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Groups of finite Morley rank (fMr)

Groups

Groups of fMr

Simple groups of fMr

GL(K1) % GLa(K>) N
Affine algebraic
groups

GLu(K)

Algebraicity Conjecture: the gap, I , does not exist.
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© G satisfies DCC on definable subgroups
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© d aminimal definable subgroup of finite index G° (and deg G° = 1)
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Properties of groups of fMr

Let G be a group of fMr.
@ Let X be a definable set, e.g. Z(G), Cs(g), h¢
ork(X) >n+1 <
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© G satisfies DCC on definable subgroups
© d aminimal definable subgroup of finite index G° (and deg G° = 1)
Q [G,G], F(G), and 0(G) are definable!
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Automorphisms of order 2

Let G be a connected group of fMr.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG

e X CZ(G)
scratch
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e X CZ(G)
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Automorphisms of order 2
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.
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Automorphisms of order 2
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Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
e X CZ(G)

scratch
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
e X CZ(G)

scratch
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
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scratch
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Automorphisms of order 2
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
e X CZ(G)

scratch

x € Cg(a) = ax € Cg(a)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
e X CZ(G)

scratch
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— Y C Cg(a)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!
o Xisbig: kX =rkG
e X CZ(G)

scratch

x € Cg(a) = ax € Cg(a)
— Y C Cg(a)
= a € Z(G)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!

o Xisbig: kX =rkG
e X CZ(G) = Z(G) is big

scratch

aX

x € Cg(a) = ax € Cg(a)
— Y C Cg(a)
= a € Z(G)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!

o Xisbig: kX =rkG
e X CZ(G) = Z(G) is big

@ G is abelian

scratch

G

Joshua Wiscons

aX

x € Cgla) = ax € Cg(a)
— Y C Cg(a)
= a € Z(G)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!

o Xisbig: kX =rkG
e X CZ(G) = Z(G) is big

o Gisabelian = X is a (big) subgroup

scratch

G

aX

x € Cgla) = ax € Cg(a)
— Y C Cg(a)
= a € Z(G)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g 'g": g€ G} CG;ifacX, thena® =a!

o Xisbig: kX =rkG
e X CZ(G) = Z(G) is big

o Gisabelian = X is a (big) subgroup = X =G

scratch

G

aX

x € Cgla) = ax € Cg(a)
— Y C Cg(a)
= a € Z(G)
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o Let a € Aut(G) be definable. If |o| = 2, then o inverts G.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o Let a € Aut(G) be definable. If |o| = 2, then o inverts G.
o If S, acts definably on G, then A, is contained in the kernel.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

Fact (Whenrk G = 1)
o Let o € Aut(G) be definable. If || = 2, then « inverts G.
o If'S, acts definably on G, then A,, is contained in the kernel.

Fact (When G is solvable)

N | 5
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

Fact (Whenrk G = 1)
o Let o € Aut(G) be definable. If || = 2, then « inverts G.
o If'S, acts definably on G, then A,, is contained in the kernel.

| \

Fact (When G is solvable)
@ (BC ’08) If S, acts definably and faithfully on a connected abelian group
of rank r, thenn < r + 1 unless n = 6 and r = 4.
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Automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

Fact (Whenrk G = 1)
o Let o € Aut(G) be definable. If || = 2, then « inverts G.
o If'S, acts definably on G, then A,, is contained in the kernel.

| \

Fact (When G is solvable)
@ (BC ’08) If S, acts definably and faithfully on a connected abelian group
of rank r, thenn < r + 1 unless n = 6 and r = 4.
o If'S, acts definably and faithfully on a connected nonabelian solvable
group of rank r, thenn < r + 1. |
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Generic t-transitivity

Let G ~ X be a permutation group of fMr. The action is generically
t-transitive if
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i-transitive if there is an orbit O C X’ with k(X' — O) < rk(X").
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Generic t-transitivity

Definition

Let G ~ X be a permutation group of fMr. The action is generically
i-transitive if there is an orbit O C X' with tk(X’ — O) < rk(X").

@ Le. G has a single orbit on X’ after removing a subset of smaller rank.
o If deg(X) = I, this is the same as rk(O) = rk(X").

Example: GL,(K) ~ K"
@ generically sharply n-transitive (action on O is regular)
o O is the set of bases of K": orbit of (ey, ..., e,)

Example: PGL,,(K) ~ P"~!(K)
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Let G ~ X be a permutation group of fMr. The action is generically
i-transitive if there is an orbit O C X’ with k(X' — O) < rk(X").

@ Le. G has a single orbit on X’ after removing a subset of smaller rank.
o If deg(X) = I, this is the same as rk(O) = rk(X").

Example: PGL,,(K) ~ P"~!(K)
e generically sharply (n + 1)-transitive
o O is the set bases of P"~!(K): orbit of ({e), ..., (en), (D e:))
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Generic t-transitivity

Let G ~ X be a permutation group of fMr. The action is generically
i-transitive if there is an orbit O C X' with tk(X’ — O) < rk(X").

@ Le. G has a single orbit on X’ after removing a subset of smaller rank.
o If deg(X) = I, this is the same as rk(O) = rk(X").

Example: PGL,,(K) ~ P"~!(K)
e generically sharply (n + 1)-transitive
o O is the set bases of P"~!(K): orbit of ({e}), ..., (es), (O ei))

Example

| \

Assume that G; ~ X; and G, ~ X, are both generically #-transitive.
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Generic t-transitivity

Let G ~ X be a permutation group of fMr. The action is generically
i-transitive if there is an orbit O C X' with tk(X’ — O) < rk(X").

@ Le. G has a single orbit on X’ after removing a subset of smaller rank.
o If deg(X) = I, this is the same as rk(O) = rk(X").

Example: PGL,,(K) ~ P"~!(K)
e generically sharply (n + 1)-transitive
o O is the set bases of P"~!(K): orbit of ({e}), ..., (es), (O ei))

Example

| \

Assume that G; ~ X; and G, ~ X, are both generically #-transitive.

o G| X Gy ~ X1 X X is generically #-transitive
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Generic t-transitivity

Let G ~ X be a permutation group of fMr. The action is generically
i-transitive if there is an orbit O C X' with tk(X’ — O) < rk(X").

@ Le. G has a single orbit on X’ after removing a subset of smaller rank.
o If deg(X) = I, this is the same as rk(O) = rk(X").

Example: PGL,,(K) ~ P"~!(K)
e generically sharply (n + 1)-transitive
o O is the set bases of P"~!(K): orbit of ({e}), ..., (es), (O ei))

Example

| \

Assume that G; ~ X; and G, ~ X, are both generically #-transitive.

o G| X Gy ~ X1 X X is generically #-transitive

@ O is (more-or-less) O; x O,
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Generic t-transitivity

Example: PGL,,(K) ~ P"~!(K)
e generically sharply (n + 1)-transitive
o O is the set bases of P"~!(K): orbit of ({e), ..., (en), (> e:))
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Generic t-transitivity

Example: PGL,(K) ~ P"~(K)
@ generically sharply (n + 1)-transitive
o O is the set bases of P"~!(K): orbit of ({e1), ..., (e.), D e:))
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))

v
Theorem

@ (Popov '07) Let G be an infinite simple algebraic group over an alg.
closed field of characteristic 0. Then gtd(G) is given by

\
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))

v
Theorem

@ (Popov '07) Let G be an infinite simple algebraic group over an alg.
closed field of characteristic 0. Then gtd(G) is given by

An ‘B,,,nZ3‘C,,,n22‘D,,,n24‘E6‘E7‘Eg‘F4‘Gz

n+2| 3 | 3 | 3 |43 ]z2]2]2

\
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))

Theorem

| A\

@ (Popov '07) Let G be an infinite simple algebraic group over an alg.
closed field of characteristic 0. Then gtd(G) is given by
‘B,,,nZ3‘C,,,n22‘D,,,n24‘E6‘E7‘Eg‘F4‘Gz
n+r2| 3 | 3 | 3 |4 ]|3]z2]2]2
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))

@ (Popov '07) Let G be an infinite simple algebraic group over an alg.

closed field of characteristic 0. Then gtd(G) is given by

| B,n>3|Con>2|Dyn>4|Es | Es | Es | 4\62
n+2 | 3 \ 3 \ 3 413 ]2 \ | 2

@ Let G be an infinite solvable group of fMr. Then gtd(G) <
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))

Theorem

| A\

@ (Popov '07) Let G be an infinite simple algebraic group over an alg.

closed field of characteristic 0. Then gtd(G) is given by

| Bun>3|Cun>2|Dyn>4|E | Es | Es | Fy |G
nf2] 3 | 3 | 3 [4]3[2]2]2

@ Let G be an infinite solvable group of fMr. Then gtd(G) < 2.

@ Let G be an infinite nilpotent group of fMr. Then gtd(G) = 1.
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Generic t-transitivity

Example: PGL,+(K) ~ P"(K)
e generically sharply (n + 2)-transitive
@ O is the set bases of P"(K): orbit of ({e1),. .., {en), (ent1), > ei))

V.

Theorem

@ (Popov '07) Let G be an infinite simple algebraic group over an alg.
closed field of characteristic 0. Then gtd(G) is given by

| Bun>3|Cun>2|Dyn>4|E | Es | Es | Fy |G
nf2] 3 | 3 | 3 [4]3[2]2]2
@ Let G be an infinite solvable group of fMr. Then gtd(G) < 2.

@ Let G be an infinite nilpotent group of fMr. Then gtd(G) = 1.

Problem (BC ’08)

Show that the above table is valid in arbitrary characteristic.
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G ~ X is generically 7-transitive
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G ~ X is generically 7-transitive

! Extra Assumptions
e G n X is transitive
6 e G is connected
5
4
3 GLy (K).
2 GLy(K)
Do,
1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

! Extra Assumptions
e G n X is transitive
6 e G is connected
5
4
3 GLy (K).
2 GLy(K) o GL,(K) ~ K" — {0}
Do,
1 2 3 n = rk(X)
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! Extra Assumptions
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6 e G is connected
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e GL,(K) ~ K" — {0}
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1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

t Extra Assumptions
e G v X is transitive
6 e G is connected
> PGL4(K).
4 PGL3(K).
3 PGL (K) ° e PGL,;(K) ~ P*(K)
2 i e GL,(K) ~ K" — {0}
1 .
1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

! Extra Assumptions
e G v X is transitive
6 e G is connected
5 °
4 .
3 ° ° ° PGLn+1(K) NP"(K)
2 . - ;
e GL,(K) ~ K" — {0}
1 °

1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

t Extra Assumptions
e G v X is transitive
° e G is connected
5 .
4 S W
3 ’ AGLy (K) *  PGL,11(K) ~ P"(K)
o AGL,(K) ~ K"
2 AGLl(K; d e GL,(K) ~ K" — {0}
1 .
1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

! Extra Assumptions
e G v X is transitive
6 e G is connected
5 °
4 ° °
3 ° ° ° ° PGLn+1(K) NP"(K)
o AGL,(K) ~ K"
2 ‘ ¢ o GL,(K) ~ K" — {0}
1| Se

1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

Extra Assumptions
e G v X is transitive
e G is connected

° PGL,H_](K) &% P"(K)
AGL,(K) ~ K"
o GL,(K) ~ K" — {0}

wDDBDEIDD

n = rk(X)
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G ~ X is generically 7-transitive

t o o Extra Assumptions
e G ~ X is transitive
6 = = e G is connected
5 O = /—(PGLz(K) x PGLy(L) ~ P (K) x PI(L)]
4 =1 =]
//
3 ° E] E] ° PGLn+1(K) mP”(K)
AGL,(K) ~ K"
2 [ ] I:I o GL.(K) ~ K" — {0}
o e @3 [
1 2 3 n = rk(X)
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G ~ X is generically 7-transitive

Extra Assumptions
e G v X is transitive
e G is connected
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G ~ X is generically 7-transitive

Extra Assumptions
e G v X is transitive
e G is connected

/—(PGLz (L) ~ P'(L) with 1k(L) = 2!]

° PGLn+1(K) &% P"(K)
AGL,(K) ~ K"
o GL,(K) ~ K" — {0}

wDDBDEIDD

n = rk(X)
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G ~ X is generically 7-transitive

t o o Extra Assumptions
e G n X is transitive

6 = - e G is connected

5 O

° PGL,,_H(K) 8% P"(K)
o AGL,(K) ~ K"

=
= =
| []
2 : [ ] |:l e GL,(K) ~ K" — {0}
0 ]
2

1 3 n = rk(X)

The Problem (BC *08)
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G ~ X is generically 7-transitive

t o o Extra Assumptions
e G n X is transitive

6 = - e G is connected

5 O

° PGL,,_H(K) 8% P"(K)
o AGL,(K) ~ K"

=
= =
| []
2 : [ ] |:l e GL,(K) ~ K" — {0}
0 ]
2

1
The Problem (BC *08)
Show thatt > n +2 —

3 n = rk(X)
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The Problem (BC *08)

3

Show thatt > n+2 = G ~ X = PGL,4(K) ~ P*(K)

n = rk(X)

Joshua Wiscons

Generically n-transitive permutation groups



G ~ X is generically 7-transitive

! Extra Assumptions
e G v X is transitive

6 e G is connected

5 °

4 .

° PGL,,_H(K) 8% P"(K)
o AGL,(K) ~ K"

=
| []
2 : [ ] |:l e GL,(K) ~ K" — {0}
0 ]
2

1
The Problem (BC *08)
Show thatt > n+2 = G ~ X = PGL,4(K) ~ P*(K)
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G ~ X is generically 7-transitive

Extra Assumptions
e G v X is transitive
e G is connected

° PGL,,_H(K) &% P"(K)
o AGL,(K) ~ K"
e GL,(K) ~ K" — {0}

=
=
=
Ce]
[ ]
[ ]
3

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).
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The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).
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The Rank Two Problem

Rank Two Problem

Let G = G°. Suppose G ~ X is transitive and generically 4-transitive with
tk(X) = 2. Show G ~ X = PGL3(K) ~ P?(K).
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The Rank Two Problem

Rank Two Problem

Let G = G°. Suppose G ~ X is transitive and generically 4-transitive with
tk(X) = 2. Show G ~ X = PGL3(K) ~ P?(K).

| A

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t > 4 implies G ~ X = PGL3(K) ~ P*(K).
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The Rank Two Problem

Rank Two Problem

Let G = G°. Suppose G ~ X is transitive and generically 4-transitive with
tk(X) = 2. Show G ~ X = PGL3(K) ~ P?(K).

| A

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t > 4 implies G ~ X = PGL3(K) ~ P*(K).

Really, we have two things to show.
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The Rank Two Problem

Rank Two Problem

Let G = G°. Suppose G ~ X is transitive and generically 4-transitive with
tk(X) = 2. Show G ~ X = PGL3(K) ~ P?(K).

| A

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t > 4 implies G ~ X = PGL3(K) ~ P*(K).

Really, we have two things to show.
Q<4
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Let G = G°. Suppose G ~ X is transitive and generically 4-transitive with
tk(X) = 2. Show G ~ X = PGL3(K) ~ P?(K).

| A

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t > 4 implies G ~ X = PGL3(K) ~ P*(K).

Really, we have two things to show.
Q<4
Q t=4 = PGL;(K) ~ P*(K)
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The Rank Two Problem

Rank Two Problem

Let G = G°. Suppose G ~ X is transitive and generically 4-transitive with
tk(X) = 2. Show G ~ X = PGL3(K) ~ P?(K).

| A

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t > 4 implies G ~ X = PGL3(K) ~ P*(K).

Really, we have two things to show.
Vo r<4
Q t=4 = PGL;(K) ~ P*(K)

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

@ Assumet = 5;
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
G234 X
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipsa ... X
s
scratch
A___f_k_:_’l___—) B
__________ f — 1kA = tkB+n
| __tk=n__ | —
rk =n E—
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipsa ... X
s
scratch
/
O___f_k_:_’l___ — 0
__________ f = kO = kO +n
| __tk=n__ | —
rk =n E—

(xl,xz,x3,x4,x5) = X1
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipsa ... X
s
scratch
/
O___f_k_:_'l___ — 0
__________ f = kX’ = kO +n
| __tk=n__ | —
rk =n E—

(xl,xz,x3,x4,x5) = X1
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipsa ... X
s
scratch
/
O___f_k_:_'l___ — 0
__________ f = kX’ = kO +n
| __tk=n__ | —
rk =n E—

(xl,xz,x3,x4,x5) = X1

(17*7*$*?*)
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipsa ... X
s
scratch
/
O___f_k_:_’l___ — 0
__________ f = kX’ = kO +n
| __tk=n__ | — — v
K =n — n=rkX

(xl,xz,x3,x4,x5) = X1
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipsa ... X
s
scratch
/
O___f_k_:_’l___ — 0
__________ f = kX’ = kO +n
| __tk=n__ | — — v
K =n — n=rkX

— G| n X is gen. 4-transitive
(1, X2, X3, X4, X5) = X1

(17*7*$*?*)
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1

Gipza ... X
T s
scratch
/
O___f_k_=_'_l___—’ ©
__________ f = kX’ =1kO +n
tk=n —_— 4
__________ = =3
tk =n e 4 " rkX. ..
— G| n X is gen. 4-transitive
(1, X2, X3, X4, X5) = X1 —_ - = G234 n Xis gen. 1-transitive

(17*7*$*?*)
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
{g € G : gnormalizes {1,2,3,4,5}}
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
Ss :={g € G : gnormalizes {1,2,3,4,5}}

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
S5 :={g € G : gnormalizes {1,2,3,4,5}}
{g € G : gnormalizes {1,2,3,4,5} and fixes 5}
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
Ss :={g € G : gnormalizes {1,2,3,4,5}}
Sy :={g € G: gnormalizes {1,2,3,4,5} and fixes 5}
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
Ss :={g € G : gnormalizes {1,2,3,4,5}}
Sy :={g € G: gnormalizes {1,2,3,4,5} and fixes 5}

o € S4 and o centralizing G134 —
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
Ss :={g € G : gnormalizes {1,2,3,4,5}}
Sy :={g € G: gnormalizes {1,2,3,4,5} and fixes 5}

o € S4 and o centralizing Gip34 = Gip34 ~ Fix(o) =
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

scratch
Ss :={g € G : gnormalizes {1,2,3,4,5}}
Sy :={g € G: gnormalizes {1,2,3,4,5} and fixes 5}

o € S4 and o centralizing Gip34 = G234  Fix(c) = rkFix(o) =2
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

If S,, acts definably and faithfully on a connected solvable group of rank r,
thenn <r—+ 1 unlessn = 6 and r = 4.
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Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

If S, acts definably and faithfully on a connected solvable group of rank 2,
thenn < 2+ 1 unlessn = 6 and r = 4.
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The Rank Two Problem: bounding ¢

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply t-transitive
with tk(X) = 2. Show that t < 4.

o Assumet = 5;let (1,2,3,4,5) € O C X°
@ The orbit of G134 on 5 has rank 2 and degree 1
Giozs ..., X

@ G134 is connected and has rank 2

@ Sy acts faithfully on G134

If S, acts definably and faithfully on a connected solvable group of rank 2,
then n < 2 + 1-unlessn—6-andr—4—
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)
Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Generically n-transitive permutation groups
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)
Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Want to build a projective plane.
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)
Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Want to build a projective plane. Set P := X.
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)
Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Want to build a projective plane. Set P := X. How should we define £?
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)
Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7

G X
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Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
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Want to build a projective plane. Set P := X. How should we define £?
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Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
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Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7

G X
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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The Rank Two Problem: building (P, L)
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7

Joshua Wiscons Generically n-transitive permutation groups
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Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?

@ Uy =7
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?
o Uy = {a:1k(Gyya) <2}
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?
o Uy = {a:1k(Gyya) < 2} Assume: 2-transitivity
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?
o Uy = {a:1k(Gyya) < 2} Assume: 2-transitivity
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?
o Uy = {a:1k(Gyya) < 2} Assume: 2-transitivity
o L:={ly:x#y}
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?
o Uy = {a:1k(Gyya) < 2} Assume: 2-transitivity
o L := {{ly : x # y} Assume: NOT 3-transitivity
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The Rank Two Problem: building (P, L)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P*(K).

Want to build a projective plane. Set P := X. How should we define £?
o Uy = {a:1k(Gyya) < 2} Assume: 2-transitivity
o L := {ly : x # y} Assume: NOT 3-transitivity (want rk(¢y,) = 1)
G X
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)
Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Generically n-transitive permutation groups
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Also assume: 2-transitivity; ~ NOT 3-transitivity
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; ~ NOT 3-transitivity

The geometry: P := X and L := {{,, : x # y}

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; ~ NOT 3-transitivity

The geometry: P := X and L := {{,, : x # y}
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; ~ NOT 3-transitivity

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a line
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; ~ NOT 3-transitivity

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a line

@ There are 4 points no 3 of which are collinear
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a line

@ There are 4 points no 3 of which are collinear
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a line

@ There are 4 points no 3 of which are collinear
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}

o Every 2 points lie on a unique line

@ There are 4 points no 3 of which are collinear
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a unique line
o Every 2 lines intersect in at most one point and

@ There are 4 points no 3 of which are collinear
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a unique line
o Every 2 lines intersect in at most one point and generically lines intersect

@ There are 4 points no 3 of which are collinear
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a unique line
o Every 2 lines intersect in at most one point and generically lines intersect

@ There are 4 points no 3 of which are collinear
Also,
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a unique line
o Every 2 lines intersect in at most one point and generically lines intersect
@ There are 4 points no 3 of which are collinear

Also,

o G is generically transitive on 4-gons
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).
Also assume: 2-transitivity; = NOT 3-transitivity; Fix(Gy,y,;) = {x,y,2}

The geometry: P := X and L := {{,, : x # y}
o Every 2 points lie on a unique line
o Every 2 lines intersect in at most one point and generically lines intersect
@ There are 4 points no 3 of which are collinear

Also,

o G is generically transitive on 4-gons

Problem is solved*

Gx,y .. X
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The Rank Two Problem: properties of (P, £)

Rank Two Problem (Sharp version)

Let G = G°. Suppose G ~ X is transitive and generically sharply 4-transitive
with tk(X) = 2. Show that G ~ X = PGL3(K) ~ P?(K).

Also assume: 2-transitivity;~-NOT-3-transitivitys Fix( xyz) ={x,y,z}

The geometry: P := X and L := {{,, : x # y}

o Every 2 points lie on a unique line

o Every 2 lines intersect in at most one point and generically lines intersect
@ There are 4 points no 3 of which are collinear
Also,

o G is generically transitive on 4-gons

Problem is solved*

Gx,y .. X
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Summary of The Problem

The Problem (BC 08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with tk(X) = n. Show that G ~ X = PGL,4(K) ~ P"(K).

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC 08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with tk(X) = n. Show that G ~ X = PGL,4(K) ~ P"(K).

@ Rank one is solved
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Summary of The Problem

The Problem (BC 08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with tk(X) = n. Show that G ~ X = PGL,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when
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Summary of The Problem

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when
o the action is generically sharply 4-transitive, and

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when

o the action is generically sharply 4-transitive, and
o Fix(Gy, ) = {x,y,z} for all x, y, z in “general position”
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Summary of The Problem

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when

o the action is generically sharply 4-transitive, and
o Fix(Gy, ) = {x,y,z} for all x, y, z in “general position”
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Summary of The Problem

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when

o the action is generically sharply 4-transitive, and
o Fix(Gy, ) = {x,y,z} for all x, y, z in “general position”

@ Remove the fixed-point criterion
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Summary of The Problem

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when

o the action is generically sharply 4-transitive, and
o Fix(Gy, ) = {x,y,z} for all x, y, z in “general position”

@ Remove the fixed-point criterion

© Try to recognize higher dimensional projective spaces in a similar way,
with perhaps an analogous fixed-point criterion
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Summary of The Problem

The Problem (BC *08)

Let G = G°. Suppose G ~ X is transitive and generically (n + 2)-transitive
with 1k(X) = n. Show that G ~ X = PGL,,4(K) ~ P"(K).

@ Rank one is solved
@ Rank two is solved® when

o the action is generically sharply 4-transitive, and
o Fix(Gy, ) = {x,y,z} for all x, y, z in “general position”

@ Remove the fixed-point criterion

© Try to recognize higher dimensional projective spaces in a similar way,
with perhaps an analogous fixed-point criterion

© Deal with the non-sharp case
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Side Project: Groups of rank 4
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gipj3 ~ Xis gen. sharply transitive
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gipj3 ~ Xis gen. sharply transitive, so
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gip ~ Xis gen. sharply 2-transitive
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.
Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

| \

Fact
Let G be a connected group of fMr.
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.
Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

| \

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact

Let G be a connected group of fMr.
Q kG=1 — G isabelian
Q kG =2 — G is solvable

| \
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact

Let G be a connected group of fMr.
Q kG=1 — G isabelian
Q kG =2 — G is solvable
Q@ kG=3

| \
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact

Let G be a connected group of fMr.
Q kG=1 — G isabelian
Q kG =2 — G is solvable
@ 1k G = 3 and G simple

| \
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
Q tkG =2 = G issolvable
Q kG =3 and G simple —> G is PSL,(K) or a simple bad group

| \
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
Q tkG =2 = G issolvable
Q kG =3 and G simple —> G is PSL,(K) or a simple bad group
Q kG = 4 and G simple

| \
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
Q tkG =2 = G issolvable
Q kG =3 and G simple —> G is PSL,(K) or a simple bad group
Q kG =4 and G simple — G is a simple bad group

| \
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
Q tkG =2 = G issolvable
Q kG =3 and G simple —> G is PSL,(K) or a simple bad group
Q kG =4 and G simple — G is a simple bad group

| \

@ Gen. sharply 2-transitive groups have elements of order 2
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
Q tkG =2 = G issolvable
Q kG =3 and G simple —> G is PSL,(K) or a simple bad group
Q kG =4 and G simple — G is a simple bad group

| \

@ Gen. sharply 2-transitive groups have elements of order 2

o Bad groups do not
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Side Project: Groups of rank 4

Let G = G°. Suppose G ~ X is gen. sharply 4-transitive with rk(X) = 2.

Q Gip3 ~ Xis gen. sharply transitive, so G 3 is connected of rank 2.

@ Gy ~ Xis gen. sharply 2-transitive, so G > is connected of rank 4.

Fact
Let G be a connected group of fMr.
Q tkG=1 = G isabelian
Q tkG =2 = G issolvable
Q kG =3 and G simple —> G is PSL,(K) or a simple bad group
Q kG =4 and G simple — G is a simple bad group

| A\

@ Gen. sharply 2-transitive groups have elements of order 2

@ Bad groups do not; they have no definable automorphism of order 2
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INTRODUCTION

Groups of finite Morley rank made their first appearance in model theory as
binding groups, which are the key ingredient in Zilber’s ladder theorem and in
Poizat’s explanation of the Picard-Vessiot theory. These are not just groups, but in
fact permutation groups acting on important definable sets. When they are finite,
they are connected with the model theoretic notion of algebraic closure. But the
more interesting ones tend to be infinite, and connected.

Many problems in finite permutation group theory became tractable only after
the classification of the finite simple groups. The theory of permutation groups of
finite Morley rank is not very highly developed, and while we do not have anything
like a full classification of the simple groups of finite Morley rank in hand, as a
result of recent progress we do have some useful classification results as well as
some useful structural information that can be obtained without going through an
explicit classification. So it seems like a good time to review the situation in the
theory of permutation groups of finite Morley rank and to lay out some natural
problems and their possible connections with the body of re: h that has grown




