M.

The following properties of an age are clear:

1 For all A,B, (B ∈ KM and A ≤ B)⇒ A ∈ KM.

2 For all A,B ∈ KM, there exists C ∈ KM such that both A ≤ C and
B ≤ C.

3 Up to isomorphism, there are only countably many elements of KM.

We say that KM satisfies the Hereditarity property(HP), the Joint
embedding property (JEP) and is countable.

J. Melleray Automorphism groups of metric structures
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Fräıssé theory I.

Definition
Given a language L, and a countable L-structure M, the age KM of M
is the class of all finitely generated L-structures which embed in M.

The following properties of an age are clear:

1 For all A,B, (B ∈ KM and A ≤ B)⇒ A ∈ KM.

2 For all A,B ∈ KM, there exists C ∈ KM such that both A ≤ C and
B ≤ C.

3 Up to isomorphism, there are only countably many elements of KM.

We say that KM satisfies the Hereditarity property(HP), the Joint
embedding property (JEP) and is countable.

J. Melleray Automorphism groups of metric structures
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Fräıssé theory II.

If we assume that M is ultrahomogeneous, its age satisfies an additional
condition:

Whenever A,B, C belong to KM, and iB : A → B, iC : A → C are
embeddings, there exists D ∈ KM and embeddings jB : B → D,
jC : C → D such that jB ◦ iB = jC ◦ iC .

We then say that KM satisfies the amalgamation property.

Theorem (Fräıssé)
Assume K is a countable class of finitely generated structures which
satisfies (HP), (JEP) and (AP) (a Fräıssé class). Then there exists a
unique ultrahomogeneous countable structure whose age is K, called the
Fräıssé limit of K.
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Examples

(AP) is often the hardest property to check. The following are Fräıssé
classes:

• The class of finite sets (in the empty language). Limit: (ω,=).

• The class of finite ordered sets (in the language with one binary
relation symbol). Limit: (Q, <).

• The class of finite graphs (in the language with one binary relation
symbol). Limit: the random graph.

• The class of finite metric spaces with distances in {0, . . . , n} (in the
language with a binary predicate for each possible value of the
distance). Limit: Un.
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Interactions between properties of the structure and its
automorphism group

Assume that K is a Fräıssé class in a finite relational language, and that
G is the automorphism group of its limit M. Then for all k < ω there
are only finitely many orbits for the natural action of G on Mk .

When that happens we say that the action of G on M is oligomorphic,
and G is oligomorphic if it admits an oligomorphic action (it is the
automorphism group of an ℵ0-categorical structure).

Definition
A Polish group G is Roelcke precompact if, for every open U ⊆ G , there
exists a finite F ⊆ U such that G = UFU.

Theorem (Tsankov)
Oligomorphic Polish groups are Roelcke precompact; conversely, a
nonarchimedean Polish group is Roelcke precompact iff it is an inverse
limit of oligomorphic groups (iff it is the automorphism group of an
ℵ0-categorical structure with countably many sorts).
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The extension property

Definition
Let K be a Fräıssé class. K has the extension property if for any A ∈ K
there is B ∈ K such that A ≤ B and every partial isomorphism of A
extends to a global automorphism of B.

Example (Hrushovski)
The class of finite graphs has the extension property.
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Topological content of the extension property.

Proposition (Kechris–Rosendal)
Let K be a Fräıssé class of finite structures, and G be the automorphism
group of its limit. Then K has the extension property iff there exists an
increasing sequences (Gn) of compact subgroups of G with dense union.

Note that, when that happens, G is amenable.
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Which classes have the extension property?

Definition
Let L be a relational language, and T be a set of L-structures. We say
that A is T -free if there is no weak homomorphism from an element of
T to A.

Theorem (Herwig–Lascar)
Assume that L is a finite relational language, that T is a finite set of
L-structures and that A is a T -free structure. let P be a set of partial
isomorphisms of A. If there exists a T -free L-structure M containing A
as a substructure and such that elements of P extend to automorphisms
of M, then there exists a finite such M.

Corollary
Assume that L is a finite relational language, that T is a finite set of
L-structures and that the class of all T -free structures is a Fräıssé class.
Then it has the extension property.
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Finite metric spaces have the extension property

Theorem (Solecki)
Let n ∈ N. Then the class of all metric spaces whose values belong to
{0, . . . , n} has the extension property.

Proof.
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Metric structures and their
automorphism groups
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Not all Polish groups are nonarchimedean

Plenty of Polish groups one encounters in the wild are not subgroups of
S∞ - for instance, connected Polish groups. There are even Polish groups
which do not embed, as abstract groups, in S∞.

Many of these groups appear naturally as automorphism groups of
mathematical structures: we already encountered U(`2), Aut(µ), and
Iso(U).

We need to come up with a definition of structure that encompasses
these examples.
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Metric structures

Definition
A metric structure M consists of the following data:

• A complete metric space (M, d).

• A family of relations (Ri )i∈I : Ki -Lipschitz maps from Mki to R.

• A family of functions (fj)j∈J : Lj -Lipschitz maps from M lj to M.

• A family of constants.

The language of M is then what one would expect, with the wrinkle that
the Lipschitz constants (Ki )i∈I , (Lj)j∈J are included.

Some remarks are in order:

• The distance function now plays the role formerly devoted to =.

• Structures/relations are not assumed to be bounded at the moment.
They will be whenever we want to do some logic (compactness
theorem; categoricity; etc.).

• Assuming relations/functions to be Lipschitz (vs. uniformly
continuous) is mostly a matter of convenience; it does not really
affect the logic of our structures.
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A few examples

• Any classical first-order structure is a metric structure, when one
endows it with the discrete metric.

• Any complete metric space is a structure in the empty language.

• Any complex Banach space is a structure in the language L
containing a |q|-Lipschitz unary symbol λq for each q ∈ Q + iQ
(multiplication by q) as well as a 2-Lipschitz binary function + and
a constant 0.

• Any measure algebra A is a structure, with the metric
d(A,B) = µ(A∆B) and symbols for intersection, union, and
complement (with the appropriate Lipschitz constants).
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Polish structures and their automorphism groups

Definition
A metric structure M is Polish if it is separable.

This is the continuous analogue of a countable structure.

Definition
The automorphism group Aut(M) of a metric structure M is the
subgroup of all isometries of (M, d) which fix the constants and preserve
the relations and functions of M.
It is a closed subgroup of Iso(M, d): hence when M is Polish its
automorphism group is a Polish group.

Note that if M happens to be discrete we recover the permutation group
topology on Aut(M), so we are talking about the same Polish groups as
before in that case.
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Ultrahomogeneity

Definition
A metric structure M is ultrahomogeneous if: whenever A ⊂ M is finite,
and g is a partial automorphism of M with domain 〈A〉, for any ε > 0
there exists h ∈ Aut(M) such that

∀a ∈ A d(g(a), h(a)) < ε

Example
`2, U, MALGµ are exactly ultrahomogeneous (one can take ε = 0)

Observation (M.)
Any Polish group is the automorphism group of a ultrahomogeneous
Polish metric structure.

Ben Yaacov recently provided the first examples of Polish groups which
cannot be realised as the automorphism groups of exactly
ultrahomogeneous Polish metric structures.
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Metric Fräıssé classes

The Hereditary property and Joint embedding property are defined in the
metric setting just as they are in the classical setting.

Definition
A class K of finitely generated metric L-structures satisfies the
amalgamation property if:
Whenever A = 〈A〉,B, C belong to K, and iB : A → B, iC : A → C are
embeddings, for any ε > 0 there exists D ∈ KM and embeddings
jB : B → D, jC : C → D such that

∀a ∈ A d(jB ◦ iB(a), jC ◦ iC (a)) < ε .

We still have to define an analogue of countability in our context; it is
replaced by separability for an appropriate metric.
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Separability

Definition
Given a class K of finitely generated metric L-structures, we let Kn

denote the family of all (A, ā) where A ∈ K, |ā| ≤ n and A = 〈ā〉. We
define a pseudo metric dn on Kn by setting

d((A, ā), (B, b̄)) = inf{d(i(ā), j(b̄))}

where i , j range over all embeddings of A, B in a common C ∈ K.

In the presence of (JEP) and (AP), each dn is a pseudometric.

Definition
A class K of metric L-structures is a metric Fräıssé class if it satisfies
(AP), (HP), (JEP) and each dn is separable and complete.

It is easy to see that the age of a ultrahomogeneous Polish structure is a
Fräıssé class.
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define a pseudo metric dn on Kn by setting
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A metric version of Fräıssé’s theorem

Theorem (Ben Yaacov)
Let K be a metric Fräıssé class in a language L. Then there exists a
unique (up to isomorphism) ultrahomogeneous Polish L-structure whose
age is K.

Examples

• The class of all finite metric spaces; its limit is U.

• The class of all finite-dimensional Hilbert spaces; its limit is `2.

• The class of all finite probability algebras; its limit is MALGµ.

• The class of all finite-dimensional Banach spaces; its limit is the
Gurarij space.
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