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Time Thursday Friday Saturday
9.45-11.00 Wagner Wagner Wagner
11.15-12.30 Sklinos Sklinos Sklinos

Lunch
15.00-16.15 Korkmaz Perin Deloro
16.30-17.45 Poizat Ersoy Borovik

Contributed talks
18.00-18.20 Dobrowolski Byron Druart
18.30-19.00 Hofmann Jagiella

Talks

Alexandre Borovik
Black box algebra and black box model theory

Abstract. Some natural problems in computational algebra and cryptography require analysis
of finite algebraic structures (for example, groups, rings, fields, projective planes, Lie algebras)
up to probabilistic polynomial time interpretability/bi-interpretability and open a fascinating
new chapter of model theory. The talk will outline a few basic concepts of this new theory.

This is a joint work with Şükrü Yalçınkaya.

Adrien Deloro
Representations of finite Morley rank

Abstract. We know quite a lot about ”abstract” groups of finite Morley rank. As suggested by
Borovik and Cherlin, it may be time to apply the knowledge gained in the classification project
and convert the methods into results on ”concrete” groups, ie. permutation groups. The talk
will not consider the general setting of group actions of finite Morley rank but the more specific
aspect of representations, that is of groups acting on abelian groups - definably in some ranked
universe. We shall review known facts and basic questions.
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Kıvanç Ersoy
Locally finite groups with certain conditions centralizers

Abstract. A group G is called locally finite if every finitely generated subgroup of G is finite.
Brauer-Fowler Theorem indicates that there are at most finitely many finite simple groups with a
given centralizer of an involution. After Brauer-Fowler, centralizers played an important role in
the proof of the classification of finite simple groups, hence it is natural to think that structures
of centralizers in finite and locally finite groups give a lot of information about the structure
of the group. In this talk we will give a survey of structural results obtained via imposing
conditions on centralizers and fixed points of automorphisms in locally finite groups. Moreover,
we will prove some new results, one of which is the following:

Theorem 1 (E.-Gupta, [1]) Let G be an infinite simple locally finite group with an automor-
phism α such that CG(α) has finite rank. Then, G is isomorphic to one of the following groups:

1. G ∼= PSL(l+1, k) or PSU(l+1, k) for some infinite locally finite field k of characteristic
q ̸= p and p > l

2. G has type Bl(k), Cl(k) or 2B2 (that is l = 2) over an infinite locally finite field k of
characteristic q ̸= p (and q = 2 in the case of 2B2(k)) and p > 2l − 1.

3. G ∼= Dl(k) or 2Dl(k) or 3D4(k) for some infinite locally finite field k of characteristic
q ̸= p and p > 2l − 3

4. G ∼= E6(k) or
2E6(k) over an infinite locally finite field of characteristic q ̸= p, and p > 11.

5. G ∼= E7(k), F4(k) or
2F4(k) over an infinite locally finite field of characteristic q ̸= p, and

p > 17.

6. G ∼= E8(k) over an infinite locally finite field of characteristic q ̸= p, and p > 29.

7. G ∼= G2(k) or
2G2(k) over an infinite locally finite field of characteristic q ̸= p, and p > 5.

References

[1] K. Ersoy, C.K. Gupta “Locally finite groups with centralizers of finite rank”, in preparation.

Mustafa Korkmaz
Commutator lengths in mapping class groups

Abstract. For an element x in the commutator subgroup of a group, the commutator length
of x is defined to be the minimal number of commutators needed to express x as a product
of commutators. The mapping class group of a closed oriented surface is the group of isotopy
classes of orientation–preserving diffeomorphisms of the surface. The commutator lengths of
elements in the mapping class group is of interest in low dimensional topology.

In this talk I will discuss some of the known results on commutator lengths, stable commu-
tator lengths in free groups and in mapping class groups. A closedly related notion bounded
cohomology groups will also be discussed.
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Chloé Perin
Forking in the free group

Abstract. Sela showed that the theory of the non abelian free groups is stable. In a joint
work with Sklinos, we give some characterization of the forking independence relation between
elements of the free group F over a set of parameters A in terms of the Grushko and cyclic
JSJ decomposition of F relative to A. The cyclic JSJ decomposition of F relative to A is a
geometric group theory tool that encodes all the splittings of F as an amalgamated product (or
HNN extension) over cyclic subgroups in which A lies in one of the factors.

Bruno Poizat
The filter of supergenerics

Abstract. The talk will outline an article to be published in the Journal of Algebra. It is about
a filter of large sets closed with respect to translation, which is defined in any group and which
seems not to have been noticed until now.

A subset of a group is said to be generic if a finite number of its translates covers the entire
group; it is said to be supergeneric if the intersection of any finite family of its translates is
generic. The intersection of of two supergeneric sets is still supergeneric.

We will analyze the general elementary properties of supergeneric sets as well as the very
particular uniformity properties possessed by definable supergeneric sets in a stable group.
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Tutorials

Rizos Sklinos
Diophantine Geometry over Free Groups

Abstract. This tutorial concerns the first-order theories of non-Abelian free groups. The
subject has been given much attention after Sela and Kharlampovich-Myasnikov independently
proved that the first-order theory of non-Abelian free groups (i.e. the axioms that live in the
intersection of the above mentioned first-order theories) is complete. This answers in the affir-
mative a long standing question that was posed around 1946 by Tarski:

Question 1 (Tarski, 1946) Do non-Abelian free groups share the same common first-order
theory?

The main purpose of this tutorial is to analyze the notions and techniques that appear in
the first steps of Sela’s solution to Tarski’s problem. Let us mention that the proof culminates
in a series of papers [6],[7],[9], [8],[10],[11] and [12], that have not been totally absorbed by the
mathematical community, despite the fact that they were available since 2001. In brief the proof
splits in two parts: first Sela proves that the ∀∃ first-order theories of any two non-Abelian free
groups coincide, and then he proves that each first order theory eliminates quantifiers down to
boolean combinations of ∀∃ first-order formulas. His methods are purely geometric and a heavy
use of the theory of group actions on real trees is made throughout his papers.

Our goal for this tutorial will be to give the ideas around the proof of the following interme-
diate result to Tarski’s problem:

Theorem 1 Let m,n > 2. Then Th∀∃(Fn) = Th∀∃(Fm)

Note that although this theorem has been first claimed in [5], a complete proof appeared much
later (in Sela’s work).

The tutorial will be structured as follows: We will first define limit groups using the Bestvina-
Paulin method (see [1],[4]) and record how one can describe the solution set (in a free group)
of a system of equations using them. Limit groups play an important role in all steps of Sela’s
solution and we will see that one naturally sees them as objects of geometry rather than algebra.

We will then move to the technique of “formal solutions”. This technique lies behind the
main idea of the proof of Sela (and every other existing proof). The prototypical theorem being:

Theorem 2 (Merzlyakov [3]) Let Σ(x̄, ȳ) be a finite set of words in ⟨x̄, ȳ⟩. Let F be a non
abelian free group. Suppose F |= ∀x̄∃ȳ(Σ(x̄, ȳ) = 1). Then there exists a retract r : GΣ � ⟨x̄⟩,
where GΣ := ⟨x̄, ȳ | Σ(x̄, ȳ)⟩.

We note that Merzlyakov used this theorem in order to prove that the positive first-order theories
of non-Abelian free groups coincide. Let us briefly justify the term “formal solutions”: the image
of ȳ under r of the previous theorem is a tuple of words in x̄, say w̄(x̄), and it can be easily
checked that F |= ∀x̄Σ(x̄, w̄(x̄)) = 1. Thus, the retraction can be thought of as a formal (uniform)
way of assigning to each ā in F, a b̄ in F (i.e. substituting x̄ in w̄(x̄) by ā), that witnesses the
truthfulness of Σ.

Geometry suggests some natural generalizations of the above theorem and this will lead us
to the definitions of “towers” and “test sequences“ on them. Our feeling is that these notions
will be central to the understanding of the class of definable sets in non-Abelian free groups and
thus we will try to build some intuition around them.

As noted above, Merzlyakov’s theorem lies behind the main idea of all existing proofs to
the Tarski’s problem. Generalizing it to the case where the universal variables are bounded by
a system of equations is a hard task and depends on the geometric structure of the system of
equations. Unfortunately, the generalization of Merzlyakov’s theorem to an arbitrary variety,
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that bounds the universal variables, is not possible. We have to restrict ourselves to varieties
that their corresponding group has a certain structure. In particular, if a group GR := ⟨x̄ | R(x̄)⟩
has the structure of a ”tower“, then the following statement (up to some tuning) is true:

Statement 1 Let Σ(x̄, ȳ) be a finite set of words in ⟨x̄, ȳ⟩. Let F be a non abelian free group.
Suppose F |= ∀x̄(R(x̄) = 1 → ∃ȳ(Σ(x̄, ȳ) = 1)). Then there exists a retract r : GΣ � GR, where
GΣ := ⟨x̄, ȳ | Σ(x̄, ȳ)⟩.

Finally, the addition of inequalities to the sentences above, i.e. sentences of the form ∀x̄∃ȳ(Σ(x̄, ȳ)∧
Ψ(x̄, ȳ) ̸= 1) require new machinery and ideas in order to be shown that their truthfulness does
not depend on a particular non-Abelian free group. This machinery includes the generalization
of Merzlyakov’s theorem as stated above, but also requires the development of more delicate
tools. We will finish this tutorial by giving the extra ideas needed for completing the proof of
Theorem 1 .

Our exposition will be based on the following papers of the bibliography below: [6],[7],[8]
and [2].

References

[1] M. Bestvina. Degenerations of the hyperbolic space. Duke Math. J., 56:143–161, 1988.

[2] M. Bestvina. R-trees in topology, geometry and group theory. In R.J. Daverman and R.B.
Sher, editors, Handbook of geometric topology. North-Holland, 2001.

[3] Yu. I. Merzlyakov. Positive formulae on free groups. Algebra i Logika, 5:257–266, 1966.

[4] F. Paulin. Topologie de Gromov équivariante, structures hyperboliques et arbres réels.
Invent. Math., 94:53–80, 1988.

[5] G. Sacerdote. Elementary properties of free groups. Trans. Amer. Math. Soc., 178, 1973.

[6] Z. Sela. Diophantine geometry over groups I. Makanin-Razborov diagrams. Publ. Math.
Inst. Hautes études Sci., 93:31–105, 2001.

[7] Z. Sela. Diophantine geometry over groups II. Completions, closures and formal solutions.
Israel J. Math., 134:173–254, 2003.

[8] Z. Sela. Diophantine geometry over groups IV. An iterative procedure for the validation of
sentence. Israel J. Math., 143:1–130, 2004.

[9] Z. Sela. Diophantine geometry over groups III. Rigid and solid solutions. Israel J. Math.,
147:1–73, 2005.

[10] Z. Sela. Diophantine geometry over groups V1. Quantifier elimination I. Israel J. Math.,
150:1–197, 2005.

[11] Z. Sela. Diophantine geometry over groups V2. Quantifier elimination II. Geom. Funct.
Anal., 16:537–706, 2006.

[12] Z. Sela. Diophantine geometry over groups VI: The elementary theory of free groups. Geom.
Funct. Anal., 16:707–730, 2006.
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Frank Wagner
Approximate subgroups and model theory

Abstract. A subset A of a group (or a local group) G is a K-approximate subgroup, for
some integer K, if A.A is covered by K cosets of A. Finite approximate subgroups have recently
been classified by Breuillard, Green and Tao, building on earlier work of Hrushovski as well as
Goldbrings solution of Hilbert’s fifth problem for local groups; they are essentially analogs of
arithmetic progressions in a nilpotent group, modulo some actual subgroup. I shall try to give
an overview of the proof from a model-theoretic point of view, as well as pose some questions
concerning model-theoretic generalisations.

References

[1] E. Breuillard, B. Green and T. Tao. The structure of approximate groups. Publ. Math.
IHES, 116:115–221, 2012.

[2] I. Goldbring. Hilbert’s fifth problem for local groups. Ann. of Math., 172:1269–1314, 2010.

[3] E Hrushovski. Stable group theory and approximate subgroups. J. Amer. Math. Soc.,
25:189–243, 2012.

[4] L. van den Dries. Approximate groups [after Hrushovski, and Breuillard, Green, Tao].
Séminaire Bourbaki, 1077, 2013.
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Contributed Talks

Ayala Byron
Homogeneity in torsion-free hyperbolic groups - a geometric point of view

Abstract. Why do we like (torsion-free) hyperbolic groups? They are finitely presented, so
they come with a JSJ-decomposition, which allows us to see all their tower structures. We’ll
explain these notions and see how those tower structures let us tell which group is homogeneous.
This is work in progress with Chloé Perin.

Jan Dobrowolski
Locally finite profinite rings

Abstract. The aim of this talk is to present some results from [2].
First, I will discuss some connections between certain conjectures concerning small profinite

(in the sense of Newelski) groups and the ones concerning small profinite rings. These connections
are among the motivations for our interest in profinite rings.

Next, I will focus on two theorems from [2]. First of them states that the Jacobson radical of
a locally finite profinite rings is nil of finite nilexponent. This is a generalization of a result from
[1], which gives the same conclusion for small profinite rings. Our second theorem is a complete
classification of semisimple locally finite profinite rings. It applies, in particular, to the context
of small compact G-rings, yielding also a classification of semisimple small compact G-rings.

References

[1] K. Krupiński, F. Wagner, Small profinite groups and rings, Journal of Algebra (306),
494-506, 2006.

[2] J. Dobrowolski, K. Krupiński, Locally finite profinite rings, Journal of Algebra, DOI:
10.1016/j.jalgebra.2013.11.020

Benjamin Druart
Definable subgroups in SL2(Qp)

Abstract. A Cartan subgroup of an abstract group G is a maximal nilpotent subgroup H
such that every normal subgroup of finite index in H has finite index in its normalizer in G.
This is a notion rooted in the theory of algebraic groups. In this talk, we will describe all Cartan
subgroup in SL2(Qp) and we wil make connections with notion of genericity. This description
allows us to discuss some algebraic and model theoretic properties of definable subgroups in
SL2(Qp).
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Daniel Hoffmann
Iterative derivations and group schemes

Abstract. Let k be a field of characteristic p > 0. Recall that a Hasse-Schmidt derivation is
a k-algebra homomorphism

D : A → AJXK,
D(a) =

∑
i=0

Di(a)X
i.

It is additively iterative if Di ◦ Dj =
(
i+j
i

)
Di+j . Such a composition law is induced by an

algebraic group, in this case by the additive group. Another possibility is the multiplicative
group. Both are nice for a model-theoretic approach, because they are strongly integrable in
the sense of [1]. Thus one can consider a geometric axiomatisation of existentially closed Hasse-
Schmidt fields with one additively/multiplicatively iterative derivation as was done in [2] for the
additive iterativity condition.

It is natural to ask: are there more (not only one-dimensional) such nice algebraic groups? I will
develop terminology of G-iterative derivations for higher dimensional algebraic groups and group
schemes, then show examples of unipotent commutative groups, that are strongly integrable.

References

[1] Hideyuki Matsumura, Integrable derivations, Nagoya Math. J., Volume 87 (1982),
227-245.

[2] Piotr Kowalski, Geometric axioms for existentially closed Hasse fields, Annals of Pure
and Applied Logic, vol.135 (2005), no.1-3, pp.286-302.

Grzegorz Jagiella
Definable topological dynamics and real Lie groups

Abstract. Methods of topological dynamics have been introduced to model theory by Newelski
in [3] and since then saw further development in that field by other authors. Given (over a
model M) a definable group G, we consider the category of definable flows. This category has a
universal object SG(M), the space of types in G over M . Its Ellis semigroup is SG,ext(M), the
space of external types. It can be considered as a model-theoretic equivalent to βG, the large
compactification of G.

In the talk I will describe the results from [2] that give description of definable topological
dynamics of a large class of groups interpretable in an o-minimal expansion of the field of reals
along with their universal covers interpreted in a certain two-sorted structure. The results
provide a wide range of counterexamples to a question by Newelski whether the Ellis group
of the universal definable G-flow is isomorphic to G/G00 and generalize methods from [1] that
provided a particular counterexample.

References

[1] J. Gismatullin, D. Penazzi, A. Pillay, Some model theory of SL(2, R), preprint

[2] G. Jagiella, Definable topological dynamics and real Lie groups, preprint

[3] L. Newelski, Topological dynamics of definable group actions, J. Symbolic Logic Volume 74,
Issue 1 (2009), pp 50-72
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