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Let’s start all over again

Definition
A metric structure M is ultrahomogeneous if: whenever A ⊂ M is finite,
and g is a partial automorphism of M with domain 〈A〉, for any ε > 0
there exists h ∈ Aut(M) such that

∀a ∈ A d(g(a), h(a)) < ε

Example
`2, U, MALGµ are exactly ultrahomogeneous (one can take ε = 0)

Observation (M.)
Any Polish group is the automorphism group of a ultrahomogeneous
Polish metric structure.

Ben Yaacov recently provided the first examples of Polish groups which
cannot be realised as the automorphism groups of exactly
ultrahomogeneous Polish metric structures.
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Roelcke-precompact Polish groups

In this slide we’re doing some logic (I’m as scared as you are, probably
more): assume that all structures are bounded and relations take values
in [0, 1].

Theorem (Ben Yaacov–Tsankov)
A Polish group is Roelcke-precompact iff it is the automorphism group of
a separably categorical Polish metric structure.

In the discrete context we needed infinitely many sorts for this theorem
to hold; we no longer do. Why?

Because the distance is a single object which encodes infinitely many
informations at the same time (for instance, the countable basis of
neighborhoods of 1 of nonarchimedean Polish groups is completely
encoded by a single left-invariant ultrametric).
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Metric Fräıssé classes

The Hereditary property and Joint embedding property are defined in the
metric setting just as they are in the classical setting.

Definition
A class K of finitely generated metric L-structures satisfies the
amalgamation property if:
Whenever A = 〈A〉,B, C belong to K, and iB : A → B, iC : A → C are
embeddings, for any ε > 0 there exists D ∈ K and embeddings
jB : B → D, jC : C → D such that

∀a ∈ A d(jB ◦ iB(a), jC ◦ iC (a)) < ε .

We still have to define an analogue of countability in our context; it is
replaced by separability for an appropriate metric.
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The Hereditary property and Joint embedding property are defined in the
metric setting just as they are in the classical setting.

Definition
A class K of finitely generated metric L-structures satisfies the
amalgamation property if:
Whenever A = 〈A〉,B, C belong to K, and iB : A → B, iC : A → C are
embeddings, for any ε > 0 there exists D ∈ K and embeddings
jB : B → D, jC : C → D such that

∀a ∈ A d(jB ◦ iB(a), jC ◦ iC (a)) < ε .

We still have to define an analogue of countability in our context; it is
replaced by separability for an appropriate metric.

J. Melleray Automorphism groups of metric structures



Separability

Definition
Given a class K of finitely generated metric L-structures, we let Kn

denote the family of all (A, ā) where A ∈ K, |ā| ≤ n and A = 〈ā〉. We
define a binary function dn on Kn by setting

dn((A, ā), (B, b̄)) = inf{d(i(ā), j(b̄))}

where i , j range over all embeddings of A, B in a common C ∈ K.

In the presence of (JEP) and (AP), each dn is a pseudometric.

Definition
A class K of metric L-structures is a metric Fräıssé class if it satisfies
(AP), (HP), (JEP) and each dn is separable and complete.

It is easy to see that the age of a ultrahomogeneous Polish structure is a
metric Fräıssé class.
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A metric version of Fräıssé’s theorem

Theorem (Ben Yaacov)
Let K be a metric Fräıssé class in a language L. Then there exists a
unique (up to isomorphism) ultrahomogeneous Polish L-structure whose
age is K.

Examples

• The class of all finite metric spaces; its limit is U.

• The class of all finite-dimensional Hilbert spaces; its limit is `2.

• The class of all finite probability algebras; its limit is MALGµ.

• The class of all finite-dimensional Banach spaces; its limit is the
Gurarij space.
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The space of actions
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The space of actions.

Assume Γ is a countable group, and G is a Polish group which is the
automorphism group of some metric structure M (e.g. G = S∞, U(`2),
Aut(µ), Iso(U)...). An action of Γ on M is the same thing as an
homomorphism of Γ to G .

Observation
The space of actions Hom(Γ,G ) is a closed subset of GΓ. Hence it is a
Polish space in its own right.

Studying properties of Hom(Γ,G ) from the point of view of Baire
category can be useful both to extract information on G and on Γ.
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Studying generic properties in Hom(Γ,G )

Note that G acts by conjugation on Hom(Γ,G ). One can then wonder
when there exist dense conjugacy classes and, even better, when there
exist comeager conjugacy classes; of course this will depend both on Γ
and on G .

Proposition

• For any countable group Γ, there exists a dense conjugacy class in
Hom(Γ,G ) for G one of S∞, U(`2), Aut(µ), Iso(U)...

• In this situation, any conjugacy-invariant, Baire measurable subset of
Hom(Γ,G ) is either meagre or comeagre.

Where do these results come from? In another, better, alternative
universe this was explained two days ago.
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Topologically transitive actions on Polish spaces.

Definition
Let G be a group acting by homeomorphisms on a Polish space X . The
action is topologically transitive if, for any nonempty open U,V there
exists g ∈ G such that gU ∩ V 6= ∅.

When G acts on Hom(Γ,G ) as on the previous slide, this condition is
sometimes easy to check.

Proposition
The action of G on X is topologically transitive iff there exist (a
comeagre set of) points with a dense G -orbit.

Proof.
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The 0–1 topological law

Theorem (0–1 topological law)
Assume that G is a group acting by homeomorphisms on a Polish space
X , that the action is topologically transitive, and that A is a
Baire-measurable subset of X which is G -invariant. Then A is either
meagre or comeagre.

• Thus when G is a Polish group acting on Hom(Γ,G ) by conjugation,
and there is a dense conjugay class in Hom(Γ,G ), every
Baire-measurable conjugacy invariant set (for instance, every
conjugacy class) is either meagre or comeagre.

• This applies for instance for the groups S∞, U(`2), Aut(µ), Iso(U)
(and any countable Γ).
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Existence of dense conjugacy classes: towards a
combinatorial criterion

Let K denote a Fräıssé class (in a relational metric language L). Denote
by Kn

aut the class of structures (A, g1, . . . , gn) in the language
L ∪ {f1, . . . , fn} which are such that:

• A ∈ K.

• g1, . . . , gn are partial isomorphisms of A.

Definition
Say that a class of finite (metric) structures K has the approximate JEP
if for all A, B in K, of cardinality less than n, and any ε > 0 there exists
C and A′, B′ such that

• A′ and B′ are substructures of C.

• dn(A,A′) ≤ ε and dn(B,B′) ≤ ε.

In other words: if one allows deforming A,B a little bit, then they embed
in a common element of K.
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Existence of dense conjugacy classes

Proposition
There is a dense diagonal conjugacy class in G n iff Kn

aut satisfies the
approximate JEP.

This is simply a translation of the fact that the conjugation action is
topologically transitive.

This is usually easy to check (for instance for S∞, U(`2), Aut(Un),
Iso(U), Aut(µ), the exact JEP is satisfied)

This approach readily generalises to actions of countable groups other
than free groups.

In the classical context, one can similarly give a combinatorial criterion
for the existence of a comeagre conjugacy class - it involves some more
work involving Baire category notions and I will not go into detail here.
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Using the space of actions to establish a property of Γ.

Theorem (Glasner–Kitroser/Rosendal)
Assume that Γ is finitely generated. Then a generic element of
Hom(Γ,S∞) has all of its orbits finite iff Γ is LERF: whenever A is finitely
generated subgroups of Γ, A is closed in the profinite topology.

Corollary (Glasner–Kitroser)
This can be used to give an elementary proof that finitely generated free
groups are LERF.

Proof.
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Property (RZn) and actions on Un

Recall that Un is the unique countable metric space whose distance takes
values in {0, . . . , n} which is universal for such spaces and
ultrahomogeneous.

Definition
A countable group Γ has property (RZn) if a product of n finitely
generated subgroups of Γ is closed in the profinite topology.

Theorem (Rosendal)
A finitely generated group Γ has property (RZn) iff a generic action of Γ
on Un has finite orbits.

Note that the extension property for metric spaces with distances in
{0, . . . , n} amounts to saying that a generic action of a f.g. free group on
Un has finite orbits for all n.
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Complexity computations

Definition
A topological group G is amenable if every continuous action of G on a
compact space admits an invariant Borel probability measure.

A topological group G is extremely amenable if every continuous action
of G on a compact space has a fixed point.

Theorem (M–Tsankov)
Let Γ be a countable group, and G be a Polish group. Then the set of all
π ∈ Hom(Γ,G ) such that π(Γ) is extremely amenable is a Gδ subset of
Hom(Γ,G ).

Theorem (Käıchouh)
Let Γ be a countable group, and G be a Polish group. Then the set of all
π ∈ Hom(Γ,G ) such that π(Γ) is amenable is a Gδ subset of Hom(Γ,G ).
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Using the space of actions to establish a property of G .

Fω denotes the free group on infinitely many generators. For any Polish
group G , the set of all π ∈ Hom(Fω,G ) ∼= Gω such that π(Fω) is dense
is dense Gδ in Gω.

Thus, to prove that a Polish group is (extremely) amenable, it is enough
to show that the set of all π ∈ Hom(Fω,G ) which generate an
(extremely) amenable subgroup is dense in G .

This leads to an argument that can be used for instance to prove the
extreme amenability of U(`2) (Gromov–Millman), Aut(µ)
(Giordano–Pestov) and Iso(U) (Pestov).
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Existence of generic conjugacy classes in the space of
actions

Recall the following fact.

Proposition
Let G be one of S∞, U(`2), Aut(µ), Iso(U) and Aut(Un). Then for any
countable group Γ there exists a dense conjugacy class in Hom(Γ,G ).

Proposition (Glasner–Kitroser–M.)
There exists a comeagre conjugacy class in Hom(Γ,S∞) iff isolated
subgroups are dense in Sub(G ) (the space of subgroups of G , seen as a
closed subset of 2G ).

It appears to be significantly more complicated to give a similar
description for other groups than S∞ - for instance, what happens for
groups acting by isometries on Un?
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Comeagre conjugacy classes: what we know (and do not
know) so far.

Again Γ denotes a countable group.

• If there is a comeagre conjugacy class in Hom(Γ,Aut(Un)) (n ≥ 2) Γ
must be finitely generated. Must it have property (RZn)?

• There is a comeagre conjugacy class in Hom(Γ,U(`2)) iff Γ is finite
(Kerr–Li–Pichot).

• There is a comeagre conjugacy class in Hom(Γ, Iso(U)) iff Γ is finite
(M.).

• When is there a comeagre conjugacy class in Hom(Γ,Aut(µ))?
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Ample generics
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Ample generics

Definition (Hodges–Hodkinson–Lascar–Shelah;Kechris–Rosendal)
A Polish group G has ample generics if for all k there exists ḡ ∈ G k such
that the set {(hg1h

−1, . . . , hgkh
−1) : h ∈ G} is comeagre in G k .

This says that there is a generic action in Hom(Fk ,G ) for all k.

There never is a generic action in Hom(Fω,G ) unless G is trivial.

Theorem (Kechris–Rosendal)
Let G be a Polish group with ample generics. Then G has the automatic
continuity property: every homomorphism from G to a separable
topological group is continuous.

In particular, this implies that G has the small index property: every
subgroup of countable index is open in G .
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A sufficient condition for ample generics

Definition
Let L be a relational (classical) language, A,B, C be three L-structures
such that A ≤ B, C. The free amalgam of B and C over A is the
L-structure with universe B ∪ C , such that both B and C are
substructures and there is no relation between tuples including elements
of both B \ A and C \ A.

A (classical) Fräıssé class K has the free amalgamation property if the
free amalgam of two elements of K still belongs to K.

Theorem (Kechris–Rosendal)
Assume that K is a (classical) Fräıssé class with the free amalgamation
property and the extension property. Then the automorphism group of its
limit has ample generics.

This result generalises to contexts where there is a natural amalgam (for
instance, where a stationary independence relation in the sense of
Tent–Ziegler exists).
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property and the extension property. Then the automorphism group of its
limit has ample generics.

This result generalises to contexts where there is a natural amalgam (for
instance, where a stationary independence relation in the sense of
Tent–Ziegler exists).
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Non nonarchimedean Polish groups with ample generics

It is only last week that the first examples of Polish groups with ample
generics which are not nonarchimedean appeared on the Arχiv! Actually
two different examples appeared within a few days of each other - one by
M. Malicki, the other by A. Käıchouh and F. Le Mâıtre.

As we mentioned during the previous talk, in many large Polish groups of
interest conjugacy classes are meagre - hence ample generics are out of
the question. From the point of view of continuous logic, there is a
natural, weaker notion, involving topometric Polish groups.
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Topometric groups

When M is a Polish metric structure and G = Aut(M), one can
naturally:

• Endow G with the pointwise convergence topology, which is Polish;
this is what we have done above.

• Endow G with the metric of uniform convergence, which is
bi-invariant, complete, and typically not separable.

Definition
A Polish topometric group is a triple (G , τ, ∂) such that :

• (G , τ) is a Polish group.

• ∂ is a bi-invariant distance which refines τ .

• ∂ is τ -lower semicontinuous: each set {(g , h) : ∂(g , h) ≤ r} is
τ -closed.
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Examples

• On U(`2) the uniform metric (seen from the action on the unit ball)
is the usual operator norm.

• On Aut(µ) one can set ∂(g , 1) = µ({x : g(x) 6= x}.
• On Iso(U) the uniform metric naturally takes infinite values (one

could of course replace if with ∂/(1 + ∂) and (Iso(U), ∂) is not
path-connected (the group of bounded isometries is path-connected,
though).

• If G is the automorphism group of a classical (discrete) structure,
the uniform metric, seen from the action on the structure, is
certainly discrete; but the coarsest bi-invariant metric refining τ
need not be! This metric arises from picking a left-invariant metric
d on G setting ∂(g , h) = supk d(gk, hk).
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Ample generics for topometric groups

Definition
Assume (G , τ, ∂) is a Polish topometric group, A ⊆ G and ε > 0. Then
set (A)ε = {g ∈ G ∃a ∈ A ∂(g , a) < ε}.

Definition
A Polish topometric group has ample generics if for any k there exists a
diagonal conjugacy class Ω ⊆ G k such that (Ω)ε is comeagre for all
ε > 0.

Theorem
U(`2), Iso(U) and Aut(µ) all have ample generics as Polish topometric
groups.

In each case this comes from the existence of a nice countable structure
sitting inside the continuous one and whose automorphism group has
ample generics (in the usual sense).
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What is this good (and not good enough) for?

Theorem
Let (G , τ, ∂) be a Polish topometric group with ample generics. Let
ϕ : (G , ∂)→ H be a continuous homomorphism from G to a separable
topological group H. Then ϕ : (G , τ)→ H is continuous.

This was used to prove the following two results:

• Aut(µ) has the automatic continuity property (Berenstein–Ben
Yaacov –M.)

• U(`2) has the automatic continuity property (Tsankov).

This approach did not succeed in proving the following theorem.

Theorem (Sabok)
Iso(U) has the automatic continuity property.

Sabok’s approach also works for Aut(µ) and U(`2); it is also based on
the existence of nice countable substructures sitting densely in the
continuous structure and whose automorphism group has ample generics.
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Thank you for your attention!
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