Metric groups in continuous logic

Aleksander Ivanov

Institute of Mathematics Universyty of Wrocław

March 26, 2015

Image: A image: A

ヨート

Continuous structures

A countable continuous signature:

$$L = \{d, R_1, ..., R_k, ..., F_1, ..., F_l, ...\}.$$

Definition

A **metric** *L*-**structure** is a complete metric space (M, d) with *d* bounded by d_0 (usually $d_0 = 1$), along with a family of uniformly continuous operations F_k on *M* and a family of predicates R_l , i.e. uniformly continuous maps from appropriate M^{k_l} to [0, 1].

It is usually assumed that to a predicate symbol R_i a continuity modulus γ_i is assigned so that when $d(x_j, x'_j) < \gamma_i(\varepsilon)$ with $1 \le j \le k_i$ the corresponding predicate of M satisfies

$$|R_i(x_1,...,x_j,...,x_{k_i}) - R_i(x_1,...,x_j',...,x_{k_i})| < \varepsilon.$$

< □ > < □ >

Continuous structures

A countable continuous signature:

$$L = \{d, R_1, ..., R_k, ..., F_1, ..., F_l, ...\}.$$

Definition

A **metric** *L*-structure is a complete metric space (M, d) with *d* bounded by d_0 (usually $d_0 = 1$), along with a family of uniformly continuous operations F_k on *M* and a family of predicates R_l , i.e. uniformly continuous maps from appropriate M^{k_l} to [0, 1].

It is usually assumed that to a predicate symbol R_i a continuity modulus γ_i is assigned so that when $d(x_j, x'_j) < \gamma_i(\varepsilon)$ with $1 \le j \le k_i$ the corresponding predicate of M satisfies

$$|R_i(x_1,...,x_j,...,x_{k_i}) - R_i(x_1,...,x_j',...,x_{k_i})| < \varepsilon.$$

Metric groups - continuous structures

Metric groups will be considered as one-sorted continuous structures in the continuous signature

$$L=\{d,\cdot,^{-1}\},$$

where *d* denotes the metric (bounded by 1) To the symbols $^{-1}$ and \cdot continuity moduli γ_1 and γ_2 are assigned so that

$$d(x_1, x_2) < \gamma_1(\varepsilon)$$
 implies $d(x_1^{-1}, x_2^{-1}) < \varepsilon$ and
 $d(x_1, x_2) < \gamma_2(\varepsilon)$ implies $max(d(x_1 \cdot y, x_2 \cdot y), d(y \cdot x_1, y \cdot x_2)) < \varepsilon$
for all $y \in M$.

Formulas

A **continuous formula** is an expression built from 0,1 (assuming $d_0 = 1$) and atomic formulas by applications of the following functions:

$$x/2$$
 , $\dot{x-y} = max(x-y,0)$, $min(x,y)$, $max(x,y)$, $|x-y|$,

$$\neg(x) = 1 - x$$
 , $x + y = min(x + y, 1)$, $x \cdot y = min(x \cdot y, 1)$, sup_x and inf_x .

Any atomic formula has one of the following forms

- $R(t_1,...t_k)$ for a relational symbol R or
- $d(t_1, t_2)$, where t_i are terms.

Any continuous sentence $\phi(\bar{c})$ can be naturally interpreted in a continuous structure M by the **value** $\phi^M(\bar{c})$.

▲□ ► < □ ► </p>

Formulas

A **continuous formula** is an expression built from 0,1 (assuming $d_0 = 1$) and atomic formulas by applications of the following functions:

$$x/2$$
 , $\dot{x-y} = max(x-y,0)$, $min(x,y)$, $max(x,y)$, $|x-y|$,

 $egic{} \neg(x) = 1 - x$, $\dot{x+y} = min(x+y,1)$, $x \cdot y = min(x \cdot y,1)$, sup_x and inf_x .

Any atomic formula has one of the following forms

- $R(t_1,...t_k)$ for a relational symbol R or
- $d(t_1, t_2)$, where t_i are terms.

Any continuous sentence $\phi(\bar{c})$ can be naturally interpreted in a continuous structure M by the **value** $\phi^M(\bar{c})$.

・ロト ・同ト ・ヨト ・ヨト

Formulas

A **continuous formula** is an expression built from 0,1 (assuming $d_0 = 1$) and atomic formulas by applications of the following functions:

$$x/2$$
 , $\dot{x-y} = max(x-y,0)$, $min(x,y)$, $max(x,y)$, $|x-y|$,

 $egic{} \neg(x) = 1 - x$, $\dot{x+y} = min(x+y,1)$, $x \cdot y = min(x \cdot y,1)$, sup_x and inf_x .

Any atomic formula has one of the following forms

- $R(t_1, ..., t_k)$ for a relational symbol R or
- $d(t_1, t_2)$, where t_i are terms.

Any continuous sentence $\phi(\bar{c})$ can be naturally interpreted in a continuous structure M by the value $\phi^M(\bar{c})$.

An example of a formula of group theory

$max(sup_y d(x_1 \cdot y, x_2 \cdot y), sup_y d(y \cdot x_1, y \cdot x_2))$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Continuous theories

The **continuous theory** of a class K of structures of the signature L is the set of all **statements**

$\phi \leq \mathbf{0}$

where ϕ is a continuous *L*-sentence so that the **value** ϕ^M is 0 for all $M \in K$.

Metric groups which are continuous structures

Not all metric groups can be viewed as metric structures!

Lemma

Let a group (G, d) be a metric L-structure with respect to continuity moduli γ_1 and γ_2 as above. Then G admits a two-sided-invariant metric d^* which defines the same topology with d.

Proof. We assume that (G, d) is not discrete. Let $d^*(x, y) = \sup_{u,v} d(u \cdot x \cdot v, u \cdot y \cdot v)$, . Then $d^*(x, y)$ is a two-sided-invariant metric with $d(x, y) \leq d^*(x, y)$. Since for every ε we have

$$d(x,y) < \gamma_2(\gamma_2(\varepsilon)) \Rightarrow d^*(x,y) < \varepsilon,$$

each open d-ball contains an open d*-ball and vice versa. \Box

Metric groups which are continuous structures

Not all metric groups can be viewed as metric structures!

Lemma

Let a group (G, d) be a metric L-structure with respect to continuity moduli γ_1 and γ_2 as above. Then G admits a two-sided-invariant metric d^* which defines the same topology with d.

Proof. We assume that (G, d) is not discrete. Let $d^*(x, y) = \sup_{u,v} d(u \cdot x \cdot v, u \cdot y \cdot v)$, . Then $d^*(x, y)$ is a two-sided-invariant metric with $d(x, y) \leq d^*(x, y)$. Since for every ε we have

$$d(x,y) < \gamma_2(\gamma_2(\varepsilon)) \Rightarrow d^*(x,y) < \varepsilon,$$

each open d-ball contains an open d*-ball and vice versa. \Box

A∄ ▶ ∢ ∃=

SIN

 ${\bf SIN}\xspace$ -groups are topological groups having arbitrary small neighbourhoods of identity which are invariant under all inner automorphisms .

Lemma

Let (G, d) be a **SIN**-group with a left-invariant metric $d \le 1$. Then $(G, \cdot, {}^{-1}, d)$ is a metric structure with respect to some continuity moduli γ_1 and γ_2 as above.

The class of topological groups admitting bi-invariant complete metrics coincides with the class of completely metrizable SIN-groups (V.Klee).

Problem. Is there a description of abstract groups (of familiar classes) admitting bi-invariant metrics with non-discrete topology?

SIN

 ${\bf SIN}\xspace$ -groups are topological groups having arbitrary small neighbourhoods of identity which are invariant under all inner automorphisms .

Lemma

Let (G, d) be a **SIN**-group with a left-invariant metric $d \le 1$. Then $(G, \cdot, {}^{-1}, d)$ is a metric structure with respect to some continuity moduli γ_1 and γ_2 as above.

The class of topological groups admitting bi-invariant complete metrics coincides with the class of completely metrizable SIN-groups (V.Klee).

Problem. Is there a description of abstract groups (of familiar classes) admitting bi-invariant metrics with non-discrete topology?

SIN

 ${\bf SIN}\xspace$ -groups are topological groups having arbitrary small neighbourhoods of identity which are invariant under all inner automorphisms .

Lemma

Let (G, d) be a **SIN**-group with a left-invariant metric $d \le 1$. Then $(G, \cdot, {}^{-1}, d)$ is a metric structure with respect to some continuity moduli γ_1 and γ_2 as above.

The class of topological groups admitting bi-invariant complete metrics coincides with the class of completely metrizable SIN-groups (V.Klee).

Problem. Is there a description of abstract groups (of familiar classes) admitting bi-invariant metrics with non-discrete topology?

1. Separably categorical l.c.groups

2. Axiomatisable classes of metric groups

3. Axiomatisability of some geometric properties (connected with actions on metric spaces).

- 1. Separably categorical l.c.groups
- 2. Axiomatisable classes of metric groups

3. Axiomatisability of some geometric properties (connected with actions on metric spaces).

< A >

< ∃ >

- 1. Separably categorical l.c.groups
- 2. Axiomatisable classes of metric groups

3. Axiomatisability of some geometric properties (connected with actions on metric spaces).

< A >

.⊒ . ►

Separably cateogorical I.c. groups

SEPARABLY CATEGORICAL STRUCTURES

Aleksander Ivanov Metric groups in continuous logic

э

Separable categoricity

In the discrete case a theory T is **countably categorical** if any two countable models of T are isomorphic.

A continuous theory T is **separably categorical** if any two separable models of T are isomorphic.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Separable categoricity

In the discrete case a theory T is **countably categorical** if any two countable models of T are isomorphic.

A continuous theory T is **separably categorical** if any two separable models of T are isomorphic.

< A >

(*) *) *) *)

Oligomorfic actions

Ryll-Nardzewski: A countable discrete structure M is ω -categorical if and only if Aut(M) is **oligomorphic**, i.e. for every n, Aut(M) has finitely many orbits on M^n .

Definition. An isometric action of Γ on a metric space (\mathbf{X}, d) is said to be **approximately oligomorphic** if for every $n \ge 1$ and $\varepsilon > 0$ there is a finite set $F \subset \mathbf{X}^n$ such that

$$\Gamma \cdot F = \{g\bar{x} : g \in \Gamma \text{ and } \bar{x} \in F\}$$

is ε -dense in (\mathbf{X}^n, d) .

C. Ward Henson: Assuming that Γ is the automorphism group of a non-compact separable continuous metric structure M, Γ is approximately oligomorphic if and only if the structure M is separably categorical.

Oligomorfic actions

Ryll-Nardzewski: A countable discrete structure M is ω -categorical if and only if Aut(M) is **oligomorphic**, i.e. for every n, Aut(M) has finitely many orbits on M^n .

Definition. An isometric action of Γ on a metric space (\mathbf{X}, d) is said to be **approximately oligomorphic** if for every $n \ge 1$ and $\varepsilon > 0$ there is a finite set $F \subset \mathbf{X}^n$ such that

$$\Gamma \cdot F = \{g\bar{x} : g \in \Gamma \text{ and } \bar{x} \in F\}$$

is ε -dense in (\mathbf{X}^n, d) .

C. Ward Henson: Assuming that Γ is the automorphism group of a non-compact separable continuous metric structure M, Γ is approximately oligomorphic if and only if the structure M is separably categorical.

Oligomorfic actions

Ryll-Nardzewski: A countable discrete structure M is ω -categorical if and only if Aut(M) is **oligomorphic**, i.e. for every n, Aut(M) has finitely many orbits on M^n .

Definition. An isometric action of Γ on a metric space (\mathbf{X}, d) is said to be **approximately oligomorphic** if for every $n \ge 1$ and $\varepsilon > 0$ there is a finite set $F \subset \mathbf{X}^n$ such that

$$\Gamma \cdot F = \{g\bar{x} : g \in \Gamma \text{ and } \bar{x} \in F\}$$

is ε -dense in (\mathbf{X}^n, d) .

C. Ward Henson: Assuming that Γ is the automorphism group of a non-compact separable continuous metric structure M, Γ is approximately oligomorphic if and only if the structure M is separably categorical.

S.c.l.c. groups

Theorem

Let (G, d) be a continuous structure which is a locally compact group with respect to a left invariant metric d.

Then (G, d) is **separably categorical** if and only if there is a compact clopen subgroup H < G which is invariant with respect to all metric automorphisms of G, and the induced action of Aut(G, d) on the coset space G/H is oligomorphic.

In this case if the connected component of the unity G^0 is not trivial, H can be taken to be G^0 . When this happens or when d is two-sided-invariant, the subgroup H is normal and G/H is an ω -categorical discrete group.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

S.c.l.c. groups

Theorem

Let (G, d) be a continuous structure which is a locally compact group with respect to a left invariant metric d. Then (G, d) is **separably categorical** if and only if there is a compact clopen subgroup H < G which is invariant with respect to all metric automorphisms of G, and the induced action of Aut(G, d) on the coset space G/H is oligomorphic.

In this case if the connected component of the unity G^0 is not trivial, H can be taken to be G^0 . When this happens or when d is two-sided-invariant, the subgroup H is normal and G/H is an ω -categorical discrete group.

< 口 > < 同 > < 三 > < 三

S.c.l.c. groups

Theorem

Let (G, d) be a continuous structure which is a locally compact group with respect to a left invariant metric d. Then (G, d) is **separably categorical** if and only if there is a compact clopen subgroup H < G which is invariant with respect to all metric automorphisms of G, and the induced action of Aut(G, d) on the coset space G/H is oligomorphic.

In this case if the connected component of the unity G^0 is not trivial, H can be taken to be G^0 . When this happens or when d is two-sided-invariant, the subgroup H is normal and G/H is an ω -categorical discrete group.

・ロト ・同ト ・ヨト ・ヨト

Proof. Sketch.

Necessity. We may assume that G is not discrete. There is a rational number $\rho < 1$ such that the ρ -ball of the unity $B_{\rho}(e) = \{x \in G : d(x, e) \le \rho\}$ is compact. Let G_{ρ} be the subgroup generated by $B_{\rho}(e)$. Note that G_{ρ} is an open (in fact clopen) subgroup.

emma

The predicate $P(x) = d(x, G_{\rho})$ is definable in G, i.e. there is a sequence of formulas $\phi_k(x)$, $k \ge 1$, so that the maps interpreting $\phi_k(x)$ in G converge to P(x) uniformly.

Using this one can deduce that there is a natural number *n* such that $G_{\rho} = B_{\rho}^{n}(e)$.

<ロト <部 > < 注 > < 注 >

Proof. Sketch.

Necessity. We may assume that G is not discrete.

There is a rational number $\rho < 1$ such that the ρ -ball of the unity $B_{\rho}(e) = \{x \in G : d(x, e) \le \rho\}$ is compact.

Let G_{ρ} be the subgroup generated by $B_{\rho}(e)$. Note that G_{ρ} is an open (in fact clopen) subgroup.

Lemma

The predicate $P(x) = d(x, G_{\rho})$ is definable in G,

i.e. there is a sequence of formulas $\phi_k(x)$, $k \ge 1$, so that the maps interpreting $\phi_k(x)$ in G converge to P(x) uniformly.

Using this one can deduce that there is a natural number *n* such that $G_{\rho} = B_{\rho}^{n}(e)$.

Proof. Sketch.

Necessity. We may assume that G is not discrete. There is a rational number $\rho < 1$ such that the ρ -ball of the unity $B_{\rho}(e) = \{x \in G : d(x, e) \le \rho\}$ is compact. Let G_{ρ} be the subgroup generated by $B_{\rho}(e)$. Note that G_{ρ} is an

open (in fact clopen) subgroup.

Lemma

The predicate $P(x) = d(x, G_{\rho})$ is definable in G, i.e. there is a sequence of formulas $\phi_k(x)$, $k \ge 1$, so that the maps interpreting $\phi_k(x)$ in G converge to P(x) uniformly.

Using this one can deduce that there is a natural number *n* such that $G_{\rho} = B_{\rho}^{n}(e)$.

・ロト ・回ト ・ヨト ・ヨト

Proof. Sketch.

Necessity. We may assume that G is not discrete. There is a rational number $\rho < 1$ such that the ρ -ball of the unity $B_{\rho}(e) = \{x \in G : d(x, e) \le \rho\}$ is compact. Let G_{ρ} be the subgroup generated by $B_{\rho}(e)$. Note that G_{ρ} is an open (in fact clopen) subgroup.

Lemma

The predicate $P(x) = d(x, G_{\rho})$ is definable in G, i.e. there is a sequence of formulas $\phi_k(x)$, $k \ge 1$, so that the maps interpreting $\phi_k(x)$ in G converge to P(x) uniformly.

Using this one can deduce that there is a natural number *n* such that $G_{\rho} = B_{\rho}^{n}(e)$.

・ロト ・回ト ・ヨト ・ヨト

Locally compact groups - s.c. metric structures

Corollary

A locally compact group G can be presented as a **separably categorical metric structure** with respect to some metric if and only if

there is a normal compact clopen subgroup ${\sf H} < {\sf G}$ with a bi-invariant metric d

so that d is conjugacy invariant and

the group of automorphisms of G/H which are induced by

automorphism of G preserving (H, d) is oligomorphic

(in particular G/H is a countably categorical discrete group).

Locally compact groups - s.c. metric structures

Corollary

A locally compact group G can be presented as a **separably categorical metric structure** with respect to some metric if and only if

there is a normal compact clopen subgroup H < G with a bi-invariant metric d

so that d is conjugacy invariant and the group of automorphisms of G/H which are induced automorphism of G preserving (H,d) is oligomorphic (in particular G/H is a countably categorical discrete gr

Locally compact groups - s.c. metric structures

Corollary

A locally compact group G can be presented as a **separably** categorical metric structure with respect to some metric if and only if there is a normal compact clopen subgroup H < G with a bi-invariant metric d so that d is conjugacy invariant and the group of automorphisms of G/H which are induced by automorphism of G preserving (H, d) is oligomorphic (in particular G/H is a countably categorical discrete group)

Locally compact groups - s.c. metric structures

Corollary

A locally compact group G can be presented as a **separably** categorical metric structure with respect to some metric if and only if there is a normal compact clopen subgroup H < G with a bi-invariant metric d so that d is conjugacy invariant and the group of automorphisms of G/H which are induced by automorphism of G preserving (H, d) is oligomorphic (in particular G/H is a countably categorical discrete group).

(日) (同) (三) (三)

Construction of appropriate metrics

Assume that H < G is a compact, clopen normal subgroup and d be a bi-invariant metric on H as in the formulation of diameter $\leq \frac{1}{2}$. Consider G/H with respect to the $\{0, 1\}$ -metric, say d_0 . Choose a set X representing the H-cosets of G. Wreath product of metrics $d^* = d_0$ wr d: Assuming that $x_i y_i$ represents the coset $x_i H$ with $x_i \in X$, $i \in \{1, 2\}$,

If
$$x_1 \neq x_2$$
 then $d^{+}(x_1y_1, x_2y_2) = 1$,

if
$$x_1 = x_2$$
 then $d^*(x_1y_1, x_2y_2) = d(y_1, y_2)$.

Construction of appropriate metrics

Assume that H < G is a compact, clopen normal subgroup and d be a bi-invariant metric on H as in the formulation of diameter $\leq \frac{1}{2}$. Consider G/H with respect to the $\{0, 1\}$ -metric, say d_0 .

Choose a set X representing the H-cosets of G.

Wreath product of metrics $d^* = d_0$ wr d: Assuming that $x_i y_i$ represents the coset $x_i H$ with $x_i \in X$, $i \in \{1, 2\}$,

if
$$x_1 \neq x_2$$
 then $d^*(x_1y_1, x_2y_2) = 1$,

if $x_1 = x_2$ then $d^*(x_1y_1, x_2y_2) = d(y_1, y_2)$.

Construction of appropriate metrics

Assume that H < G is a compact, clopen normal subgroup and d be a bi-invariant metric on H as in the formulation of diameter $\leq \frac{1}{2}$. Consider G/H with respect to the $\{0,1\}$ -metric, say d_0 . Choose a set X representing the H-cosets of G. Wreath product of metrics $d^* = d_0$ wr d:

Assuming that $x_i y_i$ represents the coset $x_i H$ with $x_i \in X$ $i \in \{1, 2\}$,

if
$$x_1 \neq x_2$$
 then $d^*(x_1y_1, x_2y_2) = 1$,

if
$$x_1 = x_2$$
 then $d^*(x_1y_1, x_2y_2) = d(y_1, y_2)$.

Construction of appropriate metrics

Assume that H < G is a compact, clopen normal subgroup and d be a bi-invariant metric on H as in the formulation of diameter $\leq \frac{1}{2}$. Consider G/H with respect to the $\{0, 1\}$ -metric, say d_0 . Choose a set X representing the H-cosets of G. Wreath product of metrics $d^* = d_0$ wr d: Assuming that $x_i y_i$ represents the coset $x_i H$ with $x_i \in X$, $i \in \{1, 2\}$, if $x_1 \neq x_2$ then $d^*(x_1 y_1, x_2 y_2) = 1$,

if
$$x_1 = x_2$$
 then $d^*(x_1y_1, x_2y_2) = d(y_1, y_2)$.

Stability

A continuous theory T has the order property if there is a formula $\psi(\bar{x}, \bar{y})$, where \bar{x} and \bar{y} are of the same length and sorts, and there is a model M of T with $(\bar{a}_i : i \in \omega) \subseteq M$, so that

$$\psi(\bar{a}_i, \bar{a}_j) = 0 \Leftrightarrow i < j \text{ and } \psi(\bar{a}_i, \bar{a}_j) = 1 \Leftrightarrow i \ge j.$$

By compactness this condition is equivalent to the property that for all *n* and $\delta \in [0, 1]$ there are $\overline{a}_1, ..., \overline{a}_n$ such that

 $\psi(\bar{a}_i, \bar{a}_j) \leq \delta \Leftrightarrow i < j \text{ and } \psi(\bar{a}_i, \bar{a}_j) \geq 1 - \delta \Leftrightarrow i \geq j.$

The theory T is called **stable** if it does not have the order property.

Stability

A continuous theory T has the order property if there is a formula $\psi(\bar{x}, \bar{y})$, where \bar{x} and \bar{y} are of the same length and sorts, and there is a model M of T with $(\bar{a}_i : i \in \omega) \subseteq M$, so that

$$\psi(\bar{a}_i, \bar{a}_j) = 0 \Leftrightarrow i < j \text{ and } \psi(\bar{a}_i, \bar{a}_j) = 1 \Leftrightarrow i \geq j.$$

By compactness this condition is equivalent to the property that for all *n* and $\delta \in [0, 1]$ there are $\bar{a}_1, ..., \bar{a}_n$ such that

$$\psi(\bar{a}_i, \bar{a}_j) \leq \delta \Leftrightarrow i < j \text{ and } \psi(\bar{a}_i, \bar{a}_j) \geq 1 - \delta \Leftrightarrow i \geq j.$$

The theory T is called **stable** if it does not have the order property.

Stable I.c. s.c. groups

Theorem

Let G be a locally compact group which can be presented as a separably categorical metric structure and let H and d^* be as in the construction of the corollary.

Then the continuous theory Th(G, d*) is stable if and only if the elementary theory of G/H is stable.

Image: A image: A

Stable I.c. s.c. groups

Theorem

Let G be a locally compact group which can be presented as a separably categorical metric structure and let H and d^* be as in the construction of the corollary. Then the continuous theory $Th(G, d^*)$ is stable if and only if the elementary theory of G/H is stable.

< 17 ▶

Axiomatisability

AXIOMATISABILITY

Aleksander Ivanov Metric groups in continuous logic

イロン イロン イヨン イヨン

æ

Proposition. Let \mathcal{K} be a class of continuous structures. A metric structure N is a model of the continuous theory of \mathcal{K} if and only if it is elementarily embeddable into a metric ultraproduct of structures from \mathcal{K} .

N is an **elementary substructure** of *M*, if $N \subset M$ and for every *L*-formula $\phi(x_1, ..., x_n)$ and $a_1, ..., a_n \in N$ the values of $\phi(a_1, ..., a_n)$ in *N* and in *M* are the same.

Proposition. Let \mathcal{K} be a class of continuous structures. A metric structure N is a model of the continuous theory of \mathcal{K} if and only if it is elementarily embeddable into a metric ultraproduct of structures from \mathcal{K} .

N is an **elementary substructure** of M,

if $N \subset M$ and for every *L*-formula $\phi(x_1, ..., x_n)$ and $a_1, ..., a_n \in N$ the values of $\phi(a_1, ..., a_n)$ in N and in M are the same.

< 🗇 > < 🖃 >

Ultraproducts

The **metric** in the ultraproduct $\prod_{I} (G_i, d_i)/D$ is defined by the rule that the distance between $(g_i)_I$ and $(g'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(g_i, g'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ultraproducts

The **metric** in the ultraproduct $\prod_{i} (G_i, d_i)/D$ is defined by the rule that

the distance between $(g_i)_i$ and $(g'_i)_i$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(g_i, g'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

- 4 同 6 4 日 6 4 日 6

The continuous *sup*-theory of \mathcal{K} , $Th_{sup}^{c}(\mathcal{K})$, consists of all closed *L*-conditions

 $sup_{x_1}sup_{x_2}...sup_{x_n}\varphi = 0$ (φ does not contain inf_{x_i} , sup_{x_i}),

which hold in all structures of \mathcal{K} .

Proposition. *N* is a model of the continuous *sup*-theory of \mathcal{K} if and only if it is embeddable into a metric ultraproduct of structures from \mathcal{K} as a closed subspace.

The continuous *sup*-theory of \mathcal{K} , $Th_{sup}^{c}(\mathcal{K})$, consists of all closed *L*-conditions

 $sup_{x_1}sup_{x_2}...sup_{x_n}\varphi = 0$ (φ does not contain inf_{x_i} , sup_{x_i}),

which hold in all structures of \mathcal{K} .

Proposition. *N* is a model of the continuous *sup*-theory of \mathcal{K} if and only if it is embeddable into a metric ultraproduct of structures from \mathcal{K} as a closed subspace.

イロト イポト イヨト イヨト

Axiomatisability

C is **axiomatizable** if any model of Th(C) belongs to C.

Corollary

(1) The class C is **axiomatizable** in continuous logic if an only if it is closed under metric isomorphisms, ultraproducts and taking elementary submodels.

(2) The class C is **axiomatizable** in continuous logic **by** $Th_{sup}^{c}(C)$ if an only if it is closed under metric isomorphisms, ultraproducts and taking substructures.

< 67 ▶

Axiomatisability

C is **axiomatizable** if any model of Th(C) belongs to C.

Corollary

(1) The class C is **axiomatizable** in continuous logic if an only if it is closed under metric isomorphisms, ultraproducts and taking elementary submodels.

(2) The class C is **axiomatizable** in continuous logic **by** $Th^{c}_{sup}(C)$ if an only if it is closed under metric isomorphisms, ultraproducts and taking substructures.

▲ 同 ▶ → 三 ▶

Axiomatisability

C is **axiomatizable** if any model of Th(C) belongs to C.

Corollary

(1) The class C is **axiomatizable** in continuous logic if an only if it is closed under metric isomorphisms, ultraproducts and taking elementary submodels.

(2) The class C is **axiomatizable** in continuous logic **by** $Th_{sup}^{c}(C)$ if an only if it is closed under metric isomorphisms, ultraproducts and taking substructures.

Image: A = A

Soficity

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Metric sofic groups. Let S be the class of complete *id*-continuous metric groups of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Corollary

The class of metric sofic groups is sup-axiomatizable (i.e. by its theory Th^{c}_{sup}).

The set of all abstract sofic groups consists of all discrete structures of the class $\mathcal{S}.$

Soficity

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Metric sofic groups. Let S be the class of complete *id*-continuous metric groups of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Corollary

The class of metric sofic groups is sup-axiomatizable (i.e. by its theory Th^{c}_{sup}).

The set of all abstract sofic groups consists of all discrete structures of the class $\mathcal{S}.$

< D > < P > < P > < P >

Soficity

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Metric sofic groups. Let S be the class of complete *id*-continuous metric groups of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Corollary

The class of metric sofic groups is sup-axiomatizable (i.e. by its theory Th_{sup}^{c}).

The set of all abstract sofic groups consists of all discrete structures of the class $\mathcal{S}.$

A B > A B >

Soficity

An abstract group is **sofic** if it is embeddable into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Metric sofic groups. Let S be the class of complete *id*-continuous metric groups of diameter 1, which are embeddable as closed subgroups into a metric ultraproduct of finite symmetric groups with Hamming metrics.

Corollary

The class of metric sofic groups is sup-axiomatizable (i.e. by its theory Th_{sup}^{c}).

The set of all abstract sofic groups consists of all discrete structures of the class \mathcal{S} .

.

A metric structure N is **pseudo**- \mathcal{K} if N is a model of the continuous theory of \mathcal{K}

When C consists of all finite *L*-structures of a continuously axiomatizable class \mathcal{K} , a pseudo-C structure is called a **pseudofinite** structure from \mathcal{K} .

- 4 同 ト 4 ヨ ト 4 ヨ ト

.

A metric structure N is **pseudo**- \mathcal{K} if N is a model of the continuous theory of \mathcal{K}

When C consists of all finite *L*-structures of a continuously axiomatizable class \mathcal{K} , a pseudo-C structure is called a **pseudofinite** structure from \mathcal{K} .

Strongly pseudo- \mathcal{C} groups

A metric structure M is **strongly pseudo**-C if for any sentence σ with $\sigma^M = 0$ there is a structure $N \in C$ so that $\sigma^N = 0$ (this implies that M is pseudo-C).

When C is the class of all finite *L*-structures of a continuously axiomatizable class \mathcal{K} , a strongly pseudo-C structure is called a **strongly pseudofinite** structure from \mathcal{K} .

Conjecture (I. Goldbring and Vinicius Cifú Lopes) Strongly pseudofinite are discrete. *Is it true in the case of metric groups?*

Strongly pseudo- \mathcal{C} groups

A metric structure M is **strongly pseudo**-C if for any sentence σ with $\sigma^M = 0$ there is a structure $N \in C$ so that $\sigma^N = 0$ (this implies that M is pseudo-C). When C is the class of all finite *L*-structures of a continuously axiomatizable class \mathcal{K} , a strongly pseudo-C structure is called a **strongly pseudofinite** structure from \mathcal{K} .

Conjecture (I. Goldbring and Vinicius Cifú Lopes) Strongly pseudofinite are discrete. *Is it true in the case of metric groups?*

Strongly pseudo- \mathcal{C} groups

A metric structure M is **strongly pseudo**-C if for any sentence σ with $\sigma^M = 0$ there is a structure $N \in C$ so that $\sigma^N = 0$ (this implies that M is pseudo-C). When C is the class of all finite *L*-structures of a continuously axiomatizable class \mathcal{K} , a strongly pseudo-C structure is called a **strongly pseudofinite** structure from \mathcal{K} .

Conjecture (I. Goldbring and Vinicius Cifú Lopes) Strongly pseudofinite are discrete.

Is it true in the case of metric groups?

Strongly pseudo- \mathcal{C} groups

A metric structure M is **strongly pseudo**-C if for any sentence σ with $\sigma^M = 0$ there is a structure $N \in C$ so that $\sigma^N = 0$ (this implies that M is pseudo-C). When C is the class of all finite L-structures of a continuously axiomatizable class \mathcal{K} , a strongly pseudo-C structure is called a **strongly pseudofinite** structure from \mathcal{K} .

Conjecture (I. Goldbring and Vinicius Cifú Lopes) Strongly pseudofinite are discrete. *Is it true in the case of metric groups?*

Strong soficity

A metric group is ${\bf strongly}\ {\bf sofic}$ if it embeds into a strongly pseudofinite group .

Observation. Any strongly sofic group is an LEF-group, i.e any its finite subset embeds (as a partial group) into a finite group.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Strong soficity

A metric group is **strongly sofic** if it embeds into a strongly pseudofinite group .

Observation. Any strongly sofic group is an LEF-group, i.e any its finite subset embeds (as a partial group) into a finite group.

- 4 同 6 4 日 6 4 日 6

Non-axiomatisability of boundedness properties

FH: any strongly continuous isometric affine action on a real Hilbert space has a fixed point.

F \mathbb{R} : any isometric action on a real tree has a fixed point. **OB**: any isometric strongly continuous action on a metric space has bounded orbits. (implies **FH** and **F** \mathbb{R})

There are no natural versions of these properties which can be axiomatized.

Non-axiomatisability of boundedness properties

FH: any strongly continuous isometric affine action on a real Hilbert space has a fixed point.

F \mathbb{R} : any isometric action on a real tree has a fixed point.

OB: any isometric strongly continuous action on a metric space has bounded orbits. (implies **FH** and **F** \mathbb{R})

There are no natural versions of these properties which can be axiomatized.

Non-axiomatisability of boundedness properties

FH: any strongly continuous isometric affine action on a real Hilbert space has a fixed point.

 $F\mathbb{R}$: any isometric action on a real tree has a fixed point. OB: any isometric strongly continuous action on a metric space has bounded orbits. (implies FH and $F\mathbb{R}$)

There are no natural versions of these properties which can be axiomatized.

Non-axiomatisability of boundedness properties

FH: any strongly continuous isometric affine action on a real Hilbert space has a fixed point.

 $F\mathbb{R}$: any isometric action on a real tree has a fixed point. OB: any isometric strongly continuous action on a metric space has bounded orbits. (implies FH and $F\mathbb{R}$)

There are no natural versions of these properties which can be axiomatized.

Bountiful classes

BOUNTIFUL CLASSES OF GROUPS

Aleksander Ivanov Metric groups in continuous logic

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Bountiful classes of groups

A class of groups \mathcal{K} is called **bountiful** if for any pair of infinite groups $G \leq H$ with $H \in \mathcal{K}$ there is $\mathcal{K} \in \mathcal{K}$ such that $G \leq \mathcal{K} \leq H$ and $|G| = |\mathcal{K}|$ (Ph.Hall).

OB, **FH** and **F** \mathbb{R} are not bountiful.

- **→** → **→**

Bountiful classes of groups

A class of groups \mathcal{K} is called **bountiful** if for any pair of infinite groups $G \leq H$ with $H \in \mathcal{K}$ there is $\mathcal{K} \in \mathcal{K}$ such that $G \leq \mathcal{K} \leq H$ and $|G| = |\mathcal{K}|$ (Ph.Hall).

OB, **FH** and **F** \mathbb{R} are not bountiful.

A D

Topological groups

Definition. A class of topological groups \mathcal{K} is called **bountiful** if for any pair of infinite groups $G \leq H$ with $H \in \mathcal{K}$ there is $K \in \mathcal{K}$ such that $G \leq K \leq H$ and the density character of G (i.e. the smallest cardinality of a dense subset of the space) coincides with the density character of K.

Natural continuous versions of OB, FH and $F\mathbb{R}$ are not bountiful.

Observation. Properties non-**OB**, non-**FH** and non-**F** \mathbb{R} are bountiful in the class of metric groups which are continuous structures.

Topological groups

Definition. A class of topological groups \mathcal{K} is called **bountiful** if for any pair of infinite groups $G \leq H$ with $H \in \mathcal{K}$ there is $K \in \mathcal{K}$ such that $G \leq K \leq H$ and the density character of G (i.e. the smallest cardinality of a dense subset of the space) coincides with the density character of K.

Natural continuous versions of **OB**, **FH** and **F** \mathbb{R} are not bountiful.

Observation. Properties non-**OB**, non-**FH** and non-**F** \mathbb{R} are bountiful in the class of metric groups which are continuous structures.

Topological groups

Definition. A class of topological groups \mathcal{K} is called **bountiful** if for any pair of infinite groups $G \leq H$ with $H \in \mathcal{K}$ there is $K \in \mathcal{K}$ such that $G \leq K \leq H$ and the density character of G (i.e. the smallest cardinality of a dense subset of the space) coincides with the density character of K.

Natural continuous versions of **OB**, **FH** and **F** \mathbb{R} are not bountiful.

Observation. Properties non-**OB**, non-**FH** and non-**F** \mathbb{R} are bountiful in the class of metric groups which are continuous structures.

Löwenheim-Skolem

Proof. non-**OB**. Let $G \leq H$ with $H \in \mathcal{K}$. Take an action of H on a metric space with an unbounded orbit. Extend G by countably many elements witnessing this unboundedness.

Löwenheim-Skolem Theorem. Let κ be an infinite cardinal number and assume $|L| \leq \kappa$.

Let M be an L-structure and suppose $A \subset M$ has density $\leq \kappa$. Then there exists a substructure $N \subseteq M$ containing A such that density(N) $\leq \kappa$ and N is an elementary substructure of M.

Corollary. non-**OB**. By L-S theorem there is an elementary substructure K of H such that $G \leq K$ and the density character of G and K is the same.

Löwenheim-Skolem

Proof. non-**OB**. Let $G \leq H$ with $H \in \mathcal{K}$. Take an action of H on a metric space with an unbounded orbit. Extend G by countably many elements witnessing this unboundedness.

Löwenheim-Skolem Theorem. Let κ be an infinite cardinal number and assume $|L| \leq \kappa$.

Let M be an L-structure and suppose $A \subset M$ has density $\leq \kappa$. Then there exists a substructure $N \subseteq M$ containing A such that density $(N) \leq \kappa$ and N is an elementary substructure of M.

Corollary. non-**OB**. By L-S theorem there is an elementary substructure K of H such that $G \le K$ and the density character of G and K is the same.

Löwenheim-Skolem

Proof. non-**OB**. Let $G \leq H$ with $H \in \mathcal{K}$. Take an action of H on a metric space with an unbounded orbit. Extend G by countably many elements witnessing this unboundedness.

Löwenheim-Skolem Theorem. Let κ be an infinite cardinal number and assume $|L| \leq \kappa$. Let M be an L-structure and suppose $A \subset M$ has density $\leq \kappa$. Then there exists a substructure $N \subseteq M$ containing A such that density $(N) \leq \kappa$ and N is an elementary substructure of M.

Corollary. non-**OB**. By L-S theorem there is an elementary substructure K of H such that $G \leq K$ and the density character of G and K is the same.

Löwenheim-Skolem

Proof. non-**OB**. Let $G \leq H$ with $H \in \mathcal{K}$. Take an action of H on a metric space with an unbounded orbit. Extend G by countably many elements witnessing this unboundedness.

Löwenheim-Skolem Theorem. Let κ be an infinite cardinal number and assume $|L| \leq \kappa$. Let M be an L-structure and suppose $A \subset M$ has density $\leq \kappa$. Then there exists a substructure $N \subseteq M$ containing A such that density $(N) \leq \kappa$ and N is an elementary substructure of M.

Corollary. non-**OB**. By L-S theorem there is an elementary substructure K of H such that $G \leq K$ and the density character of G and K is the same.

Löwenheim-Skolem

Proof. non-**OB**. Let $G \leq H$ with $H \in \mathcal{K}$. Take an action of H on a metric space with an unbounded orbit. Extend G by countably many elements witnessing this unboundedness.

Löwenheim-Skolem Theorem. Let κ be an infinite cardinal number and assume $|L| \leq \kappa$. Let M be an L-structure and suppose $A \subset M$ has density $\leq \kappa$. Then there exists a substructure $N \subseteq M$ containing A such that density $(N) \leq \kappa$ and N is an elementary substructure of M.

Corollary. non-**OB**. By L-S theorem there is an elementary substructure K of H such that $G \leq K$ and the density character of G and K is the same.

Kopperman and Mathias: By the Löwenheim-Skolem theorem if \mathcal{K} is a reduct of a class axiomatizable in a countable fragment of $L_{\omega_1\omega}$ then \mathcal{K} is bountiful.

Let G be non-**OB** (non-**FH** or non-**F** \mathbb{R}). Is there an expansion of G, where this property is expressible in continuous logic?

Kopperman and Mathias: By the Löwenheim-Skolem theorem if \mathcal{K} is a reduct of a class axiomatizable in a countable fragment of $L_{\omega_1\omega}$ then \mathcal{K} is bountiful.

Let G be non-**OB** (non-**FH** or non-**F** \mathbb{R}). Is there an expansion of G, where this property is expressible in continuous logic?

Kazhdan

Let a topological group G have a strongly continuous unitary representation on a Hilbert space **H**. A closed subset $Q \subset G$ has an *almost* ε -*invariant vector* in **H** if

there exists $v \in \mathbf{H}$ such that $sup_{x \in Q} \parallel x \circ v - v \parallel < \varepsilon \cdot \parallel v \parallel$.

We call a closed subset Q of the group G a Kazhdan set if there is ε s.t. every unitary representation of G on a Hilbert space with almost (Q, ε) -invariant vectors also has a non-zero invariant vector. If the group G has a compact Kazhdan subset then it is said that G has property (**T**) of Kazhdan.

Kazhdan

Let a topological group G have a strongly continuous unitary representation on a Hilbert space **H**. A closed subset $Q \subset G$ has an *almost* ε -*invariant vector* in **H** if

there exists $v \in \mathbf{H}$ such that $sup_{x \in Q} \parallel x \circ v - v \parallel < \varepsilon \cdot \parallel v \parallel$.

We call a closed subset Q of the group G a Kazhdan set if there is ε s.t. every unitary representation of G on a Hilbert space with almost (Q, ε) -invariant vectors also has a non-zero invariant vector. If the group G has a compact Kazhdan subset then it is said that G has property (**T**) of Kazhdan.

Image: A image: A

Hilbert spaces over $\mathbb R$

We identify a Hilbert space over $\ensuremath{\mathbb{R}}$ with a many-sorted metric structure

$$(\{B_n\}_{n\in\omega}, 0, \{I_{mn}\}_{m< n}, \{\lambda_r\}_{r\in\mathbb{R}}, +, -, \langle\rangle),$$

where B_n is the ball of elements of norm $\leq n$ (i.e. we allow diameters of sorts greater than 1),

 $I_{mn}: B_m \to B_n$ is the inclusion map, $\lambda_r: B_m \to B_{km}$ is scalar multiplication by r, with k the unique integer satisfying $k \ge 1$ and $k - 1 \le |r| < k$; futhermore, $+, -: B_n \times B_n \to B_{2n}$ are vector addition and subtraction and

 $\langle \rangle : B_n \times B_n \to [-n^2, n^2]$ is the inner product. The metric on each sort is given by $d(x, y) = \sqrt{\langle x - y, x - y \rangle}$. For every operation the continuous modulus is standard.

Hilbert spaces over $\mathbb R$

We identify a Hilbert space over $\ensuremath{\mathbb{R}}$ with a many-sorted metric structure

$$(\{B_n\}_{n\in\omega},0,\{I_{mn}\}_{m< n},\{\lambda_r\}_{r\in\mathbb{R}},+,-,\langle\rangle),$$

where B_n is the ball of elements of norm $\leq n$ (i.e. we allow diameters of sorts greater than 1),

 $I_{mn}: B_m \to B_n$ is the inclusion map, $\lambda_r: B_m \to B_{km}$ is scalar multiplication by r, with k the unique integer satisfying $k \ge 1$ and $k - 1 \le |r| < k$; futhermore, $+, -: B_n \times B_n \to B_{2n}$ are vector addition and

subtraction and

 $\langle \rangle : B_n \times B_n \to [-n^2, n^2]$ is the inner product. The metric on each sort is given by $d(x, y) = \sqrt{\langle x - y, x - y \rangle}$. For every operation the continuous modulus is standard.

Hilbert spaces over $\mathbb C$

This approach can be extended to complex Hilbert spaces.

$$(\{B_n\}_{n\in\omega}, 0, \{I_{mn}\}_{m< n}, \{\lambda_c\}_{c\in\mathbb{C}}, +, -, \langle\rangle_{Re}, \langle\rangle_{Im}),$$

We only extend the family $\lambda_r : B_m \to B_{km}$, $r \in \mathbb{R}$, to a family $\lambda_c : B_m \to B_{km}$, $c \in \mathbb{C}$, of scalar products by $c \in \mathbb{C}$, with k the unique integer satisfying $k \ge 1$ and $k - 1 \le |c| < k$. We also introduce *Re*- and *Im*-parts of the inner product.

We axiomatise infinite dimensional Hilbert spaces:

$$inf_{x_1,...,x_n}max_{1\leq i< j\leq n}(|\langle x_i, x_j\rangle - \delta_{i,j}|) = 0,$$

 $\delta_{i,j} \in \{0,1\}$ with $\delta_{i,j} = 1 \leftrightarrow i = j$,

It is known that this class is κ -categorical for all infinite κ , and the corresponding continuous theory admits elimination of quantifiers.

Hilbert spaces over $\mathbb C$

This approach can be extended to complex Hilbert spaces.

$$(\{B_n\}_{n\in\omega}, 0, \{I_{mn}\}_{m< n}, \{\lambda_c\}_{c\in\mathbb{C}}, +, -, \langle\rangle_{Re}, \langle\rangle_{Im}),$$

We only extend the family $\lambda_r : B_m \to B_{km}$, $r \in \mathbb{R}$, to a family $\lambda_c : B_m \to B_{km}$, $c \in \mathbb{C}$, of scalar products by $c \in \mathbb{C}$, with k the unique integer satisfying $k \ge 1$ and $k - 1 \le |c| < k$. We also introduce *Re*- and *Im*-parts of the inner product.

We axiomatise infinite dimensional Hilbert spaces:

$$\inf_{x_1,\ldots,x_n} \max_{1 \le i < j \le n} (|\langle x_i, x_j \rangle - \delta_{i,j}|) = 0,$$

$$\delta_{i,j} \in \{0,1\}$$
 with $\delta_{i,j} = 1 \leftrightarrow i = j$,

It is known that this class is κ -categorical for all infinite κ , and the corresponding continuous theory admits elimination of quantifiers.

non-(T) is bountiful

Definition. Let (G, d) be a metric group. Let $\mathcal{F} = \{F_1, F_2, ...\}$ be a family of continuity moduli for continuous functions $G \times B_i \to B_i$. We call a closed subset Q of the group G an \mathcal{F} -Kazhdan set if there is ε s.t. every \mathcal{F} -continuous unitary representation of G on a Hilbert space with almost (Q, ε) -invariant vectors also has a non-zero invariant vector.

Theorem

Let (G, d) be a locally compact metric group which does not have property (\mathbf{T}) . Then for any infinite subset $C \subset G$ there is a closed elementary (in continuous logic) subgroup G_0 of G containing C, with the same density character as C so that the G_0 does not have property (\mathbf{T}) .

< 日 > < 同 > < 三 > < 三 >

non-(T) is bountiful

Definition. Let (G, d) be a metric group. Let $\mathcal{F} = \{F_1, F_2, ...\}$ be a family of continuity moduli for continuous functions $G \times B_i \to B_i$. We call a closed subset Q of the group G an \mathcal{F} -Kazhdan set if there is ε s.t. every \mathcal{F} -continuous unitary representation of G on a Hilbert space with almost (Q, ε) -invariant vectors also has a non-zero invariant vector.

Theorem

Let (G, d) be a locally compact metric group which does not have property (\mathbf{T}) . Then for any infinite subset $C \subset G$ there is a closed elementary (in continuous logic) subgroup G_0 of G containing C, with the same density character as C so that the G_0 does not have property (\mathbf{T}) .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Proof

Let us consider a class of continuous metric structures which are unions of groups $(\Gamma, \cdot, {}^{-1}, d)$ together with metric structures of complex Hilbert spaces

$$(\{B_n\}_{n\in\omega}, 0, \{I_{mn}\}_{m< n}, \{\lambda_c\}_{c\in\mathbb{C}}, +, -, \langle\rangle_{Re}, \langle\rangle_{Im}).$$

Such a structure (say $A(\Gamma, \mathbf{H})$) also contains a binary operation \circ of an action which is considered as a family of maps $\Gamma \times B_n \to B_n$, $n \in \omega$.

Adding the continuous sup-axioms that the action is linear and unitary, we obtain an axiomatizable class $\mathcal{K}_{GH}.$

Let $\mathcal{K}_{GH}(\mathcal{F})$ be the corresponding class with continuity moduli $\mathcal{F} = \{F_0, F_1, ...\}$ for the corresponding restrictions of \circ on B_n .

(日) (同) (目) (日)

Continuation

Choose ε so that the ε -ball (say K) of 1 in G is compact. Assuming that the continuity moduli \mathcal{F} are fixed let $\mathcal{K}_{\varepsilon}(\mathcal{F})$ be the subclass of \mathcal{K}_{GH} axiomatizable by the axioms

$$sup_{x_1,\ldots,x_n}inf_{v\in B_m}sup_{x\in x_iK}max(||x\circ v-v|| - \frac{1}{n}, |1-||v|||) = 0,$$

 $m, n \in \omega \setminus \{0\},\$

which in fact say that each $\bigcup x_n K$ has an almost $\frac{1}{n}$ -invariant unit vector in **H**.

The group G from the formulation (without property **(T)** for \mathcal{F} -actions) has such an expansion to **H**.

Finish by an application of the Löwenheim-Skolem theorem.

Continuation

Choose ε so that the ε -ball (say K) of 1 in G is compact. Assuming that the continuity moduli \mathcal{F} are fixed let $\mathcal{K}_{\varepsilon}(\mathcal{F})$ be the subclass of \mathcal{K}_{GH} axiomatizable by the axioms

$$sup_{x_1,\ldots,x_n}inf_{v\in B_m}sup_{x\in x_iK}max(\parallel x\circ v-v\parallel \dot{-} \frac{1}{n}, |1-\parallel v\parallel |)=0,$$

 $m, n \in \omega \setminus \{0\},\$

which in fact say that each $\bigcup x_n K$ has an almost $\frac{1}{n}$ -invariant unit vector in **H**.

The group G from the formulation (without property (T) for \mathcal{F} -actions) has such an expansion to H.

Finish by an application of the Löwenheim-Skolem theorem.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Continuation

Choose ε so that the ε -ball (say K) of 1 in G is compact. Assuming that the continuity moduli \mathcal{F} are fixed let $\mathcal{K}_{\varepsilon}(\mathcal{F})$ be the subclass of \mathcal{K}_{GH} axiomatizable by the axioms

$$sup_{x_1,\ldots,x_n}inf_{v\in B_m}sup_{x\in x_iK}max(\parallel x\circ v-v\parallel \dot{-} \frac{1}{n}, |1-\parallel v\parallel ||)=0,$$

 $m, n \in \omega \setminus \{0\},\$

which in fact say that each $\bigcup x_n K$ has an almost $\frac{1}{n}$ -invariant unit vector in **H**.

The group *G* from the formulation (without property **(T)** for \mathcal{F} -actions) has such an expansion to **H**.

Finish by an application of the Löwenheim-Skolem theorem.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Isometric actions on metric spaces

AXIOMATISATION OF ISOMETRIC ACTIONS

Given G which is non-**OB** (non-**FH**, non-**F** \mathbb{R}) is there an expansion of G to a structure of an isometric action where non-**OB** (resp. non-**FH**, non-**F** \mathbb{R}) is expressed in continuous logic?

Isometric actions on metric spaces

AXIOMATISATION OF ISOMETRIC ACTIONS

Given G which is non-**OB** (non-**FH**, non-**F** \mathbb{R}) is there an expansion of G to a structure of an isometric action where non-**OB** (resp. non-**FH**, non-**F** \mathbb{R}) is expressed in continuous logic?

Pointed \mathbb{R} -trees

Sylvia Carlisle, 2009: The class of poined **R**-trees is axiomatizable in continuous logic in the class of many-sorted metric structures of *n*-balls of pointed spaces (0 is distinguished)

$$\mathbf{X} = (\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, d)$$
, where $I_{mn} : B_m \to B_n$.

by the following axioms:

The **approximated midpoint property**: for any $x, y \in \mathbf{X}$ and any $\varepsilon > 0$ there exists $z \in \mathbf{X}$ such that

 $|d(x,z) - d(x,y)/2| \le \varepsilon$ and $|d(y,z) - d(x,y)/2| \le \varepsilon$.

X is 0-hyperbolic if for any $x, y, z, w \in \mathbf{X}$ and $\varepsilon > 0$

$$min((x \cdot y)_w, (y \cdot z)_w) \leq (x \cdot z)_w + \varepsilon$$
 , where

$$(x \cdot y)_w = \frac{1}{2}(d(x, w) + d(w, y) - d(x, y)) \text{ (Gromov product)}.$$

伺 と く ヨ と く ヨ と

Pointed \mathbb{R} -trees

Sylvia Carlisle, 2009: The class of poined **R**-trees is axiomatizable in continuous logic in the class of many-sorted metric structures of *n*-balls of pointed spaces (0 is distinguished)

$$\mathbf{X} = (\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, d)$$
, where $I_{mn} : B_m \to B_n$.

by the following axioms:

The approximated midpoint property: for any $x, y \in \mathbf{X}$ and any $\varepsilon > 0$ there exists $z \in \mathbf{X}$ such that

$$|d(x,z) - d(x,y)/2| \le \varepsilon$$
 and $|d(y,z) - d(x,y)/2| \le \varepsilon$.

X is 0-hyperbolic if for any $x, y, z, w \in \mathbf{X}$ and $\varepsilon > 0$

$$min((x \cdot y)_w, (y \cdot z)_w) \leq (x \cdot z)_w + arepsilon$$
 , where

 $(x \cdot y)_w = \frac{1}{2}(d(x, w) + d(w, y) - d(x, y)) \text{ (Gromov product)}$

Pointed \mathbb{R} -trees

Sylvia Carlisle, 2009: The class of poined **R**-trees is axiomatizable in continuous logic in the class of many-sorted metric structures of *n*-balls of pointed spaces (0 is distinguished)

$$\mathbf{X} = (\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, d)$$
, where $I_{mn} : B_m \to B_n$.

by the following axioms:

The approximated midpoint property: for any $x, y \in \mathbf{X}$ and any $\varepsilon > 0$ there exists $z \in \mathbf{X}$ such that

$$|d(x,z) - d(x,y)/2| \leq \varepsilon$$
 and $|d(y,z) - d(x,y)/2| \leq \varepsilon$.

X is 0-hyperbolic if for any $x, y, z, w \in \mathbf{X}$ and $\varepsilon > 0$

$$\begin{split} & \min((x \cdot y)_w, (y \cdot z)_w) \leq (x \cdot z)_w + \varepsilon \text{ , where} \\ & (x \cdot y)_w = \frac{1}{2}(d(x, w) + d(w, y) - d(x, y)) \text{ (Gromov product).} \end{split}$$

Actions on pointed trees

Let us consider the class of continuous metric structures which are unions of continuous groups $(G, \cdot, -1, d)$ together with many-sorted metric structures of *n*-balls of pointed \mathbb{R} -trees

$$\mathbf{X} = (\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, d)$$
 , where $I_{mn} : B_m o B_n,$

and ternary predicates (describing an action \circ of G on X)

 $\circ_{mn}(g, x, y)$: $G \times B_m \times B_n \rightarrow [0, diam(B_n)]$, $m \leq n \in \omega$.

 $\circ_{mn}(g, x, y)$ is the **length** of the intersection of the segment $[g \circ x, y]$ with B_n . In particular $\circ_{mm}(g, x, y) = d(g \circ x, y)$ for $g \circ x, y \in B_n$

- 4 同 6 4 日 6 4 日 6

Actions on pointed trees

Let us consider the class of continuous metric structures which are unions of continuous groups $(G, \cdot, -1, d)$ together with many-sorted metric structures of *n*-balls of pointed \mathbb{R} -trees

$$\mathbf{X} = (\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, d)$$
 , where $I_{mn} : B_m o B_n,$

and ternary predicates (describing an action \circ of G on X)

$$\circ_{mn}(g, x, y)$$
 : $G imes B_m imes B_n o [0, diam(B_n)]$, $m \le n \in \omega$.

 $\circ_{mn}(g, x, y)$ is the **length** of the intersection of the segment $[g \circ x, y]$ with B_n . In particular $\circ_{mm}(g, x, y) = d(g \circ x, y)$ for $g \circ x, y \in B_n$

Actions on pointed trees

Let us consider the class of continuous metric structures which are unions of continuous groups $(G, \cdot, -1, d)$ together with many-sorted metric structures of *n*-balls of pointed \mathbb{R} -trees

$$\mathbf{X} = (\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, d)$$
 , where $I_{mn}: B_m o B_n,$

and ternary predicates (describing an action \circ of G on X)

$$\circ_{mn}(g, x, y)$$
 : $G imes B_m imes B_n o [0, diam(B_n)]$, $m \le n \in \omega$.

 $\circ_{mn}(g, x, y)$ is the **length** of the intersection of the segment $[g \circ x, y]$ with B_n . In particular $\circ_{mm}(g, x, y) = d(g \circ x, y)$ for $g \circ x, y \in B_n$

Continuity moduli of actions on \mathbb{R} -trees

Observation Assume that a group G acts on the tree $\mathbf{X} = \bigcup B_n$ by isometries and the action \circ has a continuity modulus γ_G on G. Let $A(G, \mathbf{X})$ be the corresponding structure in the language as above.

Then the predicates \circ_{mn} have continuity moduli $min(\gamma_G, id)$.

Let $\mathcal{K}_{iso-\mathbb{R}}(\mathcal{F})$ be the class of structures for $A(G, \mathbf{X})$ where continuity moduli are taken from a family \mathcal{F} .

Continuity moduli of actions on \mathbb{R} -trees

Observation Assume that a group G acts on the tree $\mathbf{X} = \bigcup B_n$ by isometries and the action \circ has a continuity modulus γ_G on G. Let $A(G, \mathbf{X})$ be the corresponding structure in the language as above.

Then the predicates \circ_{mn} have continuity moduli $min(\gamma_G, id)$.

Let $\mathcal{K}_{iso-\mathbb{R}}(\mathcal{F})$ be the class of structures for $A(G, \mathbf{X})$ where continuity moduli are taken from a family \mathcal{F} .

non- $\mathbf{F}\mathbb{R}$ is expressible

We say that (G, d) satisfies non-**F** $\mathbb{R}(\mathcal{F})$ if it has an isometric \mathcal{F} -action on an \mathbb{R} -tree (i.e. extends to a structure from $\mathcal{K}_{iso-\mathbb{R}}(\mathcal{F})$) without fixed points.

Observation. When $A(G, \mathbf{X})$ does not have fixed points there is a rational number q so that for every k there is a natural number l > k and $g \in G$ which takes B_k into B_l and satisfies

$$sup_{v\in B_k}(q - d(g \circ v, v)) = 0.$$

Non-**F** $\mathbb{R}(\mathcal{F})$ is expressible in $A(G, \mathbf{X})$ by countably many continuous sentences, i.e. is preserved in elementary substructures.

・ 一 ・ ・ ・ ・ ・ ・

non- $\mathbf{F}\mathbb{R}$ is expressible

We say that (G, d) satisfies non-**F** $\mathbb{R}(\mathcal{F})$ if it has an isometric \mathcal{F} -action on an \mathbb{R} -tree (i.e. extends to a structure from $\mathcal{K}_{iso-\mathbb{R}}(\mathcal{F})$) without fixed points.

Observation. When $A(G, \mathbf{X})$ does not have fixed points there is a rational number q so that for every k there is a natural number l > k and $g \in G$ which takes B_k into B_l and satisfies

$$sup_{v\in B_k}(\dot{q-d}(g\circ v,v))=0.$$

Non-**F** $\mathbb{R}(\mathcal{F})$ is expressible in $A(G, \mathbf{X})$ by countably many continuous sentences, i.e. is preserved in elementary substructures.

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

non- $\mathbf{F}\mathbb{R}$ is expressible

We say that (G, d) satisfies non-**F** $\mathbb{R}(\mathcal{F})$ if it has an isometric \mathcal{F} -action on an \mathbb{R} -tree (i.e. extends to a structure from $\mathcal{K}_{iso-\mathbb{R}}(\mathcal{F})$) without fixed points.

Observation. When $A(G, \mathbf{X})$ does not have fixed points there is a rational number q so that for every k there is a natural number l > k and $g \in G$ which takes B_k into B_l and satisfies

$$sup_{v\in B_k}(\dot{q-d}(g\circ v,v))=0.$$

Non-**F** $\mathbb{R}(\mathcal{F})$ is expressible in $A(G, \mathbf{X})$ by countably many continuous sentences, i.e. is preserved in elementary substructures.

- 4 同 🕨 - 4 目 🕨 - 4 目

Polish version of non-OB

If G is a Polish group then G is non-**OB** if and only if there is an open symmetric $\emptyset \neq V \subset G$ such that for any finite $F \subset G$ and natural k, $G \neq (FV)^k$ (i.e. there is a real number $\varepsilon_{F,k}$ s.t. some $g \in G$ is ε -distant from $(FV)^k$).

Definition. A metric group G is uniformly non-**OB** if there is an open symmetric $\emptyset \neq V \subset G$ such that for any natural numbers m and k there is a real number ε s.t. for any m-element $F \subset G$ there is $g \in G$ which is ε -distant from $(FV)^k$.

Polish version of non-OB

If G is a Polish group then G is non-**OB** if and only if there is an open symmetric $\emptyset \neq V \subset G$ such that for any finite $F \subset G$ and natural k, $G \neq (FV)^k$ (i.e. there is a real number $\varepsilon_{F,k}$ s.t. some $g \in G$ is ε -distant from $(FV)^k$).

Definition. A metric group G is *uniformly non*-**OB** if there is an open symmetric $\emptyset \neq V \subset G$ such that for any natural numbers m and k there is a real number ε s.t. for any m-element $F \subset G$ there is $g \in G$ which is ε -distant from $(FV)^k$.

Uniform non-OB

Theorem. The class of uniformly non-**OB**-groups is bountiful.

In fact for any uniformly non-**OB** group *G* there is an expansion of *G* by two continuous unary predicates (imitating functions d(x, V) and $d(x, G \setminus V)$) where uniform non-**OB** is expressible in continuous logic.

- 4 同 6 4 日 6 4 日 6

Discrete groups

Theorem. The following classes of groups are bountiful (they are reducts of axiomatizable classes in $L_{\omega_1\omega}$):

(1) The complement of the class of strongly bounded groups;

(2) The class of groups of cofinality $\leq \omega$;

(3) The class of groups which are not Cayley bounded;

(4) The class of all non-trivial free products with amalgamation (or HNN-extensions);

(5) The class of groups having homomorphisms onto \mathbb{Z} ;

(6) The class of groups which do not have property FA (i.e. with actions on simplicial trees without fixed points).

Dfntns. *G* is Cayley bounded if for every $U \subset G$ with $\langle U \rangle = G$, there exists $n \in \omega$ such that $G \subseteq (U \cup U^{-1} \cup \{1\})^n$. A group is *strongly bounded* if it is Cayley bounded and cannot be presented as the union of a strictly increasing chain $\{H_n : n \in \omega\}$ of proper subgroups (i.e. has *cofinality* $> \omega$).

Discrete groups

Theorem. The following classes of groups are bountiful (they are reducts of axiomatizable classes in $L_{\omega_1\omega}$):

(1) The complement of the class of strongly bounded groups;

(2) The class of groups of cofinality $\leq \omega$;

(3) The class of groups which are not Cayley bounded;

(4) The class of all non-trivial free products with amalgamation (or HNN-extensions);

(5) The class of groups having homomorphisms onto \mathbb{Z} ;

(6) The class of groups which do not have property **FA** (i.e. with actions on simplicial trees without fixed points).

Dfntns. G is Cayley bounded if for every $U \subset G$ with $\langle U \rangle = G$, there exists $n \in \omega$ such that $G \subseteq (U \cup U^{-1} \cup \{1\})^n$.

A group is *strongly bounded* if it is Cayley bounded and cannot be presented as the union of a strictly increasing chain $\{H_n : n \in \omega\}$ of proper subgroups (i.e. has *cofinality* $> \omega$).

Discrete groups

Theorem. The following classes of groups are bountiful (they are reducts of axiomatizable classes in $L_{\omega_1\omega}$):

(1) The complement of the class of strongly bounded groups;

(2) The class of groups of cofinality $\leq \omega$;

(3) The class of groups which are not Cayley bounded;

(4) The class of all non-trivial free products with amalgamation (or HNN-extensions);

(5) The class of groups having homomorphisms onto \mathbb{Z} ;

(6) The class of groups which do not have property **FA** (i.e. with actions on simplicial trees without fixed points).

Dfntns. G is Cayley bounded if for every $U \subset G$ with $\langle U \rangle = G$, there exists $n \in \omega$ such that $G \subseteq (U \cup U^{-1} \cup \{1\})^n$.

A group is *strongly bounded* if it is Cayley bounded and cannot be presented as the union of a strictly increasing chain $\{H_n : n \in \omega\}$ of proper subgroups (i.e. has *cofinality* $> \omega$).

Remark.

If G is a Polish group then G is topologically Cayley bounded if for every analytic generating subset $U \subset G$ there exists $n \in \omega$ such that every element of G is a product of n elements of $U \cup U^{-1} \cup \{1\}$.

Ch.Rosendal: For Polish groups topological Cayley boundedness together with *uncountable topological cofinality* (i.e. *G* is not the union of a chain of proper open subgroups) is equivalent to property **OB**.

Remark.

If G is a Polish group then G is topologically Cayley bounded if for every analytic generating subset $U \subset G$ there exists $n \in \omega$ such that every element of G is a product of n elements of $U \cup U^{-1} \cup \{1\}$. Ch.Rosendal: For Polish groups topological Cayley boundedness together with uncountable topological cofinality (i.e. G is not the union of a chain of proper open subgroups) is equivalent to property **OB**.