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Properties of groups of fMr

Let G be a group of fMr.

1 Let X be a definable set, e.g.

Z(G), CG(g), hG, G/H

or interpretable

rk(X) ≥ n + 1 ⇐⇒

X

rk ≥ n rk ≥ n rk ≥ n

X1 X2 · · · Xi · · ·

If rk(X) = n, the degree of X is the maximum d ∈ N s.t.

X

rk = n rk = n rk = n

X1 X2 · · · Xd

2 G satisfies DCC on definable subgroups
3 ∃ a minimal definable subgroup of finite index G◦

(and deg G◦ = 1)

4 [G,G], F(G), and σ(G) are definable!
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Automorphisms of order 2

Let G be a connected group of fMr.

Fact
Let α ∈ Aut(G) be definable. If |α| = 2 and CG(α) is finite, then

α inverts G.

Let X := {g−1gα : g ∈ G} ⊆ G;

if a ∈ X, then aα = a−1

X is big: rk X = rk G

X ⊆ Z(G)

=⇒ Z(G) is big

G is abelian

=⇒ X is a (big) subgroup =⇒ X = G
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Automorphisms of order 2

Let G be a connected group of fMr.

Fact
Let α ∈ Aut(G) be definable. If |α| = 2 and CG(α) is finite, then α inverts G.

Fact (When rk G = 1)

Let α ∈ Aut(G) be definable. If |α| = 2, then α inverts G.

If Sn acts definably on G, then An is contained in the kernel.

Fact (When G is solvable)

(BC ’08) If Sn acts definably and faithfully on a connected abelian group
of rank r, then n ≤ r + 1 unless n = 6 and r = 4.

If Sn acts definably and faithfully on a connected nonabelian solvable
group of rank r, then n ≤ r + 1.
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Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if

there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

Joshua Wiscons Generically n-transitive permutation groups



Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

Joshua Wiscons Generically n-transitive permutation groups



Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

Joshua Wiscons Generically n-transitive permutation groups



Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

Joshua Wiscons Generically n-transitive permutation groups



Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

X
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X

X
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Generic t-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
t-transitive if there is an orbit O ⊂ Xt with rk(Xt −O) < rk(Xt).

I.e. G has a single orbit on Xt after removing a subset of smaller rank.

If deg(X) = 1, this is the same as rk(O) = rk(Xt).

Example: GLn(K) y Kn

generically n-transitive

O is the set of bases of Kn:

orbit of (e1, . . . , en)

Example: PGLn(K) y Pn−1(K)

generically (n + 1)-transitive

O is the set bases of Pn−1(K):

orbit of (〈e1〉, . . . , 〈en〉, 〈
∑

ei〉)
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Theorem

1 (Popov ’07) Let G be an infinite simple algebraic group over an alg.
closed field of characteristic 0. Then gtd(G) is given by

An Bn, n ≥ 3 Cn, n ≥ 2 Dn, n ≥ 4 E6 E7 E8 F4 G2

n + 2 3 3 3 4 3 2 2 2

2 Let G be an infinite solvable group of fMr. Then gtd(G) ≤ 2.
3 Let G be an infinite nilpotent group of fMr. Then gtd(G) = 1.

Problem (BC ’08)
Show that the above table is valid in arbitrary characteristic.
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G y X is generically t-transitive

1

2

3

4

5

6

1 2 3 n := rk(X)

t

PGL2(K)

PGL3(K)

PGL4(K)

AGL1(K)

AGL2(K)

AGL3(K)

GL1(K)

GL2(K)

GL3(K)

PGL2(K)× PGL2(L) y P1(K)× P1(L)PGL2(L) y P1(L) with rk(L) = 2!

PGLn+1(K) y Pn(K)

AGLn(K) y Kn

GLn(K) y Kn − {0}

Extra Assumptions
• G y X is transitive
Extra Assumptions
• G y X is transitive
• G is connected

The Problem (BC ’08)
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Show that t ≥ n + 2 =⇒ G y X ∼= PGLn+1(K) y Pn(K)
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Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).
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The Rank Two Problem

Rank Two Problem
Let G = G◦. Suppose G y X is transitive and generically 4-transitive with
rk(X) = 2. Show G y X ∼= PGL3(K) y P2(K).

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply t-transitive
with rk(X) = 2. Show that t ≥ 4 implies G y X ∼= PGL3(K) y P2(K).

Really, we have two things to show.
1 t ≤ 4
2 t = 4 =⇒ PGL3(K) y P2(K)
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The Rank Two Problem: bounding t

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply t-transitive
with rk(X) = 2. Show that t ≤ 4.

Assume t = 5;

let (1, 2, 3, 4, 5) ∈ O ⊂ X5

The orbit of G1,2,3,4 on 5 has rank 2 and degree 1

G1,2,3,4 X

5
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scratch

rk = n
rk = n

rk = n
...

...

A

O

B

O′

f

(x1, x2, x3, x4, x5) 7→ x1
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Let G = G◦. Suppose G y X is transitive and generically sharply t-transitive
with rk(X) = 2. Show that t ≤ 4.

Assume t = 5; let (1, 2, 3, 4, 5) ∈ O ⊂ X5

The orbit of G1,2,3,4 on 5 has rank 2 and degree 1
G1,2,3,4 X

5
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Fact
If Sn acts definably and faithfully on a connected solvable group of rank r,
then n ≤ r + 1 unless n = 6 and r = 4.
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The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane.

Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X.

How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x
Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := ?

{a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := {a : rk(Gx,ya) < 2}

Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := {a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := {a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := {a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y}

Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := {a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y} Assume: NOT 3-transitivity

(want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: building (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

Want to build a projective plane. Set P := X. How should we define L?

`xy := {a : rk(Gx,ya) < 2} Assume: 2-transitivity

L := {`xy : x 6= y} Assume: NOT 3-transitivity (want rk(`xy) = 1)

G X

Gx

x

Gx,y

y

`xy

Gx,y,z

Joshua Wiscons Generically n-transitive permutation groups



The Rank Two Problem: properties of (P ,L)

Rank Two Problem (Sharp version)

Let G = G◦. Suppose G y X is transitive and generically sharply 4-transitive
with rk(X) = 2. Show that G y X ∼= PGL3(K) y P2(K).

2-transitivity; ≈
NOT 3-transitivity; Fix(Gx,y,z) = {x, y, z}

The geometry: P := X and L := {`xy : x 6= y}
Every 2 points lie on a line

Every 2 lines intersect in at most one point and

There are 4 points no 3 of which are collinear

Also,

G is generically transitive on 4-gons

Problem is solved∗
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Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved

2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and

Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan

1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan
1 Remove the fixed-point criterion

2 Try to recognize higher dimensional projective spaces in a similar way,
with perhaps an analogous fixed-point criterion

3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan
1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion

3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Summary of The Problem

The Problem (BC ’08)

Let G = G◦. Suppose G y X is transitive and generically (n + 2)-transitive
with rk(X) = n. Show that G y X ∼= PGLn+1(K) y Pn(K).

1 Rank one is solved
2 Rank two is solved∗ when

the action is generically sharply 4-transitive, and
Fix(Gx,y,z) = {x, y, z} for all x, y, z in “general position”

The plan
1 Remove the fixed-point criterion
2 Try to recognize higher dimensional projective spaces in a similar way,

with perhaps an analogous fixed-point criterion
3 Deal with the non-sharp case

Joshua Wiscons Generically n-transitive permutation groups



Side Project: Groups of rank 4

Remark
Let G = G◦. Suppose G y X is gen. sharply 4-transitive with rk(X) = 2.

1 G1,2,3 y X is gen. sharply transitive

, so G1,2,3 is connected of rank 2.

2 G1,2 y X is gen. sharply 2-transitive

, so G1,2 is connected of rank 4.

Fact
Let G be a connected group of fMr.

1 rk G = 1 =⇒ G is abelian
2 rk G = 2 =⇒ G is solvable
3 rk G = 3

and G simple =⇒ G is PSL2(K) or a simple bad group

4 rk G = 4 and G simple

=⇒ G is a simple bad group

Gen. sharply 2-transitive groups have elements of order 2
Bad groups do not

; they have no definable automorphism of order 2
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Introduction

Groups of finite Morley rank made their first appearance in model theory as
binding groups, which are the key ingredient in Zilber’s ladder theorem and in
Poizat’s explanation of the Picard-Vessiot theory. These are not just groups, but in
fact permutation groups acting on important definable sets. When they are finite,
they are connected with the model theoretic notion of algebraic closure. But the
more interesting ones tend to be infinite, and connected.

Many problems in finite permutation group theory became tractable only after
the classification of the finite simple groups. The theory of permutation groups of
finite Morley rank is not very highly developed, and while we do not have anything
like a full classification of the simple groups of finite Morley rank in hand, as a
result of recent progress we do have some useful classification results as well as
some useful structural information that can be obtained without going through an
explicit classification. So it seems like a good time to review the situation in the
theory of permutation groups of finite Morley rank and to lay out some natural
problems and their possible connections with the body of research that has grown
up around the classification e↵ort.

The study of transitive permutation groups is equivalent to the study of pairs
of groups (G, H) with H a subgroup of G, and accordingly one can read much of
general group theory as permutation group theory, and vice versa, and, indeed, a lot
of what goes on in work on classification makes a good deal of sense as permutation
group theory—including even the final identification of a group as a Chevalley
group, which can go via Tits’ theory of buildings, or in other words by recognition
of the natural permutation representations of such groups. Many special topics in
permutation groups tied up with structural issues were discussed in [7, Chapter 11],
with an eye toward applications. See also Part III of [15].

Second author supported by NSF Grant DMS-0100794.
Both authors thank the Newton Institute, Cambridge, for its hospitality during the Model

Theory and Algebra program, where the bulk of this work was carried out, as well as CIRM for

its hospitality at the September 2004 meeting on Groups, Geometry and Logic, where the seed
was planted. Thanks to Altınel for continued discussions all along the way.

http://eprints.ma.man.ac.uk/158/

Joshua Wiscons Generically n-transitive permutation groups


