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Marked Groups

Let G be a group and S = (s1, s2, . . . , sk) be an ordered set of (not
necessarily distinct) generators of G . The pair (G , S) is called a
k-marked group.

Two k-marked groups (G ,S) and (H,T ) are equivalent if the map
si 7→ ti extends to an isomorphism from G to H.

Let Mk denote the set of k-marked groups up to this equivalence.

Each marked group determines a (labeled) Cayley graph Cay(G ,S),
whose vertex set is G and edges are given by (g , gsi ) with label i .

(G ,S) and (H,T ) are equivalent if and only if Cay(G ,S) and
Cay(H,T ) are isomorphic as labelled graphs.
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Topology on Mk

Let B(R,Cay(G ,S)) denote the ball of radius R (around the
identity) in the graph Cay(G ,S).
Define a metric on Mk by:
d((G , S), (H,T )) = 2−R where R is the largest integer such that
B(R,Cay(G , S)) and B(R,Cay(H,T )) are isomorphic as labelled
graphs.

d((G ,S), (H,T )) ≤ 2−R

⇐⇒

(G ,S) and (H,T ) have the same relations of length ≤ 2R + 1

⇐⇒

si 7→ ti extends to a bijection
φ : B(R,Cay(G , S))→ B(R,Cay(H,T )) such that
φ(gh) = φ(g)φ(h) where |g |S + |h|S ≤ R.
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The Chabauty Topology

Let Fk be the free group with basis X = {x1, . . . , xk}.

Given two subsets A,B ⊂ Fk let

m(A,B) = max{n | A∩B(n,Cay(Fk ,X )) = B∩Cay(n,Cay(Fk ,X ))}

This gives a metric on 2Fk given by ρ(A,B) = 2−m(A,B) making
2Fk compact and totally disconnected.

Sets of the form OA,B = {Y ⊂ Fk | A ⊂ Y ,B ∩ Y = ∅} where
A,B are finite subset of Fk form a basis for the topology generated
by this metric.

The set N (Fk) of normal subgroups of Fk is closed in 2Fk .

For (G , S) ∈Mk , let N(G,S) be the kernel of the map Fk → G ,
xi 7→ si .

d((G , S), (H,T )) ≤ 2−R ⇐⇒ ρ(N(G,S),N(H,T ) ≤ 2−(2R+1)
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The Chabauty Topology

It follows that the map Mk → N (Fk) , (G ,S) 7→ N(G,S) is a
homeomorphism with inverse N 7→ (Fk/N,X ) (where X is the
image of X in Fk/N).

So Mk is a compact and totally disconnected space.

It has isolated points, for example if G is a finite group (G ,S) is an
isolated point.

The marked groups (G ,S), for G a finitely presented group, are
dense in Mk :

If 〈s1, . . . , sk | r1, r2, r3, . . .〉 is an infinitely presented group
then the marked groups 〈s1 . . . , sk | r1, . . . , rn〉 converge to
〈s1, . . . , sk | r1, r2, r3, . . .〉 in Mk .
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Neighbourhood of a finitely presented group
Let p : Fk → G is a surjective homomorphism. The map

p∗ : N (G)→ N (Fk),N 7→ p−1(N)

is easily seen to be injective and continuous.

Also, L ∈ Im(p∗) if and only if Ker(p) ≤ L.

Proposition
Im(p∗) is open if and only if Ker(p) is finitely generated as a
normal subgroup of Fk (i.e., G is finitely presented)

As a corollary, we have the following:

Corollary
If G is finitely presented then (G , S) ∈Mk has a neighbourhood
consisting of (marked) quotients of G.
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An example G = Z o Z
Given a finitely generated group G , if G is a limit of a sequence of
groups which cannot be quotients of G , then G cannot be finitely
presented.
Let G = Z o Z = (

⊕
Z)o Z =

〈
s, t | [s, st i ], i ≥ 1

〉
let

Gn =
〈

s, t | [s, st i ], 1 ≤ i ≤ n
〉

so that limn→∞ Gn = G . Another
presentation of Gn is〈

s0, s1, . . . , sn, t | [si , sj ], st
k = sk+1, 0 ≤ k ≤ n − 1

〉
Hn = 〈s0, . . . , sn〉 ≤ Gn is free abelian. Let
Kn = 〈s0, . . . , sn−1〉 ≤ Gn and Ln = 〈s1, . . . , sn〉 ≤ Gn. The map
ψn : Kn → Ln, si 7→ si+1 gives an isomorphism and the group Gn is
the HNN extension corresponding to (Hn, ψn : Kn → Hn).
Since both Kn and Ln are proper subgroups of Hn, it follows from
Britton’s Lemma that the HNN extension Gn contains a
non-abelian free subgroup.
Since G is solvable, it follows that G is not finitely presented. 8 / 49



Dependence on the marking

Proposition
Let G be a group and S = (s1, . . . , sk) and T = (t1, . . . , tn) be two
generating sets of G. Then, there are neighborhoods, U of (G ,S)
in Mk and V of (G ,T ) in Mn and a homeomorphism ϕ : U → V ,
such that ϕ(G , S) = (G ,T ) and ϕ preserves isomorphism.

Proof. Let p : Fk → G , p(xi ) = si and q : Fn → G , q(yj) = tj .
Let wj ∈ Fk such that p(wj) = tj and vi ∈ Fn such that q(vi ) = si .
Define γ : Fk → Fn, xi 7→ vi and δ : Fn → Fk , yj 7→ wj .
U = {N E Fk | δγ(xi )x−1

i ∈ N} and V = {H E Fn | γδ(yj)y−1
j ∈ H} are

open subset of N (Fk) and N (Fn) respectively.
Since p ◦ δ = q and q ◦ γ = p we have N(G,S) ∈ U and N(G,T ) ∈ V .
δ∗ : U → V and γ∗ : V → U are inverse of each other.
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Residual properties

Let P be a property of groups. A group is called fully residually
P, if for any distinct elements g1, . . . , gn of G , there exists a
surjective homomorphism φ : G → H onto a group H with
property P, such that φ(g1), . . . , φ(gn) are distinct.

Proposition
Let G be a finitely generated fully residually P group. Then G is a
limit of groups with property P.

In particular, since residually finite groups are fully residually finite,
every finitely generated residually finite group is a limit of finite
groups.

The converse of this is not true.

The group Symf (Z)o Z is a limit of finite groups but is not
residually finite (it contains and infinite simple group).
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LEP groups

Let P be a property of groups. A group G is called locally
embeddable into P groups (LEP in short) if for every finite
subset E ⊂ G , there exists a function φ : G → H onto a group H
with property P, such that φ is injective on E and for all g , h ∈ E
we have φ(gh) = φ(g)φ(h).

Proposition
A finitely generated group is LEP if and only if it is a limit of
groups with property P.

A finitely presented group is fully residually P if and only if it is
LEP.

Proof. The first assertion is clear. The second follows from the
fact that a finitely presented group has a neighbourhood of
quotients.
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Open and Closed Properties

The set of abelian groups is both open and closed.

The set of nilpotent groups of nilpotency class at most d is
both open and closed.

The set of nilpotent groups is open but not closed since free
groups are residually finite p for any prime p.

The set of solvable groups of class at most d is closed but not
open.

The set of solvable groups is neither closed nor open (Z o Z is
a limit of non-solvable groups.).

The set of amenable groups is neither closed nor open.

The set of groups with Kazhdan’s property (T ) is open.
(Shalom, 2000).
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Isolated Groups
We say a finitely generated group G is isolated, if some
(equivalently every) marking (G , S) is isolated in Mk .
Finite groups and finitely presented simple groups are examples of
isolated groups.
A group G is called finitely discriminable if there is a finite set
F ⊂ G \ {1} such that, every non-trivial normal subgroup contains
an element of F .
Such a subset F is called a finite discriminating subset of G .

Proposition
A group G is finitely discriminable if and only if the trivial
subgroup {1} is isolated in N (G).

Proof. F is a finite discriminating subset if and only if
O∅,F = {{1}}.
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Isolated groups

Theorem (Grigorchuk 2005, Cornulier,Guyot,Pitsch 2007)
A group G is isolated if and only if it is finitely presented and
finitely discriminable.

Proof. Let G be finitely presented and finitely discriminable with a finite
discriminating set E . Suppose G is not isolated and Gn is a sequence of
proper homomorphic images of G converging to G . If E ⊂ B(N,Cay(G))
then for large n, B(N,Cay(G)) embeds into B(N,Cay(Gn)). So for large
n, Ker(G → Gn) ∩ E is empty, contradicting the fact that E is a
discriminating set.

Conversely, if G is isolated then clearly it is finitely presented. If G is
isolated then N(G,S) must be isolated in N (Fk) and hence {1} must be
isolated in N (G). Therefore G is finitely discriminable.
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Isolated groups

Proposition (CGP, 2007)
Finitely discriminable groups are dense in Mk .

Proof. Suppose G is infinite and for each finite subset E ⊂ G \ {1},
select a normal subgroup NE C G maximal among normal subgroups
intersecting E trivially. The image of E in G/NE is a finite discriminating
set. Since

⋂
NE = 1, we see that the groups G/NE accumulate to G .

Theorem (CGP, 2007)
An isolated group has solvable word problem.

Proof. Let < X | r1, . . . , rm > be a finite presentation of G and let w be
a word in FX . Also let E ⊂ FX \ N be a finite discriminating subset.
Given w ∈ FX , enumerate all the consequences of r1, . . . , rm and all the
consequences of w , r1, . . . , rm. If w appears in the first list then w = 1 in
G , if some element of E appears on the second list then w 6= 1 in G .
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Isolated groups

Corollary
The class of isolated groups is not dense.

Proof. By a theorem of C.F.Miller III (1981), there exists a
non-trivial finitely presented group G such that the only quotient
of G with solvable word problem is the trivial group. So, G is not a
limit of groups with solvable word problem, in particular is not a
limit of isolated groups.

Theorem (CGP, 2007)
Every finitely generated group is a a quotient of an isolated group.

There exists an isolated 3-solvable group which is non-Hopfian.

Note that nilpotent groups and 2-solvable groups are residually
finite and hence are not isolated unless they are finite.
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Isolated groups

Open questions:

Is every finitely generated group with solvable word problem a limit
of isolated groups?

Is every hyperbolic group a limit of isolated groups?

Is every solvable group a limit of isolated groups?
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Cantor-Bendixson rank and condensation

For a topological space X , let X ′ denote its set of accumulation
points.

For any ordinal α define X (α) inductively by
X (0) = X ,X (α+1) =

(
X (α)

)′
and X (λ) =

⋂
β<λ X (β) for λ limit

ordinal.

If X is a Polish space, for some countable ordinal α0, X (α0) = X (α)

for all α ≥ α0.

The set X (α0) is called the condensation part of X (or, the
perfect kernel of X ) it will be denoted by Cond(X ).

The least such α0 is called the Cantor-Bendixson rank of X .

Points in Cond(X ) are called condensation points.

x ∈ Cond(X ) ⇐⇒ every neighbourhood of x is uncountable.
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Cantor-Bendixson rank and condensation

The Cantor-Bendixson Rank of an element x ∈ X \ Cond(X ) is
sup{α | x ∈ X (α)}.

Elements of Cantor-Bendixson rank 0 are isolated points of X ,
elements of rank 1 are points which are not isolated but isolated
among non-isolated points etc.

Cond(X ) = ∅ ⇐⇒ X is countable, and for a compact metric
space X , Cond(X ) is homeomorphic to the Cantor set if it is not
empty.

Hence for each k ≥ 2, the condensation part ofMk is a Cantor set.

A finitely generated group G will be called a condensation group
if some (and hence all) marking (G , S) is in the condensation part
of the corresponding space Mk .

The Cantor-Bendixson rank of G is the the Cantor-Bendixson rank
of some marking (G , S) in the corresponding space Mk .
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Cantor-Bendixson rank and condensation

Groups with CB rank 0 are isolated groups.

An infinite group G is called just-infinite, it every proper quotient
of G is finite.

Finitely presented, residually finite just-infinite groups have CB
rank 1.

CB rank of Zn is n.

Let G be a polycyclic group. The number of infinite factors in a
subnormal series is called the Hirsch length of G .

Proposition (Cornulier, 2011)
If G is a finitely generated nilpotent group. Then the
Cantor-Bendixon rank of G is equal to the Hirsch length of G.
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Cantor-Bendixson rank of Mk

Question (Grigorchuk): What is the Cantor-Bendixson rank of
Mk? Does it depend on k?

Theorem (Cornulier, 2011)
For every α < ωω, there exists a finitely presented, 2-generated
metabelian-by-finite group G with Cantor-Bendixson rank α.

Therefore, the Cantor Bendixson rank of Mk is ≥ ωω.
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Condensation Groups

Theorem (Bieri,Cornulier,Guyot,Strebel, 2014)
Every finitely generated group with a normal, non-abelian free
subgroup is a condensation group.

Therefore all non-elementary hyperbolic groups are condensation
groups.

Theorem (Cornulier, 2011)
Let G and H be finitely generated groups with H 6= {1} and G
infinite. Then the wreath product H o G = HG o G is a
condensation group.
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Groups with a minimal presentation
For a subset A ⊂ G let 〈〈A〉〉 denote the normal subgroup
generated by A.
A presentation 〈X | R〉 is called minimal if for all r ∈ R we have
r /∈ 〈〈R \ {r}〉〉.

Proposition
Let G = 〈X | r1, r2, . . .〉 be an infinite minimal presentation. Then
the group determined by this presentation is a condensation group.

Proof.
Let B = B(2−N , (G ,X )) be a ball of radius 2−N around (G ,X ).
Let A = {w ∈ Fk | |w | ≤ 2N + 1 and w = 1 in G}. Choose
M = M(N) ∈ N large enough so that A ⊂ 〈〈r1, r2, . . . , rM〉〉. For
any subset U ⊂ N such that {1, 2, . . . ,M} ⊂ U, let (GU ,X ) be the
group 〈X | ri , i ∈ U〉. Clearly all (GU ,X ) ∈ B and since the initial
presentation is minimal all of them are distinct marked groups.
Hence B is uncountable.
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Groups without a minimal presentation

Theorem (Bieri,Cornulier,Guyot,Strebel, 2014)
There exists infinitely presented groups with Cantor-Bendixson
rank 1. Moreover, they can be chosen to be nilpotent-by-abelian.

Hence there exists groups without a minimal presentation.
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Some Generic Properties
Let Hk be the closure of all non elementary, hyperbolic groups in
Mk .

Theorem (Champetier, 2000)
There exists a Gδ dense subset Y ⊂ Hk which consist of groups
which are infinite and torsion.

Let Htf
k be the closure of all non elementary, torsion-free

hyperbolic groups in Mk .

Theorem (Champetier, 2000)
There exists a Gδ dense subset Y ⊂ Htf

k which consist of groups
which are

torsion free, perfect and having no non-trivial finite quotients
of exponential growth and are non-amenable
do not contain non-abelian free groups
has Kazhdan’s property (T )
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Rooted trees and their automorphisms

Let X = {0, . . . , d − 1} and let X ∗ be the set of all finite words
over X .

X ∗ is in bijection with the vertices of a rooted d-ary tree.

Let Aut(X ∗) be the group of automorphisms of the tree.

Given g ∈ Aut(X ∗) and u ∈ X ∗, the section of g at u is the
automorphism gu uniquely determined by

g(uv) = g(u)gu(v) for all u, v ∈ X ∗

This gives an isomorphism

Aut(X ∗)→ Sym(X )n Aut(X ∗)d

g 7→ πg (g0, . . . , gd−1)

Where πg is the permutation given by the action of g on X .
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Self-similar Groups
A subgroup G ≤ Aut(X ∗) is called self-similar if for every g ∈ G
and for every u ∈ X ∗, gu ∈ G .
If G is self-similar we have an embedding

G → Sym(X )n Gd

Let S = {s1, . . . , sm} be a list of symbols and let π1, . . . , πm ∈ Sd .
Consider the system

s1 = π1(s1
0 , . . . , s1

d−1)
...

...
...

sm = πm(sm
0 , . . . , sm

d−1)
where s i

j ∈ S.
Such a system (called a wreath recursion) defines a unique set of
m automorphisms of X ∗.
Since (s i )j = s i

j the group G = 〈S〉 will be self similar.
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Automata

A (Mealy) automaton is a tuple (S,X , τ, λ) where

S is a set called the set of states

X is a set called the alphabet

τ : S × X → S is a function called the transition function

λ : S × X → X is a function called the output function

The automaton is called invertible if the functions x 7→ λ(s, x) are
bijective for all s ∈ S.

Automata usually are given by their Moore diagrams:

s x |λ(s,x)−→ τ(s, x)
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Groups generated by automata
Let X = {0, 1} and consider the wreath recursion

a = (01) (b, e)
b = (a, e)
e = (e, e)

The corresponding Moore diagram is:

ba

0 | 1

1 | 0

e

0 | 0

1 | 1

0 | 0

1 | 1

The group generated by this automaton B = 〈a, b〉 is called the
Basilica group.
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The Grigorchuk group

G = 〈a, b, c, d〉
a = (01) (e, e)
b = (a, c)
c = (a, d)
d = (e, b)

d c b

a

1

1

0
0

1

0

1

0 | 10,1
p

e

1 | 0
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The family of Grigorchuk groups

Let Ω = {0, 1, 2}N.

Let σ : Ω→ Ω be the shift σ(ω1ω2 . . .) = ω2ω3 . . .

Let
β(0) = a β(1) = a β(2) = e
ζ(0) = a ζ(1) = e ζ(2) = a
δ(0) = e δ(1) = a δ(2) = a

For each ω ∈ Ω define the automorphisms of the binary tree:

a = (01) (e, e)
bω = (β(ω1), bσω)
cω = (γ(ω1), cσω)
dω = (δ(ω1), dσω)

and let Gω = 〈a, bω, cω, dω〉.

The group G is isomorphic to the group G012012...
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The family of Grigorchuk groups

We have an embedding

Gω → Sym({0, 1})n G2
σω

Let Sω = (a, bω, cω, dω) so that {(Gω, Sω) | ω ∈ Ω} ⊂ M4.

let Ω0 ⊂ Ω be the subset of eventually constant sequences.

Proposition (Grigorchuk, 1984)
{(Gω, Sω) | ω ∈ Ω} is not closed in M4. Replacing Gω, ω ∈ Ω0
with the appropriate limits, one gets a compact subset
{(G̃ω, S̃ω) | ω ∈ Ω} ⊂ M4, so that (G̃ω, S̃ω) = (Gω,Sω) for
ω ∈ Ω \ Ω0.

The map Ω→ {(G̃ω, S̃ω) | ω ∈ Ω} given by ω 7→ (G̃ω, S̃ω) is a
homeomorphism.
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Growth of groups and amenability

Let G be a group and S a finite generating set.

The growth function of G with respect to S is the the function

γ(G,S)(n) = |B(n,Cay(G ,S))|

For two monotone functions f1, f2, let f1 � f2 if there exists C > 0
such that f1(n) ≤ f2(Cn) for all n. Let f1 ∼ f2 if f1 � f2 and f2 � f1.

If S and T are two generating sets of G we have γ(G,S) ∼ γ(G,T ).

The growth function γG of G is the equivalence class of its ∼
growth functions.
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Groups of polynomial growth

G has polynomial growth if γG is equivalent to a polynomial.

Theorem (⇐ Milnor, Wolf, Bass, Guivarch 68-71, ⇒ Gromov, 81)
A group has polynomial growth if and only if it is nilpotent by
finite.

Theorem (Shalom,Tao, 2010)
Let G be a finitely generated group with generating set S. If
γ(G,S)(n) ≤ nc(log log n)c for some n > 1/c where c > 0 is an
absolute constant, then G is nilpotent by finite.
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Groups of exponential growth
G has exponential growth if γG ∼ en.
Clearly non-abelian free groups have exponential growth and since
every group is quotient of a free group, every group has at most
exponential growth.
A sufficient condition for a group to have exponential growth is
that it contains a free semi-group of rank 2.
The Basilica group B contains a free semi-group of rank 2.
Free Burnside groups (of sufficiently large exponent) have
exponential growth, and clearly do not contain free semi-groups.

Theorem (Milnor, Wolf, 1968)
A solvable group either is nilpotent by finite or contains a free
semi-group of rank 2.

Thus, by Tits alternative, a finitely generated linear group has
either polynomial growth or exponential growth.
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Amenable groups
A group G is called amenable if there is a finitely additive,
invariant probability measure on 2G .

That is, there exists
µ : 2G → [0, 1]

such that µ(G) = 1, µ(A ∪ B) = µ(A) + µ(B) for A ∩ B = ∅ and
µ(gA) = µ(A) for all g ∈ G and A ⊂ G .

Theorem (Folner, 1955)
A countable group G is amenable if and only if there exists a
sequence of finite subsets Fn ⊂ G such that lim

n→∞
|gFn∆Fn|
|Fn|

= 0 for
all g ∈ G.

Corollary
Groups with sub-exponential growth are amenable.
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Amenable groups

Let AG denote the class of amenable groups.

Theorem (Von Neumann, 1929)
AG is closed under taking subgroups, quotients, extensions and
directed unions.

The free group F2 is not amenable.

Let NF denote the class of groups which do not contain a
non-abelian free subgroup. We have AG ⊂ NF .

Von Neumann problem: Is AG = NF?

No. Olshanskii 1980, Adian 1982, Olshanskii+Sapir, 2003 , Monod
2013, Lodha, 2014.
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Elementary amenable groups

Let EG be the smallest class of group which contains finite and
abelian groups and is closed under the taking subgroups, quotients,
extensions and directed unions. This class is called the class of
elementary amenable groups.

Day’s problem: Is EG = AG?

Theorem (Chou, 1980)
Every torsion group in EG is locally finite.

Every finitely generated group in EG has either polynomial or
exponential growth.
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Groups of intermediate growth

A group G has intermediate growth if nd � γG for all d and
γG � en.

Question: (Milnor, 1968) Are there groups with intermediate
growth?

Theorem (Grigorchuk, 1983)
The group G is an infinite 2-group and has intermediate growth.

Thus, EG ( AG
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Subexponentially amenable groups

Let SG be the smallest class of groups containing all groups of
sub-exponential growth and closed under taking subgroups,
quotients, extensions and directed unions. This class is called the
class of subexponentially amenable groups.

Question (Grigorchuk, 1998): Is SG = AG?

Theorem (Grigorchuk, Zuk, 2002)
The Basilica group B is not subexponentially amenable.

Theorem (Bartholdi, Virag, 2005)
The Basilica group B is amenable.
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Isolated groups in AG \ EG
Conjecture (Stepin): For finitely generated groups, EG is dense in AG.

Theorem (Lysenok, 1985)
G has the following infinite recursive presentation〈

a, b, c, d | a2, b2, c2, d2, bcd , θi ((ad)4), θi ((adacac)4), i ≥ 0
〉

where θ : a 7→ aca, b 7→ c, c 7→ d , d 7→ b

θ induces an injective map θ : G → G. Let G be the HNN extension of
(G, θ).

Theorem (Grigorchuk, 1998, Sapir, Wise, 2002)

G is a finitely presented amenable group.

Every proper quotient of G is metabelian.

It follows that G is an isolated group in AG \ EG.
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Growth of Grigorchuk groups
Recall, Ω = {0, 1, 2}N and Ω0 is the set of eventually constant
sequences.

Let Ω∞ be the set of sequences in which 0, 1, 2 appear infinitely
often. Let γω denote the growth function of the group Gω.

Theorem (Grigorchuk, 1984)
If ω ∈ Ω∞ then Gω is a 2-group.

If ω ∈ Ω \ Ω0 then Gω has intermediate growth.

If ω ∈ Ω0 then Gω has exponential growth.

For every ω ∈ Ω, e
√

n � γω.

There is an uncountable subset Λ ⊂ Ω such that the functions
{γω | ω ∈ Λ} are incomparable with respect to �.

For any function f such that f ≺ en, there exists ω ∈ Ω \ Ω0 for
which γω � f .
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Growth of Grigorchuk groups

Theorem (Grigorchuk, ’84, Bartholdi, Sunic, ’01, Muchnik, Pak, ’01)
If there exists a number r such that every subword of ω of length r
contains all the symbols {0, 1, 2} then γω � enα for some
0 < α < 1 depending only on r .

Theorem (Bartholdi, 1998, 2001, Leonov, 2001)

If ω = (012)∞ ∈ Ω (i.e., Gω = G), enα0 � γω � enθ0 , where
α0 = 0.5157, θ0 = log(2)/ log(2/x0) and x0 is the real root of the
polynomial x3 + x2 + x − 2 (θ0 ≈ 0.7674).

Theorem (Erschler, 2004)

If ω = (01)∞ ∈ Ω, then exp
(

n
log2+ε n

)
� γω(n) � exp

(
n

log1−ε n

)
for

any ε > 0.
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Generic growth of Grigorchuk groups

Let (X , µ) be a probability space and T : X → X be a measure
preserving a transformation. µ is called ergodic with respect to T ,
if T−1(A) = A implies µ(A) = 0 or 1, for any measurable A ⊂ X .

Theorem (B., Grigorchuk, Vorobets, 2014)
Suppose µ is a Borel probability measure on Ω that is invariant
and ergodic relative to the shift transformation σ : Ω→ Ω.

a) If the measure µ is supported on Ω∞, then there exists
α = α(µ) < 1 such that γω � enα for µ-almost all ω ∈ Ω.

b) In the case µ is the uniform Bernoulli measure on Ω, one can
take α = 0.999.
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Generic growth of Grigorchuk groups

Let f1, f2 be two functions such that f1 ≺ f2 ≺ en. G is said to
have oscillating growth of type (f1, f2) if f1 � γG and γG � f2
(i.e., neither f1 � γG nor γG � f2).

Theorem (B., Grigorchuk, Vorobets, 2014)
For any θ > θ0 ≈ 0.7674 and any function f satisfying
enθ ≺ f (n) ≺ en, there exists a dense Gδ subset
Z ⊂ {(Gω, Sω) | ω ∈ Ω} ⊂ M4 such that any group in Z has
oscillating growth of type

(
enθ

, f
)

.
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Groups of intermediate growth with exact growth functions

The first examples of groups with intermediate growth whose
growth functions are exactly known are constructed by Bartholdi
and Erschler.

Theorem (Bartholdi, Erschler , 2012)

There is a group with growth function ∼ enθ for θ in a dense
subset of (θ0, 1).

(θ0 ≈ 0.7674).
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Finitely presented covers

Let us say a group G covers another group H if H is a
homomorphic image of G .

Let P be a property of groups.

Question: Does every finitely generated group with property P
have a finitely presented cover with property P?

Proposition
If G is a limit of a sequence Gn and H is a finitely presented cover
of H, then H is a cover of Gn for large n.

We have seen that the group Z o Z is a limit of groups with free
subgroups. Thus, the question has negative answer if P is
solvability or amenability.

The question has a positive answer for the Kazhdan’s property
(T ), by a result of Shalom, 2000.
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Finitely presented covers

One of the main questions open regarding groups of intermediate
growth is the following:

Question: Is there a finitely presented group of intermediate
growth?

Question: What kind of finitely presented covers can a group of
intermediate growth have?

A group is called large if it has a finite index subgroup mapping
onto a non-abelian free group. Large groups have non-abelian free
subgroups.

Theorem (B., De la Harpe, Grigorchuk, 2013)
The groups G,B,Gω, ω ∈ Ω are limits of large groups. Hence any
finitely presented cover of these groups is large.
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Closure of the group G

Let us say that a group G preforms another group H, if for some
marking the marked group (H,T ) is a limit of a sequence of
markings (G ,Sn) of G .

In other words, the closure of marked groups isomorphic to G
contains a marking of H.

Theorem (Bartholdi, Erschler, 2013)
The group G preforms the free group F3.
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