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1 Lecture I: Introduction, model theory of sim-
ple pseudofinite groups

Pseudofinite groups and fields.

Convention: We let Lgp := (·,−1, 1) be the first order language of groups.
Unless otherwise mentioned, any first order language L is assumed to be count-
able.

Definition 1.1. A pseudofinite group is an infinite group which satisfies every
first order sentence of Lgp which is true of all finite groups.

N.B. The sentence (for abelian groups, so written additively) expressing ‘if
the map x 7→ px is injective then it is surjective’ is true in all finite groups but
false in the p-adic integers (Zp,+).

Remark 1.2. A group G is pseudofinite if and only if it is elementarily equiv-
alent to a non-principal ultraproduct of distinct finite groups.

In fact, the above definition, and this remark, make sense with ‘group’ re-
placed by ‘field’, ‘ring’, ‘graph’, L-structure, etc.

We briefly review ultraproducts. Fix a countable language L, and a family
{Mi : i ∈ ω} of L-structures. Let U be a non-principal ultrafilter on ω. (An
ultrafilter on ω is a family of subsets of ω closed under finite intersections and
supersets, containing ω and omitting ∅, and maximal subject to this; it is prin-
cipal if it has the form {X ⊆ ω : a ∈ X} for some a ∈ ω, and is non-principal
otherwise.) Define M∗ := Πi∈ωMi (the Cartesian product of the Mi.) We say
that some property P holds almost everywhere or for almost all i if

{i : P holds for Mi} ∈ U .

For a = (ai)i∈ω and b = (bi)i∈ω, put a ∼ b if {i : ai = bi} ∈ U . Then ∼ is an
equivalence relation. Put M = M∗/ ∼. Define relations etc. of L to hold of a
tuple of M if they hold coordinatewise (in Mi) for almost all i. This is well-
defined, and the resulting M is called the ultraproduct of the Mi with respect
to U , and here denoted Πi∈ωMi/U . The key fact about ultraproducts is
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Theorem 1.3 (Los’s Theorem). In the above notation, for any sentence σ,
M |= σ if and only if σ holds of Mi for almost all i.

We also remark that the ultraproduct M will be ω1-saturated: any type over
any countable subset of M will be realised in M .

Our goals in this and the next section are the following.
(I) Describe ‘tame’ pseudofinite groups.
(II) Use model theory of tame pseudofinite structures to gain information

on finite groups.

There are some well-known easily stated questions on pseudofinite groups,
still open as far as I know, e.g.

Question 1.4. Is there a finitely generated pseudofinite group?

Question 1.5. (Zilber) Can a pseudofinite group have SO3(R) (or any compact
simple real Lie group) as a quotient? More generally, it would be interesting to
identify positive sentences of Lgp which hold in all finite groups but not of all
groups.

There is a beautiful model theory of pseudofinite fields originating with Ax
in 1968.

Theorem 1.6 ([1]). A field F is pseudofinite if and only if
(i) F is perfect
(ii) F is quasifinite (that is, inside a fixed algebraic closure, F has a unique

extension of each finite degree), and
(iii) F is pseudo-algebraically closed (PAC), that is, every absolutely irre-

ducible variety which is defined over F has an F -rational point.

It is easily seen that (i) and (ii) hold of all finite fields, and are first-order
expressible ((ii) needs some work). (iii) is expressible by a conjunction of first
order sentences (this is not completely obvious) each of which, by the Lang-Weil
estimates, holds in sufficiently large finite fields, and so each must hold of any
pseudofinite field.

Ax also identified the complete theories of pseudofinite fields. If F is a field,
then Abs(F ) denotes the intersection of F with the algebraic closure of its prime
subfield.

Theorem 1.7 ([1]). If F1, F2 are pseudofinite fields, then F1 ≡ F2 (that is, they
are elementarily equivalent) if and only if F1, F2 have the same characteristic
and Abs(F1) =Abs(F2).

This, with further information in [1], was used to prove a uniform partial
quantifier elimination in finite fields (and hence in pseudofinite fields: any for-
mula φ(x̄) in the language Lrings of rings is equivalent in the theory of finite
fields to a boolean combination of sentences of the form ∃yg(x̄, y) = 0, where
g(X̄, Y ) ∈ Z[X̄, Y ]. This can be converted into a model completeness result
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after the language is expanded by constants (see [5]). It is also known that
any complete theory of pseudofinite fields has elimination of imaginaries over
constants naming an elementary submodel.

We now consider simple groups which are pseudofinite. (Warning: we con-
sider both simple groups and simple theories, and the word may occur twice in
the same sentence with both meanings!)

Theorem 1.8 (Wilson [43]). A pseudofinite group G is simple if and only if G
is a simple group of Lie type (possibly twisted) over a pseudofinite field.

Remark 1.9. Actually, in [43] the statement is just that G is elementarily
equivalent to such a group of Lie type; the assertion as given uses also work of
Ryten [38] discussed later.

Also, Ugurlu [41] has shown that one can replace ‘simple’ by ‘definably simple
of finite centraliser dimension’, that is, groups G with the property that there is
n such that for any Y ⊂ G there is Y0 ⊆ Y with |Y0| ≤ n and CG(Y ) = CG(Y0).

The proof of ⇐ is straightforward, as finite simple groups of fixed Lie type
τ are boundedly simple: there is d = d(τ) ∈ ω such that if G is such a group and
g, h ∈ G with h 6= 1, then g is a product of at most d conjugates of h and h−1.

For ⇒, Wilson first reduces to the case G ≡ ΠSi/U (a non-principal ul-
traproduct of finite simple groups Si), and then analyses the possibilities for
the Si. It is easily seen that H = Πn≥5 Alt(n)/U is not simple, since finite
alternating groups contain 3-cycles, and elements of increasingly large support,
when written as products of 3-cycles, require increasingly many 3-cycles. The
problem is that, naively, H might have an elementary substructure which is a
simple group. To eliminate such possibilities, it suffices to show that, uniformly,
H has an ∅-definable conjugacy-invariant family of elements of small support,
and also such a family of increasingly large support. Similar arguments work,
e.g., for ultraproducts of finite simple groups of increasingly large Lie rank.

The groups of Lie type each correspond to a Dynkin diagram. For twisted
groups, such as 2E6(q), 2F4(q), etc., the Dynkin diagram has a symmetry which
yields a ‘graph automorphism’ of the corresponding untwisted group, essentially
by permuting the root groups. One takes a product σ of a graph automorphism
and an appropriate ‘field automorphism’ (arising from a power of the Frobenius),
and, roughly speaking, takes the fixed points of σ in the untwisted group (this
description is not accurate – see [3] for details.)

Stable theories and generalisations.
We consider here stable theories, and the (orthogonal) generalisations simple

and NIP of stable. There are further notions, such as the common generalisation
NTP2 of simple and NIP, and many others, and I believe pseudofinite groups
satisfying these further properties have not been closely investigated.

Below, given a complete theory T , we let M̄ denote a ‘sufficiently saturated’
model of T .

Definition 1.10. Let T be a complete theory. A formula φ(x̄, ȳ) is unstable
(for T ) if there are āi ∈ M̄ |x| and b̄i ∈ M̄ |y| (for all i ∈ ω) such that for any
i, j ∈ ω, M̄ |= φ(āi, b̄j) if and only if i < j.
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The theory T is stable if no formula is unstable for T .

Several other conditions are equivalent to stability. For example, for A ⊂ M̄
let Sn(A) be the set of all n-types over A. Then T is λ-stable (for λ an infinite
cardinal) if for all A ⊂ M̄ with |A| ≤ λ we have |S1(A)| ≤ λ, and T is stable if
and only if it is λ-stable for some infinite λ.

A theory Y is stable if and only if there is an ‘independence relation’ A ↓C B
(read ‘A is independent from B over C’) satisfying a number of natural axioms
(suggested by linear independence in vector spaces, or algebraic independence
in fields) such as symmetry: A ↓C B ⇔ B ↓C A. One of these axioms is

local character: for any ā and B there is countable B0 ⊂ B such that ā ↓B0 B.
Another is stationarity: Given c̄ and A ⊆ B there are at most 2ℵ0 possibilities

for tp(c̄′/B) where c̄′ |= tp(c̄/A) and c̄′ ↓A B.
In a stable theory, the independence is given by non-forking (not defined here).

Definition 1.11. A formula φ(x̄, ȳ) has the tree property (with respect to T )
if for some k ∈ ω the following hold: there are āη ∈ M̄ |ȳ| for all η ∈ <ωω such
that for any η ∈ <ωω the set {φ(x̄, āηi) : i ∈ ω} is k-inconsistent (that is, any
intersection of size k is inconsistent), and for any σ ∈ ωω, the set {φ(x̄, āη) :
η restricts ω} is consistent.

The theory T is simple if no formula has the tree property.

There is a characterisation of simplicity like the above one for stability, via
an independence relation ↓, except that the ‘stationarity’ axiom is weakened to
the ‘independence theorem’, also called ‘type amalgamation’. Simplicity is a
proper generalisation of stability. Within the class of simple theories is that of
supersimple theories, characterised among simple theories by a strengthening of
the local character condition on ↓: a simple theory T is supersimple if and only
if, given any ā and B, there is finite B0 ⊆ B such that ā ↓B0 B. For supersimple
theories, there is a notion of ordinal-valued rank on definable sets (or types),
known as SU-rank, which we do not here define.

Definition 1.12. A formula φ(x̄, ȳ) has the independence property (for T ) if
there are b̄i ∈ M̄ |ȳ| for i ∈ ω such that for every S ⊂ ω there is āS ∈ M̄ |x̄| such
that, for each i, we have φ(āS , b̄i) if and only if i ∈ S.

A complete theory T has the independence property if some formula has
the independence property for T . We say T is NIP if it does not have the
independence property. NIP theories are also called dependent theories.

Example 1.13. Examples of ω-stable theories include algebraically closed fields,
and (hence), for an algebraically closed field K, the K-rational points of an alge-
braic group defined over K. Separably closed fields which are not algebraically
closed are stable but not ω-stable. Abelian groups (and more generally, mod-
ules, in the usual language of modules over a fixed ring) are stable, as are free
groups.

Any o-minimal structure is NIP but not stable, as is Qp, the theory of
any non-trivially valued algebraically closed field (in a language defining the
valuation), and many other henselian valued fields.
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Pseudofinite fields are not stable. For example, if F is a pseudofinite field
of odd characteristic, and φ(x, y) is the formula ∃z(z2 = x − y), then φ has
the independence property. However, pseudofinite fields have simple theory. In
fact, more is true: they are supersimple (a strengthening of simple) of finite SU-
rank. The well-known theory ACFA (algebraically closed fields equipped with
a generic automorphism) has all its completions supersimple, of SU-rank ω.
Groups such as PSLn(F ) (where F is a pseudofinite field) will have supersimple
finite rank theory.

Suppose that G is a group definable in an NIP theory T , and let φ(x, ȳ) be
any formula. By the Baldwin-Saxl Theorem ([2], see also [42]), there is nφ ∈ ω
such that any finite intersection of nφ definable subgroups of G (i.e. a subgroup

of form
⋂t
i=1 φ(G, āi), where the φ(G, āi) are subgroups of G) is an intersection

of at most nφ of them. If in addition T is stable, then (essentially because T
cannot have the ‘strict order property’), this ensures that G has the descending
chain condition on intersections of φ-definable subgroups of G – there is a fixed
bound on the lengths of such chains. In particular, we may apply this to the
formula φ(x, y) expressing xy = yx. If T is NIP then there is nφ such that for
any finite F ⊂ G there is F0 ⊂ F with |F0| ≤ nφ such that CG(F ) = CG(F0),
and if in addition G is stable then any chain of centralisers has bounded length.

Theorem 1.14. (1) (Easy consequence of [5].) Any pseudofinite field has su-
persimple rank 1 theory.

(2) (From [16], resting on earlier work of Chatzidakis, Hrushovski and Pe-
terzil (see [6] and [7]) Let p be a prime, and let m,n ∈ ω with m ≥ 1, n > 1,
and (m,n) = 1. Let Cm,n,p be the class of finite difference fields (fields equipped

with an automorphism) of form (Fpkn+m ,Frobk) where k ∈ ω. Then any non-
principal ultraproduct of Cm,n,p has supersimple rank 1 theory. For us, this has
particular interest for (m,n, p) = (1, 2, 2) and (m,n, p) = (1, 2, 3).

Corollary 1.15 (Hrushovski). Any simple pseudofinite group has supersimple
finite rank theory.

This follows from Theorem 1.14 because the groups are interpretable in the
corresponding fields or difference fields. In fact, more is true, namely

Theorem 1.16 (Ryten). Any family of finite simple groups of any fixed Lie
type (other than Suzuki and Ree groups) is uniformly bi-interpretable (over pa-
rameters) with the corresponding family of finite fields.

(ii) The Ree groups 2F4(22k+1) and the Suzuki groups 2B2(22k+1) are uni-

formly parameter bi-interpretable with the difference fields (F22k+1 , x 7→ x2k

),
and the Ree groups 2G2(32k+1) are uniformly parameter bi-interpretable with

(F32k+1 , x 7→ x3k

).

Remark 1.17. Theorem 1.16 was recently used by Nies and Tent [32] to show
that

(1) finite simple groups are log-compressible, i.e., if G is a finite simple group,
there is a sentence φ with unique model G, such that φ has length O(log|G|),
and more generally

5



(2) for any finite group G there is such a sentence φ of length O((log|G|)3).

2 Generalised stability for pseudofinite groups,
applications

We aim here to give structural results for pseudofinite groups with stable, or
more generally simple or NIP, theory. We then discuss ‘asymptotic classes’ of
groups, and some possible lines of application.

Recall that the (soluble) radical R(G) of a group G is the subgroup generated
by the soluble normal subgroups of G. Always R(G) /G, and if G is finite then
R(G) is soluble.

Theorem 2.1 ([27]). (1) Let C be a class of finite groups such that all ultra-
products of members of C are NIP. Then there is d ∈ ω such that |G : R(G)| ≤ d
for each G ∈ C.

(2) If G is pseudofinite NIP group with a fixed finite bound on the lengths of
centraliser chains (e.g. if G is stable) then G has an ∅-definable soluble subgroup
of finite index.

Remark 2.2. In (2), the conclusion is false without some assumption like that
on centralisers. A counterexample is given in Section 3 (see Remark 3.7.

The proof makes essential use of part (2) of the following theorem of Wilson.

Theorem 2.3. (1) [44] There is an sentence σ of Lgp such that if G is a finite
group then G |= σ if and only if G is soluble.

(2) [45] There is a formula ψ(x) such that if G is a finite group then ψ(G) =
R(G).

Question 2.4. Are there analogues of Theorem 2.3(1) with ‘nilpotent’ replacing
‘soluble’, and of (2) with the Fitting subgroup in place of R(G)?

Sketch Proof of Theorem 2.1. (1) Let G ∈ C. Let ψ(x) be as in Theo-
rem 2.3(2). For G ∈ C let Ḡ = G/R(G), and put S := Soc(Ḡ) (the direct
product of the minimal normal subgroups). Then S = T1 × . . .× Tk, where the
Ti are non-abelian finite simple groups.

Claim 1. There is a bound on k as G ranges through C. Indeed, for each
i pick xi ∈ Ti \ Z(Ti) and yi ∈ Ti with [xi, yi] 6= 1. For w ⊂ {1, . . . , k} put
zw = Πj 6∈wyj . Then [xj , zw] = 1⇔ j ∈ w. Hence, the NIP assumption forces a
bound on k.

Claim 2. There is a bound on the Lie rank of any Ti (or on t if Ti =
Altt). This is proved essentially as in Claim 1, as otherwise some Ti contains
increasingly large direct powers of PSL2 or of Alt4.

Claim 3. The Ti have bounded size. If this was false, then groups G ∈ C
would contain arbitrarily large finite simple groups of fixed Lie rank (by Claims
1 and 2 and the classification of finite simple groups) so some ultraproduct would
be a simple pseudofinite group, and (e.g. by Theorem 1.16) would interpret a
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pseudofinite field. But as noted in Examples 1.13, pseudofinite fields do not
have NIP theory.

By Claim 3, |S| is bounded, and it follows easily that |G : R(G)| is bounded.
(2) We may suppose that G = ΠGi/U (an ultraproduct of finite groups),

where each non-principal ultraproduct of the Gi is elementarily equivalent to
G. Thus by (1) there is a finite bound on |Gi : R(Gi)|. By stability of G and the
remarks before Theorem 1.14, there is some e ∈ ω such that every centraliser
chain in G has length at most e, and hence the same holds for any Gi. By
a result of Kukhro [20], there is a function f such that each group R(Gi) has
derived length at most f(e). It follows that R(G) (also defined by ψ) is soluble.

Example 2.5. [26]
(1) There is an ω-stable pseudofinite groupG which is not nilpotent-by-finite.

It has form (C,+) o Γ for some infinite but ‘small’ Γ ≤ (C∗, ·).
(2) The ‘Mekler construction’ gives, for any odd prime p, examples of pseud-

ofinite ω-stable groups which are nilpotent of class 2 and exponent p but not
finite-by-abelian-by-finite.

Next, we discuss pseudofinite groups with simple theory. Here, note that
the examples (even supersimple of finite rank) include simple groups of Lie
type over pseudofinite fields (by Corollary 1.15) and also, for odd primes p,
infinite extraspecial p-groups of exponent p, that is, groups G of exponent p
such that G′ = Z(G) = Φ(G) ∼= Cp, where Φ(G) is the Frattini subgroup of
G. Extraspecial p-groups have SU rank 1, and are finite-by-abelian but not
abelian-by-finite. They have infinite descending chains of centralisers, and do
not have a smallest finite index definable subgroup.

Consider a class C of finite groups with all ultraproducts of C having simple
theory. For G ∈ C, R(G) is uniformly ∅-definable (by [45]) and Soc(G/R(G)) is
a product of boundedly many non-abelian finite simple groups of bounded Lie
rank (by variants of the proofs of Claims 1 and 2 above).

Question 2.6. In this setting, must R(G) have bounded derived length, as G
ranges through C?

I suspect this question has a negative answer, but if we assume all ultraprod-
ucts of C are supersimple, then the answer is positive, by the following results
of Milliet [29], a significant strengthening of results in [13].

Theorem 2.7. If G is a pseudofinite group with supersimple theory, then R(G)
is definable and soluble (and likewise, if we assume G has finite SU-rank, then
Fitt(G) is definable and nilpotent).

Thus, if G is pseudofinite with superstable theory then G has soluble radical
R(G), and if S = Soc(G/R(G)), then S = T1 × . . . × Tk where the Ti are non-
abelian finite of pseudofinite simple groups. If S̄ denotes the preimage of S in
G then G/S̄ embeds in Aut(T1 × . . .× Tk).

We have not discussed much properties of SU-rank, but note that finite
groups have SU-rank 0, and that if G has supersimple theory of finite SU-
rank and H ≤ G is definable, than SU(G) = SU(H) + SU(G/H), where G/H

7



denotes the interpretable set of left cosets of H in G. There is some information
on supersimple pseudofinite groups of small SU-rank, namely

Theorem 2.8. (1) If G is pseudofinite supersimple of SU-rank 1 then G is
finite-by-abelian-by-finite,

(2) If G is pseudofinite supersimple of SU-rank 2 then G is soluble-by-finite.

Certain infinite (monomial) SU-rank versions of these have recently been
proved by Wagner. These proofs are without the classification of finite simple
groups, and it would be interesting to try without CFSG to recover PSL2 under
a rank 3 assumption. Using CFSG, a classification is given in [13] of structure
(G,X) which are supersimple of finite rank, with SU(X) = 1, and with the
group G acting definably and primitively on the set X.

Applications
1. First, we mention a version of the well-known ‘Zilber Indecomposability

Theorem’ for groups of finite Morley rank, itself a generalisation of a classical
result on algebraic groups.

Theorem 2.9 (Indecomposability Theorem). Let G be a group interpretable
in a supersimple finite SU-rank theory, and let {Xi : i ∈ I} be a collection of
definable subsets of G. Then there exists a definable subgroup H of G such that:

(i) H ≤ 〈Xi : i ∈ I〉, and there are n ∈ N, ε1, . . . , εn ∈ {−1, 1}, and
i1, . . . , in ∈ I, such that H ≤ Xε1

i1
. . . Xεn

in
.

(ii) Xi/H is finite for each i ∈ I.
If the collection of Xi is setwise invariant under some group Σ of definable

automorphisms of G, then H may be chosen to be Σ-invariant.

Theorem 2.10. Let Cτ be the family of finite simple groups of fixed Lie type τ
(possibly twisted), and let φ(x, ȳ) be an Lgp-formula. Then there is d = d(φ, τ)
such that if G ∈ Cτ , ā ∈ G|ȳ|, and X = φ(G, ā) satisfies |X| > d, then G is a
product of at most d conjugates of X ∪X−1.

2. Next, we recall the following result of [35]. We do not give background
on generic types.

Corollary 2.11. Let Cτ be as in Theorem 2.10, and let φi(x, ȳ) be formulas for
i = 1, 2, 3. Then there is µ ∈ Q>0 such that for any sufficiently large G ∈ Cτ
and ā1, ā2, ā3 ∈ G|ȳ|, if |φ(G, āi)| ≥ µ|G| for each i, then

φ1(G, ā1).φ2(G, ā2).φ3(G, ā3) = G.

The proof shows in addition that φ1(G,ā1).φ2(G,ā2)|
|G| → 1 as |G| → ∞. We

remark that the same result follows from Nikolov-Pyber [31], where it is rapidly
derived from a result of Gowers.

In particular, if w(x1, . . . , xd) is a non-trivial group word, then w defines a
map Gd → G by evaluation, and we denote the image of w by w(G). Then,
using a result of Larsen [21], Corollary 2.11 yields
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Theorem 2.12. Let w1, w2, w3 be non-trivial group words, and Cτ a family of
finite simple groups of fixed lie type. Then w1(G)w2(G)w3(G) = G for suffi-
ciently large G ∈ Cτ .

Remark 2.13. There has been considerable recent literature on word maps,
with much stronger results proved. For example, by [23], if w1, w2 are non-trivial
words, and G is any sufficiently large finite simple group, then w1(G)w2(G) = G.
This holds even for quasisimple groups.

3. Asymptotic classes.

Definition 2.14. Let C be a class of finite L-structures. Then C is an N -
dimensional asymptotic class if the following hold.

(i) For every L-formula φ(x̄, ȳ) where l(x̄) = n and l(ȳ) = m, there is a
finite set of pairs D ⊆ ({0, . . . , Nn} ×R>0) ∪ {(0, 0)} and for each (d, µ) ∈ D a
collection Φ(d,µ) of pairs of the form (M, ā) where M ∈ C and ā ∈Mm, so that
{Φ(d,µ) : (d, µ) ∈ D} is a partition of {(M, ā) : M ∈ C, ā ∈Mm}, and∣∣|φ(Mn, ā)| − µ|M | dN

∣∣ = o(|M | dN )

as |M | → ∞ and (M, ā) ∈ Φ(d,µ).
(ii) Each Φ(d,µ) is ∅-definable, that is to say {ā ∈ Mm : (M, ā) ∈ Φ(d,µ)} is

uniformly ∅-definable across C.

This notion was developed in dimension 1 in
The class of all finite fields is, by the main theorem of [5], a 1-dimensional

asymptotic class in the sense of [25]. Likewise, by [38] the classes of differ-

ence fields of form (F22k+1 , x 7→ x2k

) and (F32k+1 , x 7→ x3k

) are 1-dimensional
asymptotic classes. This yields

Theorem 2.15. [38] Let Cτ be the class of all finite simple groups of fixed Lie
type τ . Then Cτ is an N -dimensional asymptotic class for some N (and the
values of µ in the definition are rational).

Applications of this have not been properly explored, but for example it
could be used to obtain uniformity results for fibres of word maps for finite
simple groups of fixed Lie type.

4. We know that classes Cτ of finite simple groups of fixed Lie type are
uniformly definable in finite (difference) fields. In fact, much more is definable.

Proposition 2.16. Let Cτ be a class of finite simple groups G(q) of fixed Lie
type τ , and let V (λ) be an irreducible FqG(q)-module of restricted weight λ, with
the action of G(q) on V (λ) given by ρ(q). Then the structures (G(q), Vλ(q), ρ(q))
are uniformly definable in the field Fq or in corresponding difference fields.
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We also consider pairs (G,H) where G is a finite simple group of Lie type and
H is a maximal (proper) subgroup of G (named by a unary predicate). This is
equivalent to considering the group G together with a definable primitive action
of G on a set X, namely the set of left cosets of H in G. (A permutation group
G on X is primitive if there is no proper non-trivial G-invariant equivalence
relation on X; this is equivalent to point stabilisers being maximal subgroups.)
If G = G(q) is a simple group of Lie type and q = (q′)r, then a subfield subgroup
of G is one of the form G(q′) (so of the same Lie type), embedded naturally.
Such subgroups can be maximal if r is prime.

Theorem 2.17. [22] Let τ be a fixed Lie type, and let Cτ,d be the set of pairs
(G,H) where G is a finite simple group of Lie type τ , H is a maximal subgroup
of G, and if H is a subfield subgroup then the corresponding field extension has
degree at most d. Then

(1) the class Cτ,d is uniformly definable in the corresponding family of fields
or difference fields, that is, there are finitely many tuples of formulas which serve
(with suitable choice of parameters) to define all such pairs;

(2) any non-principal ultraproduct of such a family Cτ,d will be a pair (G∗, H∗)
with supersimple finite rank theory, such that H∗ is maximal in G∗.

The last assertion in (2) above follows from the remaining assertions, to-
gether with an argument using Theorem 2.9. This was used in [22] to give a
description of all ω-saturated pseudofinite primitive permutation groups, that is
ω-saturated pseudofinite pairs (G,H) with H maximal in G. Essentially, this is
equivalent to describing families Fd of finite primitive permutation groups G on
sets X such that, for every orbit E of G on the set X [2] of unordered 2-subsets
of X, the graph on X with edge set E is connected of diameter at most d.

3 Profinite groups with NIP theory

Recall that a profinite group is an inverse limit of finite groups, or equivalently,
is a compact totally disconnected Hausdorff topological group. In such a group,
open subgroups all have finite index, though the converse is false in general.
Profinite groups arise heavily in model theory. For example, if G is a sufficiently
saturated group definable in an NIP theory T , then the intersection Go of the
definable subgroups of G of finite index is an ∅-definable normal subgroup of
G of index at most 2ℵ0 ; the quotient G/Go has naturally the structure of a
profinite group and is an important invariant of T .

How should we view a profinite group G model-theoretically? It is a fixed
structure, but in model theory we naturally consider all models of its theory,
and other models will in general not be profinite.

There have been several approaches. One is that of Newelski [30] and Krupin-
ski [17], who consider profinite structures (G,H), where G is a profinite group
(or, more generally, some other kind of inverse limit) and H ≤ Aut(G) preserves
the inverse system, so fixes setwise each open subgroup. Another approach is
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that of Chatzidakis [4], who considers profinite groups as infinitely sorted struc-
tures, with sort n consisting essentially of the disjoint union of all the finite
quotients by open subgroups of index at most n.

In [28] we take a different approach, viewing a system of basic open subgroups
as something which should be uniformly definable (so that, for example, as
with o-minimal structures, the property of a definable function G → G being
continuous at a point is definable). So we present a profinite group G as a
2-sorted structure G = (G, I), where G is a group (with the Lgp-language on
G), (I,≤) is a partially ordered set, and there is a binary relation K ⊆ G × I
so that the family {Ki : i ∈ I} is a system of basic open subgroups of G; here,
for i ∈ I, Ki := {g ∈ G : (g, i) ∈ K}, and we write i ≤ j if and only if Ki ⊇ Kj .
We say that the profinite group G = (G, I) is full if every open subgroup of G
has form Ki for some i ∈ I. The corresponding 2-sorted language is referred to
as Lprof .

Theorem 3.1. [28] Let G = (G, I) be a full profinite group. Then Th(G) is NIP
if and only if G has an open normal subgroup N with N = P1 × . . .×Pt, where
each Pi is a compact pi-adic analytic group (for distinct primes p1, . . . , pt).

Corollary 3.2. If G = (G, I) is a full profinite group with NIP theory, then G
is strongly NIP. Furthermore, there is an NIP theory in which G is definable,
and in which the closed subgroups of G are uniformly definable.

We first discuss p-adic analytic groups. Recall first the p-adic field Qp. Fix
a prime p and define the map vp : Q → Z, where if q ∈ Q with q = pma/b
(where a, b ∈ Z with b 6= 0 and (p, a) = (p, b) = 1), we put vp(q) = m (and
vp(0) =∞). The map vp is a valuation, that is, vp(x) =∞ if and only if x = 0,
vp(xy) = vp(x)+vp(y), and vp(x+y) ≥ Min{vp(x), vp(y)}. Now for x ∈ Q define
|x|p := p−vp(x) ∈ R. The | − |p is a norm on Q, and we may complete Q with
respect to this norm in the usual way to obtain the p-adic field Qp. The map vp
extends to a valuation vp : Qp → Z ∪ {∞}. Define Zp := {x ∈ Qp : vp(x) ≥ 0},
the valuation ring (called the ring of p-adic integers). This has a unique maximal
ideal pZp, with residue field Fp. The whole valuation structure (Qp,Zp;Z, vp)
is definable in the field (Qp,+, ·). It has NIP theory, as do certain expansions
by analytic functions.

If V ⊂ Zrp is non-empty and open, and f = (f1, . . . , fs) : V → Zsp is a func-
tion, and y ∈ V , then f is analytic at y if there are F1, . . . , Fs ∈ Qp[[X1, . . . , Xr]]
for i = 1, . . . , s and h ∈ N such that fi(y + phx) = Fi(x) for each i = 1, . . . , s
and x ∈ Zrp. We say f is analytic on V if it is analytic at every point of V . If
X is a topological space, then a p-adic chart of dimension n of X is a triple
(U, φ, n) where U is an open subset of X, and φ is a homeomorphism from U
onto an open subset of Znp . The charts c = (U, φ, n) and d = (V, ψ,m) of X are
compatible if, putting W := U ∩V , the maps ψ ◦φ−1|φ(W ) and φ ◦ψ−1|ψ(W ) are
analytic on φ(V ) and φ(W ) respectively. There is a natural notion of (p-adic)
atlas on the topological space X, consisting of a covering by compatible charts,
and an equivalence relation compatibility of atlases: two atlases A and B of X
are compatible if every chart of A is compatible with every chart of B. Finally,
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a Qp-analytic manifold structure on X is an equivalence class of compatible
atlases on X, and such a structure is called a p-adic analytic manifold.

If G is a topological group, then G is a p-adic analytic group, or p-adic
Lie group, if G has the structure of a p-adic analytic manifold such that the
maps G × G → G and G → G, given by group multiplication and inversion
respectively, are analytic.

Example 3.3. Examples of compact p-adic analytic profinite groups include
(i) (Zp,+), with the open subgroups all having form pkZp for some k ∈ ω,

so indexed by ω;
(ii) SL2(Zp);
(iii) there is a natural exponential map exp defined on pZp (for p > 2 – the

argument needs adapting for p = 2). It is an isomorphism (pZp,+) → (1 +
pZp, ·), and its graph is a p-adic analytic group which is analytically isomorphic
to (Zp,+), but this isomorphism is not definable in the pure field Qp, that is,
is not semialgebraic.

The group CpwrZp can naturally be viewed as a pro-p group, but is not
p-adic analytic.

Question 3.4. Is there a compact p-adic analytic group which is not abstractly
isomorphic to a semialgebraic group? (There may be well-known examples.)

Question 3.5. How much of Theorem 3.1 holds without the assumption of
fullness?

Without the ‘full’ assumption, we can say much less, but at least have the
following. A group is prosoluble if it is an inverse limit of finite soluble groups.

Proposition 3.6. Let G = (G, I) be NIP profinite. Then G has an open prosol-
uble definable normal subgroup.

Proof. Let C = {G/Ki : i ∈ I}. Then C is a collection of finite groups
which are uniformly definable in an NIP theory, so any ultraproduct of C is
NIP. Hence, by Theorem 2.1(1), the members of C have a uniformly definable
soluble radical of bounded index. The result follows easily.

The following is an easy corollary of the proof of Theorem 3.1. There is an
ordinal valued notion of rank in NIP theories, known as dp-rank, and structures
of finite dp-rank are said to be strongly NIP.

Remark 3.7. We give an example (cf. Theorem 2.1(2)) of an NIP pseudofinite
group which is not soluble by finite. Let G = SL2(Zp), and for each k > 0 let
Gk be the open normal subgroup of G of form

Gk := {
(

1 + a b
c 1 + d

)
: a, b, c, d ∈ pkZp},

a congruence subgroup of G. Then the groups Gk are uniformly definable in the
NIP structure Qp, so the quotients G/Gk are uniformly interpretable. Let U be
a non-principal ultrafilter on ω, and put

G∗ := Πk∈ω(G/Gk)/U .
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Then G∗ is an NIP pseudofinite group. By ω1-saturation of ultraproducts, it
has a normal subgroup N such that G∗/N ∼= G. In particular, G∗ is not soluble-
by-finite.

We discuss further profinite groups, and in particular pro-p groups (inverse
limits of finite p-groups). First, if G is profinite and X ⊂ G then X̄ denotes the
topological closure of X in G. We says that G is finitely generated if there is
finite F ⊂ G such that G = 〈F 〉. The following major result was proved much
earlier in the pro-p case by Serre.

Theorem 3.8. Let G be a finitely generated profinite group, and H ≤ G. Then
H is open in G if and only if |G : H| is finite.

Definition 3.9. (i) The profinite group G has rank r, if r is finite and minimal
such that every closed subgroup of G is r-generated.

(ii) A pro-p group G is powerful if: either p is odd and G/Gp is abelian,
where Gp = 〈{xp : x ∈ G}〉, or p = 2 and G/G4 is abelian.

(iii) The pro-p group G has a series of closed normal subgroups defined by:
G = P1(G) ≥ P2(G) ≥ . . ., where Pn+1(G) := Pn(G)p[Pn(G), G].

(iv) The powerful pro-p group G is uniformly powerful if it is finitely gener-
ated and |G/P2(G)| = |Pi(G)/Pi+1(G)| for each i.

The following major body of results is an amalgam of work of Lazard, Lubot-
sky, Mann and Shalev.

Theorem 3.10. Let G be a pro-p group. Then the following are equivalent.
(i) G is a p-adic analytic group
(ii) G is finitely generated and has a powerful subgroup of finite index.
(iii) G has finite rank.
(iv) G has polynomial subgroup growth, that is, there is α > 0 such that for

each n > 0, G has at most nα subgroups of index n.
(v) G does not involve arbitrarily large wreath products of the form CpwrCpn .
(vi) G is isomorphic to a closed subgroup of GLd(Zp) for some suitable d.

Proof. See for example Theorem 5.11 of [19] (and the main theorem of [40]
for (v)).

Next, we describe an important enrichment of the structure Zp, due to Denef
and van den Dries [8]. Let ν = (ν1, . . . , νm) ∈ Nm, put X = (X1, . . . , Xm), and
Xν = Xν1

1 · . . . ·Xνm
m , and consider power series of the form Σν∈NmaνX

ν , where
|aν |p → 0 as |ν| := ν1 + . . . + νm → ∞. We denote by Zp{X} the ring of all
such power series. Each such power series converges on Zmp so defines a function
Zmp → Z. The language Lan

D has symbols for all such functions (for all m),
together with a binary function symbol D, defined by putting D(x, y) = x/y
if |x|p ≤ |y|p and y 6= 0, and D(x, y) = 0 otherwise. Let TDan be the theory of
Zp in the language LDan. We refer to the corresponding expansion of Zp as Zan

p .
We remark that by [10, Lemma 1.9], if f : Zmp → Zp is an analytic function,

then f is definable in the language LDan. This is an elementary application of
the topological compactness of Zmp .
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Theorem 3.11. (i) The theory TDan has quantifier elimination.
(ii) The theory TDan is NIP.

Part (ii) above follows from [11] and [15] – it is shown in [11] that Zan
p is

P-minimal, and in [15] that all P-minimal structures are NIP.

For the direction ⇐ in Theorem 3.1, our key tool is the following.

Theorem 3.12 (du Sautoy [10]). If G is a p-adic analytic pro-p group, then G
is definable in Zan

p , and its open subgroups are uniformly definable.

We give some of the basic ideas behind du Sautoy’s proof. First, p-adic
expoenntiation on G is well-defined: if g ∈ G and λ ∈ Zp, define

gλ = liman→λ g
an ,

where an ∈ Z (this is well-defined, i.e. independent of the choice of (an)). Given
topological generators x1, . . . , xd of G with d minimal, each x ∈ G is uniquely
of the form

x = xλ1
1 · . . . · x

λd

d ,

with λ1, . . . , λd ∈ Zp, so G ‘lives’ on Zdp. Furthermore the group operation and

inversion are analytic maps (Zdp × Zdp → Zdp and Zdp → Zdp respectively) so are
definable in Zan

p .
Furthermore, every open subgroup has a ‘good basis’ (h1, . . . , hd), and the set

of good bases is definable, so I consists of equivalence classes of good bases. With
a little further work to deal with finite extensions, this yields Theorem 3.1⇐.

We now consider the direction ⇒, so suppose that G = (G, I) is a full
profinite group with NIP theory.

If G has infinite rank, then by standard results on profinite groups, G has
for every k an open normal subgroup Nk and there is Hk with Nk ≤ Hk ≤ G
such that Hk/Nk is a (finite) p-group requiring at least k generators. This
group Hk/Nk has a quotient isomorphic to (Cp)

l for some l ≥ k) (factor out
the Frattini subgroup and apply the Burnside Basis Theorem). The Clp are
uniformly interpretable, contradicting NIP. (Subgroups of index p are uniformly
interpretable so by NIP there is t such that any such (finite) intersection is a
t-intersection, so has index at most pt, a contradiction.)

Now by a theorem of C. Read [36], G has closed normal subgroups N /A/G
such that G/A is finite, A/N is abelian, and N is pronilpotent. The group N
is a Cartesian product of Sylow subgroups, as is A/N . Use the NIP condition
to show that there are finitely many in each case, and then that A/N is finite.

We end with a conjecture, suggestive of a 1-based/fieldlike dichotomy for
compact p-adic analytic groups. We view a finite group G/Pn(G) as an Lprof -
structure (G/Pn(G), ω), interpreting Ki by the group KiPn(G)/Pn(G), so for
each n, the Ki are all equal for n ≥ i).

Conjecture 3.13. Let G = (G, I) be a compact p-adic analytic group, full as a
profinite group. Then the following are equivalent.

(i) The ring Zp is not interpretable in G.
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(ii) For every sentence σ in the language Lprof , there is N ∈ ω such that
either each quotient (G/Pn(G), I) satisfies σ forn > N , or each such quotient
satisfies ¬σ.

(iii) The group G is nilpotent-by-finite.
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