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Black box groups

black box X ...........
π
- G encrypted group

strings x · y , x−1, x = y random



Black box rings

X ...........
π
- R

x · y , x + y , −x , x = y

Similarly: black box everything



Axioms

BB1 X produces strings of fixed length l(X) encrypting random
(almost) uniformly distributed elements from G .

BB2 X computes, in time polynomial in l(X), a string encrypting
the product of two group elements given by strings or a string
encrypting the inverse of an element given by a string.

BB3 X decides, in time polynomial in l(X), whether two strings
encrypt the same element in G —therefore identification of
strings is a canonical projection

X ..........
π
- G .

BB4 We are given a computationally feasible global exponent E of
X,

π(x)E = 1 for all strings x ∈ X.



Black box group algorithms

Let X be a black box (simple) group

• Probabilistic Recognition
• Determine the isomorphism type of X – X is PSL2(13), Alt9,

etc.

• Constructive Recognition
• Construct an explicit isomorphism between X and a known

group G .



More on constructive recognition

Let X be a black box group encrypting a given group G .
An effective isomorphism

ϕ : G → X

1. Given g ∈ G , construct efficiently the string ϕ(g) representing
g in X.

2. Given a string x produced by X, construct efficiently the
element ϕ−1(x) ∈ G represented by x .



Obstacles in constructive recognition algorithms

Let X be a group of Lie type over a field of size q.

• Involves construction of unipotent elements.

• Unipotents are astronomically rare!

If X is given as a matrix group, then one needs to solve discrete
logarithm problem—in Fq, not in the prime field.



More obstacles: The nature of non-reversibility

Let K be a black box field encrypting Fp, p prime.

We always have a morphism

Z/pZ = Fp −→ K.

The existence of the reverse morphism

Fp ←− K

would follow from solution of the discrete logarithm problem in
K.



Our setup

We are given

• A black box group X with no additional oracles, and

• an exponent E of X, that is, xE = 1 for all x ∈ X.

The decomposition E = 2km, (m, 2) = 1, suffices to produce
efficient algorithms.



Morphisms of black box groups

A morphism ζ : X→ Y is an efficiently computable map which
make the following diagram commutative:

X
ζ- Y

G

πX

?

.........
φ- H

πY

?

.........

We say that a morphism ζ encrypts the homomorphism φ.



BB subgroups are morphisms

When we

• have a generating set y1, . . . , yk for Y 6 X, and

• sample the “product replacement algorithm” (or something
similar), for Y

we deal with a morphism

Y ↪→ X.



Morphisms are BB subgroups

G
φ- H

is a homomorphism if and only if its graph

F = {(g , φ(g)) : g ∈ G}

is a subgroup of G × H.

X
ζ- Y

is a BB subgroup Z ↪→ X× Y encrypting F :

Z = {(x , ζ(x)) : x ∈ X}

with the natural projection

πZ : Z −→ F

(x , ζ(x)) 7→ (πX(x), φ(πX(x)).



Graphs of the morphisms

Let x1, x2, . . . , xk ∈ X with known images
y1 = ζ(x1), y2 = ζ(x2), . . . yk = ζ(xk) ∈ Y.

Then the subgroup

Z = 〈(x1, y1), . . . , (xk , yk)〉 ≤ X× Y

is the graph of the morphism ζ.

Random sampling on Z produces strings in X with their images
ζ(x) in Y attached.



Automorphisms of black box groups of Lie type

Theorem (Borovik-Y.)

Let X be a black box group encrypting a Lie type group G (F ),
where F is an unknown finite field. Given an exponent E for X, we
can construct, in polynomial in log E , a cover

X←− Y

where a black box group Y encrypts G (F ) and morphisms

Y ←− Y

encrypting Frobenius and graph automorphisms of G (F ).



An example

Borovik–Y: Given a black box group encrypting SL3(p2) for a 60
decimal digits long prime number p:

p = 622288097498926496141095869268883999563096063592498055290461,

we can construct a black box subgroup

SU3(p) ↪→ SL3(p2).

This is implemented on GAP!
Note that

|SL3(p2)| ≈ 10960.



More constructions

Borovik–Y: Let X be a black box group encrypting the group
SL8(F ), where F is an unknown field. Given an exponent E for X,
we can construct, in time polynomial in log E , a chain of black box
groups and morphisms

U ↪→ V ↪→W ↪→ X

that encrypts the chain of canonical embeddings

G2(F ) ↪→ SO7(F ) ↪→ SO+
8 (F ) ↪→ SL8(F ).



Fifty shades of black

M.C. Escher, Day and Night, 1938.

Decryption of a BB group X: a step-by-step construction of a
chain of morphisms

G �..........
π

X ��
ζ1

X1
��ζ2

X2
�� · · · �� Xn

��ζn+1
G

at each step

• changing the shade of black and
• increasing the amount of information provided by the black

boxes Xi .



Centralizers of involutions in black box groups (Cartan;
Altseimer & Borovik; Bray)

X a black box group,
i ∈ X an involution,
x ∈ X a random element.

If |iix | = m even, then (iix)m/2 is an involution.

If |iix | = m odd, then set y := (iix)m+1/2. We have

iy = ix .



Centralizers of involutions in black box groups (Cartan;
Altseimer & Borovik; Bray)

Define

ζ : X → CX(i)

x 7→ ζ0(x) = (iix)m/2, m = o(iix) even
ζ1(x) = (iix)(m+1)/2.x−1, m = o(iix) odd



Shades of black for SLn: Extended Curtis-Tits system

··
·

◦ · · · ◦ ◦ ◦ ◦!!
!!!
!!
!•

aa
aa

aa
aa



Reification of involutions

Let S be a generating set for X,
i an involutive automorphism of X.

Suppose that we know the action of i on S:

x i , x ∈ S.

Since
iix = x ix−1,

we construct CX(i) and identify i ∈ Z (CX(i)).



Reifying an involution in SO3(q)

Let X = SO3(q), q odd,
i , j ∈ X involutions and ij is not a unipotent element.

Question
Find the involution which commutes with both i and j, call it k.

• Set z = ij .

• If z has even order, then k is the unique involution in 〈z〉.
• Assume that z has odd order.

• k centralises z , and
• k inverts the torus Tj containing j .

• k : z 7→ z , t 7→ t−1 for all t ∈ Tj .

• 〈z ,Tj〉 = X.



From PSL2 to PGL2

A reification of a diagonal automorphism of X ' PSL2(q),
q ≡ 1 mod 4:

• Produce an involution i ∈ X.

• Construct T+ < CX(i), where |T+| = (q − 1)/2.

• Find g ∈ X such that iig ∈ T−, where |T−| = (q + 1)/2.

• We have 〈T+,T−〉 = X.

• The amalgam δ of the local automorphisms

α+ : T+ → T+, s 7→ s

α− : T− → T−, s 7→ s−1

encrypts a diagonal automorphism of PSL2(q).



Involutions in X := PSL2(2n)

• Let x1, x2 be two non-commuting elements of odd order > 3.

• 〈x1, x2〉 = PSL2(2m) for some m.

• There is an involution i ∈ X inverting both x1 and x2.

• Construct an element in CX(i).



Structural recognition, (P)SL2(q)

Theorem (Borovik and Y.)

Given a global exponent E for a black box group Y encrypting
PSL2 over some finite field of unknown odd characteristic p, we
construct, in probabilistic time polynomial in log E ,

• a black box group X encrypting SO3 over the same field as Y
and an effective embedding Y ↪→ X;

• a black box field K, and

• the following isomorphisms

SO3(K) −→ X −→ SO3(K).

If p is known and F is the standard explicitly given finite field of
characteristic p isomorphic to the field on which Y is defined then
we also construct, in log E -time, an isomorphism

SO3(F) −→ SO3(K).



Unipotents

Theorem (Borovik and Y.)

Given a global exponent E for a black box group Y encrypting
PSL2 over some finite field of unknown odd characteristic p, we
construct a non-trivial unipotent element in Y in time linear in p
and polynomial in log E . In particular, we find the characteristic p
of the underlying field.
If the characteristic p is known in advance then we construct a
non-trivial unipotent element in Y in time polynomial in log E .



PGL2(q) ∼= SO3(q)

Lie algebra l of sl2: 2× 2 matrices of trace 0 with Lie bracket
[A,B] = AB − BA.

PGL2(F): Via action by conjugation, group of automorphisms of
the Lie algebra l = sl2 and it preserves the Killing form K on l,

K (α, β) = Tr (ad(α) · ad(β)) ;

SO3(l,K ): Group of orthogonal transformations of l preserving K .

Denote by l the 3-dimensional Fq vector space of the canonical
representation of SO3(q).



PGL2(q) ∼= SO3(q)

l := sl2, G := SO3(q).

An element σ ∈ l is

• semisimple iff K (σ, σ) 6= 0

• unipotent iff K (σ, σ) = 0.

Every semisimple element σ in l gives rise to an involution in G ,
the half-turn sσ around the one-dimensional space generated by σ:

sσ : α 7→ 2K (α, σ)

K (σ, σ)
σ − α.

Every involution in G is a half turn.

The set I of involutions in G is in one-to-one correspondence with
the set of regular points of the projective plane P = P(l).



Weisfeiler plane

Fact
The set W (Weisfeiler plane) of 1-dimensional algebraic subgroups
A in G is in one-to-one correspondence

A↔ Lie(A)

with the set of points of the projective plane P.

1-dimensional subgroups of SO3(q):

• split tori: cyclic groups of order q − 1;

• non-split tori: cyclic groups of order q + 1;

• maximal unipotent subgroups of order q.



Dual plane P∗ of P

W becomes the lines of P.
Points of P:

• involutive (or, semisimple, or regular)

• unipotent (or, parabolic, or tangent)

Incidence relation:

• the set of involutive points of P = the set of all involutions in
G .

• A: 1-dimensional subgroup in G .
• `(A): all involutions inverting A; if w is one of these

involutions, then `(A) coincides with the coset Aw .



Missing points

Projective lines over Fq have q + 1 points.

|A| = q − 1:

• maximal unipotent subgroups normalizing A.

|A| = q:

• A itself.

|A| = q + 1:

• None.



Quadric

Let U ∈W be a maximal unipotent subgroup of G . Then
u = Lie(U) is a singular point in P and belongs to the quadric Q

in P given by the equation K (ν, ν) = 0 in terms of the Killing
form K (· , ·) on l.

We have

Q = P r I.



Black box projective plane

Let X be a black box group encrypting SO3(q), q, odd.

Using X, we construct a black box encrypting the projective plane
P.

Points:

• Regular points:
(s,Ts , $(s))

s ∈ I, Ts is its torus and $(s) = Tsw , the coset of
involutions inverting Ts .

• Parabolic point: same as the parabolic line.



Black box projective plane

Lines:

• Parabolic line, u: pointer to a black box subgroup U o 〈t〉.
Incidence:

• Involutions in Ut, and
• U itself.

• Regular line, l: pointer to a black box subgroup T o 〈w〉.
Incidence:

• If |T| = q + 1, then the involutions in Tw .
• If |T| = q − 1, then

• the involutions in Tw , and
• two maximal unipotent subgroups normalised by T.



Line through two regular points

Let s, t ∈ I be two involutions.

• Set z = st. If z is unipotent, then 〈zTs 〉s is a parabolic line.

• Otherwise, we construct an involution j := j(s, t) commuting
with both s and t.

• Construct CX(j) and the involutions inverting Tj < CX(j)
form the desired line.



Intersection of two lines

Let k ∧ l be any two non-parabolic lines. Then

k∧l =


the common point of k and l, if this point belongs to I;
otherwise, the tangent line through the common parabolic
point of k and l.



Coordinatisation of I

• Construct three involutions e1, e2, e3 mutually commuting
with each other (Spinor basis) and H := Sym4 containing
e1, e2, e3. Set E := 〈e1, e2, e3〉.

• E ≤ [H,H]. Therefore the involutions ei have spinor norm 1
and the vectors εi can be chosen to satisfy

K (εi , εi ) = 1

forming an orthonormal basis in l,

K (εi , εj) = δij .

Hence we have the quadric given by the equation

x2
1 + x2

2 + x2
3 = 0.



Coordinatisation of I

r

r

r
















J
J
J
J
J
J
J
J
J

(0, 0, 1)e3 = (1, 0, 0)e1 =

(0, 1, 0)e2 =



Unity in K

Let Θ ∈ H be an element of order 3 with

Θ : e1 → e2 → e3 → e1

Let d1 ∈ NH(〈Θ〉) be an involution such that

ed1
1 = e1.

Then
ed1

2 = e3.



Unity in K

Assign to d1 the coordinates (0, 1, 1).

Set d2 = dΘ
1 = (1, 0, 1) and d3 = dΘ2

1 = (1, 1, 0).

r

r

r
















J
J
J
J
J
J
J
J
J

e3 = (0, 0, 1) e1 = (1, 0, 0)

e2 = (0, 1, 0)

rd3 = (1, 1, 0)

r
d2 = (1, 0, 1)

rd1 = (0, 1, 1)



Coordinatisation of I

r

r
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J
J
J
J
J
J
J
J
J
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�
�r

(x1, 0, 1)(0, 0, 1)e3 = (∞, 0, 1)e1 =

(0,∞, 1)e2 =

r(x1, x2, 1)
r(0, x2, 1)

r
rr

r
(x1, 0)

r(x1, x2)(0, x2)

(0, 0)



Addition in K on the axis e1 ∨ e3

r -
e3 = (0, 0)

6

d1 = (0, 1)r r c

r
a

HH
HHH

HHH
HHHHr

b

HH
HHH

HHH
HHHHr

a⊕ b



Multiplication on K

r
e3 = (0, 0)

�
�
�
�
�
�
�
�
�
�
��

e3 ∨ d3

r
d2 = (1, 0)

c = (1, 1)r
r

a = (a, 0)

d = (a, a)r

r
H
HHH

HHH
HHH

b = (b, 0)

HH
HHH

HHH
HHH

HHH
HHH

HHr
ab = (ab, 0)



Morphisms SO3(K)→ X→ SO3(K)

The action of X on I gives morphisms

X↔ SO3(K).



Black box fields

Theorem (Lenstra Jr 1991; Maurer and Raub 2007)

Let K and L be black box fields encrypting the same finite field
and K0, L0 their prime subfield. Then a morphism

K0 −→ L0

can be extended, with the help of a polynomial time construction,
to a morphism

K −→ L.



Unipotents are not invisible anymore!

On e1 ∨ e3, start adding the unity 1 to itself.

• If the addition fails at (c − 1)1⊕ 1, it means that
• p ≡ 1 mod 4, and
• c2 + 1 = p, that is, the coordinate of one of the unipotents on

the axis e1 ∨ e3 is at c . The other one is at −c .
• This failure produces a unipotent element.

• If the addition never fails and produces the involution e3 at a
coordinate, then

• p ≡ −1 mod 4, and
• the characteristic of the field is this coordinate.
• Solve x2

1 + c2 + 1 = 0 for a random involution c on e1 ∨ e3.



GAP

Construction of unipotent elements has been tested on GAP up to
10 digit primes.



Brauer: Characterisation of PGL3(q), q odd



Spinor basis

e1 =

−1 0 0
0 −1 0
0 0 1

, e2 =

1 0 0
0 −1 0
0 0 −1

, e3 =

−1 0 0
0 1 0
0 0 −1





Desarguesian Plane: Points and lines of P

Let M1 = {

1 0 ∗
0 1 ∗
0 0 1

 | ∗ ∈ F} and M̃1 = {

1 0 0
0 1 0
∗ ∗ 1

 | ∗ ∈ F}

• Points: {(e1M1)g | g ∈ G} = {

−1 0 ∗
0 −1 ∗
0 0 1

g

| g ∈ G}

• Lines: {(e1M̃1)h | h ∈ G} = {

−1 0 0
0 −1 0
∗ ∗ 1

h

| h ∈ G}



Incidence relation

The point p lies on a line ` if p ∩ ` = Ø.

The plane consisting of these points and lines is a projective plane
P associated with PGL3.



Black box projective plane

Let X = PGL3(q), q odd.

Involutions in X are pointers to both the points and the lines.

Two involutions i , j represents the same point if and only if ij is
unipotent. Similarly, for the lines.



Lines through two points: Reification strikes back!

Fact
Let x , y ∈ X be two distinct commuting involutions, then the point
(x) lies on the line [y ].

Let x , y ∈ X be two involutions and z ∈ X be an involution
commuting with both x , y . Then (x), (y) ∈ [z ].



Coordinatisation
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(x1, 0, 1)(0, 0, 1)(e3) = (∞, 0, 1)(e1) =

(0,∞, 1)(e2) =

r(x1, x2, 1)
r(0, x2, 1)

r
rr

r
(x1, 0)

r(x1, x2)(0, x2)

(0, 0)



Black box field K

Addition and multiplication involves

1. constructing lines from two points, and

2. finding the intersection point of two lines.

Same as before!



Morphisms PGL3(K)→ X→ PGL3(K)

The action of X on P gives morphisms

X↔ PGL3(K).



Recursion step: PGL3-oracle

Theorem (Borovik and Y.)

Given a global exponent E for a black box group X encrypting
PGL3 over some finite field of unknown odd characteristic p, we
construct, in probabilistic time polynomial in log E ,

• a black box field K, and

• the following isomorphisms

PGL3(K) −→ X −→ PGL3(K).

If p is known and F is the standard explicitly given finite field of
characteristic p isomorphic to the field on which X is defined then
we also construct, in log E -time, an isomorphism

PGL3(F) −→ PGL3(K).



Structural recognition of Lie type groups

Borovik–Y, work in progress:

For BB groups X encrypting simple group of Lie type G = G(F ),
where F is an unknown field of odd order, we have a probabilistic
algorithm which constructs

• a BB field K encrypting F , and

• an effective isomorphisms between G (K) and X.

The algorithm runs in time polynomial in log |G |.


