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Black box groups

black box ), QSIS -G encrypted group

strings Xy, X7, X=y random



Black box rings

XY, X+Yy, —X, X=Yy

Similarly: black box everything



Axioms

BB1 X produces strings of fixed length /(X) encrypting random
(almost) uniformly distributed elements from G.

BB2 X computes, in time polynomial in /(X), a string encrypting
the product of two group elements given by strings or a string
encrypting the inverse of an element given by a string.

BB3 X decides, in time polynomial in /(X), whether two strings
encrypt the same element in G—therefore identification of
strings is a canonical projection

BB4 We are given a computationally feasible global exponent E of
XY
7(x)E =1 for all strings x € X.



Black box group algorithms

Let X be a black box (simple) group

e Probabilistic Recognition

e Determine the isomorphism type of X — X is PSL,(13), Alt,
etc.

e Constructive Recognition

e Construct an explicit isomorphism between X and a known
group G.



More on constructive recognition

Let X be a black box group encrypting a given group G.
An effective isomorphism

p:G6—X

1. Given g € G, construct efficiently the string ©(g) representing
g in X.

2. Given a string x produced by X, construct efficiently the
element ¢ ~1(x) € G represented by x.



Obstacles in constructive recognition algorithms

Let X be a group of Lie type over a field of size g.

e Involves construction of unipotent elements.

e Unipotents are astronomically rare!

If X is given as a matrix group, then one needs to solve discrete
logarithm problem—in [F, not in the prime field.



More obstacles: The nature of non-reversibility

Let K be a black box field encrypting IFy,, p prime.
We always have a morphism
Z/pZ =TF, — K.
The existence of the reverse morphism
F, +~—K

would follow from solution of the discrete logarithm problem in
K.



Our setup

We are given
e A black box group X with no additional oracles, and
e an exponent E of X, that is, xE =1 for all x € X.

The decomposition E = 2Km, (m,2) = 1, suffices to produce
efficient algorithms.



Morphisms of black box groups

A morphism ¢ : X — Y is an efficiently computable map which
make the following diagram commutative:

X_—S.v

A\ Y
G—2+H

We say that a morphism ( encrypts the homomorphism ¢.



BB subgroups are morphisms

When we
e have a generating set y1,...,yx for Y < X, and

e sample the “product replacement algorithm” (or something
similar), for Y

we deal with a morphism

Y — X.



Morphisms are BB subgroups

G-+ H
is a homomorphism if and only if its graph

F={(g 4(g)) : g € G}
is a subgroup of G x H.

XY
is a BB subgroup Z — X x Y encrypting F:
Z={(x.((x): x € X}
with the natural projection

mz:Z — F

(x,¢(x)) = (mx(x), ¢(mx(x)).



Graphs of the morphisms

Let x1,x2,...,xx € X with known images
yl={((x),y2 =C((x), . yk =((x) €Y.

Then the subgroup

Z= <(X1,y1),...,(Xk,yk)> <XxY

is the graph of the morphism (.

Random sampling on Z produces strings in X with their images
¢(x) in Y attached.



Automorphisms of black box groups of Lie type

Theorem (Borovik-Y.)

Let X be a black box group encrypting a Lie type group G(F),
where F is an unknown finite field. Given an exponent E for X, we
can construct, in polynomial in log E, a cover

X—Y
where a black box group Y encrypts G(F) and morphisms
Y—Y

encrypting Frobenius and graph automorphisms of G(F).



An example

Borovik-Y: Given a black box group encrypting SL3(p?) for a 60
decimal digits long prime number p:

p = 622288097498926496141095869268883999563096063592498055290461,
we can construct a black box subgroup

SU3(p) — SL3(p2).

This is implemented on GAP!
Note that
ISL3(p?)| ~ 10°%.



More constructions

Borovik—Y: Let X be a black box group encrypting the group
SLg(F), where F is an unknown field. Given an exponent E for X,
we can construct, in time polynomial in log E, a chain of black box

groups and morphisms

U—>V—W—X

that encrypts the chain of canonical embeddings

Go(F) = SO7(F) < SOg (F) — SLg(F).



Fifty shades of black

Decryption of a BB group X: a step-by-step construction of a
chain of morphisms

& G ¢ Cnt1 C

G <o X owet Xg a2 Xy wo—— e e X,

at each step
e changing the shade of black and
e increasing the amount of information provided by the black
boxes X;.



Centralizers of involutions in black box groups (Cartan;
Altseimer & Borovik; Bray)

X a black box group,
i € X an involution,
x € X a random element.

If |iiX| = m even, then (ii*)™/? is an involution.

If |iiX| = m odd, then set y := (ii*)™*1/2. We have

Y=



Centralizers of involutions in black box groups (Cartan;
Altseimer & Borovik; Bray)

Define

C: X — Cx(i)
Co(x) = (i)™/2, m = o(ii) even
Gi(x) = (i) M2 x71 1 m = o(ii*) odd

X =



Shades of black for SL,: Extended Curtis-Tits system

|| [ ]




Reification of involutions

Let S be a generating set for X,
i an involutive automorphism of X.

Suppose that we know the action of / on S:
x', x €8.

Since

we construct Cx (/) and identify i € Z(Cx(1)).



Reifying an involution in SO3(q)

Let X = SO3(q), g odd,
i,j € X involutions and ij is not a unipotent element.

Question
Find the involution which commutes with both i and j, call it k.
o Set z=1j.

e If z has even order, then k is the unique involution in (z).

Assume that z has odd order.

e k centralises z, and
e k inverts the torus T; containing j.

e k:z— 2z, t— t ! forall teT;.
(z,Tj) =X



From PSL, to PGL,

A reification of a diagonal automorphism of X ~ PSL5(q),
g =1 mod 4:

Produce an involution i € X.

Construct T4 < Cx(i), where |T4| = (g —1)/2.

Find g € X such that i8¢ € T_, where |[T_| = (g +1)/2.
We have (T4, T_) = X.

The amalgam § of the local automorphisms

Od_|_ZT+—>T+, SH—S

a_:T_—->T_, s 51

encrypts a diagonal automorphism of PSLy(q).



Involutions in X := PSL,(2")

Let x1, x> be two non-commuting elements of odd order > 3.
(x1,x2) = PSLy(2™) for some m.
There is an involution i € X inverting both x; and x».

Construct an element in Cx(/).



Structural recognition, (P)SLy(q)

Theorem (Borovik and Y.)

Given a global exponent E for a black box group Y encrypting
PSLy over some finite field of unknown odd characteristic p, we
construct, in probabilistic time polynomial in log E,

e a black box group X encrypting SO3 over the same field as Y
and an effective embedding ¥ — X;

e a black box field K, and

o the following isomorphisms
SO3(K) — X — SO3(K).

If p is known and F is the standard explicitly given finite field of
characteristic p isomorphic to the field on which Y is defined then
we also construct, in log E-time, an isomorphism

S03(F) — SO3(K).



Unipotents

Theorem (Borovik and Y.)

Given a global exponent E for a black box group Y encrypting
PSLy over some finite field of unknown odd characteristic p, we
construct a non-trivial unipotent element in Y in time linear in p
and polynomial in log E. In particular, we find the characteristic p
of the underlying field.

If the characteristic p is known in advance then we construct a
non-trivial unipotent element in Y in time polynomial in log E.



PGLy(q) = S03(q)

Lie algebra [ of slp: 2 x 2 matrices of trace 0 with Lie bracket
[A, B] = AB — BA.

PGLy(F): Via action by conjugation, group of automorphisms of
the Lie algebra [ = sl and it preserves the Killing form K on [,

K(a, §) = Tr (ad(a) - ad(5)) ;

SO3(Il, K): Group of orthogonal transformations of [ preserving K.

Denote by [ the 3-dimensional I vector space of the canonical
representation of SO3(q).



PGLy(q) = 50s(q)
[:=sl, G :=S03(q).
An element o € [ is
e semisimple iff K(o,0) # 0
e unipotent iff K(o,0) = 0.

Every semisimple element ¢ in [ gives rise to an involution in G,
the half-turn s, around the one-dimensional space generated by o:

2K (o, 0)
Spioa— ——Lo—q.

K(o,0)

Every involution in G is a half turn.

The set J of involutions in G is in one-to-one correspondence with
the set of regular points of the projective plane P = (I).



Weisfeiler plane

Fact
The set 20 (Weisfeiler plane) of 1-dimensional algebraic subgroups
A in G is in one-to-one correspondence

A «— Lie(A)
with the set of points of the projective plane 3.
1-dimensional subgroups of SO3(q):
e split tori: cyclic groups of order g — 1;

e non-split tori: cyclic groups of order g + 1;

e maximal unipotent subgroups of order q.



Dual plane B* of B

20 becomes the lines of .
Points of P:

e involutive (or, semisimple, or regular)

e unipotent (or, parabolic, or tangent)

Incidence relation:

e the set of involutive points of P8 = the set of all involutions in
G.
e A: 1-dimensional subgroup in G.
e ((A): all involutions inverting A; if w is one of these
involutions, then £(A) coincides with the coset Aw.



Missing points

Projective lines over F; have g + 1 points.

Al=q—1:

e maximal unipotent subgroups normalizing A.
Al = q:

o A itself.
Al=q+1:

e None.



Quadric

Let U € 2 be a maximal unipotent subgroup of G. Then

u = Lie(U) is a singular point in 8 and belongs to the quadric Q
in P given by the equation K(v,v) = 0 in terms of the Killing
form K(-,-) on L.

We have



Black box projective plane

Let X be a black box group encrypting SO3(q), g, odd.

Using X, we construct a black box encrypting the projective plane
.
Points:
e Regular points:
(s, Ts, = (s))
s €7, Tsis its torus and w(s) = Tsw, the coset of
involutions inverting Ts.

e Parabolic point: same as the parabolic line.



Black box projective plane

Lines:
e Parabolic line, u: pointer to a black box subgroup U x (t).
Incidence:
e Involutions in Ut, and
e U itself.
e Regular line, I: pointer to a black box subgroup T x (w).
Incidence:

e If |T| = g + 1, then the involutions in Tw.
e If [T|=qg—1, then
e the involutions in Tw, and
® two maximal unipotent subgroups normalised by T.



Line through two regular points

Let s,t € J be two involutions.

e Set z = st. If z is unipotent, then (z')s is a parabolic line.

e Otherwise, we construct an involution j := j(s, t) commuting
with both s and t.

e Construct Cx(j) and the involutions inverting T; < Cx(j)
form the desired line.



Intersection of two lines

Let k Al be any two non-parabolic lines. Then

the common point of k and |, if this point belongs to 7J;
kAl = ¢ otherwise, the tangent line through the common parabolic
point of k and |I.



Coordinatisation of J

e Construct three involutions e1, o, e3 mutually commuting
with each other (Spinor basis) and H := Sym, containing
e1, e, e3. Set E 1= (e1, e, €3).

e E < [H, H]. Therefore the involutions e; have spinor norm 1
and the vectors €; can be chosen to satisfy

K(ei,ei) =1
forming an orthonormal basis in [,
(ENE
Hence we have the quadric given by the equation

x12+xz2+x§:0.



Coordinatisation of J

e = (0,1,0)

€3 = (0703 ]-) €1 :(170,0)



Unity in K

Let © € H be an element of order 3 with

©:e1 > e —e3— 6

Let di € Nu((©)) be an involution such that

di
€ = €.

Then

d
&' = e3.



Unity in K

Assign to d; the coordinates (0,1, 1).

Set dy = d© = (1,0,1) and d3 = d°° = (1,1,0)

e =(0,1,0)

dy = (0,1, ds = (1,1,0)

es=(0,0,1) d» = (1,0,1) & = (1,0,0)



€3 = (0,0, l)

Coordinatisation of J

(07 X2)

(x,0,1) e =(c0,0,1)  (0,0)



Addition in K on the axis e; V e3

d = (0,1

e3 = (0,0) a b adb

Y



Multiplication on K

e3V ds

es=(0,0) do=(1,0) a=(a,0) b= (b,0) ab = (ab,0)



Morphisms SO3(K) — X — SO3(K)

The action of X on J gives morphisms

X < SO3(K).



Black box fields

Theorem (Lenstra Jr 1991; Maurer and Raub 2007)

Let K and L be black box fields encrypting the same finite field
and Kg, Lo their prime subfield. Then a morphism

K0—>L0

can be extended, with the help of a polynomial time construction,
to a morphism
K — L.



Unipotents are not invisible anymore!

On e V es, start adding the unity 1 to itself.

e If the addition fails at (¢ — 1)1 & 1, it means that
e p=1mod4, and
o c24+1= p, that is, the coordinate of one of the unipotents on
the axis e; V e3 is at ¢. The other one is at —c.
e This failure produces a unipotent element.
o If the addition never fails and produces the involution ez at a
coordinate, then
e p=—1mod4, and
e the characteristic of the field is this coordinate.
e Solve x? + ¢ + 1 = 0 for a random involution ¢ on e; V es.



GAP

Construction of unipotent elements has been tested on GAP up to
10 digit primes.



Brauer: Characterisation of PGL3(q), g odd




Spinor basis



Desarguesian Plane: Points and lines of 3

1 0 =« ; 1 00
Let Mi={|0 1 x| |+eF}and Mi={|0 1 0| |*eF}
0 01 x % 1
-1 0 «|%
e Points: {(etM1)8 |ge G}={|0 -1 x| |geG}
0 0 1

-1 0o o]”
o Lines: {(elMl)”heG}{{O -1 o] | h e G}

* * 1



Incidence relation

The point p liesson aline £ if pN{=@.

The plane consisting of these points and lines is a projective plane
P associated with PGLs3.



Black box projective plane

Let X = PGL3(q), g odd.

Involutions in X are pointers to both the points and the lines.

Two involutions i, j represents the same point if and only if ij is
unipotent. Similarly, for the lines.



Lines through two points: Reification strikes back!

Fact
Let x,y € X be two distinct commuting involutions, then the point

(x) lies on the line [y].

Let x,y € X be two involutions and z € X be an involution
commuting with both x,y. Then (x), (y) € [z].



(6‘3) = (0707 l)

Coordinatisation

(0, x2)

(Xl7 0, l)

(e1) =(00,0,1) (0,0)



Black box field K

Addition and multiplication involves

1. constructing lines from two points, and

2. finding the intersection point of two lines.

Same as before!



Morphisms PGL3(K) — X — PGL;3(K)

The action of X on 3 gives morphisms

X < PGL3(K).



Recursion step: PGLs-oracle

Theorem (Borovik and Y.)

Given a global exponent E for a black box group X encrypting
PGL3 over some finite field of unknown odd characteristic p, we
construct, in probabilistic time polynomial in log E,

e a black box field K, and

e the following isomorphisms
PGL3(K) — X — PGL3(K).

If p is known and F is the standard explicitly given finite field of
characteristic p isomorphic to the field on which X is defined then
we also construct, in log E-time, an isomorphism

PGL3(F) — PGL3(K).



Structural recognition of Lie type groups

Borovik-Y, work in progress:

For BB groups X encrypting simple group of Lie type G = G(F),
where F is an unknown field of odd order, we have a probabilistic
algorithm which constructs

e a BB field K encrypting F, and
e an effective isomorphisms between G(K) and X.

The algorithm runs in time polynomial in log|G]|.



