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Abstract

This article is a mathematical analysis of the Open Quantum Brownian
Motion. This object was introduced in [I1] as the limit of a family of Open
Quantum Random Walks on the graph Z. We prove the convergence
for the three possible description of this object: the quantum trajectory
following a Belavkin equation, the unitary evolution on the Fock space
following a quantum Langevin equation, and the Lindbladian evolution.
We introduce a very general framework for the continual measurement
of non-demolition observables, which is applied to the measurement of
the position of the Open Quantum Brownian Motion, and we probe some
questions related to the convergence of processes in this context.

1 Introduction

Open Quantum Random Walks (OQW) where introduced in [§] as a quantum
generalization of discrete Markov chains. They consists into a particle mov-
ing randomly on a discrete graph with transition probability depending on its
internal quantum state, and they may model a quantum system subject to dis-
sipation or repeated measurement with control, being used for example as a toy
model to study coherence in photosynthetic cells [20]. While OQW are defined
on discrete graph and on discrete space, the Open Quantum Brownian Motion
(OQBM) was introduced in [II] as a process similar to OQW but modeling a
particle moving on R in continuous time. It was defined as the limit of a family
of OQW on Z, with the time scale 7 going to zero and the space scale § = /7
in order to get a diffusive limit. The obtained process depends in two operators
N and H; in the trivial case with NV = H = 0 the classical Brownian motion
is recovered. The Open Quantum Brownian Motion has been derived from a
microscopic physical model in [25] and [24]. A mathematically interesting phe-
nomenon was observed on the OQBM, namely the transition from diffusive to
ballistic behavior as the parameters N and H are changed [I0] with the ap-
pearance of so called spikes in the ballistic regime [28] [12], which where then
studied in the context of more general stochastic differential equations [9].

As for OQW, the OQBM has three different descriptions. It can be seen has
a Lindblad evolution p; = A%(po) on the Hilbert space Hg ® L?(R), where He
represents the internal state of the particle. This evolution admits a unitary



dilation prors = Ui(po ® |Q) (AU on He ® L*(R) @ @, where ® is the Fock
space and l; satisfies a Hudson-Parthasarathy equation. This representation is
more complete than the Lindbladian one, since it allows to compute the quan-
tum correlation between the events at two different times. Finally, upon the
continual measure of the position of the particle, it admits a quantum trajec-
tories unraveling as the random process (¢, X¢)rer Where g; is a random state
on Hg and X; € R is a random position. When H¢ is of finite dimension
they obey a classical stochastic differential equation, previously known as the
Belavkin equation [19] [13].

In the original article on the OQBM [I1], most results where derived for-
mally but not rigorously proved. The main purpose of this article is to explicit
the mathematical meaning of the statements of [I1], pointing out some of the
mathematical issues and completing the proofs.

In the second section of this article, we introduce the main concepts needed
to define the OQBM (Open Quantum Walks, repeated measurement model, and
the Hudson-Parthasarathy calculus) and we prove the convergence of the dis-
crete models for the OQBM to the continuous one in each description: for the
unraveled process, we prove a convergence in distribution in the Skorokhod space
as a direct consequence of a theorem of Pellegrini [23]. For the unitary dilations,
the strong convergence of the unitary operators is proved from a theorem of Attal
and Pautrat [7]. This strong convergence allows to prove the strong convergence
for the Lindblad operators. A mathematical issue is outlined in the description
of the Lindbladian: for an OQW, the evolution projects the states on the set of
diagonal state, i.e. states the form p =Y, p(z) @ |z) (z] € S(Hg @ L*(V)),
where V is the set of vertex of the graph on which the particle is moving. In
the continuous case, diagonal operators are replaced by operators in the mul-
tiplication form [ p(x)d |x) (|, which cannot be trace class and hence cannot
be a state. Hence, the discrete object which converge to the continuous OQBM
is actually not an OQW in the strict meaning of the term, though it coincides
with an OQW on the set of diagonal states.

In the third section we look into another claim of the article [IT], in which
the unraveled process (o¢, Xt)ie[o,r] is obtained from the continual measure-
ment of an observable under the evolution by the unitary operators ;. This
makes use of the quantum filtering theory [I8] [I9] [13] and the notion of non-
demolition measurement. We introduce rigorously the continual measurement
of non-demolition observables in a way which is equivalent to the quantum fil-
tering approach but we believe is more adapted to the SchrAtidinger picture of
the evolution, and we apply it to the case of the OQBM. Finally, we ponder
the relation between the convergence of the unitary operators ; and the con-
vergence in distribution of the unraveling, obtaining only an incomplete result
which generate a few open questions.
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The Open Quantum Brownian motion

In this section, we describe the basic objects in quantum mechanics and we
introduce the repeated interaction setup and the Belavkin equation, leading
to the three descriptions of the Open Quantum Brownian Motion (OQBM):
as a Lindblad semigroup, as a stochastic process, and as a unitary evolution
following a quantum Langevin equation. We rigorously prove the convergence
of the discrete OQBM to the continuous one.

2.1

Von Neumann algebras and quantum states

The basic object in quantum mechanics is a separable Hilbert space H (all
Hilbert spaces are implicitly supposed to be separable in this article). Let us
gather some of the notations and definitions we will use:

The identity operator on H (respectively H 4 and C™) is written Iy (re-
spectively I4 and I,,) or simply I when it does not cause confusion. If H 4
and Hp are two space and A is an operator on H 4, we will still write A
the operator A ® Igp on Ha ® Hp.

A vector v € H may also be written |v), and the corresponding linear
form is written (v|, so that |v) (v| is the projection on v. In the tensor
space Ha ® Hp, for any vector |v) € Hp and operator A from Hs ® Hp
to some space H we write A |v>7_[B the operator from H 4 to H defined by

(Afv)3,)([) = Alfu) @ [v)).

The algebra of bounded operators on H is written B(#), endowed with
the operator norm ||A|| (sometimes written || A to avoid confusion with
other norms). The space of compact operators on H is written B5°(H).

The adjoint of an operator A si written A*.

The Schatten space of order p is the space SP(H) of bounded operators A
such that Tr (|A]”) < 400, endowed with the norm [|A]|, = Tr (\A|p)1/p.
In particular, S'(#) is the set of trace-class operators.

The o-weak (or ultraweak) topology on B(H) is the topology generated
by the seminorms

||A||(“i)iEN7(U1ﬁ)ieN = Z <uiv AUz)

1€EN
where the u; and v;’s are vectors in H with } 7, luill® + Jvill* < 4o0.

For a measured space (X,F,u) we write the corresponding LP space as
LP(X,F,u) or when it does not cause confusion LP(X, i1) or even LP(X).



e For any Banach space B, we write L?(X, B,u) the set of L? function
from X to B, and the Sobolev space of functions f : R™ — B with
distributional derivatives f*) € LP for k < I is written W"P(R", B). For
p =2 and B = H a Hilbert space, it is itself a Hilbert space and is written
HYR",H). Tt is isomorphic to H ® H'(R™) and injected to a dense subset
of L*(R",H) = H ® L?>(R"). We write X = M,,,, the position operator
(defined by X f(z) = 2 f(z)), and P = —id, the impulsion operator with
domain H*(R, Leb).

e On the space L?(X,pu), for any essentially bounded function f : X — C
we write My the operator of multiplication by f, defined by Myg(z) =
f(z)g(x) for any g such that fg € L2(X, p).

e We write 1 4 the indicator function of the set A, and 1 = 1 .

e We write ®q14 the algebraic tensor product and ® the completed tensor
product of Hilbert spaces.

Note that all infinite dimensional Hilbert spaces are isomorphic, hence we
can take H = L%(X,F, u) where (X, F,p) is a standard measured space. The
interpretation of the Hilbert space depends on the space X. Let us first remind
some facts about standard measured spaces.

2.1.1 Standard measured space

Standard measured spaces form a very large class of measured space; notably,
two spaces of special interest in this article are X = R with the Lebesgue mea-
sure, and X = W([0,+00)) the Wiener space on [0,+0c0) equiped with the
Wiener measure (i.e. the space of continuous functions on [0, +00) equipped
with the measure corresponding to the Brownian motion). Standard mea-
sured spaces have many different characterizations, see the chapter on Lebesgue-
Rohlin spaces in Bogachev II [I5]; let us describe two of them:

Definition 1. Let (X, F, ) be a measured space (every measured are nonneg-
ative in this article). It is called a standard measured space if it satisfies one
of the following equivalent properties:

1. There exists a measure v on R the form v = v; + ZiEN c;0; where 11
is absolutely continuous with respect to the Lebesque measure and the
¢; are nonnegative numbers such that (X,F,u) is almost isomorphic to
(R,B(R),v), that is, there exists sets of full measure A C X and B C R
and a measure-preserving isomorphism between (A, u) and (B,v).

2. There exists a complete metric d on a set of full measure D C X such
that F|p is the o-algebra generated by open sets for d and p is a Radon
measure for this topology.

Note that standard measured spaces are necessarily almost separated (i.e.
for almost every x # y € X then there exists two disjoint measurable sets



A, B € F with z € A and y € B). More importantly, if 73 C F is another
o-algebra, the measured space (X, F1, u) is standard if and only if F; = F. If
F1 # F, we make (X, Fq, ) into a standard probability space by quotient:

Definition 2. For any standard measured space (X, F, ) with a sub-o-algebra
Fi, let X/Fy the quotient of X by the relation: x ~ y if every set A € Fy
containing x also contains y. There is a surjective map sy, : X — X/F1, we
endow X /Fy with the image of F1 by sr, and the push-forward measure of u
by sr,, which we still write F1 and p. The space (X /Fi, Fi,p) is a standard
measured space, called the quotient of (X, F, u) by Fi.

There exists many different maps rx, : X1 — X such that sy, ory, = Ix,.
Each of them gives an identification of X1 with a subspace of X, and we have a
map c =17sf 0SF, : X = X onto this subspace.

An extension of a standard measured space (X1, F1,u1) is another standard
measured space (X, F,u) with a surjective measurable map s : X — Xj such
that the push forward measure sy of p by s is py.

These notions are useful in the description of commutative von Neumann
algebras.

2.1.2 Von Neumann algebras

The set of quantum observables of a system is described by a von Neumann
algebra on H, i.e. a unital subalgebra of B(#H) which is stable by adjoint and
closed for the strong topology. This article does not involve most of the sub-
tleties of von Neumann algebra theory, since we are essentially interested in the
simplest cases: the full algebra B(#), the commutative von Neumann algebras
and the tensor products of these. Let us recall a few facts about commutative
von Neumann algebras:

1. For any standard probability space (X, F, 1) and any sub-o-algebra F; C
F the space L™ (X, Fy, u) is identified with a commutative von Neumann
algebra on L?(X,F,u) by f € L>(X, Fi,u) — My (the operator of mul-
tiplication by f).

2. Let A C B(H) be a commutative von Neumann algebra. Then there
exists a standard measured space (X, F, ), a sub-c-algebra F; C F and
a unitary 7 from L?(X,F,u) to H such that A = 7% L®(X,Fy,u) .
Thus, if we consider the quotient Xy = X /Fj, then A is isomorphic (as a
C*-algebra) to L (X, F1, u). The algebra A is a maximal commutative
von Neumann algebra if and only if 773 = F (up to measure-zero sets). It
is called "discrete” if X} is countable or finite, the o-algebra Fi is then
called "coarse’fll

3. Let Ay C Az be two commutative von Neumann algebras on a von
Neumann algebra with two isomorphisms of C*-algebras ¢, : A; —

Lthe term ”discrete” o-algebra often refers to the o-algebra of all subsets of X, so we use
coarse to avoid confusion



L(Xy, Fr, 1) and g 0 Ay — L°(Xy, Fa, p2). Then there exists a mea-
surable map n : Xy — A such that p; is absolutely continuous with
respect to the push forward measure 7,2 and for any f € L (X, Fi, p1)
we have wgoz/)fl(f) = fon.

See Takesaki’s book [27], notably Theorem 8.21 and Lemma 8.22. An appli-
cation of the las fact is that if U is an isometry of H with UA,U* C A, then
its action on 4; can be implemented by some map 1 between the underlying
spaces X; and X.

A full study of a non-maximal commutative von Neumann algebra involves
direct integrals of Hilbert spaces. We don’t need it here, so let us just give a
taste of it: if A ~ L*°(X7, F1, p) then we can decompose H as f;’i H(z)dp(x)
where x — H(z) is a measurable field of Hilbert spaces, and the elements of A
are operators the form ff? f (@) Iy oy dp(z).

2.1.3 Quantum states

The state of a quantum system with observables in a von Neumann algebra A
is modeled the following way:

Definition 3. A (normal) state on a von Neumann algebra M is a linear form
p on M which is:

e positive, i.e. p(A) > 0 for any positive operator A € M.
e normed, i.e. p(I) =1

e normal, i.e. continuous for the o-weak topology (or equivalently for any se-
quence of mutually orthogonal projections (pp)nen € MY we have >~ p(p;)

p(22ipi))-
The set of states on M is written &(M) or simply G(H) if M = B(H).
Let us consider the two cases of maximal commutative von Neumann algebra

and of the full von Neumann algebra:
States on A = L>°(X, F,u): any state p on A is the form

o) = /X F(@)pp(@)dp(z)

where p is a positive function on X with [, p(z)du(x) = 1. Hence the set
S(L> (X, p)) can be identified with the set of probability measures which are
absolutely continuous with respect to pu.

States on B(#): any state p on the full algebra is the form

p(4) = Tt (AT))

where T, is a positive trace-class operator on H with Tr(7,) = 1. The same
letter will design the state p and the operator T, and we identify the set &(#)
with the set of positive trace-class operators of trace 1.



States on B(H) ® L>°(X,F,u):  This is the mix of the two previous
situations: a state p on B(H) ® L=(X, F,pu) C B(H® L?>(X,F,u)) is the form

p(A® f) = /X Tr (AQ,(x)) f(x)du(z)

where z — @Q,(z) is a measurable function from X" to the set of positive trace-
class operators on H such that [, Tr (Q,(z)) du(z) = 1. We will call Q,(x) the
density matrix function.

Remark 1. 1. If My C M5 are two von Neumann algebras, we may extends
states on M to states on Ms, and restrict states on M to states on M.
In particular, if M; = L®(X, u) and My = B(L?*(X, pn)), a state on M;
can be extended in many different ways to a state on My, notably we can
make it a pure state: take f = ,/p where p is the probability density of
the state with respect to p, and consider the state |f) (f| on Ms. We
may also be tempted to take the multiplication operator M,, as another
extension, but this operator is not trace class in general.

2. Another important example is the case of a bipartite system. If H =
Ha ® Hp and we are given a state p on My = B(H), its restriction to
My = B(Ha) ® {Ip} has for density matrix the partial trace of p with
respect to B, that is pp = Trp(p).

3. With My = bb(H ) ® L=(X,F, u) and mmso = B(hhs @ L2(X, F, 1)) the
situation is more subtle. A state p on My can always be described by
a kernel (z,y) — K,(z,y) from X to S'(H), such that for any function
fE€LXX, Ha)=Ha® L*(X,F,n) we have

pf(z) = / K, (2,9) f(5)duly)

(where we see p as an operator on H). To describe the state paq, on
M it seems natural to take for density matrix function Q,,, (z) =
K,(x,x)/Tr (K,(z,x)). Unless K is continuous with respect to some met-
ric, this requires technicalities since the diagonal {(z, z)|r € X'} is possibly
of measure zero in (X x X, ® p). This can be solved by averaging on
small rectangles (see Brislawn [16]) or with the notion of virtual continuity
(see Vershik et al. [29]).

2.1.4 Measure of an observable

Let A be a self-adjoint operator on H (which is not necessarily bounded). As-
sume that the system is in the state p. The measurement of A is mathemat-
ically described the following way: the von Neumann algebra A generated by
A is commutative, so there exists a unitary = : H — L?(X, ) for some stan-
dard measured space (X, F, ) and a measurable function g : X — R such that



7" Am = M,. Let p be the state on the system, then 7*pm restricts to a state on
L>(X, 1), that is, a probability measure P, on X which is absolutely continuous
with respect to p. This makes (X',P,) a probability space. The result of the
measurement is then the random variable A, on (X,P,) defined by the function
g.

Note that for a commuting family of self-adjoint operators (Ay)aer we can
consider their joint spectral theory: there exists a unitary U : H — L?(X, p)
with U*A,U = M, for a family of functions (g )aer. Thus, we can consider
the family of random variables A, , on the same probability space (X,p,).
However, if A and B are not commuting, there is no consistent way to consider
jointly flp and Bp as random variables on the same probability space.

Now, it is not always possible to describe the quantum mechanical state of
p after the measurement. In the case where A has only pure point spectrum, it
is possible and we do it as follows.

Definition 4 (State after the measurement). Let A be an observable the form

A= Z aP,

a€sp(A)

where the P, are mutually orthogonal projections. Write A the commutative
von Neumann algebra generated by A, it is isomorphic to L*(sp(A),>", 6a).
We endow sp(A) with the probability P,(a) = Tr(pP,). The state after the
measurement of A is the radom variable pj4 on (sp(A),P) defined by

PupPy
PIA(G) = W .

We may also write pgja = Tre(p|A), and to shorten notation we will often
use the variant calligraphy o for a random density matrix corresponding to a
deterministic density matrix p.

The action of forgetting the result of the measurement consists in discarding
the random variable A, and replacing p|4(a) by its expectancy p’ = E(pj4).
The operator p" =3 c(4) PapPa is in &(H). It carries all the information we

can get without A, since E(Tr (pjaB)) = Tr (p'B) for any observable B € B(H).

If A has singular spectrum it is no more possible to describe the state after
the measurement as a random variable on G(#). For example, if me measure the
observable X = M,, ., on L?(R, Leb) the state of the system after the measure-
ment should correspond to the Dirac measure § %, on the algebra L™ (R, Leb),
but it is not possible since states on this algebra are absolutely continuous with
respect to the Lebesgue measure.

This is not really a physical problem since no real-life measurement is exact,
hence we only measure discrete observables in real life. Though, it is always
better to have an idealization of the measure of continuous observables, which
is the subject of the second section of this article.



2.2 The Belavkin equation and the Open Quantum Brow-
nian Motion

2.2.1 The repeated measurement process

The repeated measurement model relates to many experimental protocols, no-
tably with the experiments of Serge Haroche’s team. It describes a process on
discrete time, and we will be interested in its continuous-time limit, which was
notably studied by Pellegrini [23].

We consider a Hilbert space H¢ describing a system of interest in the
state po € 6(Hq), and a space modeling a probe , in the fixed pure state
pp = 10) (0]. In this article the probe space is always H, = C?. Make it
evolve according to some unitary V on Hg ® H,, and measure some observable
A € Bsy(H,). Then take a copy of H,, also in the state p, = |0) (0|, and re-
peat this procedure again and again. What we obtain is a stochastic process
(0n)nen where g, € S(Hg) is the state of the system after the n-th measure-
ment, together with another process (D,,)neny where D, € R is the result of the
n + 1-th measurement of A. Since the probe space H, is constantly renewed,
(0n, Dn)nen is a Markov process. We can also note that for any n the state o,
deterministically depends in the sequence (Dy)k<n, since if P; is the spectral
projection for the eigenvalue d of A, we have

o 1 = TrB (PDTLV(Q” ® pP)V*PDn)
s Tr (PDWV(Qn & pp)V*PDn) '

It is also interesting to study the evolution when the result of the measure-
ment is discarded, that is, the evolution of p,, = E(0,). We have

prit = Trp (VV (00 @ p)V") .

The maps A on the set of trace-class operators which are the form A(p) =
Try, (Vep @ pp)V*) are called quantum channels. They can be characterized
as the completely positive, trace-preserving and o-weakly continuous maps on
bounded operators (see for example Chapter 6 of [2]). Alternately, they are the
maps which are the form

d
Alp) =Y KipKj,
k=1

where the K} are bounded operators on H 4 with 22:1 K} K} = 14, which are
called the Kraus operators for ®. The objects (#H,,V, pp) corresponding to A is
called a Stinespring dilation of the channel (it is not unique).

The evolution of p,, is called a quantum dynamical system, and its descrip-
tion as the interaction of the system is called a repeated interaction model [7].

2.2.2 The Belavkin diffusive equation and the Lindblad equation

Now, we want to consider the continuous time limit of this type of process.
Thus, we will consider that each step of the process lasts a time 7 > 0 and

10



we make 7 go to zero with suitable normalization. The case we consider is the
following:

1. We take H, = C? with p, = |0) (0| = <(1) 8)

2. The unitary evolution V; on Hg ® H,, is described as follows: fix a self-
adjoint bounded operator H € B(H¢) and a bounded operator N €
B(H¢) and take

V. = exp (—iTH IV~ (-%v %)) (2.1)

* 1 *
O A I S LA )

(2.2)

3. We measure the observable A = <(1) é)

4. The process of states obtained is written (orn)nen, and the result of the
n + 1-th measurement is written D, , € { —1,+1}. We also define

n—1
WT,n = \/’FZ DT,n .

k=0

The normalization in /7 to define W, ,, corresponds to a diffusive limit in
physics, where the time scale 7 is proportional to the square of the space scale.
In the rest of the article, we will write § = /7 the space scale.

In this setup, the eigenvectors for the eigenvalues +1 of A are

1
l+) = NG (o) £11)) (2.3)

and we have .
BTan QT,"BT,D

n

T (500082 )

Orn+1 =

where

Bri = % (I + 0N+ 7 (zH - ;N*N>> +0(r%?% . (2.4)

The following theorem describes the limit in distribution of this process as
T — 0. It was proved by Attal And Pellegrini.

Theorem 5 (Theorem 8 of [23]). Assume that He is finite-dimensional. Fix
some T > 0. Then the process (0r,it/7, Wr,[t/])o<t<T described above converges

11



in distribution as T — 0 (in the space of bounded functions with the uniform
norm) to a process (o1, Wi)o<i<t satisfying the following stochastic equation (in
the Ito sense):

(2.5)

doy = L(o¢)dt + (Not + 0:N* — 04T (01))dBy
aw, = T(Qt)dt + dB,

where (By) is a standard Wiener process, L is the super-operator defined by
1
L(p) = —ilH,p| + NpN* — 5 (N*Np+ pN*N) (2.6)
and

T(p) = Tr((N +N*")p) .

This theorem was proved with methods of classical stochastic process, no-
tably the Kurtz-Protter’s theorem. In the case where H ¢ is not finite-dimensional,
it is not clear what rigorous meaning we can give to Equation 2.5} we can show
that it is verified in a weak sense, that is: for any continuous martingale g; with
values in R which is uniformly bounded on [0,7] and any bounded operator
A € B(Hg), defining f; such that df; = gidBy, we have

t

E(Tr (0,A) f,) = E(Tr (00 A4) fo)+ /0 E(L(04A) f.)ds+ /0 E(Tt (Now + 0sN* + 0, T(pr)) A) g.)ds

If we discard the probes before measuring it, the state of the system is the
deterministic density matrix

PG, rn = ]E(QT,n) .

It follows a quantum dynamical semigroup, with p; .41 = Ag - (pr,n) Where

(b‘r(p) = BT,+1PB:,+1 + BT7,1pB:,71
= p+7L(p) +O(F*?

where L is defined in Equation Thus pg,r,[t/-] converges to some limit pg ¢
satisfying the so-called Lindblad equation

d
Pt = L(pc.t) -

The family of super-operators A* = e** is called a Lindblad semigroup. Note
that p; = E(g;), which can be seen both by the above convergence or by using

the fact that the term in dB; in Equation [2.5]is of expectancy zero.
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2.2.3 The discrete OQBM

A first way to describe the discrete OQBM is the following: choose a random
state or 0 € S(Hg) and a random position X, € 0Z. Then apply the re-
peated measurement process described in Paragraph @ to 070, obtaining
a process (0rn, Wrn)nen. We call trajectory of the discrete OQBM the pro-
cess (0r.ns Xrn)nen where X, = X, o+ W,,. By Theorem [5| the process
(07,1t/r]> X7,1t/r o<t converges as T — 0 to a process (0¢, X¢)ten which is solu-
tion of Equation 2:5] We call it the trajectory of the continuous OQBM. As a
direct consequence of Theorem [5] we have the following convergence:

Proposition 6. For any T > 0 the family of processes (0r,[t/+], Xr.[t/7])te[0,T]
converges in distribution as T — 0 to a process (0t, Xt)ie[o,s following the fol-
lowing differential equation:

{ dor = L(o)dt+ (Not + 0:N* — 0.T (pt)) dBy

where By is a Wiener process.

This is the trajectorial view on the OQBM,; it is not much richer than the
Belavkin process, the only difference is in the initial condition which is also
random. Something more far-reaching is obtained when we consider the position
X;n as a part of the quantum description of a bigger system.

More precisely, we consider a particle on the lattice 6Z, described by the
Hilbert space H, . = [?(0Z). For any = € §Z we write |z) € H, . the sequence
with only nonzero component at  and equal to 1. The complete system is now
Hs = He ® M- .. The system starts in some state pg € S(Hg), and we make it
evolve so that the particle moves like W ,,. For this, we consider the translation
operator D, on H. . defined by

Dy =Y |z+36) (| .

T€OZ

(Note that Df = D_. is the translation by —7). The measure of A € H,, is
transmitted to H, . by use of the unitary operator R, on H, . ® H, defined by

R, =D: @ [+) (+| + D7 |-) (|

(the state |[+) and |—) are defined in Equation [2.3). The operator R, will be
called a pointer unitary, see Section |3.1.1

Now, the discrete OQBM is described as the repeated interaction model with
unitary L, = R.V,.. In other words, we make Hg and H, interact by use of
the unitary V;, and then we translate the particle according to the result of
the measurement of A, by use of the unitary R,. This defines a new quantum
channel Ag, on Hg ® H, . defined by

As,7(p) = Try, (Wr (p @ pp) Wr) (2.8)
=(B+1® D7) p(B41® D;)" + (B4 ®@ Dr) p(By1 ® Dr)™ . (2.9)

13



The state of the system is pg,, = Ag’T(ps). We call "discrete OQBM?” the
dynamic described by this quantum channel. It is an extension of the re-
peated interaction model described above, since we have Try _(As-(p)) =
A (Try, . (p)). In the next paragraph we describe another way to look at
the discrete OQBM.

2.2.4 The discrete OQBM as an Open Quantum Walk

Open Quantum Random Walks (OQW) where introduced in [8]. It consists in
a quantum particle moving on a graph G = (V, E), where the set of vertices V
is countable or finite. The internal state of the particle is described by a space
He (which is called the "Gyroscope”, and have the role of H 4; it is also called
the chirality space in the literature). The Hilbert space of the position of the
particle is H, = L*(V,v) where v is the counting measure on V, endowed with
the algebra A, = L>®(V,v). we write (x — y) an edge oriented from z to y and
t={yeV|(@x—y) cE}.

An OQW on this space is described the following way: We fix a family of
bounded operators B, € B(H¢g) indexed by edges (z — y) € E such that

forallz € V
> Blony By =1 -
yei

The OQW is then a Markov process (on, X )nen with g, € &(Hg) and X, € V
defined by

B(Xn_>Xn+1)gnBEan_>X‘n+1)

On+1 = N
Tr (B(X"*X"H)Q"B(Xn—>Xn+1)>

and
P(Xnt1 = 91Xn =2) = Tr ((Bx, 5 x,0000B{x, x,01)) -

The state p, = E(g,,) evolves according to a quantum channel ¢ on B(Hg®H.)
defined by the Kraus operators

We can see the trajectory (¢, Xrn)nen of the OQBM an OQW on the
graph 0Z with edges on nearest-neighbors, and operators B, _.,+5 = B41.

Note however that the quantum channel Ag - is not equal to the quantum
channel ¢, obtained from the OQW convention. Indeed, Ag, has only two
Krauss operators, Ky = By; ® Dis, while ¢, has an infinite number of op-
erators, one for each edge. The relation between the two is the following: let

E. : B(H, . — B(Hr.) be the projection on the algebra A, , = I°°(6Z) on H, .,

that is
Er(A) =) |a) (x| Alz) (x| .
rESL

Then we have
Yr = AS,T o ET = ET o AS,T .

14



Thus, ¢ and Ag r coincide on the algebra M, = B(H¢g) ® A, ., as well as their
adjoint maps ¢ and Ag . The map Ag,; is then perfectly good to compute the
restriction paq, n of ps,, = @2 (p) to M. This state carries much information on
0rn and X, . Indeed, if x — Q; () is the matrix density function of pa, »
we have

P(X;n =2)=Tr(Qrn(z))
and for any operator A € B(Hg) we have

E(Tr (Aorn) | Xrn =) = Tr (AQrn(2)) .

However, it does not carry any information about the correlations between X, ,,
and X, ., for m < n, and it does not specifies the exact law of g, .

We choose to study Ag ; instead of ¢, for two reasons. First, any Stinespring
dilation of ¢, necessitate an auxiliary space H, of infinite dimension, while for
As . we can take H, = C2. Second, and more importantly, as 7 goes to 0 we
want to consider H, , as converging to L?(R). The algebra A, ., should then
converge to A, = L*°(R), which is not a discrete algebra, hence there is no
projection F, on A, and we cannot expect E, nor cp[Tt/ ™ to converge.

In the next paragraph we explain how A[;{TT] converges as T — 0.

2.2.5 The Lindbladian of the OQBM

A first technical problem is that the space #. ., depends on 7. As 7 — 0, we
expect it to look like L?(IR). Rigorously speaking, for each 7 there is an isometry
of H, . into a subspace of L?(R).

I5Z,R . HT,Z — L2(R)
|:L’> = % ]l[ac , T+98)

The image of this isometry is the space of functions which are constant on each
interval [, +4), which we identify with H, , in the following of the article, and
we write H, = L*(R). We define Psz = Zsz,rL5z g the orthogonal projection on
this space. By the Lebesgue differentiation theorem, it strongly converge to the
identity as 6 — 0. In this sense, the space H, . converges to L*(R) as 7 — 0.
Moreover, the translation operator D, € B(H,) is transformed into

—50,
TszrD:Lsz g = Poze

since e7%% = ¢7*F is the translation operator on L?(R).
Thus, we can see Ag - as a quantum channel on Hg ® M, (identifying it with

Asr (Zsz ¢ Z3;)). Now we are ready to study the convergence as 7 — 0.

Proposition 7. There exists a semigroup of quantum channels (Ag)te[O,—&-oo)
on Hs = Ha ®@ H, such that for any state p € S(Hg) and for any t > 0 the
state Ag r.1/71(p) converges in S*'(Hg) to A(p).
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We do not assume that H¢ is of finite dimension. This proposition, as well as
the following theorems of this paragraph, will be proved later in the article. This
semigroup is strongly continuous in ¢, but not continuous for the trace norm.
We will see that it has a Lindblad equation, but only valid for sufficiently regular
states, that is, Sobolev states, as defined below.

Definition 8. For any Hilbert space H and any k € N the set S.(H, H.) is the
set of states p on B(H @ M) which admits a kernel (z,y) € R? = K,(z,y) €
SY(H) which is in the Sobolev space W*1(R? SY(H)). Equivalently, it is the
space of states p € G(H @ H.) such that for any n < k the operator [p,|0.|"] is
a bounded operator on H @ W**(R).

The set G(H,.A,) is the set of states p on B(H) ® A, which admits a kernel
z € R K, (x) € SY(H) which is in the Sobolev space W* (R, SY(H)).

The Lindblad equation is the following.

Theorem 9. For any initial state p € So(Hea, H.) the state ps(t) = Ay (p) is
in So(Ha,H.) for all t > 0. Moreover, it satisfies the following equation:

9 ps(t) = L(ps(1) (2.10)

where ]
Lp) = —ilH, p] + LpL™ = S {L"L, p}

with L =N — 9, and H = H — $0,(N + N*).
Writing Ki(x,y) the kernel of pc(t) this equation becomes

8 o) = ete) + 3 (24 2) Ktwn) - (24 D) e - (2

(2.11)

Equation @ can be formally obtained by writing e %% ~ I — 6§09, + %8%
Though this can be made rigorous, we will prove it by other methods in Para-
graph [2.3.6]

Equation [2.17] is obtained from the first equation by using the following
formula: if p € gs1(Hg, H.) then 9,p and pd, are kernel operators, with

0
Kpo, (x,y) = —@Kp(m,y) (2.12)
0
Ko, p(w,y) = 5-Ky(z,y) - (2.13)

It is obtained with an integration by parts.
In the previous paragraph we explain that the quantum channel ¢, obtained

in the OQW convention does not behave well as 7 — 0. However, the channels
¢, and Ag . are equal on the algebra M, = B(Hg)® A, », and the algebra A, ,
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converges as 7 — 0 to A, = L*°(R) (indeed A, , = PszA,Psz. Thus, studying
the restriction of AL to M is a way to study the limit of @L?/T]. Note that no
density matrix of quantum states is in M = B(Hg) ® A, (and no non-trivial
trace-class state at all are in this space), so we take the dual point of view: we
study the evolution of states on M.

Proposition 10. There exists a semigroup of super-operators (A’j\/[)ogt on
S(M) such that for any state p € S(Hg) with restriction ppg to M, the re-
striction to M of the state p, = A%(p) is Al (pa) -

If a state ppq admits a kernel x — Q,(z) which is in W21 (R, S (Hg)) then
pre = A (pm) also admits a kernel Q, € W2H(R,SY(He)) and we have

L u(w) = £@u@) + 5 L) - <Naath(z) ¥ (i@(x)) N <> -

(2.14)

Equation [2.14] can be obtained from Equation [2.11]if p admits an extension
ps in G2(Ha, H.). Indeed, if K, is the kernel of pg, we have K,(z,z) = Qm(x)
for almost all x € R so

(ai ; ;’y) K(a,z) = 5-Qula).

As for the state on M, the state pa, + carries informations about the trajec-
tory of the continuous OQBM (g;, X)o<:. By the convergence in distribution
of the discrete OQBM to the continuous one, for each ¢ the density of X; with
respect to the Lebesgue measure is p(X; = x) = Tr (Q¢(x)) and for any operator
A € B(Hg) we have

E(Tr (o) | X¢ = z) = Tr (AQ¢(x)) .

2.3 Quantum Stochastic Calculus for the Open Quantum
Brownian Motion

The trajectory of the continuous OQBM follow the well-known Belavkin equa-
tion; the Lindblad equation for the state pg; € &(Hg ® H,) offers a more
quantum view on this equation, but it fails to take into account the correlations
between the state at different times. A fully quantum view on the OQBM which
encompass these correlations will be described by the Quantum Stochastic Cal-
culus on the Fock space. We will briefly introduce this space by approaching it
by the repeated interaction process.

2.3.1 Repeated interaction process and the Toy Fock space

In the definition of the repeated interaction process, a new probe space H,
is introduced at every iteration. The so called Toy Fock space is the Hilbert
space T'® obtained when considering all these probe spaces at once. Formally,

17



T® = Q,,cn+ Hp- More concretely, it is the Hilbert space which generated by
the vectors ®n€N* e, where the vectors e,, are unit vectors of #H, which are all
equal to |0) except for a finite number of indices. It has a distinguished unit
vector [©2) = @), cn- |0). For each n € N*, the space T'®4 contains a copy of H,
given by the following isometry:

In: Hp — T(I)d
n—1 “+o00
v (®|O>>®v®< X |0>>
k=1 k=n-+1

The unitary V, considered in the repeated interaction process is then re-
placed by the unitaries V;, = Z,V;Z}, and the evolution from time zero to
time n is represented by the unitary

U‘r,n = V‘r,nVT,nfl T VT,l .

We can obtain the random state g,, by performing the simultaneous mea-
surement of all the observables A = 7Z,,AZ" when in the total state

Ptot,7,n = U-r,n (QT,O 02y |Q> <Q|) U:,n

The position of the particle is then

XT,n = XT,O + 52"4]6
k=1

where Ay = +1 is the result of the measurement of Aj.

2.3.2 The Fock space

Before studying the convergence of T® as 7 — 0, let us describe its limit, the
Fock space & = (8256]1%+ ‘H,. This space and its interpretation as an infinite
tensor product is well known, see Parthasarathy’s book [21] for example, or
Attal’s lecture in the second book of [26], and we refer to these lectures for a
more complete introduction to the Fock space. Let us briefly recall two of its
descriptions. Here, we only treat the case where H, = C?, but the case where
‘H, = C" or even H,, is infinite-dimensional are similar.

The Guichardet interpretation: Let us consider the set P of increasing
sequences of R of finite length (including the empty sequence (@))). We have
P = UnenPrn where P, C (R1)™ is the set of increasing sequence of length
n. This set inherits the Lebesgue measure on (Ry)"™ (and Py = { (@) } has the
Dirac measure), so we can endow P with the sum of these measure, which we
write A. The Fock space in the Guichardet interpretation is ®¢ = L?(P, \).

It can be interpreted as an infinite tensor product. Indeed, if we write
Pis,y the space of finite sequences in [s,t] and ®g (5 = L? (Prs,1 A), we have
Pas @ Pat] = P s,u)- There is a distinguished vector [Q) = 1p,. We
identify ®¢ 54 to the subspace { | Q) } @ P (s) @ { | Qpt,400)) } of Pa.
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The probabilistic interpretation from the Brownian motion: This
interpretation has been introduced by Attal and Meyer [6]. See [4] for more
details. We consider the Wiener space (W, F) of continuous functions from
R4 to R with the Wiener measure p corresponding to the Browian motion.
We then take ®y = L2(W, ) the space of L? random variables on (W, ).
There is a distinguished vector |2) = 1 (the constant random variable equal
to 1). If W([s,t]) is the space of functions from [s,¢] to R, we can define
Py, = L*(W([s,t]), 1), and we have Py (54 @ Py 0 = Pow[s,u)-

These two interpretation are equivalent: we can construct an unitary Zg w :
®g — @w such that g wPq [s.) = Pw,[s,¢) and T[Q) = [©2). To describe it,
let us write (W;);er, the Brownian motion and dW; the It6 differential. For
any function f € L*(P,, \), the random variable X = Zg w f is defined as the
successive It integrals

Iewf=X= / Fltr, - tn)dWy dWy,...dWy,
0

<t 1 <ta<--<tp<o0

(and if n = 0 then Zg w f is the deterministic variable equal to f(0)).
By the It6 isometry formula, we have

IX)° = E(XP) = [ Pt st) Pyt = 1]

0<t1<to< - <t,<oo

so Zg,w is an isometry, and the chaotic representation property ensure that it
is surjective (see [4]).

From now on, we will write ® the Fock space, and either the Guichardet or
the probabilistic interpretation depending on the context. There exists many
more probabilistic interpretations, one for each normal martingale. We concen-
trate on the Brownian interpretation in this article. To complete this picture,

we need to approximate the Toy Fock space by the Fock space. This was done
by Attal [3] and developed by Attal and Pautrat [7]. Let us first design an
isometry of T'® into ®. The idea is the following: for each 7, we have

® = ® q)[rn , T(n+1)]
neN

(where the infinite tensor product is taken with respect to \Q[m ) T(nﬂ)]) as
in the construction of the toy Fock space). Thus, it is sufficient to define an
isometry from H, = C? to @i | r(nt1)) = Ppo,-) and to extend it by tensor
product to T® = ®,en-. We choose the isometry

In,r : Hp — (I)[Tn , T(n+1)]
|0> = |§12[‘rn s T(n+1)]>
|1> g N (WT(n+1) — WTn) .

which tensorise to Z, = QpenZp,r : TP — .
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Let us write Pr = Z,Z* the projection on the image of Z,, and 7, ® this
image. Then P, strongly converge to the identity on ® as 7 — 0. In this sense,
the Toy Fock space approximate the Fock space, but this is not sufficient; we
also need some more precise convergence on operators in B(®). But first, we
need to study the operators in the Fock space.

2.3.3 Quantum Stochastic Calculus on the Fock space

The quantum stochastic calculus is thoroughly described in Parthasarathy [21]
and in [4], [7]. We give it a very short introduction geared for this article.

The operators on H,, are all linear combinations of the four operators |j) (i|
for 4,7 € {0,1}. In the toy Fock space, they translate as the operators

ai(n) = Tu(l3) ()T -

Thus, the algebra B(T'®) is generated by the operators a’(n) for n € N* and
i,j € {0,1}. Using the isometry Z, in the Fock space, we obtain some operators
a%(r,n) = Zya}(n)Z*. Under suitable renormalization, their limit exists: there
(t) on @ such that there is strong convergence

g

exists closed operators aj

el (7, [t /7)) — @i (t)

where
T fi=j=0
=4 V7T i (0,7) = (0,1) or (i,5) = (1,0)
1 ifi=j=1
The operator dad(t) is just the multiplication by ¢, while af(t)* = a(t) and
al(t) is self-adjoint (they are respectively the creation, annihilation and number

operator on ®;. We will write a}([s, t]) = a’(t) — a}(s); we have

aé(T, n) = red PTa;-([T(n +1), ™])P; .

See [3] or [7] for more details on these operators. We will now explain how to
integrate with respect to theses operators, in a way parallel to the It6 Stochastic
integration. First, we need to define the set of coherent vectors. For any function
u € L*R) N L*®(R), we define the coherent vector e(u) in the Guichardet
interpretation by

e(u)(ty, -+ tn) = ultr)ultz) - - ultn)

(the empty product being considered to be 1). In he probabilistic interpretation,
it corresponds to exponential martingale : writing Y; = e(ulo ) it verifies the
(classical) SDE

dY; = u(t)YdWy
Thus, writing Hy, = 0+°° u(s)dWs and [H]s = 0+°o lu(s)|*ds we have

e(u) = exp (HOO _ ;[H]OO) .
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We have |Jul|® = eIz Hence, € is continuous; it is clearly not linear.

An important property is that if M C L?(R) N L>=(R) is a dense subspace
of L?(R), then the vector space Vect(¢(M)) is dense in ®. Thus, it is often
sufficient to define an object on coherent vectors to fix it.

Now, the objects that we can integrate are the adapted process of operators.
We give here a restrictive definition taken from Parthasarathy [2I]. A more
general definition was produced by Attal and Lindslay [5] , but it is not needed
here.

Definition 11 (Adapted process of operators). A dense subspace M C L*(R)
is called adapted if for any 0 < s <t < oo, the space M([s,t]) :={f € M|f =
Ly f} is dense in L?([s,1]).

Consider some Hilbert space Hs. A family of (possibly unbounded) operators
(He)ter, on Hs @ ® is called adapted if there exists a dense subspace D and
an adapted subspace M C L*(R) such that for all t the domain of H; contains
D ®alg €(M), and there is an operator H, on Hg @ ® with domain D ®alg
e(M([0,t]) such that H, = H; ® Iy, ..., on D ®auyge(M).

Now, for an adapted process of operators (H)icr,, we want to define the

operator
t
/o Hdaj(s)

which would correspond to the limit of

[t/7]
% > Hy, (af(r(k+1)) — al(7k)) . (2.15)
k=0

Note that a’(7(k + 1)) — a’(7k) only acts on ®(,j -(r41)) SO it commutes with
Hj.., and the order of the operators in the above formula is not important. The
concrete way we define the integral is the following:

Definition 12. Let (Hy)ies be an adapted process of operators on Hg @ ©, with
domain containing D Qqiq (M) where M is adapted and D is dense. Let T be
an operator on Hg @ ®. We say that the formula

t
T= / Hydal(t)
0

is true on D ®qig €(M) if for any a,b € D and u,v € M the following formula
is meaningful and true:

(a®eu) Ttb®s(v)):/0 wi(s)ui(s) (@ @e(u), Hib @ e(v))ds  (2.16)

where u;i(s) = 1 if i = 0 and u;(s) = u(s) if i = 1, and by “"meaningful” we
mean that the integral is absolutely convergent.
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IfT, = fot H,da’(s) for all t we will write dT; = Hyda’(t). A more general
formula exists to compute T'f for some vector f, see [4]. Note that the existence
of an operator fg Hyda}(t) is not guarantied. If H; is bounded locally uniformly
in t, it is at least possible to define fot H,dt on the space generated by Hs ® Dp,
where Dp is the vector space generated by e(L?(R) ® L (R)). The obtained
operator may still be unbounded.

It is easy to check that in the case where Hy is constant on the intervals ¢ €
[Tk, T(k 4+ 1)] this formula corresponds to the Riemann sum In particular,

ai(t) = /0 Cdai(s)

The case of ad(t) = t is simple, the integral being just the integral with respect
to dt in the Banach space B(Hg).

The case of a}(t) and a?(t) is more subtle, and it actually generalize the 1to
integral, as shown by the following proposition.

Proposition 13. Let (fi)icr, be a process of random variables in L>(W, i),
adapted in the sense of It6, and such that fot E(|fs|*)ds < oo. Let

t
g=/ fod W, .
0

Consider the operators Hy = My, and T = M, on multiplication by fs on ®.
Then we have

T:/O H(daj(t) + daf (1))

on the domain e(L?(R)). Thus, in terms of operators, we can write dW; =
da}(t) + dal (t).

By the chaotic representation property (see [4]), this implies that the com-
mutative von Neumann algebra A([0,t]) = L= (W([0,t]), 1) is generated by the
operators a}(t) + af(t). Note that the observable we measure in the definition
of the OQBM is A = |0) (1| + |1) (0], so the observable A(1,n) = Z,;A(n)Z} is

1
\ﬁ
Thus, the algebra generated by the A(r, k) for k < n is P,LW([0,t], u)P;,

which is why the Brownian representation of ® is adapted to the study of the
OQBM.

A(r,n) = PTT(aé([TTL , T(n+ 1)) + a(l)([Tn , T(n+ 1)) Pr .

The product of two quantum stochastic integrals is itself a quantum stochas-
tic integral under some regularity conditions.
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Proposition 14 (Quantum It6 product formula). Let (A;)ier, and (Bi)ier,
be two adapted processes of operators, with domains containing respectively the
dense adapted domains D Qq1ge(Ma) and Dp ®q1ge(Mp) in Hg@P. Assume
that (Af)ier, is also an adapted process with domain containing D ®aige(Ma)
and that the following integrals are well defined, on D Qqige(Ma) for the first
line, Dp ®qig €(Mp) for the second.

t ¢
Tt:/ Agdal (s) Stz/ Ardal(s)
0 0
t
Ui :/ Bgdaf(s) .
0

Moreover, assume that for all s we have Bs(D®e(M)) C Dy and Us(D @ e(M)) C D4
. Then the following formula is satisfied on Dp ® e(Mp):

t
T,U; = / AUsda(s) + Ty Bedap (s) + =610 As Boda’y (s) .
0

This proposition was proved by Hudson and Parthasarathy, see Proposition
25.26 of Parthasarathy’s book [2I].
Writing da(s) daf(s) = 670k 20 daj(s), this formula can be written as

d(T,U,) = T,dUy + (dTy)U, + (dTy)(dUy) -
Note that in particular, if A, = B; = a}(t) + af(t) we have
d(A%(t)) = 2A(t)dA(t) + dt

which is actually the formula d(W?) = 2W,dW; + dt for the Brownian motion.
We are now ready to present the theorem of convergence of the repeated
interactions of Attal and Pautrat.

2.3.4 Hudson-Parthasarathy equations and Attal-Pautrat conver-
gence

The Attal-Pautrat limit [7] was devised in the context of repeated interaction
processes. The idea is to show that Z,U}; /L converge to some limit U; as 7
goes to 0, which satisfies a quantum stochastic differential equation. We only
present the case which is needed here.

First, we need to describe what will be the limit. It is a family of unitary
following the so called quantum Langevin equations (or Hudson-Parthasarathy
equations).

Theorem 15. Let H and N be two bounded operators on Hg with H self-
adjoint. Write

G:—iH—%N*N.
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Then there exists an adapted process of unitary operators Uy on Hg ® ® which
satisfies the following quantum stochastic equation on He @ag e(L*(R)):

dU; = (Gdt + Ndag(t) — N*dal(t))U¢ - (2.17)

The adjoint operator U] satisfies the adjoint equation. With the condition Uy =
1, it is unique.

This theorem is proved in [21]; the idea is to make Picard iterations on
Equation starting from U = I, applying Formula to show that at
each iteration the obtained operators are still unitary.

Attal and Pautrat proved the following theorem (expressed in the case which
is needed here).

Theorem 16. Let (Ur,)nen be a family of operators on Hg @ T® defined
as in Paragraph @ and write u,, = L;U; L7 the isometry on Hg @ ®
corresponding to Uy . Then for anyt > 0 the operator u, ;-] converges strongly

to the unitary operator U, solution of the Hudson-Parthasarathy equation of
Theorem [13

This theorem is proved in [7] in a more general context where there may be
some term in da}(t) in the equation and the space H,, is of arbitrary dimension).

2.3.5 Convergence to the continous OQBM

We are now ready to prove the convergence of the discrete OQBM. We consider
the unitary L, = R,V of the discrete OQBM built in Paragraph We
convert it into an isometry of Hg ® H, ® ®: we write ., = 2,7, L, , 27", and
we define the OQBM isometry i, ,, =l plr 117 1.

Theorem 17. For each t > 0 the operator gu, [;/;] converge strongly to some
unitary operator 34 solution of the equation

dsl, = ((—iH - %N*N + %aﬁ — 8,N)dt + (N — 8,)da’(t) + (—N* — 8x)da(1)(t)>ilt
(2.18)

on the set HG ®alg H2(R) ®alg S(LZ(R))

Remark 2. 1. This theorem can probably be generalized to cases where
N and H depends on the position x, but this would require to extend
non-trivially the theorem of Attal and Pautrat, the issue of the non-
boundedness of 0, being harder to bypass when N and 0, are not com-
muting.

2. Equation is a Hudson-Parthasarathy equation of the form of Theorem
with N replaced by N = N —0, and H replaced by H = H—5(N*0, +
0. N).
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3. The operator J, is unbounded, so we cannot directly apply Theorem
to show the existence of a solution Uy, neither Theorem to show the
convergence. Instead, we will break i(. ,, in two parts: one which is solution
of a Hudson-Parthasarathy equation with bounded coefficients, and one
which is solution of a Hudson-Parthasarathy equation with unbounded
coefficients but which is very simple.

We break the proof into a series of lemma. First, let us consider the pointer
isomorphism R, = D, ® Py + D_,; ® P_ defined in Paragraph We write
R, , =1,R;1} the corresponding operator acting on the toy Fock space, and
Trm = (Zsz ® L:))Rr n(Zsz ® Z-)*. Let us consider their product

Zrm = TrnTrm—1"""Tr1 -

Note that V. is not acting on H, and Z, is not acting on Hq, so I} 2.1,
commutes with Z; V.7, for any n > k. Thus we have

LLr,n = ZrnUrn -

We already know that w, ;/;] converges to some operator U; by Theorem
Let us consider the limit of the operator z; ;.
The pointer process Z;:

Proposition 18. For any t € Ry the operator Zr.[t/7] strongly converges to a
unitary operator Zy. The process (Zy)icr, satisfies the following quantum SDE
on the space H*(R) ®q14 (L (R)).

dZ; = (;aﬁdt — 0 (dag(t) + da?(t))) Zy . (2.19)

In the probabilistic representation, Z; is explicit: for any function f € L*(R)
and any random variable A € L*(W, 1) we have
(ZefA) () = f(z = WA .

Proof. Note that Zsz D, I3, = e~ 9% Py, since e %9 is the operator of transla-
tion by ¢ on L?(R). Moreover,

1
L Pe(n)Ir = 5 (ag(7,n) + a1 (7,n) + ag(r,n) + af(n))
so we have
—59, 50 —59. 50
Prn =y (a8(7—, n) +al(r, n)) Psz+ 5 (a(l)(T, n) + ad(r, n)) Psz .

We want to write e 9% ~ [ —§9, + %5283 Since 0, is unbounded, it cannot
be done directly. Let us consider the space Do C L?(R) of C-bandlimited
functions for C' > 0. Writing F the Fourier transform, the space D¢ is defined

as
Dc ={fe L*R) | Ff is supported in [-C,C]} .
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This space is stable by 8, and |JooDe is dense in L*(R). Restricted to
D¢, the operator 0, is bounded, so we can expand the exponential. However,
the space D¢ is not stable by Ps, so we introduce

—60 60, —60
_ e x + e £d e T
Trn = ———5 (ag(r, n) +aj(r, n)) +

00¢

2
so that r;, = 7, ,FPs. We also write Z; , = ¥, ,F7 p—1 -7+ 1. Since Psz com-
mutes with 7 for all k, we have that z;, = Z;,Psz. The space D¢ is stable
by 7, and on this space, since 9, is bounded we have

(a(l)(r, n) + ad(r, n))

Frn = (I + %8% + 0(53)) ad(r,n)+0(8)a; (T, n)+(—00, + 0(52)) (ag(1,n)+al(n))

With § = /7, this sets us under the hypothesis of Theorem with K =0
and L = —0,. Thus, Z, 1/, converges strongly (on D¢) to a unitary operator
Ztc which is solution of All the Ztc ’s coincide on their common domain of
definition, and they are unitary, so we can extend them to H?(R) and L2(R).
They commute with 0., so they are also unitary for the space H?(R). Since
the 7 [;/;] are unitary and converge to Z; strongly on a dense subspace, they
converge strongly on the full space. Moreover, Psy converges strongly to I, so
Zr[t/7] = Z7,1t/7)Psz also converge strongly to Z;.
Finally, by the classical It6 formula, for any C? function

df(zx— W) = f(z) — /0 0, f(x — W)W, + %/0 O2f( — W,)ds .

Thus, if we write (ZifA)(z) = f(x — W;)A for any f € L?*(R), the processes
Z; and Z, follow the same quantum SDE on C? functions. Since they have the
same initial state Zy = I, this implies that they are equal. O

As a consequence of this proposition, the operators Llﬂ[t /r] converges to
iy := Z,U; and the Itd product formula yields the stochastic equation [2.18

Remark 3. 1. Tt is also possible to prove Theorem [17] by using the Attal-
Pautrat theorem directly on U; restricted to Hg ®aig Do ®arg P since
Ha ®aig Dc is stable by H and N. However, the pointer unitary Z; has
its own interest, and may be useful in situations where D¢ is not stable.

2. Note that Z; does not commute with U;, we only have the commutation
of Uy and Z; s := Z;Z}. The formula i, = Z,U, is consistent with the
construction of the discrete OQBM: we make the system evolve according
to the unitary U;, and we apply the operator Z; which implements the
translation by W; to the position of the quantum particle.

2.3.6 From the Hudson-Parthasarathy equation to the Lindblad equa-
tion

The family of operators (4;)o<; and of states pior.t = e (ps @ |2) ()4} consists
in the most complete description of the OQBM. In this Paragraph, we show how
the existence of A% and the Lindblad equation can be deduced from it.
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First, for any state pg € 6(Hg ® H.), the state
Prot,r.t = e (t/7] (Pozps Pz @ [2) () Ur /7]
converges in S'(Hs ® ® to
prot,t = Ue(ps ® Q) (Q)Lh

It is a consequence of Theorem [I7] and of the strong convergence of Pjsz to
Iy,. In particular, the state pgr: = AE/T] (PszpsPsz) = Tra(prot,r¢ strongly
converge to the state

pPSt = Tr@(ﬂtot,t) .

This proves Proposition [7] We can now prove Proposition [J] from the formula
As(p) = Tre (Uh(p @ Q) (L) -
For this, we are going to use the Hudson-Parthasarathy Equation on ;.

Proof of Propositions[9 and[10, The operator ; preserves the space Sy(Ha ®
®,H.). To prove it, we use the following characterization of this space:

Lemma 19. The space Sk(H,H,) is the space of states p € &(H @ H,) such
that for any n < k the operator [p,|0;|"] is bounded on H ® W2*(R).

Now, the operator 4; commutes with 9, (since Z; and S; both commute with
9,:) so for any operator pior € S(Hg ® @) we have [Upihr, [0.]"] = Us[p, |02]"]4AF.

Thus, if p € Sa(Ha, M) then U(p @ [Q) (YU} € So(Hg @ @, H.) and so
ps(t) € SQ(HG,HZ).

To obtain the Lindblad equation we use the Heisenberg representation: for
any observable A € W21(R? B(H¢)) we have

Tr (ps.iA) = Tr (p (2 4 (A ® Totl; 2)) .

Using the It6 formula applied to U ALl; on the domain Hg ®ay HA(R) Qaly
e(L*(R)), we obtain that

t
WAL = A+ / WL (A)Uyds + R,
0

where R; is an integral with respect of terms the form daz-(t) with (7, 7) # (0,0),
so that (Q R; |Q) = 0. Thus

T (ps ) = Tr (pA) = [ Te (sl 0 19) (2117 £°(4)) ds

:/0 Tr (L(ps.(s))A) ds

which implies Equation by density of W21(R?, B(H¢)) in B(hhg @ H.).
The equation on the kernel is obtained directly with Equation This ends
the proof of Proposition [0}
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Now, when looking at the restriction to M, we note that U Mil, C MQB(P)
so that for any A € M the expectancy Tr (AL(p)A) = Tr ((p ® |Q2) ()46 AL,)
only depends on the restriction of p to M. The rest of Proposition [10]is proved
exactly the same as Proposition [0] O

Remark 4. We crucially used that Tr (ps(0) @ |1) (1] Hyda} (t)) = 0 whenever
i # 7. We have to be careful with this type of formula, for the following reasons:
1. We may be tempted to write for example Tr (Adag (t)BdafC(t)) =Tr (BdaﬁC (t) Ada{ (t)) ,
which would for example result in
Tr (Adaj(t)dal(t)) = Tr (A) dt = Tr (Adal(t)daj(t)) =0
which is absurd. Thus, writing the full formula with the integral is advised
when using the commutation property of the trace.
2. It seems intuitive that Tr (fot Hsda§(s)) = 0 as soon as ¢ # j. But even

when fg Hsdaj- (s) is trace-class, it may be of nonzero trace if H; acts non-
trivially on ®. Thus, it is best to use the Heisenberg representation when
computing Tr (p(t)A) to apply the formula

| /O H.da' (s) [1) = 0

which is valid whenever the integral is meaningful and (i, j) # (0, 0).

2.4 Hierarchy of the descriptions of the OQBM

With the OQBM, we have many views on the same object, carrying more or
less informations:

a) The state pror,r = U(ps @ |Q) (QPUF on Hg @ H, ® @ offers the most
complete description.

b) The state pior,c0 = Ur(pa @ Q) (Q) U = Tryy, (prot,t) ignores the position
of the particle, though its translation W; is still registered in ®.

¢) The random state g; with the random position X; ignores the quantum
aspect of the position, but keeps tracks of the classical correlations between
two different times.

d) The state ps+ = Tro(pror,t) = A4 (ps) on B(Hg) forgets about correlations
between different times and the precise distribution of g;, but conserves a
quantum view on the position.

e) The restriction of pg; to M = B(Ha) ® A, with matrix density function
Q:(z) = E(o| X = x): it forgets the correlations between different times
and has only the classical information about the position. This is the

smallest description where we have a closed equation for the evolution
(Equation [2.14]) and which allows to compute the law of X;.
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f) The state pg = Try. 9o (Prot.ct) = fxeR Q+(x)dx evolves according to the
Lindbladian £ and it completely ignores the position X;.

The descriptions a), ¢), d), e) are really dealing with the OQBM, while b)
and f) are only considering the evolution on H¢. They can be obtained one from
another by partial traces, restriction and conditional expectancy according to
the following hierarchy:

Ptot t
rM e \
Ptot,G t Qt Ps,t
E|th /
Tre\  Qt(x)
|
PG

Figure 1: Hierarchy between the descriptions of the Open Quantum Brownian
Motion

The way we can obtain (g;, X;) directly from pyo is the subject of the
second section of this article.

3 Non-demolition measured evolution applied to
the Open Quantum Brownian Motion

In the first section, we described the process (0rn, Xrn)nen as the result of a
succession of unitary evolution by L, and measure of the position X, , € 0Z.
In continuous time this picture is harder to obtain, since the time is continuous
the measure and the evolution are happening at the same time. In this section
we construct a general framework to deal with simultaneous measurement and
evolution, using the crucial idea of non-demolition measurement.

3.1 Evolution and measurement

3.1.1 The quantum state after the measurement of a continuous ob-
servable

In Paragraph we explained that it is not possible to describe the state
after the measurement of a non-discrete observable. However, we will need to
measure the position X; € R (or the translation W; € R), so we need to bypass
this problem. The idea is to consider the state after the measurement restricted
to some subalgebra of B(H). The case we consider is the following;:
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e The space H is the tensor product of two Hilbert spaces Hg and Hp.

e We want to measure a family of mutually commuting operators (Ba)acr
acting on Hp. Write A the von Neumann algebra generated by the B,’s.

e We are interested on the state after the measurement on B(Hg) only. It
will be written pg).4-

We will see that concentrating on the state on Hg and ignoring the full picture
on Hg ® Hp allows us to get a rigorous definition of pg).4-

Since the B, are commuting, we can identify Hp with L?(X,u) for some
standard measured space space (X, F, 1) such that there exists measurable func-
tions g, with B, = M, . We want to define pg4 as a random variable with
values in &(He) on the probability space generated by the random variables
Jo = Ba,p-

Theorem 20. Let p be a state on Hg®L?*(X, ). Then there exists a measurable
map s from X to SY(Hp) such that for any f € L (X, 1) and for any observable
A € B(Hg) we have

Tr(p 4@ My) = [ Tr(s(@)4) f@dno)

It is unique (up to a p-negligible set), and <(z) it positive and satisfies
_ dP,(2)
dp(z)

for p-ae x. It is called the unnormalized state on Hg associated to (X, ). Note
that its trace depends on the measure p which is chosen.

Now, consider a sub-o-algebra F1 C F and let A = L>®(X,Fi,p). Let P,
the probability measure induced by p on X. Then there exists a random variable
pala on (X, Fi,P,) with values in &(Hg) such that for any operator A € B(Hg)
and any random variable f € L*(X, F1,P,) we have

Tr(pA® My) =E, (Tr(pcia A) f)

where on the right f is seen as a random variable. The random variable pg) .4
is unique up to a set of probability zero, and for P-almost a x € X we have
pala(x) =5 sigma(z) /p,(x).

We will often write ¢ for pgja when it does not cause confusion, and we
write ¢ = ux(p) (or wx ) (p) when the measure needs to be precised).

Tr(s(x))

Note that u,, : p — ¢ is an isometry, contrarily to the map p — o.

Proof. The function ¢ is just the matrix density function of the restriction of p
to M = B(Hag) ® A, so its existence is just a consequence of the Riesz theorem.

We have [, f(x)Tr (¢(x)) du(x) = p(My) = E,(f) so tr¢(z) = dP,/du, and
so Tr (¢(z)) is nonzero P,-almost surely. We now define



on z such that ¢(z) # 0. It is a random variable on (X,P,). Now we take the
conditional expectation with respect to the g-algebra F generated by the g, on
X

paa=E[R|F].

It is easy to show that it fits the requirement of the theorem.
The uniqueness is straightforward. O

Remark 5. 1. With this approach, we clearly separate the quantum super-
position, described by a density matrix, and the classical randomness on
the probability space (X, F,PP,). It is frequent in quantum filtering theory
to define p as a state on the commutant of A, which is in general bigger
than B(Hp) ® L (X), but this does not define ¢ explicitly as a random
variable on some probability space.

2. Note that the state pg|4 contains more information that pg = Try, (p)
since pg = Ep,a.(pga). Thus, we have three descriptions of the state
of the system, containing less and less information: the full state p on
He ® Hp, the random state pg 4 and the state pg. We could define
a fourth description between pg |4 and pg by using the theory of direct
integral: if A is the set of decomposable operators on H = fff H(z)dp(x)
we may counsider a random state o(X) on the random Hilbert space H(X).
This level of precision is not needed for our purpose.

As an application of this theorem, we can model the indirect measurement of
an observable; it is a framework often called von Neumann measurement of an
observable in the literature ([14],[22], [I8]). Let us describe the measurement of
the observable X on Hp = L%(R, Leb). We couple the system with the pointer
of some measurement device, described by Hp = L*(R, Leb). we call Hp the
pointer space (think of it as the needle of a weighting scale or a seismometer).
We move the pointer depending on the value of X, which has the effect of
applying a unitary Z on Hp ® Hp = L*(R?, Lebs) which is defined by

(Zf)(:ma) = f(x,a—x).

Then, we perform the measurement of the pointer : we measure A = M,, .,
on Hp. The result is a random variable A and the state after the measurement
is pi.4 (where A is the algebra generated by A). Note that the noise is described
by the initial state of the pointer. For example, if the system is in the pure state
f € L*(R, Leb) and the pointer in the pure state g € L?(RR, Leb), the probability
density of A is

pla) = /le(x)\Z\g(a—x)lzdx = |f” *lg*(a)

and for any a € R the state pG|.A(a) is the pure state |f,) (fa| where

f@)gla— )

Jolz) = p(a)
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This really corresponds to a classical noisy measurement : if X is a random
variable with density |f |2 and B a random variable with density | g|2 then p is
the density of X + B and |fa|2 is the density of X conditioned to X + B = a.
Note however that this situation is truly quantum: if we do not perform the
measurement, the density matrix of the system is

re = E(pc) = Trp(Z (pc © pB) Z7)

which is of kernel
Ky (,9) = () F@) / g(a - )g(a —g)da = f@)FGCylx — ).

where

It is no more a pure state.
A more general version of this process is the following:

Definition 21. Let Hqg be a Hilbert space and A a commutative von Neumann
algebra on Hg, with an isometry T : L?>(X, ) — Hg implementing an isomor-
phism A ~ L>(X,u). Consider an auxiliary space Hp = L*(Y,v). A pointer
map is some measurable function ¢ : X x Y — X such that for all x € X the
map P(x, ®) is a measure-preserving bijection on Y. The pointer unitary Zy on
He @ Hp corresponding to 3 is the operator defined as Zy, = TZ,T* where Zy,
is the unitary on L*(X x Y, u x v) defined by

(Zyf)(@y) = flz, d(zy)).

The indirect measurement corresponding to v is the measurement of the algebra
L (Y,v) on Hp, resulting in the random value Y € Y of the pointer and the
random state pgly € &(Hp).

This is a little more restrictive than the processes considered by Belavkin
[14], in which the unitary Z (written S by Belavkin) is only assumed to commute
with elements of L>°(X, ;1) @ {Ip}. This restrictive definition has the advantage
of making it more explicit.

This definition include the perfect measurement of a discrete observable A:
take X = ) = sp(A) with u the counting measure and fix an initial state ag € Y,
choose pp = |d4,) (day| and any pointer function ¢ such that ¢ (a,ag) = a.

3.1.2 Measurement and evolution

The evolution of a system after the measurement may be impossible to describe.
Let us assume that the evolution of the system is described by a unitary U on
He @ L?(X, 1). We may measure the algebra A = L% (X,v) before or after
applying U, obtaining a random variable X € X and random states gy = pg|4
and 01 = (UpU*)g)4. However, it is not clear how to describe the measurement
before and after applying U. There may be two issues there:
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1. The state pgp|.a is well defined only if A is discrete, else we only have the
partial state pgja. Thus, we cannot define Upgp|aU™.

2. Even if A is discrete, the measurement before applying U modifies the
state of the system, so (Upgp|aU*)s|.4 may not have the same law as

(UpU*)s1a-

The restriction to so called non-demolition evolutions allows to bypass these two
issues in the general context of measurement under evolution.

Definition 22. Let Hg and Hp be two Hilbert spaces, let I C R be a set of
times and (Up)icr be a family of unitary operators on Hg ® Hp with Uy = T
if 0 € I and let (At)ier be a family of commutative von Neumann algebras on
Hp. Write Uy s = UUF for any s,t € 1. We say that the process (Uy, Ay)ier is
a Ha-non demolition evolution if for any s <t € I we have

Ut s AU C Ia @ Ay
where A} is the commutant of A;.

In most cases the family of algebras will be increasing (As C A; for s < t)
but we do not require it.

The condition U; s AUy C B(Ha) ® Aj is here to ensure that the measure
of A, does not disturb the measure of A; after evolution, while the condition
U s AU; s C (Ig®B(Hp)) ensure that the random state at time ¢ is well defined.
Let us describe more precisely how the random evolution can be defined.

Let us consider an Hg-non demolition evolution (U, A:)ier and a state
po € 6(He ®@Hp). We make the assumption that I is upper bounde(ﬂ by some
T € I. We fix some identifications A; ~ L (X, Fy, 1) implemented by some
isometries Z; : L2(X;, Fi, ut) — Hp.We want to define a probability space (€2, P)
with a stochastic process (X¢, 01)ter with X; € X and o, € &(H¢) obtained by
simultaneously measuring A; at time ¢ and making evolve the system according
to U;. We construct it as follows.

e Let AV be the smallest von Neumann algebra containing all the algebras
Ui, s AU for s < t. It is commutative and contained in Ic ® B(Hp)

by the Hg-non demolition hypothesis. We fix an identification AY ~
L=xY, FYuY) implemented by an isometry ZU : L2(XY, FV, u¥) —
Hp.

e For any s <t we have A; C AV so there exists a map ¢; : XV — X} such
that for any f € L% (X;, Fy, ) we have

I Moy, (T}))" = T ML} .
e For s <t we have Uy JAYU;, C AY so there are maps 7, : XY — XY
such that for any f € L>®(XY, F,, u¥) we have
I Moy, (I )" = Uy I My (Z])" U7, -

t,s%s

2this assumption is actually not necessary but it allows to use more concrete notations
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e We take for our universe Q the space X¥ with probability P = p¥duY
induced by UrpUs and the identification ZY. The random variable X; €
X; is then defined as ¢ o ne 7.

e The random variable g; is defined as
ot = (UepUy) gy v (n1.1) -
it is indeed a random variable on X¥.

Remark 6. Note that the maps 1. s and ¢; are defined uniquely only up to a
set of measure zero, as well as the random variable (UtpUt*) GlAv Thus, if I is
t

not countable there is not uniqueness in distribution of the process (Xi, ot):er,
only uniqueness in finite-dimensional distributions. For example, when X; = R
for all ¢, the function ¢t — X; may be almost surely continuous, but this depends
on the 7 s and ¢; which are chosen.

Definition 23. Any process (X, 0t)ter obtained as above is called a measured
evolution obtained from the Hg-non demolition evolution (U, A¢)ier and the
state pg.

This way of define the stochastic process should seem natural; a first mo-
tivation is that X; has the same law as the result of the measure of A; in the
state U;pU;", indeed for any function f € L™ (Xy, Fy, ) we have

E(f) =E(f o ¢t onr)
= Tr (UrpUsZY Myogyon, +Z7)
=Tr (UspU;" Ugy T Mfog,on, o (2 ) Urye)
= Tr(UtpUt* IthIt*) .

However, this is only the law of X; at one time, and it does not justifies the
joint distribution of the X;’s for t € I. We will use the indirect measurement
defined in the previous section to make a more complete and useful argument.

Definition 24. For each t let us fix an identification Ay ~ L (X, Fi, duy).
We call an indirect measurement of (A;)ie; under the evolution (Uyp)icr the
following type of setup: let J = {tg, -+ ,tn } C I be a finite subset of I and
consider a family of pointer maps (Yx)o<k<n With ¥y : (X, Fy,) X Yk — Vi and
a family of states (ox)o<k<n on L*(Vk,vi) with corresponding probability density
pr on V. Consider the pointer unitary operators Z, = Zy, as in Definition
@. Let us perform successive indirect measurement: let Yo € Y, be the result
of the measurement of L ()y) for the state Zy (UtOpUtO) ® 002§, and osp(to)
the state on Hg @ Hp after the measurement; then, define Y1 the result of the
measurement of L> (V1) for the state Zy (Uy, 1,058(to)U;, 4, ) @127, and define
successively Ya, - -+ Y, the same way. We obtain a random process (Yi)o<k<n 0N
the space [[_o Vi and a family of random states o ((Y1)i<k) = Trp(pss(tk)) -
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Note that we can perform this type of indirect measurement even if the
property of Hg-non demolition is missing. The non-demolition property makes
these indirect measurements to be consistent with the process described above,
as follows.

Proposition 25 (Consistency of the unraveling). Consider any indirect mea-
surement of (Ai)ier under the evolution (Up)ier described as above. Assume
that the Hg-non demolition property is satisfied. Consider the random state o4
and the random variables X; € X; defined above on the universe Xior. Add to
this universe a family of random variables (Y?)ie s with law prdvy, where py is
the probability density corresponding to the state o on L?(Vg,vy). Assume that
they are mutually independent and independent of (Xi)ier and define

Yk = ?ﬁ(thvaO)
or =E(o((Xs)ser) | (Ye)o<ksn) -

Then (Y/k, éz;)ggkgn has the same law as (Y, Qﬁ)ogkgn-

Proof. Let us write
Wi = ZyUs 1 Zke—1Usy 15 -+ Z0Usy
and let AY = L2(ITi<p, Vi @< 1) Then
o1, = Wilp© 0)Wyi)g 4, -
Moreover, for any function f € A} and operator A € B(Hg) we have
E(Tr (o) f(Yo, -, Ya)) = Tr (Wi(p@ o)W A® My) .
Similarly, by the construction of g; and g} we have
E(Tr (87,) f (Yo, Vi) = Tr (U pUp, © 0) A T My (Z7)")
where g € L= (X x [1;<y Vi) is defined by
9@, y0s k) = FWo(Drg © Mot (£0,):90)s - Ur(Be (21),), wr)) -

(it corresponds to the random variable f(Yo,--- ,Yk)).
Now, we have
ItUMg(ItU)* = UtkW]:fWkUt*k

by the definition of the Zj, and ¢¢, 7, ;. Thus,

E(Tr (1) £) = Tr ((Un U, © 0) AU, Wi SWLUL,)
=Tr (Wikp @ o)U;: AU, W[ f) .

k
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Now, by Hg-non demolition, since A is in the commutator of I ® B(Hp) for
any [ < k we have U} , AU, 1, € A}, and in particular Uy, , AUy, ;, commutes
with Z;. Thus, we have

U;kAUtka U* (Ut*g tkAUtkyto)ZO e Utk—2»tk—1Z;—lUtk—1ythZ
= UtOZO Uto,tkAUtmh AREE Utk727tk—1Z;—1Utk—17tk Z;:

and with successive commutations we get
U, AU, Wy = Wi A .
Thus we have

E(Tr (¢r,) fF(Yo, . Ye)) = E(Tx (ey,) f(Yo, -+ . Vi) -

This proves the equality in distribution. O

3.1.3 The example of OQW

Open Quantum Random Walks are our first example of measured evolution.
Let us consider any OQW (B¢ )ecr on a countable graph (V, E). It consists in
the succession of evolution by the quantum channel p(p) = Z(z—)y)EE(‘B(-@—W) ®
ly) (z])p(B(, ) ®|z) (y]) and of measure of the algebra Ay = 1>°(V). As such,
it does not need the formalism of measured evolution to be defined since Ay, is
discrete, but it can help understanding how measured evolutions work.

Let us construct the auxiliary space H, = (?(V). In the article [§] in which
OQW where first defined, it is constructed a unitary U on Hg @ 1*(V) @ H,, the
following way: we fix a point g € V. For any « € V we consider a unitary V()
such that for all y € V we have

(Wl V(@) [20)3, = L(z)crBay) -

It exists because of the condition
<y|H,, V() |Z>HP. We put

U=3 V(@) (el o) (] -
©,y,zEV

Consider the Toy Fock space T®y = @), o+ Hp with respect to |zg), and
write [Q) = &@,,cy- [20). We consider the unitary U(n,n — 1) = Z¥UZ, on
He ®12(V) @ TPy and define U(n) = U(n,n — )U(n — 1,n —2)---U(2,1).
The system (U(n), A, )nen is Hg-non demolition, indeed U (Ig ® Ay)U* C I ®
Ay ® B(H,). More precisely, for any f =37 ., f(z)]z) (x| € A. we have

UfU = Y f@)U(),:U(2)y: @ y) (y'| © |z) («]

z,y,y’,2€V

Y. f@IleeI®l) (2 .

z,yeV

B}B. = 1. Write V(z),, =

y with (z—y)EE
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Moreover, we have
Trre, (U(n)(p®[Q) (Q)U(n)*) = ¢"(p) ,

where ¢ is the quantum channel defined by the OQW. By Proposition [25] this
means that the OQW has the same distribution that the process (g, Xp)nen-
given by the measured evolution of (U(n), Ay),en with initial state p @ |Q2) (2
Let us just make explicit the algebras AY and the maps ¢; and 7s,t used in the
definition of the measured evolution.

Writing A,, = [°°(V") the algebra generated by the operators |z1) (z1] ®
< ® |xn) (xn]| @ T on TPy, we have

AV = A, @ A, =1V x V") .

The operator ¢, : V x V" — V is simply the projection on the first coordinate,
and for m < n the operator 7, , : V x V* = V x V'™ is defined by

nm,n(ajaxla"' ,Jin) = (xnwfla"' axm) .

3.2 Application to the Open Quantum Brownian Motion

With the measured evolution setup, we are able to obtain the process (o, X¢)o<i<T
satisfying the diffusive Belavkin equation directly from the unitary $; and no
more as the limit of a discrete-time repeated measurement setup. First, we just
consider the system (Uy, A;)o<i<r where A, = L (W([0,t]) C B(®). Second,
we apply this to the measured evolution of (4, A )o<i<T where A, = L>(R) C
B(H.).

3.2.1 Measured evolution for the Hudson-Parthasarathy process

In this part we study the measured evolution (U, A¢)o<i<r on Hg @ ®. The
setup is quite simple in this case, because AY = A; and 75, is just the map
(wu)o<u<t — (Wy)o<u<s. This allows to study it in a less contrived way that
the measured evolution described above, and the following result is well-known
in quantum filtering theory,

Proposition 26. The system (U, At)o<i<r is Hp-non demolition. If Hg is
finite-dimensional it admits a measured evolution process (o1, (Ws)s<t)o<i<T
corresponding to the initial state p®|Q) (Q] which satisfies the diffusive Belavkin

equation [2.5

Proof. Note that for any s the process of operators (Us;)s<i<7 satisfies the
Hudson-Parthasarathy equation @ and Us ¢ = I. Thus, U, does not act on
®(9,5, in particular for any f € As; we have Us(fU;, = f. This proves the
non-demolition. Since Us 1 AU;, = As we have AV = A;, we can take ¢; the
identity map on W(][0,]), and 5, : W([0,t]) — W([0, s]) is just the restriction
to [0, s]. Thus, the state o; satisfies

Ep(Tr (0:4) f(Wu)ust)) = Tr (Us(p @ [2) (U A © f)
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for any observable A € B(H¢) and function f € A;. We study the unnormalized
state ¢ = uyy (0,4 (Ut (p ® [) (Q|)U; first. It satisfies

Eu(Tr (qA) f(Wu)ust)) = Tr (Ur(p @ [ (AU A® f)

(where p is the measure on W([0,T]) under which (W;)o<i<r is the Wiener
process). We compute the equation for ¢; using the It6 formula. First, we use
the Heisenberg representation:

Tr (Ui(p @ () (QNUFA® f) = Tr (p (U (A® U [Q)) -

Let us write fs = E,(f|Fs) (where F; is the o-algebra generated by (W, )u<s). It
is a martingale; f is bounded for all s since f is bounded, and by the predicable
representation theory there exists an adapted process (gs)s<; such that

dfs = gdes

or in terms of quantum SDE, f, = fo + [; gs(daf(s) + dad(s) on e(L*(R)). We
apply the quantum It6 formula two times to the product U (A ® fs)Us; since
we are interested in (Q|UX(A® fs)Us |Q2) we can ignore the terms which are not
in dt. We obtain

t t
Ut*(A®ft)Us:A®fo+/ U:E*(A)fsUsder/ U*(N*A+ AN)U,gyds + Ry ,
0 0

where R; is a quantum It6 integrals with only terms in da(s) and da?(s). This
implies that

Ep(Tr (¢ A) f(Wu)ust) = foTr (pa) + /0 Tr (Us(p @ [2) (Q))Us (£7(A) fs + (N" A+ AN)gs,)) ds

= foTr (pa) + /0 E, (Tr (L(ss)A) fs + Tr (Nes +ssN*)A) gs) ds

= foTr(pa) + E, (Tr <</0t£(§s)ds + /Ot(l\ks + CSN*)dWs> A) f>

the last equality being a consequence of the classical It6 formula. This implies
that, for Hg of finite-dimension,

d{t = £(§t)dt + (N§t + CtN*)th . (320)

It is now time to go back to o = ¢/Tr(s), and to compute the measure P
with dP = Tr(¢)du. First, note that equation has linear coefficients, so
g is bounded in L2(W([0,T]). Write p; = Tr(s;). Since Tr (£(A)) = 0 for any
operator A, conditioned in p; # 0 we have

dpy = Tr (N¢; + G N™) dW; = p, T (0¢)dWy .

Thus, p; is the exponential martingale

t 1 T
pe=exp | Tlo)ds - T (0¢)?ds .
0 0
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Note that E,(pr) = 1 by definition of ¢, so it is indeed a martingale. By the
Girsanov theorem, under the distribution prdu there exists a Wiener process
B; defined by

By=0 (3.21)

This is the second line of Equation 2.5 To compute the equation for g, note
that

1 t 17 1
do- = dexp— [ Tleods+ 5 [ Tleids = - (T(e)dt ~ T(e)aws)
Pt 0 2 Jo p

t
so with g; = ¢p; * the Ito formula yields the first line of Equation O

This derivation can be extended to more general Hudson-Parthasarathy
equations, and has also been studied in the case where the state on ® is not
|2) (©2] but a more complex, single-photon state, with a resulting non-markovian
Belavkin equation

Goughl2.

3.2.2 The measured evolution applied to the Open Quan-
tum Brownian Motion

The measured evolution of (guy, A )o<i<7 is a little more subtle than
the one of (U, At)o<i<T, but it can be reduced to this last one by
using the formula U; = Z;U;.

Theorem 27. Assume that Hq is finite-dimensional, and let us fix
some T > 0. Then the system(Uy, A.)iejo,1) is Ha-non-demolition,
and it admits a measured evolution (o¢, Xt)iejo,r) which is almost
surely continuous in time. It satisfies Equation|2.7.

Proof. For any f € A, and any s <t we have

LLs.,tfi/[s,t = Zs,tUs,th:,tZ:,t
= s,th:,t

which is the operator of multiplication by the function fs,t (@, (Wy)u<r) =
f(z — ws +wy). Hence the system (¢, A,)o<i<r is Hg-non demo-
lition, and we have A} = A, ® A, = L=(R x W([0,t]), Leb @ ).
We choose the map ¢, : R x W([0,¢]) — R as the projection on the
first coordinate, and for s < ¢ we take the map 7, : R x W([0,t]) —

R x W([0, s]) defined by

Ns,t (T, (Wy)o<u<t) = (T — wy + ws, (Wy)o<u<s) -

39



Let (0:, X¢)o<t<r be the random measured process corresponding
to these maps. Write h = (U;(p ® |Q) <Q|)M§)G|A% (it is a random
variable on R ® W([0,1])), then g; is the random variable on R ®
W([0,T)]) defined by

01 (x, (Wu)o<u<t) = h(z — wr + wy, (Wy)o<u<T) -

For any = € R consider the random variable on W([0,T]) obtained
by conditioning g; to Xo = z. This random variable is v4(z) =
ot(x + wy, (wy)o<u<r). By definition of Z; it is actually equal to

(Ue(vo(z) @ [2) QDU )4, -

Thus, (v(z), Wi)o<i< is the random evolution corresponding to the
measured evolution of (U, A;)o<i<7 with initial state vo(x), and by
the definition of 7; we have X; = Xp — Wp 4+ W, = Xy + Wr so
Proposition [26] yields Equation 2.7] O

3.3 Towards general convergence theorems for mea-
sured evolution

The convergence of p,, = AL/ (p) to pr = AL(p) was obtained
directly from the strong convergence of &, ; to ;. On the contrary,
the convergence in distribution of (¢r ¢, Xr.t)o<t<r t0 (01, Xt)o<t<T
was shown as a consequence of Pellegrini’s theorem which was
proved by classical probabilistic methods without any reference to
the operators U; on the Fock space and on the measured evolution.

A natural question is: can we prove the convergence in distribution
of a family of processes (0r, X+ ¢)o<i<r coming from a measured
evolution (U -, A)o<¢<r just from the strong convergence of Uy ; to
some operator U; 7

This question turns out to be rather difficult, since the algebra A7
also depends in (Ur;)o<¢<7. In what follows we present some results
in this direction.

A first result can be obtained when there is no evolution and we are
only considering one measurement.

Proposition 28. Let p1p2 € G(He ® L*(X, 1)) be two states and
let A = L>®(X,p). Define the random variables 0; = (pi)gja on
(X,P;) where dP; = p;dy defined as in Theorem . Then

1 _P2||L1(X,u) < llp1 — P2||51(7-LG®L2(X) (3.23)
Ep, ([lor — Q2||51(HG) <2[p1 - p2||81(HG®L2(X) . (3.24)
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Proof. Write h; = ux(p;) the unnormalized states corresponding to
pi- Then p;(z) = Tr (hi(z)) for p-almost every x € X so

Ip1 = P2ll i < /XTr(Ihl(fv) = ha(2)]) dp(z) < lpr = p2lls:

the last inequality being a consequence of the fact that h; is the
restriction to B(H¢g) ® A of the state p;. Thus,

Beu(le1 = 22l ) = | Tr(ln(@) = ea(o)]) prdue)

< [ ¥t (@)er(a) - pala)oa@)) due) + [ Tr((p1 () = pata)) o)) i)

< 2[lpr = p2llsr -

As a consequence we have the following:

Corollary 29. Let (p,)nen be a sequence of states on Ha®L?(X, 1)
converging in SY(Ha @ Hp) to some state p. Consider the sequence
of random variables 0, = pg|a defined as in Theorem |20} Then o,
converges to o in distribution and in L'(X,S8"(Hs), pydp).

Note that it would make no sense to ask that g, converge to g in
probability or almost surely since they are attached to different prob-
ability measures on X. The convergence in L'(X,S'(Hs), p,dp) is
already a little strange from a probabilistic point of view though it is
mathematically meaningful: the random state g, is L' (X, S*(Hs), ppdpu)
since it is bounded in S'(Hg) and p,du is a probability measure.

A really useful result would involve some dependency in the algebra
A, in order to generalize Theorem [5] to other measured evolutions.
We were only able to obtain the following partial result, in which
the convergence of the result of the measurement is obtained, but
not the convergence of the random state.

Proposition 30. Let X = R? with Borelian algebra F and a radon
measure (. For each n € N let F,, be a coarse sub-c-algebra of F.
Assume F,, C Fpny1 for each n and write X, = R?/F,. identified
with subsets of R? such that X,, C X, .1 C X. We fiz some time set
I =1[0,T) upper-bounded by some T € R and some finite set I,, C I
with I, C Lyy1-

Consider some Hilbert spaces Hg and He and write Hp = L?(X, F, 1)®
He. Consider A = L*(X, F,pn) and let (U, A)rer be an Hg-non
demolition measured evolution and p a state on Hg @ Hp. We write
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(X¢)ter € X1 and (04t)ier the random variables obtained by measur-
ing A under the evolution.

For each n € N fiz a closed subspace H,,c C Ho with Hyc C
Hot1.c. Write Hy,, = L*(X, F,, Leb) ® Hp o and let P, the orthog-
onal projection on H,. Note that P, commutes with every elements
of A, we define A,, = P, A and X,, = R?/F,,. Consider a process of
ungtary operators (Uy ¢)ier, on Ha @My, (that we may see as partial
isometries on Hg ® Hp), and a state p" on Ha @ H, (that we may
see as a state on Hg @ Hp). Assume that (Un ¢, Ap)ier, is Ha-non
demolition for allt. Define the process (X, ¢)ier, with values in Xy,
and (on,t)ier, obtained by the measured evolution of A, under the
evolution U, ; with initial state p". We still writet € I — X, ; the
extension of t € I,, — Xy to I by linear interpolation, and the same
fOT‘ On,t-

We make the following assumptions:

Assumption 1. Writing I,, = {t1,n, - , t, »} (in increasing order)
we assume that

l, = mazx {ti+1,n - tz,n|1 <i< kn}
converges to 0 as n — oo.

Assumption 2. For any = € R? write

Cr,x)= (] A.

AeF,, z€A
Then we assume that

lim sup,cpa diam(Cg, (x)) =0.

n—oo
Assumption 3. The sequence of processes (X, t)icr is tight for
the topology of the uniform convergence on the set of continuous
functions on I, and (X;):cr is almost surely continuous.

Assumption 4. The sequence of projections (P, ),en strongly con-
verges to the identity and the state p™ converges to pin B' asn — 0
and for all sequence (t,)nen with ¢, € I, converging to some t € T
the operator U, ., strongly converge to U; on Hg @ Hp.

Then (Xn.1)ter converges in distribution (in the topology of uniform
convergence) to (Xi)ter-

In the case of the OQBM, we choose a sequence 7, such that d,, /0,11 €

N. We have X = R and &,, = §,,Z, the algebra F,, being generated
by the sets [0k, d(k + 1) ) and we take Ho = @ and He,, = T, P.
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Upon proving the tightness assumption this theorem together
with Theorem provides an alternative proof of the convergence
of (X [t/7])tejo, 7] to a process solution of However, it is very
incomplete since we do not prove the convergence of o, [¢/7]-

Note that Assumption |§| depends on the maps 7, ; and ¢; chosen in
the construction of the process, which are only defined up to a set
of measure zero.

Proof. We separate the dependency on I,, and A,, on the one hand
and on U, ; on the other hand. For k¥ < n and any t € nl we write

Xt = Crp (Xt

and we consider the o-algebra > ,, generated by (X, ¢)er, and
define

Ok,n,t = ]E(Qn,t| >>k7n) :

Then (0k.n,t; Xkn,t)ter, 1S a measured evolution corresponding to
the system (U, ¢, Ak)ier,. We also write

Xk,00t = Cr (Xy)

and >, the corresponding o-algebra, and gr 0ot = E(0:| >), so
that (0k,c0,ty Xk,oo,t)ter, is a measured evolution corresponding to
the system (Uz, Ay )ter,. We extend all these functions to I by linear
interpolation.

We prove the convergence in distribution of (X, ;)ier. Let f be a
bounded Lipschitz function on the space D of continuous functions
from [0, T] to X'. We want to show that E(f((Xp¢)ie[0,77)) converges
to E(f((Xt)teo,17)) as n — oo.

We fix € > 0. For any k sufficiently large, we have diam(Cr,(z)) < ¢
for all x € X. By the tightness assumption, with probability higher
than 1 — ¢ there is C' > 0 such that for any n sufficiently large we
have || X, — Xy s|| <eif |t —s] < C. Since dy, — 0 as n — oo this
implies that for all n and k large enough we have || Xy, ¢ — Xyl <
2¢ for all t. Writing M = max |f| and L the Lipschitz constant for
f, this means that there is K € N such that for any n,k > K,

E(f(Xkm,t)ter)) — E(f(Xnpt)ter))| < eM +51 —€)2eL . (3.25)

The crucial point is that this bound is uniform in n. The same
reasoning shows that for any k large enough we have

[E(f(Xko0,)ter) = E(f(Xt)ter))| < eM + (1 —€)2eL . (3.26)

Thus we can fix some k such that the two above quantities are less
than e, and compare (X co,t)ter, and (Xg pni)ier,. They are both
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measurement of discrete algebras on a discrete set of times, so we
can actually describe them as indirect measurement.

We write Iy, = {t1,-- ,tm } with g < t;3 < -+ < tp,. For 1 <1<
m consider some copies ) of X} and write H; = L?());, v) with v the
counting measure. We fix a € X}, and define the state o; = |a) (a|
on H;. We consider a pointer map ¢ : X X X — A such that
Y(x,a) = z for all + € Ay, and we define the pointer unitaries
Z; on Hp ® H; as in Definition Write Hy = Q<< Hi and
c=00Q® Qo and:

W =ZnUtp, ton1 Zm—1Uty, s o2 Zm—2 "+ ZoUy, -

Wn = ZmUn,tm,tm,lmelUn,tm,l7tm,QZm72 T ZOUn,to .
Consider the states py = W(p ® o)W™* and pw, = W, (p" ® o)W,
Now, write Ay = L*([[y<;<,m V1> V), then the result of the measure-
ment of Ay in the state pyy is a process (Y3 )ier, . By Proposition
it has the same law as (Xk 0o,t)ter, . Likewise, the result of the mea-
surement of Ay in the state py, is a process (Yy, i)ier, with same
law as (Xk’n,t)tejkynl. Now by Assumption 4| the operator W,, con-
verges strongly to W as ny — n and p* converges to p in B* so pw,
converges to py in B!, so by Proposition the process (Yo 1)ier,
converges in distribution to the process (Y)ter, -

This implies that for n large enough,

IE(f(Xk,00,t)ter)) = E(f(Xkn,t)ter))] <€ .

Since the k was already fixed large enough, this implies that

IECf((Xnt)eer)) — E(f(Xeer))| < 3e

thus proving the convergence in distribution of (X, ¢)ier- O

The key point is the estimate [3:25] which is uniform in n. Such a
uniform estimate could not be obtained for g ,, ;. Indeed, even if the
o-algebra >, ,, is very close to the full o-algebra for k large enough,
this does not implies that gk .t = E(on.t| >k,n) is close to g, for
k large enough uniformly in n.

The hypothesis that A, is coarse and I, is finite is actually not
necessary. To go without it, we may use coarse subalgebras Ay ,, of
A, and finite subsets I,  C I,, and look at the measured evolutions

of (Un,ts Akon)tel, x-

3.4 Open questions and prospects

Three questions are left open in Theorem [30}
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1. What additional assumption would ensure the convergence in
distribution of (0n,¢)ier ?

2. On what condition does an Hg-non-demolition system (Uy, A¢)o<i<r
admit a measured evolution process (g¢, X¢)o<t<7 which is al-
most surely continuous in time? It is the case for U; defined by
the Hudson-Parthasarathy equation and A, = L (W([0, t]), i),
but it is not the case when A, is the algebra generated by the
ai(s) for s < t. Such a condition should involve both A; and
Ut.

3. Considering a family of Hg-non demolition systems (Ur ¢, Ar )ier,
with measured evolutions (g;,r, X¢,r)o<t<r- Is there any con-
dition on the unitaries and algebras to ensure the tightness of
the family of processes in the space of continuous functions?

Some questions concern the OQBM more specifically. Notably,

4. In the trajectories of the Open Quantum Brownian Motion,
there is no back-action of the position X; on the state g;, which
satisfies a closed equation. Thus, it is of weak interest in the
context of quantum control, where we would want = to rep-
resent some control function which depends on the history of
the trajectory. What if V and H depends on the position x
? We may expect that under some regularity condition on the
functions x +— N(z) and x — H(x) (for example, Schwartz
functions), there exists an inhomogeneous OQBM, whose uni-
tary ; is solution of the equation

dsl, = ((_ZMH_% N*N+%6§—axMN)dt+(MN—ax)da(f(t)+(—Mj\‘,—83,)da(1)(t)>ut
where My is the operator on Hg @ H, = L*(R,Hg) defined

by My f(x) = N(z)f(x). This idea was raised in the original

article on the OQBM, [II]. Formally, everything works the

same way as the homogeneous OQBM, the equation for the

measured evolution being expected to be the form

dor = Lx,(or)dt + (N(Xy)or + 0:N(Xe)" — 0 Tx, (pr)) dBy
dX: =Tx,(o))dt+ dB;

However, proving the existence of il; is far more complex than
for the homogeneous OQBM, since the operators 9, and My
are no more commuting, and the space of bandlimited functions
D¢ is no more preserved.

5. The generalization of the homogeneous OQBM to higher di-
mensions is straightforward. Going further, we may study an
inhomogeneous OQBM on a manifold. With an Einstein man-
ifold for example, this may provide a semiclassical model for
a relativistic quantum particle, in the spirit of the relativistic
Brownian motion [I7][1].
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