Finding definable envelopes 'around' nilpotent or solvable subgroups

Cédric Milliet

Galatasaray Üniversitesi, İstanbul Üniversität Konstanz September 15, 2013 A definable subgroup of $(G, \times, ^{-1}, 1)$: a subgroup H of G such that

$$H = \big\{ g \in G : \varphi(g) \big\}.$$

Examples.

•
$$C_G(a) = \{g \in G : xa = ax\}$$

•
$$C_G(a_1,\ldots,a_n) = \{g \in G : xa_1 = a_1x \land \cdots \land xa_n = a_nx\}$$

•
$$Z(G) = \{g \in G : (\forall x)gx = xg\}$$

•
$$Z_2(G) = \{g \in G : (\forall x)(\forall y)[x,g]y = y[x,g]\}$$

Counter examples.

•
$$C_G(A)$$
, $C_G^n(A) = \left\{ x \in \bigcap_{k < n} N_G(C_G^k(A)) : [x, A] \subset C_G^{n-1}(A) \right\}.$

• $\langle a \rangle$, $\langle D \rangle$ where D is definable, $G' = \left\langle \left\{ [g,h] : g \in G, h \in G \right\} \right\rangle$

•
$$FC(G) = \{g \in G : g^G \text{ is finite }\} = \bigcup_{\substack{n=1 \\ \infty}}^{\infty} \{g \in G : |g^G| \leq n\}$$

•
$$Fit(G) = \{g \in G : \langle g^G \rangle \text{ is nilp.} \} = \bigcup_{n=1}^{\infty} \{g \in G : \langle g^G \rangle \text{ is n-nilp.} \}$$

Remark (Ould Houcine). If Fit(G) is nilpotent, then it is definable.

0. Aim of the talk

Problem 1. In G, let A be a subgroup which is abelian (resp. nilpotent, or soluble). Is there a **definable** subgroup of G which **almost** contains A and is **close to being** abelian (resp. nilpotent, soluble)?

Answer. No in general: take an infinite G such that

•
$$g^3 = 1$$
 for every $g \in G$.

- ▶ Then every definable abelian subgroup of *G* is finite (Plotkin).
- G is unstable, but supersimple of rank 1, and \aleph_0 -categorical.

Problem 2. Is Fit(G) definable? Is the soluble radical R(G) (generated by all normal solvable subgroups of G) definable?

0. Content of the talk

- 1. G is stable or has dcc
- 2. G has a simple theory
- 3. G does not have the independence property

1. Stable groups, groups with dcc

Definition (folklore ?). *G* has the descending chain condition on centralisers (dcc), if for all subsets A_1, A_2, \ldots of *G*, every descending chain $C_G(A_1) \ge C_G(A_2) \ge \ldots$ is finite.

Remark. Assume G has the dcc.

- Any $C_G(A)$ is definable.
- If $A \leq G$ is abelian, $Z(C_G(A))$ is a def. abelian envelope of A.

Examples of groups with dcc.

- abelian groups
- torsion-free hyperbolic groups
- linear groups over fields
- finitely generated nilpotent groups
- stable groups.

1. Stable groups, groups with dcc

Fact (Poizat). If G is stable and $H \leq G$ is *n*-nilpotent/*n*-soluble, H has a definable *n*-nilpotent/*n*-soluble envelope.

Ingredients of the proof.

- A stable group has dcc.
- ▶ If G is stable and $H \lhd G$ definable, then G/H is stable.

Fact (Altinel, Baginsky). If G has dcc and $H \leq G$ is *n*-nilpotent, H has a definable *n*-nilpotent envelope which is normalised by $N_G(H)$.

An ingredient of the proof. $C_G^n(A)$ is definable for any A and n.

1. Stable groups, groups with dcc

Theorem (Wagner). If G has dcc, then Fit(G) is definable and nilpotent.

Remark. Known for groups of finite RM (Nesin).

Fact (Baudish). If G is superstable, R(G) is definable and solvable.

Remark. Known for groups of finite RM (Belegradek), and groups of finite U-rank (Baldwin-Pillay).

Definition (Shelah). X is a definable subset of G, $\phi(x, y)$ a formula, k a natural number. The $D(..., \phi, k)$ -rank of X :

- $D(X, \phi, k) \ge 0$ if $X \neq \emptyset$,
- D(X, φ, k) ≥ n + 1 if there are infinitely k-disjoint sets defined by φ(x, a₁), φ(x, a₂),... with D(X_i ∩ X, φ, k) ≥ n.

Definition (Shelah). G is simple if $D(G, \phi, k) < \aleph_0$ for all ϕ, k .

Definition (Shelah). X is a definable subset of G, $\phi(x, y)$ a formula. The ϕ -Cantor-Bendixson rank of X :

- $CB(X, \phi) \ge 0$ if $X \neq \emptyset$,
- ► $CB(X, \phi) \ge n + 1$ if there are infinitely many 2-disjoint ϕ -sets X_1, X_2, \ldots with $CB(X_i \cap X, \phi) \ge n$.

Definition (Shelah). *G* is stable if $CB(G, \phi) < \aleph_0$ for every ϕ . Remark. $D(X, \phi, k) \le CB(X, \phi)$.

Examples of groups with a simple theory.

- stable groups
- pseudofinite simple groups

Question. Does a group G with a simple theory has the dcc ?

No, but:

Wagner's Chain Condition. Let $\phi(x, y)$ be a formula. There is some n such that every descending chain of subgroups G_1, G_2, \ldots defined by $\phi(x, a_1), \phi(x, a_2), \ldots$ has no more than n elements, up to finite index, *ie* such that G_n/G_m is finite whenever $m \ge n$.

Proposition (abelian case). If $A \leq G$ is abelian, then A has a definable envelope which is finite-by-abelian (ie FC).

An ingredient of the proof. FC(G) is definable.

Remark. A similar result by Elwes, Jaligot, Macpherson and Ryten.

Theorem (nilpotent case). If $N \leq G$ is nilpotent of class n, then there is a definable subgroup E which is virtually 'nilpotent of class 2n' normalised by $N_G(N)$ and finitely many translates of which cover N.

Questions.

- ▶ Is the bound 2*n* optimal?
- Does N have a definable nilpotent envelope?

Theorem (soluble case). If $S \leq G$ is soluble of derived length ℓ , then S has a definable soluble envelope F which is virtually 'soluble of derived length 2ℓ ', normalised by $N_G(N)$.

In a stable theory	Analogue in a simple theory
dcc	dcc up to finite index
abelian groups	FC-groups (eg finite, abelian, finite-by-abelian)
$C_G(H)$	$FC_G(H) = \{g \in G : g^H \text{ is finite}\}$ (Haimo, 1953)
Z(H)	$FC(G) = FC_G(G)$
$Z_{n+1}(G)$	$FC_{n+1}(G) \left(FC_{n+1}(G) / FC_n(G) = FC(G / FC_n(G)) \right)$
<i>n</i> -nilpotent	<i>n-FC</i> -nilpotent $(FC_n(G) = G, Haimo, eg finite, nilp.)$
<i>n</i> -soluble	n-FC-soluble (Duguid, McLain, 1956)
	$G_0 = G \trianglerighteq G_1 \trianglerighteq \cdots \trianglerighteq G_n = \{1\}$ with $G_i \trianglelefteq G$
	and G_i/G_{i+1} FC (eg finite, soluble, virtually-soluble)

Theorem. If $N \leq G$ is *FC*-nilpotent of class *n*, then it is contained in a definable *FC*-nilpotent group of class *n*.

Fact (adapted from Wagner). A *n*-FC-nilpotent definable subgroup of G is virtually 'm-nilpotent', with $m \leq 2n$.

Theorem (nilpotent case). If $N \leq G$ is nilpotent of class n, then there is a definable subgroup E which is virtually 'nilpotent of class 2n' normalised by $N_G(N)$ and finitely many translates of which cover N.

Theorem. If G is supersimple of finite SU-rank, then Fit(G) is definable and nilpotent.

Theorem (Elwes, Jaligot, Macpherson, Ryten 2010). If G is supersimple of finite SU-rank such that T^{eq} eliminates \exists^{∞} . Then R(G) is definable and soluble.

Theorem. If G is supersimple, then there is a finite chain of definable subgroups $1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$ such that every H_{i+1}/H_i is either virtually FC or virtually simple modulo a finite FC-centre.

Corollary. If G is supersimple, then R(G) is definable and soluble, and the FC soluble radical of G is definable and virtually-soluble.

3. G does not have the independence property

Let f(x, y) be a formula.

Definition. We say that f(x, y) shatters n (in G) if there is a subset A of size n such that any subset of A is of the form f(A, b) for some $b \in G$, or equivalently if for all natural number n, we can find elements a_1, a_2, \ldots, a_n and $(b_I)_{I \subset \{1, \ldots, n\}}$ in G such that

 $f(a_i, b_I)$ holds in G if and only if $i \in I$.

Definition (Shelah). f(x, y) has the independence property in **G** if it shatters every natural number n.

Definition (Shelah). G does not have the independence property if no formula has the independence property in G.

Counter example. In $(\mathbf{Z}, +, \times)$, the formula 'x divides y' has the independence property. Take a_1, \ldots, a_n to be the first *n* prime numbers, and $b_I = \prod_{i \in I} a_i$ for any $I \subset \{1, \ldots, n\}$.

3. G does not have the independence property

Baldwin-Saxl Chain Condition. Let f(x, y) be a formula. Let G_1, G_2, G_3, \ldots be subgroups of G defined respectively by the formulas $f(x, a_1), f(x, a_2), f(x, a_3), \ldots$ (ie **uniformly** definable). There is a natural number n (depending only on f) such that for every **finite** subset I of ω , there is a finite subset $I_n \subset I$ of size n such that

$$\bigcap_{i\in I}G_i=\bigcap_{i\in I_n}G_i.$$

Theorem (Shelah). If G has an infinite abelian subgroup (and is ω -saturated), then G has one which is definable.

Theorem (Aldama). If $A \leq G$ is abelian, then there is an abelian definable subgroup of G which contains A.

Theorem (Aldama). If $N \leq G$ is *n*-nilpotent, then there is an *n*-nilpotent definable subgroup of *G* which contains *N*.

Theorem (Aldama). If $S \leq G$ is ℓ -solvable and **normal**, then there is an ℓ -solvable normal definable subgroup of G which contains S.

In the nilpotent case, the key Lemma is : if $A \leq G$ is in the center of $B \leq G$, there is a definable $Z \geq A$ which is in the centre of a definable $H \geq B$.

Question. If $A \leq G$ is abelian and normalised by $N_A \leq G$, is there a definable abelian $H \geq A$ normalised by a definable $N \geq N_A$.

I don't know.

3. G does not have the independence property

Key Lemma. *H* a definable subgroup of *G*, *A* a subgroup of *H*, and N_A a subgroup of *G* which normalises *A*. Then there is an ω -definable subgroup *K* of *H*, and an ω -definable subgroup *N* of *G* such that

- 1. $A \leq K$,
- 2. $N_A \leqslant N$,
- 3. N normalises K.

(ω -definable means: intersection of countably many definable sets.)

Morever, K is the intersection of conjugates of H, and N is the intersection of uniformly definable sets.

Corollary. If $S \leq G$ is 2-soluble, then it is contained in an ω -definable 2-soluble subgroup.

Corollary. If $S \leq G$ and $H \leq G$ definable, then the S-core $\bigcap_{g \in S} H^g$ is ω -definable.