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Black box groups

X = 〈x1, . . . , xn〉

• x · y ,
• x−1,
• x = y

We have a canonical projection

X ..........
π
- G .
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Examples

X = 〈S〉
• Matrix groups over finite fields

• S a set of invertible matrices over a finite field
• X 6 GLn(q)
• Input length: |S |n2 log q

• Permutation groups
• S a set of permutations of a domain ∆
• X 6 Sym(∆)
• Input length: |S ||∆|
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Matrix Groups

Let X = 〈x1, . . . , xn〉 6 GLn(q) be a big matrix group so that |X |
is astronomical.

• Statistical study of random products of x1, . . . , xn is the only
known approach to identification of X .

• Look for a ‘short’ and ‘easy to check by random testing’ first
order formula which identifies X .
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Verification algorithm

Let X be a black box group.
To check whether X � G for a known group G .

Simplest approach:

Look for an element x ∈ X such that o(x) - |G |.

∃x(x |G | 6= 1).
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Order oracle

• Determination of orders involves either
• Factorization of integers into primes, or
• Discrete logarithm problem over finite fields.
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Order oracle

Let x ∈ GLn(q).
|x | is the minimal divisor d of |GLn(q)| such that

xd = 1.

Computation of xd requires < 2 log d multiplications.
Square and multiply:

x100 = x26+25+22

= x222222

· x22222
· x22
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Order oracle

Way around the problem: Global exponent

Assume that we know a computationally feasible E such that
xE = 1 for all x ∈ X .

Factorize
E = 2km, (2,m) = 1.
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Black box group algorithms

Let X be a black box (simple) group

• Probabilistic Recognition
• Determine the isomorphism type of X – X is PSL2(13), Alt9,

etc.
• Constructive Recognition

• Construct an explicit isomorphism between X and a known
group G .
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More on constructive recognition

Let X be a black box group encrypting a given group G .
An effective isomorphism

ϕ : G → X

1. Given g ∈ G , construct efficiently the string ϕ(g) representing
g in X .

2. Given a string x produced by X , construct efficiently the
element ϕ−1(x) ∈ G represented by x .
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Obstacles in constructive recognition algorithms

Let X be a group of Lie type over a field of size q.

1. Construction of unipotent elements in X .
• Involves selection of q randomly chosen elements.
• Proportion of unipotent elements in Lie type groups over Fq is

O(1/q) [Guralnick and Lübeck]
• Classical groups by Kantor and Seress.

2. Assumption of SL2(q)-oracle in big rank groups.
• Discrete logarithm oracle and constructive recognition of

SL2(q).
• Classical groups by Brooksbank and Kantor.

3. If X is given as a matrix group, then one needs to solve
discrete logarithm problem—in Fq, not in the prime field.
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Our setup

We are given
1. A black box group X with no additional oracles, and
2. an exponent E of X , that is, xE = 1 for all x ∈ X .

The decomposition E = 2km, (m, 2) = 1, suffices to produce
efficient algorithms.
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Producing involutions from random elements

Let X be a black box group,
x ∈ X a random element,
E = 2km, m odd, a global exponent for X . Then

xm, (xm)2, . . . , 1 6= (xm)2l−1
, 1

i(x) = (xm)2l−1

Theorem (Isaacs, Kantor, Spaltenstein)
The proportion of elements having an even order is at least 1/4 in a
finite simple group of Lie type of odd characteristic.
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Centralizers of involutions in black box groups (Cartan;
Altseimer & Borovik; Bray)

X a black box group,
i ∈ X an involution,
x ∈ X a random element.

If |iix | = m even, then (iix)m/2 is an involution.

If |iix | = m odd, then set y := (iix)m+1/2. We have

iy = ix .
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Centralizers of involutions in black box groups (Cartan;
Altseimer & Borovik; Bray)

Define

ζ : X → CX (i)

x 7→ ζ0(x) = (iix)m/2, m = o(iix) even
ζ1(x) = (iix)(m+1)/2.x−1, m = o(iix) odd

• the distribution of elements ζ0(x) is invariant under the
conjugation action of CX (i).

• the distribution of elements ζ1(x) is invariant under the right
multiplication in CX (i).
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G ∼= (P)SL2(q)

Let

• Let u(t) =

[
1 t
0 1

]
, v(t) =

[
1 0
t 1

]
where t ∈ GF (q).

• h(t) =

[
t 0
0 t−1

]
, n(t) =

[
0 t
−t−1 0

]
where t ∈ GF (q)∗.

Definition
We call the elements u(t), v(t), h(t) and n(t) Steinberg generators
of G ∼= SL2(q).
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G ∼= (P)SL2(q)

• U = 〈u(t) | t ∈ GF (q)〉 and V = 〈v(t) | t ∈ GF (q)〉 are called
root subgroups.

• H = 〈h(t) | t ∈ GF (q)∗〉 is called a torus and n(t) is called a
Weyl group element.

Remark

• Un(s) = V .
• H ≤ NG (U) ∩ NG (V ).
• n(s) inverts H, that is, h(t)n(s) = h(t−1).
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An algorithm for G ∼= (P)SL2(q), q ≡ 1 mod 4

Let q = pk for some k ≥ 1, p prime.

1. Construct (P)SL2(p) ∼= G0 ≤ G .
2. Construct a unipotent element u ∈ G0.
3. Construct the torus T normalising the root subgroup

containing u and the Weyl group element w inverting T .
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G0
∼= PSL2(p) ≤ PSL2(q) ∼= G

Let
• t be an element of order (p ± 1)/2 where (p ± 1)/2 is even;
• s ∈ 〈t〉 be the involution;
• r ∈ G an involution which inverts t; and
• x ∈ G an element of order 3 which normalises 〈s, r〉.

Then
• L = 〈s, r , x〉 ∼= Alt4 ≤ G0 ∼= PSL2(p).
• L is a maximal subgroup of G0 or L < Sym4 < G0.
• t ∈ G0.
• If |t| = (p ± 1)/2 ≥ 5, then 〈t, x〉 = G0.
• Hence if p 6= 5, 7, then 〈t, x〉 ∼= PSL2(p).
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The element x ∈ NG (〈r , s〉)

Let V = {1, i , j , k} be a Klein 4-subgroup and g ∈ G be a random
element.
Assume that
• ijg has odd order m1 and set u1 = (ijg )

m1+1
2 ;

• jkgu−11 has odd order m2 and set u2 = (jkgu−11 )
m2+1

2 .
Then
• jgu−11 = i and j = kgu−11 u−12 .
• kgu−11 ∈ CG (i), and so u2 ∈ CG (i).

• jgu−11 u−12 = i .
Hence, putting x = gu−1

1 u−1
2 , we have

kx = j , jx = i , ix = k .
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Unipotent elements in G ∼= PSL2(p), p ≡ 1 mod 4

Lemma
Let i ∈ G be an involution.
1. There exists an element g ∈ G such that iig has order p.
2. The probability that iig has order p for a random element

g ∈ G is at least 1/p.

Let u = iig be a unipotent element for some random g ∈ G and
U = 〈u〉.

Remark
If p ≡ −1 mod 4, then we construct G0 ∼= PSL2(p2) instead of
PSL2(p).
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Torus in G ∼= PSL2(q), q ≡ 1 mod 4

Let u = iig be a unipotent element and U = 〈u〉.

Fact
There is a unique torus T containing a given involution i ∈ G. In
particular, T < CG (i).

Lemma
T < NG (U).



Black Box Groups (P)SL(2, q) Automorphisms Black box fields Some constructions

Weyl group element in G ∼= PSL2(q), q ≡ 1 mod 4

Let u = iig be a unipotent element and U = 〈u〉 and T < CG (i).
We have

CG (i) = T o 〈w〉

where w is an involution inverting T .
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Steinberg generators of PSL2(q)

Hence the elements
u, t,w

are the Steinberg generators of G where t is a generator of T .
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Algorithm for (P)SL2(q), q ≡ 1 mod 4

Theorem
Let X be a black box group encrypting (P)SL2(q), where
q ≡ 1 mod 4 and q = pk for some k > 1. Then there is a
Monte-Carlo algorithm which constructs in X strings u, h, n such
that there exists an isomorphism

Φ : X −→ (P)SL2(q)

with

Φ(u) =

[
1 1
0 1

]
,Φ(h) =

[
t 0
0 t−1

]
,Φ(n) =

[
0 1
−1 0

]
,

where t is some primitive element of the field Fq.
The running time of the algorithm is quadratic in p and polynomial
in log q.
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Steinberg generators for classical groups of higher rank

Let G be a quasi-simple classical group of odd characteristic.

Let {K0,K1, . . . ,Kn} be an extended Curtis-Tits system of G .

Remark
Ki ∼= (P)SL2(q).

Coordinated construction of the corresponding toral and Weyl
group elements...
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Curtis-Tits system for SLn
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Theorem
Let X be a black box classical group encrypting one of the groups
(P)SLn+1(q), (P)Sp2n(q), (P)Ω+

2n(q) or Ω2n+1(q) where
q ≡ 1 mod 4. Then there is an algorithm which constructs
• black boxes for an extended Curtis-Tits system
{K0,K1, . . . ,Kn} of X ;

• black boxes for root subgroups U` < K`;
• a black box for a maximal torus T where T < NX (U`);
• Weyl group elements w` ∈ K`, where Uw`

` is the opposite root
subgroup of U` for all ` = 0, 1, . . . , n.

The running time of the algorithm is quadratic in the characteristic
p of the underlying field, and is polynomial in the Lie rank n of X
and log q.
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Morphisms of black box groups

• Morphisms are efficiently computable homomorphisms.
• Given X encrypting G , we find, in time polynomial in log |X |,
a cover X ←− Y with better properties.

• Eventually reach

X ←− Y1 ←− . . .←− Yn = G ,

an efficiently given group.
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M.C. Escher, Day and Night, 1938
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Automorphisms of black box groups
Let X be a black box group encrypting G .
Let X = 〈x1, y1, z1〉 = 〈x2, y2, z2〉, so π(xi , yi , zi ) generate G .
Assume that the map

π : x1 7→ π(x2) y1 7→ π(y2) z1 7→ π(z2)
x2 7→ π(x1) y2 7→ π(y1) z2 7→ π(z1)

extends to an automorphism φ of G .
Then, the black box group Y generated in X × X by the strings

(x1, x2), (y1, y2), (z1, z2)

encrypts G and possesses an unary operation, cyclic shift

α : Y −→ Y
(y1, y2) 7→ (y2, y1)

encrypting the automorphism φ of G .
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Automorphisms

Theorem
Let X be a black box group encrypting a Lie type group G (q), q
odd and q > 7. Then we can construct, in polynomial in log q and
the Lie rank of G, a cover

X ←− Y

where a black box group Y also encrypts G (q) and has additional
unary operations representing field and graph automorphisms of
G (q).
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Frobenius map on SL2(q)

F :

[
a11 a12
a21 a22

]
7→
[
ap
11 ap

12
ap
21 ap

22

]
.

On Steinberg generators:

1.
[
1 1
0 1

]F i

=

[
1 1
0 1

]
.

2.
[
0 1
−1 0

]F i

=

[
0 1
−1 0

]
.

3.
[
t 0
0 t−1

]F i

=

[
tp

i
0

0 t−pi

]
=

[
t 0
0 t−1

]pi

.
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Frobenius automorphism without unipotents
Let X be black box group encrypting G = PSL2(q) and F a
Frobenius automorphism on G .

• i ∈ T < G be an involution.
• j ∈ G an involution inverting T , CG (j) = S o 〈k〉 where k
inverts S .

• E = 〈i , j〉 < H = PSL2(p).
• T and S are conjugate by an element from H.
• F fixes E and leaves invariant T and S .
• F acts on T and S as power maps

αi : c 7→ cεp, p ≡ ε mod 4.

• In the images X1 and X2 of T and S , the maps

Φi : x 7→ xεp

encrypt the restrictions of F to T and S .
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Frobenius map on Lie type groups

Theorem
Let X be a black box encrypting a untwisted simple group of Lie
type G = G (pk) over a field of order q = pk and k > 1. Then, we
can construct, in polynomial in log |G |,
• a black box Y encrypting G,
• a morphism X −→ Y , and
• a morphism Φ : Y ←− Y which encrypts a Frobenius
automorphism of G induced by the map x 7→ xp on the field
Fq.
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Black box fields

Assume that G = SL2(pk).

1. Let u, h, n ∈ G be unipotent, toral and Weyl group elements.
2. U = 〈u〉〈h〉 ∼= F+

pk .

3. We shall construct a field structure U on U.
4. Addition: If u1, u2 ∈ U, then define

u1 ⊕ u2 := u1u2.
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Black box fields

5. Multiplication:
5.1 Set u := 1 ∈ U.
5.2 Assumet that h has odd order m and set

√
h = h(m+1)/2.

5.3 Notice that

[
1 1
0 1

]24√t 0
0
√

t−1

35
=

[
1 t−1

0 1

]
.

5.4 Set s := u
√

h, so s corresponds to t−1 in U.
5.5 Set s i = u(

√
h)i , i = 1, 2, . . . , k.

5.6 The elements s, s2, . . . , sk form a polynomial basis of U on Fp.
5.7 For w ∈ U, define

w ⊗ s i = w (
√

h)i

and expand it linearly.
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Black box fields

5. Multiplication continues:
5.8 Let F be the Frobenius map on U. Define the Frobenius trace

Tr : U → Fp:

Tr(x) = x ⊕ xF ⊕ . . .⊕ xFk−1
,

and the trace form

〈x , y〉 = Tr(x ⊗ y).

5.9 Compute the matrix A = (aij) where aij = 〈s i , s j〉.
5.10 If w ∈ U, then w = α1s ⊕ α2s2 ⊕ . . .⊕ αksk . Computing

βj = 〈w , s j〉, j = 1, 2, . . . , k , we have

(α1, . . . , αk) = (β1, . . . , βk)A−1.

5.11 Compute the structure constants s i ⊗ s j =
∑k

l=1 cijl s l .
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Structure recovery

• Construction of a black box field K and an isomorphism

Fq −→ K.

• A probabilistic polynomial time morphism

G (q) −→ G (K) −→ X .

Theorem
Let X be a black box group encrypting the group (P)SL2(q),
q ≡ 1 mod 4. Then there exists a Monte–Carlo algorithm
constructing a structure recovery for X in time quadratic in the
characteristic and polynomial in log q.



Black Box Groups (P)SL(2, q) Automorphisms Black box fields Some constructions

Structure recovery

• Construction of a black box field K and an isomorphism

Fq −→ K.

• A probabilistic polynomial time morphism

G (q) −→ G (K) −→ X .

Theorem
Let X be a black box group encrypting the group (P)SL2(q),
q ≡ 1 mod 4. Then there exists a Monte–Carlo algorithm
constructing a structure recovery for X in time quadratic in the
characteristic and polynomial in log q.



Black Box Groups (P)SL(2, q) Automorphisms Black box fields Some constructions

Structure recovery in even characteristic

Theorem
Let X be a black box group encrypting the group (P)SL2(2n). We
assume that we are given an involution u ∈ X. Then there exists a
Monte–Carlo algorithm constructing a structure recovery for X in
time polynomial in n.
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Structure recovery in even characteristic

Theorem
Let X be a black box group encrypting the group (P)SL2(2n). We
assume that we are given an involution u ∈ X. Then there exists a
Monte–Carlo algorithm constructing a structure recovery for X in
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Inverse transpose map

Let G = SLn(q) and ϕ denote the inverse transpose automorphism.

Fact

1. If n = 2, then ϕ is an inner automorphism.
2. Otherwise, ϕ is not inner.

Observe that

[
a b
c d

]ϕ
=

[
d −c
−b a

]
=

[
a b
c d

]24 0 1
−1 0

35
.
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Inverse transpose map

w Quadratic form[
0 1
−1 0

]
x2 + y2

[
0 t
−t−1 0

]
x2 + t2y2



Black Box Groups (P)SL(2, q) Automorphisms Black box fields Some constructions

SU3(q) < SL3(q2)

Let X = SL3(q2) and Y = SU3(q).
Let ϕ denote the inverse transpose map and F Frobenius map
corresponding to a 7→ aq.
Then ϕ ◦ F is an automorphism of order 2 and

Xϕ◦F = Y .
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Black Box Groups (P)SL(2, q) Automorphisms Black box fields Some constructions

Beautiful constructions

1. G2(q) < Ω7(q) < Ω+
8 (q) < SL8(q) < E8(q).

2. 3D4(q) < Ω+
8 (q) < SL8(q) < E8(q).

3. Sp2n(q) < SU2n(q) < SL2n(q2).

and more...
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