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A definable subgroup of (G ,×,−1 , 1) : a subgroup H of G such that

H =
{
g ∈ G : ϕ(g)

}
.

Examples.
• CG (a) =

{
g ∈ G : xa = ax

}
• CG (a1, . . . , an) =

{
g ∈ G : xa1 = a1x ∧ · · · ∧ xan = anx

}
• Z (G ) =

{
g ∈ G : (∀x)gx = xg

}
• Z2(G ) =

{
g ∈ G : (∀x)(∀y)[x , g ]y = y [x , g ]

}
Counter examples.

• CG (A), Cn
G (A) =

{
x ∈

⋂
k<n

NG
(
C k

G (A)
)
: [x ,A] ⊂ Cn−1

G (A)
}
.

• 〈a〉, 〈D〉 where D is definable, G ′ =
〈{

[g , h] : g ∈ G , h ∈ G
}〉

• FC (G ) =
{
g ∈ G : gG is finite

}
=
∞⋃

n=1

{
g ∈ G :| gG |6 n

}
• Fit(G ) =

{
g ∈ G : 〈gG 〉 is nilp.

}
=
∞⋃

n=1

{
g ∈ G : 〈gG 〉is n-nilp.

}
Remark (Ould Houcine). If Fit(G ) is nilpotent, then it is definable.



0. Aim of the talk

Problem 1. In G , let A be a subgroup which is abelian (resp.
nilpotent, or soluble). Is there a definable subgroup of G which
almost contains A and is close to being abelian (resp. nilpotent,
soluble)?

Answer. No in general: take an infinite G such that
• Z (G ) = G ′ ' Z/3Z
• g3 = 1 for every g ∈ G .
I Then every definable abelian subgroup of G is finite (Plotkin).
I G is unstable, but supersimple of rank 1, and ℵ0-categorical.

Problem 2. Is Fit(G ) definable? Is the soluble radical R(G )
(generated by all normal solvable subgroups of G ) definable?



0. Content of the talk

1. G is stable or has dcc
2. G has a simple theory
3. G does not have the independence property



1. Stable groups, groups with dcc

Definition (folklore ?). G has the descending chain condition on
centralisers (dcc), if for all subsets A1,A2, . . . of G , every
descending chain CG (A1) > CG (A2) > . . . is finite.

Remark. Assume G has the dcc.
I Any CG (A) is definable.
I If A 6 G is abelian, Z (CG (A)) is a def. abelian envelope of A.

Examples of groups with dcc.
I abelian groups
I torsion-free hyperbolic groups
I linear groups over fields
I finitely generated nilpotent groups
I stable groups.



1. Stable groups, groups with dcc

Fact (Poizat). If G is stable and H 6 G is n-nilpotent/n-soluble, H
has a definable n-nilpotent/n-soluble envelope.

Ingredients of the proof.
I A stable group has dcc.
I If G is stable and H C G definable, then G/H is stable.

Fact (Altınel, Baginsky). If G has dcc and H ≤ G is n-nilpotent, H
has a definable n-nilpotent envelope which is normalised by NG (H).

An ingredient of the proof. Cn
G (A) is definable for any A and n.



1. Stable groups, groups with dcc

Theorem (Wagner). If G has dcc, then Fit(G ) is definable and
nilpotent.

Remark. Known for groups of finite RM (Nesin).

Fact (Baudish). If G is superstable, R(G ) is definable and solvable.

Remark. Known for groups of finite RM (Belegradek), and groups of
finite U-rank (Baldwin-Pillay).



2. G has a simple theory

Definition (Shelah). X is a definable subset of G , φ(x , y) a formula,
k a natural number. The D( . , φ, k)-rank of X :

I D(X , φ, k) ≥ 0 if X 6= ∅,
I D(X , φ, k) ≥ n + 1 if there are infinitely k-disjoint sets defined

by φ(x , a1), φ(x , a2), . . . with D(Xi ∩ X , φ, k) ≥ n.

Definition (Shelah). G is simple if D(G , φ, k) < ℵ0 for all φ, k .

Definition (Shelah). X is a definable subset of G , φ(x , y) a formula.
The φ-Cantor-Bendixson rank of X :

I CB(X , φ) ≥ 0 if X 6= ∅,
I CB(X , φ) ≥ n + 1 if there are infinitely many 2-disjoint φ-sets

X1,X2, . . . with CB(Xi ∩ X , φ) ≥ n.

Definition (Shelah). G is stable if CB(G , φ) < ℵ0 for every φ.

Remark. D(X , φ, k) ≤ CB(X , φ).



2. G has a simple theory

Examples of groups with a simple theory.
I stable groups
I pseudofinite simple groups

Question. Does a group G with a simple theory has the dcc ?

No, but:

Wagner’s Chain Condition. Let φ(x , y) be a formula. There is some
n such that every descending chain of subgroups G1,G2, . . . defined
by φ(x , a1), φ(x , a2), . . . has no more than n elements, up to finite
index, ie such that Gn/Gm is finite whenever m ≥ n.



2. G has a simple theory

Proposition (abelian case). If A 6 G is abelian, then A has a
definable envelope which is finite-by-abelian (ie FC).

An ingredient of the proof. FC (G ) is definable.

Remark. A similar result by Elwes, Jaligot, Macpherson and Ryten.

Theorem (nilpotent case). If N 6 G is nilpotent of class n, then
there is a definable subgroup E which is virtually ‘nilpotent of class 2n’
normalised by NG (N) and finitely many translates of which cover N.

Questions.
I Is the bound 2n optimal?
I Does N have a definable nilpotent envelope?

Theorem (soluble case). If S 6 G is soluble of derived length `, then
S has a definable soluble envelope F which is virtually ‘soluble of
derived length 2`’, normalised by NG (N).



2. G has a simple theory
In a stable theory Analogue in a simple theory
dcc dcc up to finite index
abelian groups FC-groups (eg finite, abelian, finite-by-abelian)
CG (H) FCG (H)= {g ∈ G : gH is finite} (Haimo, 1953)
Z (H) FC (G ) = FCG (G )

Zn+1(G ) FCn+1(G )
(
FCn+1(G )

/
FCn(G ) = FC (G

/
FCn(G )

)
n-nilpotent n-FC -nilpotent

(
FCn(G ) = G , Haimo, eg finite, nilp.

)
n-soluble n-FC -soluble (Duguid, McLain, 1956)

G0 = G D G1 D · · · D Gn = {1} with Gi E G
and Gi/Gi+1 FC (eg finite, soluble, virtually-soluble)

Theorem. If N 6 G is FC -nilpotent of class n, then it is contained in
a definable FC -nilpotent group of class n.

Fact (adapted from Wagner). A n-FC-nilpotent definable subgroup
of G is virtually ‘m-nilpotent’, with m ≤ 2n.



2. G has a simple theory

Theorem (nilpotent case). If N 6 G is nilpotent of class n, then
there is a definable subgroup E which is virtually ‘nilpotent of class 2n’
normalised by NG (N) and finitely many translates of which cover N.

Theorem. If G is supersimple of finite SU-rank, then Fit(G ) is
definable and nilpotent.

Theorem (Elwes, Jaligot, Macpherson, Ryten 2010). If G is
supersimple of finite SU-rank such that T eq eliminates ∃∞. Then
R(G ) is definable and soluble.

Theorem. If G is supersimple, then there is a finite chain of definable
subgroups 1 = H0 C H1 C · · ·C Hn = G such that every Hi+1/Hi is
either virtually FC or virtually simple modulo a finite FC -centre.

Corollary. If G is supersimple, then R(G ) is definable and soluble,
and the FC soluble radical of G is definable and virtually-soluble.



3. G does not have the independence property
Let f (x , y) be a formula.

Definition. We say that f (x , y) shatters n (in G ) if there is a subset
A of size n such that any subset of A is of the form f (A, b) for some
b ∈ G , or equivalently if for all natural number n, we can find
elements a1, a2, . . . , an and (bI )I⊂{1,...,n} in G such that

f (ai , bI ) holds in G if and only if i ∈ I .

Definition (Shelah). f (x , y) has the independence property in G if
it shatters every natural number n.

Definition (Shelah). G does not have the independence property
if no formula has the independence property in G .

Counter example. In (Z,+,×), the formula ‘x divides y ’ has the
independence property. Take a1, . . . , an to be the first n prime
numbers, and bI =

∏
i∈I ai for any I ⊂ {1, . . . , n}.



3. G does not have the independence property

Baldwin-Saxl Chain Condition. Let f (x , y) be a formula. Let
G1,G2,G3, . . . be subgroups of G defined respectively by the formulas
f (x , a1), f (x , a2), f (x , a3), . . . (ie uniformly definable). There is a
natural number n (depending only on f ) such that for every finite
subset I of ω, there is a finite subset In ⊂ I of size n such that⋂

i∈I

Gi =
⋂
i∈In

Gi .

Theorem (Shelah). If G has an infinite abelian subgroup (and is
ω-saturated), then G has one which is definable.

Theorem (Aldama). If A 6 G is abelian, then there is an abelian
definable subgroup of G which contains A.

Theorem (Aldama). If N 6 G is n-nilpotent, then there is an
n-nilpotent definable subgroup of G which contains N.



3. G does not have the independence property

Theorem (Aldama). If S 6 G is `-solvable and normal, then there is
an `-solvable normal definable subgroup of G which contains S .

In the nilpotent case, the key Lemma is : if A 6 G is in the center of
B 6 G , there is a definable Z > A which is in the centre of a
definable H > B .

Question. If A 6 G is abelian and normalised by NA 6 G , is there a
definable abelian H > A normalised by a definable N > NA.

I don’t know.



3. G does not have the independence property

Key Lemma. H a definable subgroup of G , A a subgroup of H, and
NA a subgroup of G which normalises A. Then there is an ω-definable
subgroup K of H, and an ω-definable subgroup N of G such that
1. A 6 K ,
2. NA 6 N,
3. N normalises K .

(ω-definable means: intersection of countably many definable sets.)

Morever, K is the intersection of conjugates of H, and N is the
intersection of uniformly definable sets.

Corollary. If S 6 G is 2-soluble, then it is contained in an ω-definable
2-soluble subgroup.

Corollary. If S 6 G and H 6 G definable, then the S-core
⋂

g∈S Hg

is ω-definable.
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