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Extreme amenability

Definition
A Polish group G is extremely amenable if any continuous action of G on
a compact space admits a fixed point.
This is equivalent to saying that any continuous action of G on a
compact metric space admits a fixed point.

The first examples were found by Herrer–Christensen in the 70s and were
so-called exotic abelian Polish groups: abelian groups without any
continuous unitary representations.

Since then, numerous examples have been found, including U(`2),
Aut(µ), and Iso(U).
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The combinatorial content of extreme amenability

Definition
Let G be a group acting continuously and isometrically on a metric space
(X , d). The action is finitely oscillation stable if for every 1-Lipschitz
f : X → [0, 1], any ε > 0 and any finite A ⊆ X there exists some g ∈ G
such that the oscillation of f on gA is less than ε.

Theorem (Pestov)
Let G be a Polish group. Then G is extremely amenable if, and only if,
there exists a directed collection of bounded left-invariant pseudometrics
(di )i∈I inducing the topology of G and such that the action of G on each
(G , di ) is finitely oscillation stable.

Of course, using just one metric above would suffice - but using
pseudometrics is sometimes simpler in practice.

J. Melleray Automorphism groups of metric structures



The combinatorial content of extreme amenability

Definition
Let G be a group acting continuously and isometrically on a metric space
(X , d). The action is finitely oscillation stable if for every 1-Lipschitz
f : X → [0, 1], any ε > 0 and any finite A ⊆ X there exists some g ∈ G
such that the oscillation of f on gA is less than ε.

Theorem (Pestov)
Let G be a Polish group. Then G is extremely amenable if, and only if,
there exists a directed collection of bounded left-invariant pseudometrics
(di )i∈I inducing the topology of G and such that the action of G on each
(G , di ) is finitely oscillation stable.

Of course, using just one metric above would suffice - but using
pseudometrics is sometimes simpler in practice.

J. Melleray Automorphism groups of metric structures



The combinatorial content of extreme amenability

Definition
Let G be a group acting continuously and isometrically on a metric space
(X , d). The action is finitely oscillation stable if for every 1-Lipschitz
f : X → [0, 1], any ε > 0 and any finite A ⊆ X there exists some g ∈ G
such that the oscillation of f on gA is less than ε.

Theorem (Pestov)
Let G be a Polish group. Then G is extremely amenable if, and only if,
there exists a directed collection of bounded left-invariant pseudometrics
(di )i∈I inducing the topology of G and such that the action of G on each
(G , di ) is finitely oscillation stable.

Of course, using just one metric above would suffice - but using
pseudometrics is sometimes simpler in practice.

J. Melleray Automorphism groups of metric structures



Concentration of measure

Definition
Let G be a Polish group endowed with a left invariant metric d , (Kn) be
an increasing sequence of compact subgroups of G and µn be the
(normalized) Haar measure on Kn.

The sequence (Kn, d , µn) is a Lévy family if whenever Borel subsets
An ⊆ Kn satisfy lim inf µn(An) > 0 one has

∀ε > 0 lim
n
µn((An)ε) = 1

G is a Lévy group if there is a Lévy family of compact subsets of G
whose union is dense.

It is immediate that Lévy groups are amenable: a sequence (Kn) as above
immediately produces a dense amenable subgroup.
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It is immediate that Lévy groups are amenable: a sequence (Kn) as above
immediately produces a dense amenable subgroup.

J. Melleray Automorphism groups of metric structures



Concentration of measure

Definition
Let G be a Polish group endowed with a left invariant metric d , (Kn) be
an increasing sequence of compact subgroups of G and µn be the
(normalized) Haar measure on Kn.
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Lévy groups are extremely amenable

Theorem (Pestov)
Any Polish Lévy group is extremely amenable.

This is how Gromov and Millman orginally proved that U(`2) is extremely
amenable (in this case the concentration of measure phenomenon is
embodied by the isoperimetric inequality for spheres in euclidean spaces).

To produce a dense increasing sequence of compact subgroups, one often
produces a dense sequence of finite subgroups, relating this to the
extension property; one still has to take care of the concentration of
measure!
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Extremely amenable nonarchimedean Polish groups

Proposition (Glasner–Weiss)
Let G be an extremely amenable closed subgroup of S∞. Then there is
an ordering on ω which is G -invariant.
In particular, S∞ is not extremely amenable.

Proof.
G acts continuously on the compact space LO of orderings on ω.

Corollary
Let K be a Fräıssé class of finite structures such that the automorphism
group of its limit is extremely amenable. Then all elements of K are
rigid, i.e. have no nontrivial automorphisms.
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Towards a combinatorial formulation.

When G = Aut(M), we have an obvious family of pseudometrics to test
oscillation stability on: the family (dA), parameterized by finite subsets of
M, with

dA(g , h) =

{
0 if g|A = h|A
1 otherwise

Sinde dA is discrete, oscillation stability for 1-Lipschitz maps from
(G , dA) to [0, 1] may as well be understood via studying maps from
(G , dA) to {0, 1}.

Definition

Given two structures A,B in the same language L, we denote by

(
B
A

)
the set of all embeddings from A to B.
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The Ramsey property.

Definition
Let K be a Fräıssé class of finite structures . K has the Ramsey property
if:
For any A,B ∈ K there exists C ∈ K such that, for any

γ :

(
C
A

)
→ {0, 1} there exists g ∈

(
C
B

)
such that γ is constant on

g ◦
(
B
A

)
.

• In the definition above, one could replace (via a compactness
argument) C by M, where M is the Fräıssé limit of K. Note that

each

(
B
A

)
above (when A,B ≤ K ) is essentially the same thing as

a basic open subset of Aut(K).

• The definition above forces elements of K to be rigid, i.e. have a
trivial automorphism group.
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The criterion

Theorem (Kechris–Pestov–Todorcevic)
Let K be a Fräıssé class, and G be the automorphism group of its limit.
Then G is extremely amenable iff K has the Ramsey property.

Example (Pestov)
Aut(Q,≤) is extremely amenable.
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Translation in the context of Polish metric structures

Assume now that K is a metric Fräıssé class with limit M, and
G = Aut(M). Then, as previously, we have a natural directed collection
of pseudometrics on G :

dA(g , h) = max{d(g(a), h(a)}

where A ranges over finite subsets of M. This dA is no longer discrete
(in general); also in functions are present one does not ask that g , h be
close on the whole 〈A〉 (which may never happen if g 6= h) but on a
named set of generators.

The definition of

(
B
A

)
carries over to this context; as is fitting in the

continuous setting, it comes equipped with a metric (defined as above).
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G = Aut(M). Then, as previously, we have a natural directed collection
of pseudometrics on G :

dA(g , h) = max{d(g(a), h(a)}

where A ranges over finite subsets of M. This dA is no longer discrete
(in general); also in functions are present one does not ask that g , h be
close on the whole 〈A〉 (which may never happen if g 6= h) but on a
named set of generators.

The definition of

(
B
A

)
carries over to this context; as is fitting in the

continuous setting, it comes equipped with a metric (defined as above).

J. Melleray Automorphism groups of metric structures



Translation in the context of Polish metric structures

Assume now that K is a metric Fräıssé class with limit M, and
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The approximate Ramsey property

Assume for simplicity that our metric Fräıssé classes have the property
that, for all A ∈ K, Aut(A) is compact.

Definition
Assume that K is a metric Fräıssé class. Then we say that K has the
Ramsey property if: for any A,B ∈ K, and any ε > 0 there exists C ∈ K

such that, for any 1-Lipschitz γ :

(
C
A

)
→ [0, 1] there exists g ∈

(
C
B

)
such that the oscillation of γ on g ◦

(
B
A

)
is less than ε.

• Via a compactness argument similar to the discrete case, one can
replace C above by the limit of K.

• Once this is checked, it is rather clear that we just reformulated the
finite oscillation stability of the action of G on (G , dA).

Proposition (M.–Tsankov)
Let K be a metric Fräıssé class and G be the automorphism group of its
limit. Then G is extremely amenable iff K has the approximate Ramsey
property.
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A link with the extension property

Definition
A metric Fräıssé class K has the extension property if for any A ∈ K and
any finite set P of partial automorphisms of A there exists B ∈ K in
which A embeds in such a way that all elements of A extend to
automorphisms of B.

In the metric context it would be natural to define an approximate
version of the extension property - I will not try to do that here.

Definition
Let K be a metric Fräıssé class. We say that K has the `1-property if for
any A ∈ K and all n there is a way to turn (An, d1) into an element of K
so that a product of automorphisms of A induces an automorphism of
that structure.

Above, d1(ā, b̄) =
1

n

n∑
i=1

d(ai , bi ).

Theorem (M.–Tsankov)
Assume that K is a metric Fräıssé class with the extension property and
the `1 property. Then K has the approximate Ramsey property.
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Universal minimal flows

J. Melleray Automorphism groups of metric structures



Universal minimal flows

Definition
Let G be a Polish group. A G -flow is a continuous action of G on a
compact space K .

It is minimal if every orbit is dense.

A simple application of Zorn’s lemma shows that every G -flow contains a
minimal subflow.

Theorem (Ellis)
Let G be a topological group. Then G admits a universal minimal flow,
that is, a flow that maps equivariantly onto any other minimal flow.

By definition, G is extremely amenable iff its u.m.f is a singleton.
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Some structure theorems

Theorem (Kechris–Pestov–Todorcevic)
The universal minimal flow of a Polish group G is an inverse limit of
metrizable G -flows.

This is why a Polish group is extremely amenable iff every continuous
action on a compact metric space has a fixed point.

Theorem (Kechris–Pestov–Todorcevic)
The universal minimal flow of an infinite locally compact topological
group is not metrizable.
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How to compute a universal minimal flow?

Observation
If G contains a “large” extremely amenable sugroup, then the u.m.f of G
may be easy to compute.

How true/useful the observation above is depends on the definition of
“large”: for instance, if G has an extremely amenable subgroup G∗ of
finite index, then the u.m.f of G is the action of G on the finite set G/G∗.

Definition
Let G be a Polish group, and H be a closed subgroup. We endow the
coset space G/H with the quotient uniformity - If dr is a right-invariant
distance on G , this is induced by

d(gH, g ′H) = inf{dr (gh, g ′) : h ∈ H}

We say that H is coprecompact if the space (G/H, dr ) is precompact (its
completion is compact). Equivalently: for every open V 3 1, there exists
a finite F such that VFH = G .
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A general strategy to compute universal minimal flows

Proposition
Assume that G is Polish, and that H is a closed, coprecompact,
extremely amenable subgroup. Then any minimal G flow is a quotient of

the translation action of G on Ĝ/H.

So, if the action of G on Ĝ/H is minimal, it is the u.m.f of G . In that
case the u.m.f of G is metrizable with a Gδ orbit.

Sketch of proof.
Assume X is a minimal G -flow; there is an H-fixed point x0. Thus we get
a G -equivariant map from G/H to X defined by gH 7→ gx0.
We then check that this map is uniformly continuous, thus it extends to

a continuous map from Ĝ/H to X , which is still G -equivariant by

continuity of the actions of G on Ĝ/H and on X .
The Gδ orbit is the set G/H: it is Polish, hence Gδ in its completion.
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The universal minimal flow of S∞.

Theorem (Glasner–Weiss)
The u.m.f of S∞ is given by its action on LO.

Sketch of proof.
Aut(Q,≤) is extremely amenable; a simple computation shows that it is
coprecompact in S∞.
During this computation it becomes clear that the completion of
S∞/Aut(Q) is isomorphic to LO.
And it is immediate that the action of S∞ on LO is minimal.
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Where do metrizable u.m.f come from?

We saw a reason for a u.m.f to be metrizable: the existence of a
coprecompact extremely amenable closed subgroup G∗ such that the
corresponding quotient action is minimal.

In that case the u.m.f must have a Gδ orbit (because G/G∗ is Polish,
hence Gδ in its completion).

Question (Angel–Kechris–Lyons)
Let G be a Polish group with a metrizable u.m.f. K . Must there exist a
Gδ orbit in K?
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The nonarchimedean case

Recently, A. Zucker provided a new proof of the
Kechris–Pestov–Todorcevic theorem.

His proof involves a construction of the u.m.f of a nonarchimedean Polish
group (using Stone–Cečh compactifications) which make it fairly easy to
understand metrizability of the u.m.f: it must be an inverse limit of finite
flows.

Theorem (Zucker)
Let G be a nonarchimedean Polish group with metrizable u.m.f. Then
there exists a coprecompact extremely amenable closed subgroup G∗

such that the u.m.f of G is Ĝ/G∗.
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The case of general Polish groups.

Zucker’s construction does not appear to easily translate to all Polish
groups. Using a different (and independent/simultaneous) approach, one
can show the following.

Theorem (M.–Nguyen Van Thé–Tsankov)
Let G be a Polish group. Then the u.m.f of G is metrizable and admits a

Gδ orbit iff it is of the form Ĝ/G∗ for an extremely amenable, closed,
coprecompact subgroup G∗.

J. Melleray Automorphism groups of metric structures



The case of general Polish groups.

Zucker’s construction does not appear to easily translate to all Polish
groups. Using a different (and independent/simultaneous) approach, one
can show the following.

Theorem (M.–Nguyen Van Thé–Tsankov)
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Some structural consequences

Proposition (M.–Nguyen Van Thé–Tsankov)
Let G be a Polish group whose u.m.f is metrizable with a Gδ orbit. Then
every minimal G -flow has compact automorphism group and is
coalescent: every endomorphism is an automorphism.

The conclusions of the above proposition are always satisfied by a G -flow

of the form Ĝ/G∗.

Proposition (M.–Nguyen Van Thé–Tsankov)
Let G be a Polish group whose u.m.f is metrizable with a Gδ orbit. Then
the equivalence relation of isomorphism of minimal G -flows is smooth .
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Questions

Question
Does a metrizable u.m.f of a Polish group always have a Gδ orbit?

It follows from Zucker’s result that this is true for nonarchimedean Polish
groups (the most important case, because of its links to combinatorics).

Question
Is the u.m.f of every Roelcke precompact Polish group metrizable?

Proving this for oligomorphic nonarchimedean Polish groups would
already be a fantastic result.
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Thank you for your attention!
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