Locally finite profinite rings

Jan Dobrowolski

Instytut Matematyczny Uniwersytetu Wrocławskiego

Models and Groups 2, Istanbul 27 March 2014

Polish structures

Definition (Krupiński)

A Polish structure is a pair (X, G), where G is a Polish group acting faithfully on a set X so that $G_x <_c G$ for every $x \in X$.

Examples

- Compact [profinite] structures: X a compact metric [profinite] space, G - a compact group, the action continuous,
- [Polish] G-spaces: X a [Polish] space, G a Polish group, the action is continuous, e.g.:
 - X a compact metric space, G = Homeo(X) the group of all homeomorphisms of X with the compact-open topology,
 - X a compact metric group, G = Aut(X) the group of all topological automorphisms of X with the c-o topology,
- Borel G-spaces: X a Polish space, G a Polish group, the action is Borel-measurable.

Polish structures

Definition (Krupiński)

A Polish structure is a pair (X, G), where G is a Polish group acting faithfully on a set X so that $G_x <_c G$ for every $x \in X$.

Examples

- Compact [profinite] structures: X a compact metric [profinite] space, G - a compact group, the action continuous,
- [Polish] G-spaces: X a [Polish] space, G a Polish group, the action is continuous, e.g.:
 - X a compact metric space, G = Homeo(X) the group of all homeomorphisms of X with the compact-open topology,
 - X a compact metric group, G = Aut(X) the group of all topological automorphisms of X with the c-o topology,
- Borel G-spaces: X a Polish space, G a Polish group, the action is Borel-measurable.

Smallness

Definition (Krupiński)

A Polish structure (X, G) is small if for every $n \in \omega$ there are only countably many orbits on X^n .

Examples of small Polish structures (Krupiński)

- $\texttt{0} \ (S^n,\mathsf{Homeo}(S^n)), \ n\in\omega,$
- 2 $(I^n, \operatorname{Homeo}(I^n)), n \in \omega \cup \{\omega\},$
- ${f 3}$ $((S^1)^n, {\sf Homeo}((S^1)^n)), \ n\in\omega\cup\{\omega\},$
- (P, Homeo(P)), P the pseudo-arc,
- (H, Aut(H)), H a profinite abelian group of finite exponent, Aut(H) - the group of all topological automorphisms of H,
- (H, Aut⁰(H)), H as above, Aut⁰(H) the group of all automorphisms of H preserving a distinguished inverse system indexed by ω.

Smallness

Definition (Krupiński)

A Polish structure (X, G) is small if for every $n \in \omega$ there are only countably many orbits on X^n .

Examples of small Polish structures (Krupiński)

- $(S^n, \operatorname{Homeo}(S^n)), n \in \omega,$
- 2 (I^n , Homeo(I^n)), $n \in \omega \cup \{\omega\}$,
- $((S^1)^n, \text{Homeo}((S^1)^n)), n \in \omega \cup \{\omega\},$
- (P, Homeo(P)), P the pseudo-arc,
- (H, Aut(H)), H a profinite abelian group of finite exponent, Aut(H) - the group of all topological automorphisms of H,
- (H, Aut⁰(H)), H as above, Aut⁰(H) the group of all automorphisms of H preserving a distinguished inverse system indexed by ω.

$$(X, G)$$
 - a compact [profinite] structure
a - finite tuple of elements of X
A, B - finite subsets of X
 $o(a/A) := \{g \cdot a : g \in G_A\}$

Definition (Newelski)

$$a \stackrel{a}{\longrightarrow}_{A} B \iff o(a/AB) \subseteq_{o} o(a/A),$$

 $a \stackrel{w}{\searrow}_{A} B \iff o(a/AB) \subseteq_{nwd} o(a/A).$

Fact (Newelski)

 $\stackrel{m}{\cup}$ is invariant, symmetric and transitive. If (X, G) is small, then $\stackrel{m}{\cup}$ satisfies the existence of independent extensions.

・ロト ・回ト ・ ヨト ・

$$(X, G)$$
 - a compact [profinite] structure
a - finite tuple of elements of X
A, B - finite subsets of X
 $o(a/A) := \{g \cdot a : g \in G_A\}$

Definition (Newelski)

$$a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_o o(a/A),$$

 $a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_{nwd} o(a/A).$

Fact (Newelski)

 $\stackrel{m}{\cup}$ is invariant, symmetric and transitive. If (X, G) is small, then $\stackrel{m}{\cup}$ satisfies the existence of independent extensions.

Image: A image: A

$$(X, G)$$
 - a compact [profinite] structure
a - finite tuple of elements of X
A, B - finite subsets of X
 $o(a/A) := \{g \cdot a : g \in G_A\}$

Definition (Newelski)

$$a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_o o(a/A),$$

 $a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_{nwd} o(a/A).$

Fact (Newelski)

 $\stackrel{m}{\longrightarrow}$ is invariant, symmetric and transitive. If (X, G) is small, then $\stackrel{m}{\longrightarrow}$ satisfies the existence of independent extensions.

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = g \cdot a$.

Definition (Krupiński)

$$a \bigcup_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \bigcup_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Remark (Krupiński)

 $a {\downarrow}_{A}^{m} B \iff G_{AB} G_{Aa} \subseteq_{nm} G_{A},$

Theorem (Krupiński)

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = g \cdot a$.

Definition (Krupiński)

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Remark (Krupiński)

 $a {\downarrow}_{A}^{m} B \iff G_{AB} G_{Aa} \subseteq_{nm} G_{A},$

Theorem (Krupiński)

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = g \cdot a$.

Definition (Krupiński)

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Remark (Krupiński)

$$a \downarrow_A^m B \iff G_{AB} G_{Aa} \subseteq_{nm} G_A,$$

Theorem (Krupiński)

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = g \cdot a$.

Definition (Krupiński)

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Remark (Krupiński)

$$a \downarrow_A^m B \iff G_{AB} G_{Aa} \subseteq_{nm} G_A,$$

Theorem (Krupiński)

$\mathcal{N}\mathcal{M}$ -rank and *nm*-stability

(X, G) - a small Polish structure

Definition (Krupiński)

 \mathcal{NM} : orbits over finite sets $\rightarrow \mathit{Ord} \cup \{\infty\}$

 $\mathcal{NM}(a/A) \ge \alpha + 1$ iff there is a finite set $B \supseteq A$ such that $a \downarrow^m_A B$ and $\mathcal{NM}(a/B) \ge \alpha$.

Definition (Krupiński)

 $\mathcal{NM}(X) = \sup\{\mathcal{NM}(x/\emptyset) : x \in X\}.$

Definition (Krupiński)

(X, G) is *nm*-stable if for every $x \in X$, $\mathcal{NM}(x/\emptyset) < \infty$.

<ロト <部ト < 注ト < 注ト

$\mathcal{N}\mathcal{M}$ -rank and *nm*-stability

(X, G) - a small Polish structure

Definition (Krupiński)

 \mathcal{NM} : orbits over finite sets $\rightarrow \mathit{Ord} \cup \{\infty\}$

 $\mathcal{NM}(a/A) \ge \alpha + 1$ iff there is a finite set $B \supseteq A$ such that $a \downarrow^m_A B$ and $\mathcal{NM}(a/B) \ge \alpha$.

Definition (Krupiński)

 $\mathcal{NM}(X) = \sup\{\mathcal{NM}(x/\emptyset) : x \in X\}.$

Definition (Krupiński)

(X,G) is *nm*-stable if for every $x \in X$, $\mathcal{NM}(x/\emptyset) < \infty$.

A (1) > A (2) > A

$\mathcal{N}\mathcal{M}$ -rank and *nm*-stability

(X, G) - a small Polish structure

Definition (Krupiński)

 \mathcal{NM} : orbits over finite sets $\rightarrow \mathit{Ord} \cup \{\infty\}$

 $\mathcal{NM}(a/A) \ge \alpha + 1$ iff there is a finite set $B \supseteq A$ such that $a \downarrow^m_A B$ and $\mathcal{NM}(a/B) \ge \alpha$.

Definition (Krupiński)

$$\mathcal{NM}(X) = \sup\{\mathcal{NM}(x/\emptyset) : x \in X\}.$$

Definition (Krupiński)

(X,G) is *nm*-stable if for every $x \in X$, $\mathcal{NM}(x/\emptyset) < \infty$.

Image: A image: A

Polish group structures

Definition (Krupiński)

- A Polish group structure is a Polish structure (H, G) such that H is a group and G acts as a group of automorphisms of H.
- A (topological) G-group is a Polish group structure (H, G) such that H is a topological group and the action of G on H is continuous.
- A Polish [compact] G-group is a topological G-group (H, G), where H is a Polish [compact] group.

Main examples of compact *G*-groups

- (H,Aut(H)), where H is a compact metric group.
- (H, Aut⁰(H)), where H is a profinite group, Aut⁰(H) the group of all automorphisms of H preserving a distinguished countable inverse system defining H.

Polish group structures

Definition (Krupiński)

- A Polish group structure is a Polish structure (H, G) such that H is a group and G acts as a group of automorphisms of H.
- A (topological) G-group is a Polish group structure (H, G) such that H is a topological group and the action of G on H is continuous.
- A Polish [compact] G-group is a topological G-group (H, G), where H is a Polish [compact] group.

Main examples of compact G-groups

- (I, Aut(H)), where H is a compact metric group.
- (H, Aut⁰(H)), where H is a profinite group, Aut⁰(H) the group of all automorphisms of H preserving a distinguished countable inverse system defining H.

General goal

To understand the structure (or even classify) small compact [or, more generally, Polish] G-groups. In other words, we would like to undestand the algebraic/topological consequences of the assumption of smallness in the context of compact [or Polish] G-groups.

Small Polish G-groups

Proposition (Krupiński)

- If (H, G) is a small Polish *G*-group, and $S \subseteq H$ is finite, then $\overline{\langle S \rangle}$ is countable, i.e. $\langle S \rangle$ does not have limit points.
- 2 If (H, G) is a small compact G-group, then H is locally finite, and so H is a profinite (so 0-dimensional) group.

Conjectures on small profinite groups

Remark (Krupiński)

If (H, G) is a small compact G-group, then H is a profinite group. But G is not necessarily compact, so (H, G) needn't be a small profinite group regarded as profinite structure.

(H, G) - a small profinite group regarded as profinite structure

Newelski's Conjecture

H is abelian-by-finite.

Intermediate Conjectures

- (A) H is solvable-by-finite.
- (B) If H is solvable-by-finite, then it is nilpotent-by-finite.
- (C) If H is nilpotent-by-finite, then it is abelian-by-finite.

Conjectures on small profinite groups

Remark (Krupiński)

If (H, G) is a small compact G-group, then H is a profinite group. But G is not necessarily compact, so (H, G) needn't be a small profinite group regarded as profinite structure.

 $({\cal H},{\cal G})$ - a small profinite group regarded as profinite structure

Newelski's Conjecture

H is abelian-by-finite.

Intermediate Conjectures

(A) *H* is solvable-by-finite.

(B) If H is solvable-by-finite, then it is nilpotent-by-finite.

(C) If H is nilpotent-by-finite, then it is abelian-by-finite.

Conjectures on small profinite groups

Remark (Krupiński)

If (H, G) is a small compact G-group, then H is a profinite group. But G is not necessarily compact, so (H, G) needn't be a small profinite group regarded as profinite structure.

 $({\cal H},{\cal G})$ - a small profinite group regarded as profinite structure

Newelski's Conjecture

H is abelian-by-finite.

Intermediate Conjectures

- (A) H is solvable-by-finite.
- (B) If H is solvable-by-finite, then it is nilpotent-by-finite.
- (C) If H is nilpotent-by-finite, then it is abelian-by-finite.

Results on small profinite groups

Theorem (Wagner)

Each small, nm-stable profinite group is abelian-by-finite.

Theorem (Wagner)

Each small, nm-stable profinite group is of finite NM-rank.

▲ □ ▶ ▲ 三 ▶ ▲

Results on small profinite groups

Theorem (Wagner)

Each small, nm-stable profinite group is abelian-by-finite.

Theorem (Wagner)

Each small, nm-stable profinite group is of finite \mathcal{NM} -rank.

The conjectures for small compact *G*-groups

From now on, we consider generalizations of Conjectures (A), (B), (C) to the wider context of small compact G-groups. It turns out that in general they are all false.

Counter-example to (A)

H - any finite non-solvable group S_{∞} - the group of all permutations of \mathbb{N} S_{∞} acts on H^{ω} by $\sigma \langle h_0, h_1, \ldots \rangle = \langle h_{\sigma(0)}, h_{\sigma(1)}, \ldots \rangle$. Then (H^{ω}, S_{∞}) is a small compact S_{∞} -group, and H^{ω} is r solvable-by-finite

The conjectures for small compact *G*-groups

From now on, we consider generalizations of Conjectures (A), (B), (C) to the wider context of small compact G-groups. It turns out that in general they are all false.

Counter-example to (A)

H - any finite non-solvable group S_{∞} - the group of all permutations of \mathbb{N} S_{∞} acts on H^{ω} by $\sigma \langle h_0, h_1, \ldots \rangle = \langle h_{\sigma(0)}, h_{\sigma(1)}, \ldots \rangle$. Then (H^{ω}, S_{∞}) is a small compact S_{∞} -group, and H^{ω} is not solvable-by-finite.

Results on small, nm-stable compact G-groups

(H, G) - a small compact G-group

Theorem (Krupiński)

If (H, G) is nm-stable, then H is nilpotent-by-finite.

Conjecture

If (H, G) is nm-stable, then H is abelian-by-finite.

Theorem (Krupiński, Wagner)

If $\mathcal{NM}(H) \leq \omega$, then H is abelian-by-finite.

Results on small, nm-stable compact G-groups

(H, G) - a small compact G-group

Theorem (Krupiński)

If (H, G) is nm-stable, then H is nilpotent-by-finite.

Conjecture

If (H, G) is nm-stable, then H is abelian-by-finite.

Theorem (Krupiński, Wagner)

If $\mathcal{NM}(H) \leq \omega$, then H is abelian-by-finite.

▲□ ► ▲ □ ► ▲

Results on small, nm-stable compact G-groups

(H, G) - a small compact G-group

Theorem (Krupiński)

If (H, G) is nm-stable, then H is nilpotent-by-finite.

Conjecture

If (H, G) is nm-stable, then H is abelian-by-finite.

Theorem (Krupiński, Wagner)

If $\mathcal{NM}(H) \leq \omega$, then H is abelian-by-finite.

Without nm-stability

Question

What can be said about the structure of small compact G-groups without assuming nm-stability?

Locally finite profinite rings

Open questions on small Polish G-groups

Question

Is every small, nm-stable Polish G-group abelian-by-countable?

Even the following question is open.

Question

Is every small Polish G-group of \mathcal{NM} -rank 1 abelian-by-countable?

Small compact G-rings

Definition

Let G be a Polish group. A compact G-ring is a Polish structure (R, G), where R is a compact topological ring and G acts on R continuously as a group of automorphisms.

Goal

To understand the structure of small compact *G*-rings. Investigate connections with small compact *G*-groups.

Proposition

If (*R*, *G*) is a small compact *G*-ring, then *R* is locally finite and profinite.

Small compact G-rings

Definition

Let G be a Polish group. A compact G-ring is a Polish structure (R, G), where R is a compact topological ring and G acts on R continuously as a group of automorphisms.

Goal

To understand the structure of small compact *G*-rings. Investigate connections with small compact *G*-groups.

Proposition

If (*R*, *G*) is a small compact *G*-ring, then *R* is locally finite and profinite.

Small compact G-rings

Definition

Let G be a Polish group. A compact G-ring is a Polish structure (R, G), where R is a compact topological ring and G acts on R continuously as a group of automorphisms.

Goal

To understand the structure of small compact *G*-rings. Investigate connections with small compact *G*-groups.

Proposition

If (R, G) is a small compact G-ring, then R is locally finite and profinite.

A few classical definitions from ring theory

R - a ring

- An element $r \in R$ is nilpotent of nilexpenent n if $r^n = 0$ and n is the smallest number with this property.
- ② R is nil [of nilexponent n] if every element of R is nilpotent [of nilexponent ≤ n and there is an element of nilexponent n].
- *R* is nilpotent of class *n* if r₁ · ... · r_n = 0 for all r₁, ..., r_n ∈ R and *n* is the smallest number with this property.
 R is nilpotent if it is nilpotent of class *n* for some *n*.
- *R* is null if $r_1 \cdot r_2 = 0$ for all $r_1, r_2 \in R$.

Results on small, *nm*-stable compact *G*-rings

In various contexts, Krupiński has proved certain theorems which allow to deduce some properties of rings from the appropriate properties of groups. As a conclusion of these results and the theorems on small, nm-stable compact G-groups, we get the following corollary.

Theorem (Krupiński)

- **(** A small, *nm*-stable compact *G*-ring is nilpotent-by-finite.
- **2** A small, compact *G*-ring of finite \mathcal{NM} -rank is null-by-finite.

Conjecture

A small, *nm*-stable compact *G*-ring is null-by-finite.

Proposition (Krupiński)

This conjecture is equivalent to the conjecture that each small, *nm*-stable compact *G*-group is abelian-by-finite.

Results on small, *nm*-stable compact *G*-rings

In various contexts, Krupiński has proved certain theorems which allow to deduce some properties of rings from the appropriate properties of groups. As a conclusion of these results and the theorems on small, *nm*-stable compact *G*-groups, we get the following corollary.

Theorem (Krupiński)

- A small, *nm*-stable compact *G*-ring is nilpotent-by-finite.
- **2** A small, compact *G*-ring of finite \mathcal{NM} -rank is null-by-finite.

Conjecture

A small, *nm*-stable compact *G*-ring is null-by-finite.

Proposition (Krupiński)

This conjecture is equivalent to the conjecture that each small, *nm*-stable compact *G*-group is abelian-by-finite.

Results on small, *nm*-stable compact *G*-rings

In various contexts, Krupiński has proved certain theorems which allow to deduce some properties of rings from the appropriate properties of groups. As a conclusion of these results and the theorems on small, nm-stable compact G-groups, we get the following corollary.

Theorem (Krupiński)

- **(** A small, *nm*-stable compact *G*-ring is nilpotent-by-finite.
- **2** A small, compact *G*-ring of finite \mathcal{NM} -rank is null-by-finite.

Conjecture

A small, *nm*-stable compact *G*-ring is null-by-finite.

Proposition (Krupiński)

This conjecture is equivalent to the conjecture that each small, *nm*-stable compact *G*-group is abelian-by-finite.

The structure of small compact G-rings

Theorem (Krupiński, D.)

Every locally finite profinite ring is (nil of finite nilexponent)-by-(product of complete matrix rings over finite fields with only finitely many factors up to isomorphism). More precisely:

- The Jacobson radical of a locally finite profinite ring is nil of finite nil exponent.
- Let R be a topological ring. Then R is semisimple, locally finite profinite ring iff R is a product of complete matrix rings over finite fields with only finitely many factors up to isomorphism.

Question

Can one deduce anything on the structure of small compact *G*-groups from the above theorem?

The structure of small compact G-rings

Theorem (Krupiński, D.)

Every locally finite profinite ring is (nil of finite nilexponent)-by-(product of complete matrix rings over finite fields with only finitely many factors up to isomorphism). More precisely:

- The Jacobson radical of a locally finite profinite ring is nil of finite nil exponent.
- Let R be a topological ring. Then R is semisimple, locally finite profinite ring iff R is a product of complete matrix rings over finite fields with only finitely many factors up to isomorphism.

Question

Can one deduce anything on the structure of small compact *G*-groups from the above theorem?

An application to small profinite rings

Remark

Suppose $(\prod_{i \in I} R_i, G)$ is a small profinite ring. Then only finitely many R_i 's are not null rings.

Comment

Using the above remark, we can easily deduce from the preceding theorem the following result, which was obtained earlier by Wagner and Krupiński:

Fact

If R is a small profinite ring, then J(R) is nil of finite nilexponent, and has a finite index in R.

Image: A = A

An application to small profinite rings

Remark

Suppose $(\prod_{i \in I} R_i, G)$ is a small profinite ring. Then only finitely many R_i 's are not null rings.

Comment

Using the above remark, we can easily deduce from the preceding theorem the following result, which was obtained earlier by Wagner and Krupiński:

Fact

If R is a small profinite ring, then J(R) is nil of finite nilexponent, and has a finite index in R.