Automorphism groups of metric structures 4. The talk that was never given

J. Melleray

Institut Camille Jordan (Lyon)

Istanbul - Models and Groups

Extreme amenability

A Polish group G is extremely amenable if any continuous action of G on a compact space admits a fixed point.

This is equivalent to saying that any continuous action of G on a compact metric space admits a fixed point.

A Polish group G is extremely amenable if any continuous action of G on a compact space admits a fixed point. This is equivalent to saying that any continuous action of G on a

I his is equivalent to saying that any continuous action of G on a compact metric space admits a fixed point.

The first examples were found by Herrer–Christensen in the 70s and were so-called exotic abelian Polish groups: abelian groups without any continuous unitary representations.

A Polish group G is extremely amenable if any continuous action of G on a compact space admits a fixed point. This is equivalent to saying that any continuous action of G on a

compact metric space admits a fixed point.

The first examples were found by Herrer–Christensen in the 70s and were so-called exotic abelian Polish groups: abelian groups without any continuous unitary representations.

Since then, numerous examples have been found, including $U(\ell_2)$, $Aut(\mu)$, and $Iso(\mathbb{U})$.

Let G be a group acting continuously and isometrically on a metric space (X, d). The action is finitely oscillation stable if for every 1-Lipschitz $f: X \to [0, 1]$, any $\varepsilon > 0$ and any finite $A \subseteq X$ there exists some $g \in G$ such that the oscillation of f on gA is less than ε .

Let G be a group acting continuously and isometrically on a metric space (X, d). The action is finitely oscillation stable if for every 1-Lipschitz $f: X \to [0, 1]$, any $\varepsilon > 0$ and any finite $A \subseteq X$ there exists some $g \in G$ such that the oscillation of f on gA is less than ε .

Theorem (Pestov)

Let G be a Polish group. Then G is extremely amenable if, and only if, there exists a directed collection of bounded left-invariant pseudometrics $(d_i)_{i \in I}$ inducing the topology of G and such that the action of G on each (G, d_i) is finitely oscillation stable.

Let G be a group acting continuously and isometrically on a metric space (X, d). The action is finitely oscillation stable if for every 1-Lipschitz $f: X \to [0, 1]$, any $\varepsilon > 0$ and any finite $A \subseteq X$ there exists some $g \in G$ such that the oscillation of f on gA is less than ε .

Theorem (Pestov)

Let G be a Polish group. Then G is extremely amenable if, and only if, there exists a directed collection of bounded left-invariant pseudometrics $(d_i)_{i \in I}$ inducing the topology of G and such that the action of G on each (G, d_i) is finitely oscillation stable.

Of course, using just one metric above would suffice - but using pseudometrics is sometimes simpler in practice.

Let G be a Polish group endowed with a left invariant metric d, (K_n) be an increasing sequence of compact subgroups of G and μ_n be the (normalized) Haar measure on K_n .

Let G be a Polish group endowed with a left invariant metric d, (K_n) be an increasing sequence of compact subgroups of G and μ_n be the (normalized) Haar measure on K_n .

The sequence (K_n, d, μ_n) is a Lévy family if whenever Borel subsets $A_n \subseteq K_n$ satisfy lim inf $\mu_n(A_n) > 0$ one has

$$\forall \varepsilon > 0 \quad \lim_{n} \mu_n((A_n)_{\varepsilon}) = 1$$

Let G be a Polish group endowed with a left invariant metric d, (K_n) be an increasing sequence of compact subgroups of G and μ_n be the (normalized) Haar measure on K_n .

The sequence (K_n, d, μ_n) is a Lévy family if whenever Borel subsets $A_n \subseteq K_n$ satisfy lim inf $\mu_n(A_n) > 0$ one has

$$\forall \varepsilon > 0 \quad \lim_{n} \mu_n((A_n)_{\varepsilon}) = 1$$

G is a Lévy group if there is a Lévy family of compact subsets of G whose union is dense.

Let G be a Polish group endowed with a left invariant metric d, (K_n) be an increasing sequence of compact subgroups of G and μ_n be the (normalized) Haar measure on K_n .

The sequence (K_n, d, μ_n) is a Lévy family if whenever Borel subsets $A_n \subseteq K_n$ satisfy lim inf $\mu_n(A_n) > 0$ one has

$$\forall \varepsilon > 0 \quad \lim_{n} \mu_n((A_n)_{\varepsilon}) = 1$$

G is a Lévy group if there is a Lévy family of compact subsets of G whose union is dense.

It is immediate that Lévy groups are amenable: a sequence (K_n) as above immediately produces a dense amenable subgroup.

Theorem (Pestov)

Any Polish Lévy group is extremely amenable.

Theorem (Pestov)

Any Polish Lévy group is extremely amenable.

This is how Gromov and Millman orginally proved that $U(\ell_2)$ is extremely amenable (in this case the concentration of measure phenomenon is embodied by the isoperimetric inequality for spheres in euclidean spaces).

Theorem (Pestov)

Any Polish Lévy group is extremely amenable.

This is how Gromov and Millman orginally proved that $U(\ell_2)$ is extremely amenable (in this case the concentration of measure phenomenon is embodied by the isoperimetric inequality for spheres in euclidean spaces).

To produce a dense increasing sequence of compact subgroups, one often produces a dense sequence of finite subgroups, relating this to the extension property; one still has to take care of the concentration of measure!

Proposition (Glasner–Weiss)

Let G be an extremely amenable closed subgroup of S_{∞} . Then there is an ordering on ω which is G-invariant. In particular, S_{∞} is not extremely amenable.

Proposition (Glasner–Weiss)

Let G be an extremely amenable closed subgroup of S_{∞} . Then there is an ordering on ω which is G-invariant. In particular, S_{∞} is not extremely amenable.

Proof.

G acts continuously on the compact space LO of orderings on ω .

Proposition (Glasner–Weiss)

Let G be an extremely amenable closed subgroup of S_{∞} . Then there is an ordering on ω which is G-invariant. In particular, S_{∞} is not extremely amenable.

Proof.

G acts continuously on the compact space LO of orderings on ω .

Corollary

Let $\mathcal K$ be a Fraïssé class of finite structures such that the automorphism group of its limit is extremely amenable. Then all elements of $\mathcal K$ are rigid, i.e. have no nontrivial automorphisms.

Towards a combinatorial formulation.

When $G = Aut(\mathcal{M})$, we have an obvious family of pseudometrics to test oscillation stability on: the family (d_A) , parameterized by finite subsets of M, with

$$d_A(g,h) = egin{cases} 0 & ext{ if } g_{|A} = h_{|A} \ 1 & ext{ otherwise} \end{cases}$$

Towards a combinatorial formulation.

When $G = Aut(\mathcal{M})$, we have an obvious family of pseudometrics to test oscillation stability on: the family (d_A) , parameterized by finite subsets of M, with

$$d_A(g,h) = egin{cases} 0 & ext{if } g_{|A} = h_{|A} \ 1 & ext{otherwise} \end{cases}$$

Sinde d_A is discrete, oscillation stability for 1-Lipschitz maps from (G, d_A) to [0, 1] may as well be understood via studying maps from (G, d_A) to $\{0, 1\}$.

Towards a combinatorial formulation.

When $G = Aut(\mathcal{M})$, we have an obvious family of pseudometrics to test oscillation stability on: the family (d_A) , parameterized by finite subsets of M, with

$$d_A(g,h) = egin{cases} 0 & ext{if } g_{|A} = h_{|A} \ 1 & ext{otherwise} \end{cases}$$

Sinde d_A is discrete, oscillation stability for 1-Lipschitz maps from (G, d_A) to [0, 1] may as well be understood via studying maps from (G, d_A) to $\{0, 1\}$.

Definition

Given two structures \mathcal{A}, \mathcal{B} in the same language L, we denote by $\begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$

the set of all embeddings from \mathcal{A} to \mathcal{B} .

The Ramsey property.

Definition

Let ${\mathcal K}$ be a Fraïssé class of finite structures . ${\mathcal K}$ has the Ramsey property if:

For any
$$\mathcal{A}, \mathcal{B} \in \mathcal{K}$$
 there exists $\mathcal{C} \in \mathcal{K}$ such that, for any $\gamma : \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to \{0,1\}$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that γ is constant on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$.

The Ramsey property.

Definition

Let ${\cal K}$ be a Fraïssé class of finite structures . ${\cal K}$ has the Ramsey property if:

For any
$$\mathcal{A}, \mathcal{B} \in \mathcal{K}$$
 there exists $\mathcal{C} \in \mathcal{K}$ such that, for any $\gamma : \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to \{0,1\}$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that γ is constant on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$.

• In the definition above, one could replace (via a compactness argument) \mathcal{C} by \mathcal{M} , where \mathcal{M} is the Fraïssé limit of \mathcal{K} . Note that each $\begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ above (when $\mathcal{A}, \mathcal{B} \leq \mathcal{K}$) is essentially the same thing as a basic open subset of Aut(\mathcal{K}).

Let ${\cal K}$ be a Fraïssé class of finite structures . ${\cal K}$ has the Ramsey property if:

For any
$$\mathcal{A}, \mathcal{B} \in \mathcal{K}$$
 there exists $\mathcal{C} \in \mathcal{K}$ such that, for any $\gamma : \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to \{0, 1\}$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that γ is constant on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$.

- In the definition above, one could replace (via a compactness argument) \mathcal{C} by \mathcal{M} , where \mathcal{M} is the Fraïssé limit of \mathcal{K} . Note that each $\begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ above (when $\mathcal{A}, \mathcal{B} \leq \mathcal{K}$) is essentially the same thing as a basic open subset of Aut(\mathcal{K}).
- The definition above forces elements of ${\cal K}$ to be rigid, i.e. have a trivial automorphism group.

Theorem (Kechris-Pestov-Todorcevic)

Let \mathcal{K} be a Fraïssé class, and G be the automorphism group of its limit. Then G is extremely amenable iff \mathcal{K} has the Ramsey property.

Theorem (Kechris-Pestov-Todorcevic)

Let \mathcal{K} be a Fraïssé class, and G be the automorphism group of its limit. Then G is extremely amenable iff \mathcal{K} has the Ramsey property.

Example (Pestov)

 $Aut(\mathbb{Q}, \leq)$ is extremely amenable.

$$d_A(g,h) = \max\{d(g(a),h(a)\}$$

where A ranges over finite subsets of \mathcal{M} .

$$d_A(g,h) = \max\{d(g(a),h(a)\}\}$$

where A ranges over finite subsets of \mathcal{M} . This d_A is no longer discrete (in general); also in functions are present one does not ask that g, h be close on the whole $\langle A \rangle$ (which may never happen if $g \neq h$) but on a named set of generators.

$$d_A(g,h) = \max\{d(g(a),h(a)\}\}$$

where A ranges over finite subsets of \mathcal{M} . This d_A is no longer discrete (in general); also in functions are present one does not ask that g, h be close on the whole $\langle A \rangle$ (which may never happen if $g \neq h$) but on a named set of generators.

The definition of $\begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ carries over to this context; as is fitting in the continuous setting, it comes equipped with a metric (defined as above).

Assume for simplicity that our metric Fraïssé classes have the property that, for all $\mathcal{A} \in \mathcal{K}$, $Aut(\mathcal{A})$ is compact.

Assume for simplicity that our metric Fraïssé classes have the property that, for all $\mathcal{A} \in \mathcal{K}$, Aut(\mathcal{A}) is compact.

Definition

Assume that \mathcal{K} is a metric Fraïssé class. Then we say that \mathcal{K} has the Ramsey property if: for any $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, and any $\varepsilon > 0$ there exists $\mathcal{C} \in \mathcal{K}$ such that, for any 1-Lipschitz $\gamma: \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to [0,1]$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that the oscillation of γ on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ is less than ε .

Assume for simplicity that our metric Fraïssé classes have the property that, for all $\mathcal{A} \in \mathcal{K}$, Aut(\mathcal{A}) is compact.

Definition

Assume that \mathcal{K} is a metric Fraïssé class. Then we say that \mathcal{K} has the Ramsey property if: for any $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, and any $\varepsilon > 0$ there exists $\mathcal{C} \in \mathcal{K}$ such that, for any 1-Lipschitz $\gamma: \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to [0,1]$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that the oscillation of γ on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ is less than ε .

• Via a compactness argument similar to the discrete case, one can replace ${\cal C}$ above by the limit of ${\cal K}.$

Assume for simplicity that our metric Fraïssé classes have the property that, for all $\mathcal{A} \in \mathcal{K}$, Aut(\mathcal{A}) is compact.

Definition

Assume that \mathcal{K} is a metric Fraïssé class. Then we say that \mathcal{K} has the Ramsey property if: for any $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, and any $\varepsilon > 0$ there exists $\mathcal{C} \in \mathcal{K}$ such that, for any 1-Lipschitz $\gamma: \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to [0,1]$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that the oscillation of γ on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ is less than ε .

- Via a compactness argument similar to the discrete case, one can replace ${\cal C}$ above by the limit of ${\cal K}.$
- Once this is checked, it is rather clear that we just reformulated the finite oscillation stability of the action of G on (G, d_A) .

Assume for simplicity that our metric Fraïssé classes have the property that, for all $\mathcal{A} \in \mathcal{K}$, Aut(\mathcal{A}) is compact.

Definition

Assume that \mathcal{K} is a metric Fraïssé class. Then we say that \mathcal{K} has the Ramsey property if: for any $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, and any $\varepsilon > 0$ there exists $\mathcal{C} \in \mathcal{K}$ such that, for any 1-Lipschitz $\gamma: \begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix} \to [0,1]$ there exists $g \in \begin{pmatrix} \mathcal{C} \\ \mathcal{B} \end{pmatrix}$ such that the oscillation of γ on $g \circ \begin{pmatrix} \mathcal{B} \\ \mathcal{A} \end{pmatrix}$ is less than ε .

- Via a compactness argument similar to the discrete case, one can replace ${\cal C}$ above by the limit of ${\cal K}.$
- Once this is checked, it is rather clear that we just reformulated the finite oscillation stability of the action of G on (G, d_A) .

Proposition (M.–Tsankov)

Let \mathcal{K} be a metric Fraïssé class and G be the automorphism group of its limit. Then G is extremely amenable iff \mathcal{K} has the approximate Ramsey property.

A metric Fraïssé class \mathcal{K} has the extension property if for any $\mathcal{A} \in \mathcal{K}$ and any finite set P of partial automorphisms of \mathcal{A} there exists $\mathcal{B} \in \mathcal{K}$ in which \mathcal{A} embeds in such a way that all elements of \mathcal{A} extend to automorphisms of \mathcal{B} .

A metric Fraïssé class \mathcal{K} has the extension property if for any $\mathcal{A} \in \mathcal{K}$ and any finite set P of partial automorphisms of \mathcal{A} there exists $\mathcal{B} \in \mathcal{K}$ in which \mathcal{A} embeds in such a way that all elements of \mathcal{A} extend to automorphisms of \mathcal{B} .

In the metric context it would be natural to define an approximate version of the extension property - I will not try to do that here.

A metric Fraïssé class \mathcal{K} has the extension property if for any $\mathcal{A} \in \mathcal{K}$ and any finite set P of partial automorphisms of \mathcal{A} there exists $\mathcal{B} \in \mathcal{K}$ in which \mathcal{A} embeds in such a way that all elements of \mathcal{A} extend to automorphisms of \mathcal{B} .

In the metric context it would be natural to define an approximate version of the extension property - I will not try to do that here.

Definition

Let \mathcal{K} be a metric Fraïssé class. We say that \mathcal{K} has the ℓ_1 -property if for any $\mathcal{A} \in \mathcal{K}$ and all *n* there is a way to turn (\mathcal{A}^n, d_1) into an element of \mathcal{K} so that a product of automorphisms of \mathcal{A} induces an automorphism of that structure.

A metric Fraïssé class \mathcal{K} has the extension property if for any $\mathcal{A} \in \mathcal{K}$ and any finite set P of partial automorphisms of \mathcal{A} there exists $\mathcal{B} \in \mathcal{K}$ in which \mathcal{A} embeds in such a way that all elements of \mathcal{A} extend to automorphisms of \mathcal{B} .

In the metric context it would be natural to define an approximate version of the extension property - I will not try to do that here.

Definition

Let \mathcal{K} be a metric Fraïssé class. We say that \mathcal{K} has the ℓ_1 -property if for any $\mathcal{A} \in \mathcal{K}$ and all *n* there is a way to turn (\mathcal{A}^n, d_1) into an element of \mathcal{K} so that a product of automorphisms of \mathcal{A} induces an automorphism of that structure.

Above,
$$d_1(\bar{a}, \bar{b}) = \frac{1}{n} \sum_{i=1}^n d(a_i, b_i).$$

A metric Fraïssé class \mathcal{K} has the extension property if for any $\mathcal{A} \in \mathcal{K}$ and any finite set P of partial automorphisms of \mathcal{A} there exists $\mathcal{B} \in \mathcal{K}$ in which \mathcal{A} embeds in such a way that all elements of \mathcal{A} extend to automorphisms of \mathcal{B} .

In the metric context it would be natural to define an approximate version of the extension property - I will not try to do that here.

Definition

Let \mathcal{K} be a metric Fraïssé class. We say that \mathcal{K} has the ℓ_1 -property if for any $\mathcal{A} \in \mathcal{K}$ and all *n* there is a way to turn (\mathcal{A}^n, d_1) into an element of \mathcal{K} so that a product of automorphisms of \mathcal{A} induces an automorphism of that structure.

Above,
$$d_1(\bar{a}, \bar{b}) = \frac{1}{n} \sum_{i=1}^n d(a_i, b_i).$$

Theorem (M.–Tsankov)

Assume that \mathcal{K} is a metric Fraïssé class with the extension property and the ℓ_1 property. Then \mathcal{K} has the approximate Ramsey property.

Universal minimal flows

Let G be a Polish group. A G-flow is a continuous action of G on a compact space K.

Let G be a Polish group. A G-flow is a continuous action of G on a compact space K.

It is minimal if every orbit is dense.

Let G be a Polish group. A G-flow is a continuous action of G on a compact space K.

It is minimal if every orbit is dense.

A simple application of Zorn's lemma shows that every G-flow contains a minimal subflow.

Let G be a Polish group. A G-flow is a continuous action of G on a compact space K.

It is minimal if every orbit is dense.

A simple application of Zorn's lemma shows that every G-flow contains a minimal subflow.

Theorem (Ellis)

Let G be a topological group. Then G admits a universal minimal flow, that is, a flow that maps equivariantly onto any other minimal flow.

Let G be a Polish group. A G-flow is a continuous action of G on a compact space K.

It is minimal if every orbit is dense.

A simple application of Zorn's lemma shows that every G-flow contains a minimal subflow.

Theorem (Ellis)

Let G be a topological group. Then G admits a universal minimal flow, that is, a flow that maps equivariantly onto any other minimal flow. By definition, G is extremely amenable iff its u.m.f is a singleton.

Theorem (Kechris–Pestov–Todorcevic)

The universal minimal flow of a Polish group G is an inverse limit of metrizable G-flows.

Theorem (Kechris–Pestov–Todorcevic)

The universal minimal flow of a Polish group G is an inverse limit of metrizable G-flows.

This is why a Polish group is extremely amenable iff every continuous action on a compact metric space has a fixed point.

Theorem (Kechris–Pestov–Todorcevic)

The universal minimal flow of a Polish group G is an inverse limit of metrizable G-flows.

This is why a Polish group is extremely amenable iff every continuous action on a compact metric space has a fixed point.

Theorem (Kechris–Pestov–Todorcevic)

The universal minimal flow of an infinite locally compact topological group is not metrizable.

If G contains a "large" extremely amenable sugroup, then the u.m.f of G may be easy to compute.

If G contains a "large" extremely amenable sugroup, then the u.m.f of G may be easy to compute.

How true/useful the observation above is depends on the definition of "large": for instance, if G has an extremely amenable subgroup G^* of finite index, then the u.m.f of G is the action of G on the finite set G/G^* .

If G contains a "large" extremely amenable sugroup, then the u.m.f of G may be easy to compute.

How true/useful the observation above is depends on the definition of "large": for instance, if G has an extremely amenable subgroup G^* of finite index, then the u.m.f of G is the action of G on the finite set G/G^* .

Definition

Let G be a Polish group, and H be a closed subgroup. We endow the coset space G/H with the quotient uniformity - If d_r is a right-invariant distance on G, this is induced by

$$d(gH,g'H) = \inf\{d_r(gh,g') \colon h \in H\}$$

If G contains a "large" extremely amenable sugroup, then the u.m.f of G may be easy to compute.

How true/useful the observation above is depends on the definition of "large": for instance, if G has an extremely amenable subgroup G^* of finite index, then the u.m.f of G is the action of G on the finite set G/G^* .

Definition

Let G be a Polish group, and H be a closed subgroup. We endow the coset space G/H with the quotient uniformity - If d_r is a right-invariant distance on G, this is induced by

$$d(gH,g'H) = \inf\{d_r(gh,g') \colon h \in H\}$$

We say that H is coprecompact if the space $(G/H, d_r)$ is precompact (its completion is compact). Equivalently: for every open $V \ni 1$, there exists a finite F such that VFH = G.

Assume that G is Polish, and that H is a closed, coprecompact, extremely amenable subgroup. Then any minimal G flow is a quotient of the translation action of G on $\widehat{G/H}$. So, if the action of G on $\widehat{G/H}$ is minimal, it is the u.m.f of G. In that

case the u.m.f of G is metrizable with a G_{δ} orbit.

J. Melleray Automorphism groups of metric structures

Assume that G is Polish, and that H is a closed, coprecompact, extremely amenable subgroup. Then any minimal G flow is a quotient of the translation action of G on $\widehat{G/H}$. So, if the action of G on $\widehat{G/H}$ is minimal, it is the u.m.f of G. In that case the u.m.f of G is metrizable with a G_{δ} orbit.

Sketch of proof.

Assume X is a minimal G-flow; there is an H-fixed point x_0 . Thus we get a G-equivariant map from G/H to X defined by $gH \mapsto gx_0$.

Assume that G is Polish, and that H is a closed, coprecompact, extremely amenable subgroup. Then any minimal G flow is a quotient of the translation action of G on $\widehat{G/H}$. So, if the action of G on $\widehat{G/H}$ is minimal, it is the u.m.f of G. In that case the u.m.f of G is metrizable with a G_{δ} orbit.

Sketch of proof.

Assume X is a minimal G-flow; there is an H-fixed point x_0 . Thus we get a G-equivariant map from G/H to X defined by $gH \mapsto gx_0$. We then check that this map is uniformly continuous, thus it extends to a continuous map from $\widehat{G/H}$ to X, which is still G-equivariant by continuity of the actions of G on $\widehat{G/H}$ and on X.

Assume that G is Polish, and that H is a closed, coprecompact, extremely amenable subgroup. Then any minimal G flow is a quotient of the translation action of G on $\widehat{G/H}$. So, if the action of G on $\widehat{G/H}$ is minimal, it is the u.m.f of G. In that case the u.m.f of G is metrizable with a G_{δ} orbit.

Sketch of proof.

Assume X is a minimal G-flow; there is an H-fixed point x_0 . Thus we get a G-equivariant map from G/H to X defined by $gH \mapsto gx_0$. We then check that this map is uniformly continuous, thus it extends to a continuous map from $\widehat{G/H}$ to X, which is still G-equivariant by continuity of the actions of G on $\widehat{G/H}$ and on X. The G_{δ} orbit is the set G/H: it is Polish, hence G_{δ} in its completion. \Box

The u.m.f of S_{∞} is given by its action on LO.

The u.m.f of S_{∞} is given by its action on LO.

Sketch of proof.

Aut(\mathbb{Q}, \leq) is extremely amenable; a simple computation shows that it is coprecompact in S_{∞} .

The u.m.f of S_{∞} is given by its action on LO.

Sketch of proof.

Aut(\mathbb{Q}, \leq) is extremely amenable; a simple computation shows that it is coprecompact in S_{∞} .

During this computation it becomes clear that the completion of $S_{\infty}/\operatorname{Aut}(\mathbb{Q})$ is isomorphic to LO.

The u.m.f of S_{∞} is given by its action on LO.

Sketch of proof.

Aut(\mathbb{Q}, \leq) is extremely amenable; a simple computation shows that it is coprecompact in S_{∞} .

During this computation it becomes clear that the completion of $S_{\infty}/\operatorname{Aut}(\mathbb{Q})$ is isomorphic to LO.

And it is immediate that the action of S_{∞} on LO is minimal.

We saw a reason for a u.m.f to be metrizable: the existence of a coprecompact extremely amenable closed subgroup G^* such that the corresponding quotient action is minimal.

We saw a reason for a u.m.f to be metrizable: the existence of a coprecompact extremely amenable closed subgroup G^* such that the corresponding quotient action is minimal.

In that case the u.m.f must have a G_{δ} orbit (because G/G^* is Polish, hence G_{δ} in its completion).

We saw a reason for a u.m.f to be metrizable: the existence of a coprecompact extremely amenable closed subgroup G^* such that the corresponding quotient action is minimal.

In that case the u.m.f must have a G_{δ} orbit (because G/G^* is Polish, hence G_{δ} in its completion).

Question (Angel-Kechris-Lyons)

Let G be a Polish group with a metrizable u.m.f. K. Must there exist a G_{δ} orbit in K?

Recently, A. Zucker provided a new proof of the Kechris–Pestov–Todorcevic theorem.

Recently, A. Zucker provided a new proof of the Kechris–Pestov–Todorcevic theorem.

His proof involves a construction of the u.m.f of a nonarchimedean Polish group (using Stone–Cečh compactifications) which make it fairly easy to understand metrizability of the u.m.f: it must be an inverse limit of finite flows.

Recently, A. Zucker provided a new proof of the Kechris–Pestov–Todorcevic theorem.

His proof involves a construction of the u.m.f of a nonarchimedean Polish group (using Stone–Cečh compactifications) which make it fairly easy to understand metrizability of the u.m.f: it must be an inverse limit of finite flows.

Theorem (Zucker)

Let G be a nonarchimedean Polish group with metrizable u.m.f. Then there exists a coprecompact extremely amenable closed subgroup G^* such that the u.m.f of G is $\widehat{G/G^*}$. Zucker's construction does not appear to easily translate to all Polish groups. Using a different (and independent/simultaneous) approach, one can show the following.

Zucker's construction does not appear to easily translate to all Polish groups. Using a different (and independent/simultaneous) approach, one can show the following.

Theorem (M.–Nguyen Van Thé–Tsankov)

Let G be a Polish group. Then the u.m.f of G is metrizable and admits a G_{δ} orbit iff it is of the form $\widehat{G/G^*}$ for an extremely amenable, closed, coprecompact subgroup G^* .

Proposition (M.–Nguyen Van Thé–Tsankov)

Let G be a Polish group whose u.m.f is metrizable with a G_{δ} orbit. Then every minimal G-flow has compact automorphism group and is coalescent: every endomorphism is an automorphism.

Proposition (M.–Nguyen Van Thé–Tsankov)

Let G be a Polish group whose u.m.f is metrizable with a G_{δ} orbit. Then every minimal G-flow has compact automorphism group and is coalescent: every endomorphism is an automorphism.

The conclusions of the above proposition are always satisfied by a *G*-flow of the form $\widehat{G/G^*}$.

Proposition (M.–Nguyen Van Thé–Tsankov)

Let G be a Polish group whose u.m.f is metrizable with a G_{δ} orbit. Then every minimal G-flow has compact automorphism group and is coalescent: every endomorphism is an automorphism.

The conclusions of the above proposition are always satisfied by a *G*-flow of the form $\widehat{G/G^*}$.

Proposition (M.-Nguyen Van Thé-Tsankov)

Let G be a Polish group whose u.m.f is metrizable with a G_{δ} orbit. Then the equivalence relation of isomorphism of minimal G-flows is smooth .

Does a metrizable u.m.f of a Polish group always have a G_{δ} orbit?

Does a metrizable u.m.f of a Polish group always have a G_{δ} orbit?

It follows from Zucker's result that this is true for nonarchimedean Polish groups (the most important case, because of its links to combinatorics).

Does a metrizable u.m.f of a Polish group always have a G_{δ} orbit?

It follows from Zucker's result that this is true for nonarchimedean Polish groups (the most important case, because of its links to combinatorics).

Question

Is the u.m.f of every Roelcke precompact Polish group metrizable?

Does a metrizable u.m.f of a Polish group always have a G_{δ} orbit?

It follows from Zucker's result that this is true for nonarchimedean Polish groups (the most important case, because of its links to combinatorics).

Question

Is the u.m.f of every Roelcke precompact Polish group metrizable? Proving this for oligomorphic nonarchimedean Polish groups would already be a fantastic result.

Thank you for your attention!