Fiche 1

Exercice 1 (Normes dans \mathbb{R}^n) Dans cet exercice on fixe $n \in \mathbb{N}^*$.

(A) Montrer que la fonction

$$\| \|_2 : \mathbb{R}^n \longrightarrow \mathbb{R}_+$$

 $x = (x_1, \dots, x_n) \longmapsto \sqrt{\sum_{i=1}^n x_i^2}.$

satisfait les conditions suivantes qui définissent une norme :

- 1. pour tout $x \in \mathbb{R}^n$ $||x||_2 \ge 0$, et $||x||_2 = 0$ si et seulement si x = 0;
- 2. pour tout $x \in \mathbb{R}^n$ et tout $\lambda \in \mathbb{R}$, $\|\lambda x\|_2 = |\lambda| \|x\|_2$;
- 3. pour tous $x, y \in \mathbb{R}^n$, $||x + y||_2 \le ||x||_2 + ||y||_2$. (Pour vérifier que $|| ||_2$ satisfait l'inégalité triangulaire, vous pouvez vous servir sans preuve de l'inégalité de Cauchy-Schwarz:

pour tous
$$(a_1, ..., a_n)$$
, $(b_1, ..., b_n) \in \mathbb{R}^n$, $\left| \sum_{i=1}^n a_i b_i \right| \leq \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}$.)

(B) Montrer que les applications suivantes définies pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ par :

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|, \qquad ||x||_1 = \sum_{i=1}^n |x_i|,$$

définissent des normes. Dessiner B((0,0),1) dans \mathbb{R}^2 , par rapport à $||x||_{\infty}$ et $||x||_1$.

(C) Montrer que la fonction

$$\| \ \| \ : \ \mathbb{R} \ \longrightarrow \ \mathbb{R}$$

$$x \ \longmapsto \ \|x\|$$

définit une norme sur \mathbb{R} si et seulement si elle est de la forme $||x|| = \alpha |x|$ avec $\alpha \in \mathbb{R}_+^*$ fixé.

Exercice 2 (Équivalence de normes et une application)

- 1. Soit $\{a,b\} \subset \{1,2,\infty\}$. Déterminer deux réels strictement positifs l et m tels que pour tout $x \in \mathbb{R}^n$, $l\|x\|_a \leq \|x\|_b \leq m\|x\|_a$. (Les trois normes $\|x\|_2$, $\|x\|_1$, $\|x\|_\infty$ sont équivalentes.)
- 2. Soient $E = \mathbb{R}^n$, $\| \|_p$ la norme p avec $p \ge 1$ qui est définie par $||x||_p = \sqrt[p]{|x_1|^p + \cdots + |x_n|^p}$ et $\| \|_{\infty}$ la norme ∞ qui est définie par $||x||_{\infty} = \max(|x_1|, \dots, |x_n|)$. Montrer que $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.

Exercice 3 (Nouvelles normes à partir d'anciennes)

1. Soient a, b, c, d quatre nombres réels. Montrer que la fonction

$$||\ ||\ : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto |ax+by|+|cx+dy|$

définit une norme dans \mathbb{R}^2 si et seulement si la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible.

2. Vérifier que la fonction

$$||\ ||\ : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto |x+2y| + |x-y|$

définit une norme dans \mathbb{R}^2 . Dessiner le cercle unité $\{u \in \mathbb{R}^2 \mid ||u|| = 1\}$ par rapport à cette norme.

- 3. Soient maintenant (E, || ||) un espace vectoriel normé et f un endomorphisme inversible de E. En vous inspirant du premier point, définissez une nouvelle norme sur E, justifiez votre proposition.
- 4. Reprendre les questions du point 2 avec la fonction suivante.

$$||\ ||\ : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto \max(|x+3y|,|x-y|)$

5. Soit E un espace vectoriel muni de deux normes différentes, N_1 et N_2 . Montrer que pour toute paire de nombres réels strictement positifs la fonction $N: E \longrightarrow \mathbb{R}$ définie par $x \longmapsto aN_1(x) + bN_2(x)$ est aussi une norme sur E.

Exercice 4 (Exemples, ou non, pour réviser : \mathbb{R}^2) Soit $E = \mathbb{R}^2$. Les fonctions suivantes sur E, sont-elles des normes?

- 1. pour tout $x \in \mathbb{R}^2$, $N_1(x) = ||x||_2 + ||x||_1$;
- 2. pour tout $x \in \mathbb{R}^2$, $N_2(x) = ||x||_2 ||x||_1$;
- 3. $N_3((x_1, x_2)) = \sqrt[3]{x_1^3 + x_2^3}$;
- 4. $N_4((x_1, x_2)) = x_1^2 + |x_2|;$
- 5. $N_5((x_1, x_2)) = \sqrt{|x_1|}$.

Exercice 5 (Exemples, ou non, pour réviser : polynômes) Soit E l'espace vectoriel des fonctions polynomiales sur [0, 1]. Les fonctions suivantes, sont-elles des normes?

- 1. $N_1(f) = \sup_{x \in [0,1]} (|f(x)|)$
- 2. $N_2(f) = N_1(f')$
- 3. $N_3(f) = N_1(f) + N_1(f')$

Exercice 6 (Fonctions bornées) On définit $\mathcal{B}(\mathbb{R}, \mathbb{R})$, l'ensemble des fonctions bornées de domaine \mathbb{R} et d'ensemble d'arrivée $\mathbb{R}: f \in \mathcal{B}(\mathbb{R}, \mathbb{R})$ si et seulement si il existe $C \in \mathbb{R}_+$ tel que $\sup_{x \in \mathbb{R}} |f(x)| \leq C$.

- 1. On définit deux lois sur $\mathcal{B}(\mathbb{R}, \mathbb{R})$ comme suit. Si $f, g \in \mathcal{B}(\mathbb{R}, \mathbb{R})$ et $r \in \mathbb{R}$, alors f+g est la fonction qui associe f(x) + g(x) à chaque $x \in \mathbb{R}$ et rf est celle qui associe rf(x). Montrer que $\mathcal{B}(\mathbb{R}, \mathbb{R})$ muni de ces deux lois est un \mathbb{R} -espace vectoriel et que $N(f) = \sup_{x \in \mathbb{R}} |f(x)|$ définit une norme sur cet espace.
- 2. Dans $\mathcal{B}(\mathbb{R}, \mathbb{R})$, expliciter une famille infinie et libre de vecteurs tous de normes 1 et deux à deux à distance 1. (On définit la distance de $f, g \in \mathcal{B}(\mathbb{R}, \mathbb{R})$ par N(f-g).)
- 3. Soient maintenant X un ensemble arbitraire et $(E, \| \ \|)$ un espace vectoriel normé. On définit $\mathcal{B}(X, E)$ comme les fonctions de domaine X et d'ensemble d'arrivée E, bornées par rapport à $\| \ \|$. Montrer que c'est un espace vectoriel normé. En conclure que l'ensemble des suites de nombres complexes bornées peut être muni d'une structure d'espace vectoriel normé. (On verra $\mathbb C$ comme un espace vectoriel réel de dimension 2, et muni de sa norme usuelle.)

Exercice 7 (Premiers pas en topologie) Soit (E, ||.||) un espace vectoriel normé et A une partie de E. Montrer que l'intérieur de A est égal à A si et seulement si A est ouvert.