
APPROXIMATION OF SEQUENCES OF SYMMETRIC MATRICES

WITH THE SYMMETRIC RANK-ONE ALGORITHM AND

APPLICATIONS

SYLVAIN ARGUILLÈRE, (SYLVAIN.ARGUILLERE@UPMC.FR)

SORBONNE UNIVERSITÉS, UPMC UNIV PARIS 06, CNRS UMR 7598,

LABORATOIRE JACQUES-LOUIS LIONS, F-75005, PARIS, FRANCE

Abstract. The symmetric rank-one update method is well known in optimization for its ap-
plications in quasi-Newton algorithms. In particular, Conn, Gould, and Toint proved in 1991 that
the matrix sequence resulting from this method approximates the Hessian of the minimized function
under a suitable linear-independence assumption. Extending their idea, we prove that symmetric
rank-one updates can be used to approximate any sequence of symmetric invertible matrices, which
has applications to more general problems, such as the computation of constrained geodesics in shape
analysis imaging problems. We also provide numerical simulations for the method and some of these
applications.

Introduction. Let d be an integer and f : Rd → R a C2 function. We consider
the problem of minimizing f over Rd. A well-known efficient algorithm to numerically
solve this minimization problem is Newton’s method: starting at some point x0, it
considers the sequence

xk+1 = xk − hkH(f)−1
xk

∇f(xk),

with ∇f the gradient of f , H(f) its Hessian, and hk > 0 some appropriate step length.

However, very often the Hessian of f is too computationally difficult to compute,
leading to the introduction of so-called quasi-Newton methods. The methods define
a sequence

xk+1 = xk − hkB
−1
k ∇f(xk),

where (Bk) is a sequence of symmetric matrices such that

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (0.1)

Indeed, since

∇f(xk+1)−∇f(xk) =

(
∫ 1

0

H(f)xk+t(xk+1−xk)dt

)

(xk+1 − xk)

≃ H(f)xk
(xk+1 − xk),

we get

Bk+1(xk+1 − xk) ≃ H(f)xk
(xk+1 − xk).

It is reasonable to expect Bk to be close to H(f)xk
in the direction sk = xk+1 − xk

(see [4, 5, 7]).
There are many ways to build a matrix sequence (Bk) satisfying (0.1). However,

it was proved in [3] and [9] that some of these methods let Bk approximate H(f)xk

in all directions instead of just one, i.e.,

‖Bk −H(f)xk
‖ →

k→∞
0

1

which implies

‖Bk −H(f)x∗‖ →
k→∞

0,

with the additional assumption of uniform linear independence of the sequence

sk = xk+1 − xk,

a notion that will be recalled later. In [3] for example, this is proved for the update
of Bk by

yk = ∇f(xk+1)−∇f(xk) = Aksk, rk = yk −Bksk, Bk+1 = Bk +
rkr

T
k

rTk sk
, (0.2)

with

Ak =

∫ 1

0

H(f)xk+t(xk+1−xk)dt.

In this paper, our aim is to generalize the approach in [3] by defining the above
symmetric rank-one algorithm for any sequence of symmetric matrices (Ak) and vec-
tors (sk), and to derive a convergence result, opening a wider range of applications.

For instance, if a sequence Ak converges to an invertible matrix A∗, then we can
use the above algorithm to approximate the inverse A−1

∗ of the limit A∗. Indeed, let
(e0, . . . , ed−1) be the canonical vector basis of Rd. We define the sequence (sk) in R

d

by

sk := Akekmod d, yk = A−1
k sk = ekmod d. (0.3)

This sequence is uniformly linearly independent, hence the sequence Bk defined by
(0.2) will converge to A−1

∗ . The rate of convergence depends on the dimension d and
on the rate of convergence of Ak, but Bk is much easier to compute than A−1

k .

One of the motivating applications is the computation of geodesics constrained to
embedded submanifolds of Riemannian spaces. Indeed, to obtain a geodesic between
two fixed points of a submanifold, we need to find a converging sequence of maps
t 7→ λk(t) given implicitly by an equation of the form

Ak(t)λk(t) = ck(t),

where Ak(t) is a convergent sequence of symmetric, positive definite matrices of high
dimension (see [1]). The λk are Lagrange multipliers induced by the equations of
the submanifold. It may be very computationally demanding to solve such a linear
system for every time t and every step k. Instead, we can take

λk(t) = Bk(t)ck(t),

with Bk(t) obtained by applying the symmetric rank-one algorithm described in the
previous paragraph. This is particularly useful in Shape Spaces, where the studied
manifolds have a very high dimension and a very complex metric.1

1The present article was actually motivated by such a problem appearing in shape analysis,
investigated in [1].

2

This paper is structured as follows. We give the general framework in Section
1, then state the main result after recalling two equivalent definitions of the uniform
linear independence of a sequence of vectors in Section 2. Section 3 is dedicated
to intermediate results that will, along with notions developed in Section 4, lead to
the proof of our theorem. Section 5 presents numerical simulations for approximat-
ing random matrices and their inverse. Finally, in Section 6, we describe the shape
deformation problem for which the algorithm was introduced and apply the symmet-
ric rank-one update method to some simple examples, comparing it to the classical
method described in [1].

1. Notations and symmetric rank-one algorithm. Consider a sequence
(Ak)k∈N of real square symmetric d × d matrices. Assume that this sequence con-
verges to some matrix A∗, i.e.,

‖Ak −A∗‖ →
k→∞

0,

where ‖ · ‖ is the operator norm on the space Md(R) of d× d matrices induced by the
canonical Euclidean norm | · | on R

d. Then define

ηk,l = sup
k≤i≤l

‖Ai −Ak‖, and ηk,∗ = sup
i≥k

‖Ai −Ak‖

for all k ≤ l ∈ N. Note that

∀k ≤ l ∈ N, ηk,l ≤ ηk,∗ and ηk,∗ → 0 as k → ∞.

Now let (sk)k∈N be a sequence of vectors in R
d.

The objective is to find a somewhat simple sequence (Bk)k∈N of symmetric matrices
such that Bk → A∗, using only sk and yk = Aksk.

We use the symmetric rank-one update method from [3]. Start with B0 = Id, the
d× d identity matrix. Define for k ∈ N

yk = Aksk, rk = (Ak −Bk)sk = yk −Bksk,

and compute

Bk+1 = Bk +
rkr

T
k

rTk sk
.

Remark: When rTk sk = 0, one just skips the update.

2. Main Result. For every k, we have

Bk+1sk = Bksk + rk = Bksk + yk −Bksk = yk,

so

Aksk = Bk+1sk.

The main idea is that if Ak, Ak+1, . . . , Ak+m are not too far from each other (which is
the case for k large enough), we expect Bk+msk+i to be close to Ak+msk+i for i ≤ m.
Then, if we can extract from every finite subsequence (sk, . . . , sk+m) a vector basis of
R

d, we will obtain the desired convergence.

3

For a more precise statement, we next define the notion of uniform linear inde-
pendence. The most intuitive and geometric definition is the following.

Definition 1. Take a sequence s = (sk)k∈N of vectors in R
d, d ∈ N \ {0},

and let m ≥ d be an integer. Then s is said to be m-uniformly linearly independent

if there exists some constant α > 0, such that for all k ∈ N, there are d integers

k + 1 ≤ k1 < · · · < kd ≤ k +m such that

|det (sk1 , . . . , skd
)| ≥ α|sk1 | . . . |skd

|.

In other words, from every finite segment of (sk) of length m, we can extract a
linear basis sk1 , . . . , skd

that will, once normalized, form a parallelepiped that does
not become flat as k goes to infinity.

Remark: A sufficient condition for s = (sk)k∈N to be m-uniformly linearly inde-
pendent is the following. If the sequence of subsets ({sk+1, . . . , sk+m})k∈N converges
to a subset {s∗,1, . . . , s∗,m′}, with m′ ≤ m a positive integer, that generates Rd, then,
for some integer k0 large enough, (sk0+k)k∈N is m-uniformly linearly independent.
This is an obvious consequence of the continuity of the determinant.

Another definition was given in [3] after [8] as follows.
Definition 2. A sequence s = (sk)k∈N of vectors in R

d, d a positive integer, is

said to be (m,β)-uniformly linearly independent, where d ≤ m ∈ N and β > 0, if for
all k ∈ N, there are d integers k + 1 ≤ k1 < · · · < kd ≤ k +m such that

∣

∣

∣

∣

λ

(

sk1

|sk1 |
, . . . ,

skd

|skd
|

)∣

∣

∣

∣

≥ β,

where λ(M) is the singular value of the square matrix M of smallest magnitude.

Remark: A sequence s = (sk) in R
d is (m,β)-uniformly linearly independent

for some m ≥ d and β > 0 if and only it is m-uniformly linearly independent in the

sense of Definition 1. Indeed, let v1, . . . , vd ∈ R
d, and denote V =

(

v1

|v1|
, . . . ,

vd

|vd|

)

.

If |λ(V)| ≥ β > 0, then det(V) ≥ βd, which proves the first part of the equivalence.
On the other hand, we know that the eigenvalue of V with largest modulus has

modulus less than
√
d max
i=1,...,d

|ski
|

|ski
| =

√
d. Now, assume that det(V) ≥ α > 0. Then

|λ(V)| ≥ α

d
d−1
2

, ensuring the second part of the equivalence.

Theorem 1. Let (Ak), (sk), (yk), (rk) and (Bk) be defined as in Section 1, with

(Ak) having a limit A∗. Assume that there exists a constant c > 0 such that for every

integer k,

|rTk sk| ≥ c|rk||sk|.

Then, for every β > 0 such that (sk) is (m,β)-uniformly linearly independent in the

sense of Definition 2, we have for every k ∈ N the quantitative estimates

‖Bk+m −A∗‖ ≤
(

1 +

(

2 + c

c

)m+1
) √

d

β
ηk,∗. (2.1)

The next two sections are dedicated to the proof of this theorem.
Remark: The assumption |rTk sk| ≥ c|rk||sk| is necessary, as showcased by the

following counter-example.

4

Fix a constant sequence of matrices Ak = A and the uniformly linear independent
sequence sk = ek mod d, with e0, . . . , ed−1 the canonical basis of Rd, and k mod d the
remainder of the Euclidean division of k by d. Assume that the first column of A has
a 1 in every entry. Then rld = 0 for every l ∈ N, hence the update will be skipped
every d steps, and the first column of Bk will stay equal to

1
0
...
0

for every k. In particular, Bk does not converge toward A.
So, even though the update happens relatively often, it does not happen often

enough to get the desired result.

3. First estimates. In this section, we give upper bounds on

∣

∣

∣

∣

(Bk+m −Ak)
sk

|sk|

∣

∣

∣

∣

,

and deduce estimates on
∣

∣

∣

∣

(Bk+m −A∗)x

|x|

∣

∣

∣

∣

for a particular set of x ∈ R
d.

Proposition 1. Let (Ak)k∈N be a sequence of real symmetric matrices in Md(R),
d ∈ N, and (sk) be a sequence in R

d. Define yk, Bk and rk as above. Assume that

there exists a constant 0 < c ≤ 1 and for every k ∈ N,

|rTk sk| ≥ c|rk||sk|.

Then, for every l ≥ k + 1,

|(Ak −Bl)sk| ≤
(

2 + c

c

)l−k−1

ηk,l−1|sk|.

Proof: We prove this inequality by induction on l, with k ∈ N fixed. For l = k+1,
we know that Bk+1sk = Aksk = yk, hence

|(Ak −Bk+1)sk| = 0.

We will use the notation

IH(l) :=

(

2 + c

c

)l−k−1

ηk,l−1|sk|,

where IH stands for Induction Hypothesis. Now, assume the result to be true for
some l ≥ k + 1, i.e.,

|(Ak −Bl)sk| ≤
(

2 + c

c

)l−k−1

ηk,l−1|sk| = IH(l). (3.1)

5

Let us prove that

|(Ak −Bl+1)sk| ≤
(

2 + c

c

)l−k

ηk,l|sk| = IH(l + 1).

Note that

|(Ak −Bl+1)sk| = |Aksk − (Bl +
rlr

T
l

rTl sl
)sk|

= |Aksk −Blsk − rlr
T
l sk

rTl sl
|

≤ |(Ak −Bl)sk|+
|rl||rTl sk|
c|rl||sl|

≤ IH(l) +
|rTl sk|
c|sl|

.

(3.2)

Let us find a bound for
|rTl sk|
c|sl| , the second term of the right-hand side. First we have

|rTl sk| = |yTl sk − sTl Blsk|
≤ |yTl sk − sTl yk|+ |sTl (yk −Blsk)|
= |yTl sk − sTl yk|+ |sTl (Ak −Bl)sk|
≤ |yTl sk − sTl yk|+ |sl|IH(l).

However, since Al is symmetric and yl = Alsl,

|yTl sk − sTl yk| = |sTl (Al −Ak)sk| ≤ ηk,l|sl||sk|,

from which we deduce

|rTl sk| ≤ ηk,l|sl||sk|+ IH(l)|sl|.

Using (3.2), we get

|(Ak −Bl+1)sk| ≤ IH(l) +
|rTl sk|
c|sl|

≤ IH(l) +
1

c
ηk,l|sk|+

1

c
IH(l)

= (1 +
1

c
)IH(l) +

1

c
ηk,l|sk|

=
1 + c

c

(

2 + c

c

)l−k−1

ηk,l−1|sk|+
1

c
ηk,l|sk|

≤
(

2 + c

c

)l−k

ηk,l|sk| = IH(l + 1),

where the last inequality comes from the simple fact that ηk,l−1 ≤ ηk,l. �

This proposition shows that if Ak, Ak+1, . . . , Al are close to one another (i.e., if
ηk,l is small), then Blsk stays quantifiably close to Aksk.

6

Now, note that ‖A∗ − Ak‖ ≤ ηk,∗, and ηk,∗ decreases to 0 as k goes to infinity.
Keeping the same assumptions, we obtain the following result.

Corollary 1. Take m, k ∈ N, and let x ∈ R
d be in the span of sk, . . . , sk+m. If

x

|x| =
m
∑

i=0

λi
sk+i

|sk+i|
, λ0, . . . , λm ∈ R,

then

|Bk+m+1x−A∗x|
|x| ≤ ηk,∗

(

1 +

(

2 + c

c

)m) m
∑

i=0

|λi|.

Proof: First, it follows from Proposition 1 that

|Bk+m+1x−A∗x|
|x| ≤

m
∑

i=0

|λi|
|sk+i|

|Bk+m+1sk+i −A∗sk+i|

≤
m
∑

i=0

|λi|
|sk+i|

(

|Bk+m+1sk+i −Ak+isk+i|+ |A∗sk+i −Ak+isk+i|
)

≤
m
∑

i=0

|λi|
(

(

2 + c

c

)i

ηk,k+m + ηk,∗

)

.

Letting

C(m) =

(

1 +

(

2 + c

c

)m)

and using ηk,k+m ≤ ηk,∗, we get

|Bk+m+1x−A∗x|
|x| ≤ ηk,∗C(m)

m
∑

i=0

|λi|.

The result follows. �

In particular, if we can let k go to infinity while keeping
m
∑

i=0

|λi| bounded, then

we obtain Bk+mx → A∗x. Thus, if we can do it for all x ∈ R
d, we will have proved

that Bk → A∗.

Thus, if we prove that every normalized vector x ∈ R
d is a uniformly bounded

linear combination of sk, . . . , sk+m as k goes to infinity, we have proved our theorem.
In the next section of this paper, we will define a third notion of uniform linear
independence of a sequence directly related with this property and prove that it is
equivalent to the previous definitions.

4. Uniform m-span of a sequence and applications. In order to investigate
the subspace on which Bk → A∗, we need a notion that is more general than uniform
linear independence, that of a uniform span of a sequence of vectors.

Definition 3. Let s = (sk)k≥0 be a sequence in R
d, and let m ∈ N. We say that

a vector x in R
d is uniformly in the m−span of s if for some fixed γx > 0,

∀k ∈ N, ∃λ0, . . . , λm ∈ R
x

|x| =
m
∑

i=0

λi
sk+i

|sk+i|
and

m
∑

i=0

|λi| ≤ γx. (4.1)

7

We denote by USm(s) the set of all such vectors.

We have the following trivial result.
Lemma 1. USm(s) is a vector sub-space of Rn. Moreover, there exists a constant

γ > 0 such that Property (4.1) holds for all x ∈ USm(s) with γx = γ, i.e.,

∃γ > 0, ∀k ∈ N, x ∈ USm(s), ∃λ0, . . . , λm ∈ R,

x

|x| =
m
∑

i=0

λi
sk+i

|sk+i|
and

m
∑

i=0

|λi| ≤ γ.
(4.2)

To prove the existence of γ in (4.2), it suffices to consider an orthonormal basis
(xi)i of USm(s), associated with some constants (γxi

)1≤i≤d, in Property (4.1). Then
we can just take γ = γx1 + · · ·+ γxd

.

Remark: There holds USm(s) ⊂
∞
⋂

k=0

span(sk, . . . , sk+m).

Example: Define the sequence s = (sk) by

sk =

ekmod d when k 6= d− 1mod d,

e0 +
1

k
ed−1 when k = d− 1mod d.

Then

USm(s) =

{

{0} if 0 ≤ m ≤ d− 1

span(e0, . . . , ed−2) otherwise.

Using this definition, a simple application of Corollary 1 gives the following result.
Proposition 2. Let (Ak), (sk), (yk), (rk) and (Bk) be defined as in Section 1,

assuming that (Ak) has a limit A∗ and that |rTk sk| ≥ c|rk||sk| for some fixed constant

c > 0.
Then, for every m ∈ N

sup
x∈USm(γ)

|Bk+m+1x−A∗x|
|x| ≤ C(m)γηk,∗, (4.3)

where γ is taken from (4.2) and

C(m) =

(

1 +

(

2 + c

c

)m)

.

Finally the main result is a consequence of this proposition and of the following
lemma.

Lemma 2. Let s = (sk)k≥0 be a sequence in R
d, and let m ∈ N. Then s is

(m,β)-uniformly linearly independent if and only if USm(s) = R
d. Moreover, we can

take γ =
√
d

β in (4.2). Proof: Let v1, . . . , vd be linearly independent elements of Rd

and define the invertible matrix

V =

(

v1

|v1|
, . . . ,

vd

|vd|

)

.

8

Let Λ = (λ1, . . . , λd)
T ∈ R

d, be such that x = V Λ has |x| = 1. Then

d
∑

i=1

|λi| ≤
√
dΛ =

√
d|V −1x| ≤

√
d

λ(V)
.

This proves that if a sequence s = (sk) in R
d is (m,β)-uniformly linearly independent,

then USm(s) = R
d and we can take γm(s) =

√
d

β .

On the other hand, take a unit vector x ∈ R
d such that

V −1TV −1x =
1

λ(V)2
x.

Then, denoting (λ1, . . . , λd)
T = Λ = V −1x,

1

λ(V)
= λ(V)

1

|λ(V)|2 = λ(V)|V −1TV −1x| = λ(V)|V −1TΛ| ≤ |Λ| ≤
d
∑

i=1

|λi|,

which proves the converse. �

Our main result is proved.

5. Numerical simulations. In this section, after running numerical simulations
of our algorithm on random symmetric matrices, we check that the sequence of inverses
of a sequence of matrices can indeed be approximated.

All simulations were done using Matlab on a standard desktop computer.

5.1. Approximation of a sequence of matrices. Here we test the algorithm
on random symmetric matrices with coefficients generated by a normalized Gaussian
law.

Let d ∈ N\{0} and define a square symmetric matrix A∗ = 1
2 (M+MT), where the

entries of the d× d matrix M were chosen at random using the normalized Gaussian
law. Fix 0 < λ < 1, and define the sequence (Ak)k∈N of symmetric matrices obtained
by perturbing the matrix A∗ as follows

Ak = A∗ +
λk

2
(Mk +MT

k),

where Mk is a matrix with random coefficients taken uniformly in [−1, 1]. This gives
‖Mk‖ ≤ d. Obviously, Ak → A∗ linearly as k → ∞. More precisely, we have

‖Ak −A∗‖ ≤ dλk,

so ηk,∗ ≤ dλk.

Remark: While the Gaussian law is better suited to generate random real num-

bers, we wanted to have clear bounds on the norm of the perturbations λk

2 (Mk+MT
k).

This is why we only took coefficients with absolute value less than one for each Mk.

We define the sequence of unit vectors (sk), k ∈ N, (d, 1)-uniformly linearly in-
dependent, by the formula

sk = ek mod d, k ∈ N,

9

where (e0, . . . , ed−1) is the canonical basis of R
d. Then we apply the symmetric

rank-one update to obtain a sequence of symmetric matrices (Bk)k∈N, starting with
B0 = Id. If we assume that there exists c > 0 such that |rTk sk| ≥ c|rk||sk| for every
k ∈ N then we can apply Theorem 1 with m = d, β = 1 , and obtain

‖Bk −A∗‖ ≤ ε(c, d, k, λ)

where

ε(d, k, λ, c) =

(

1 +

(

2 + c

c

)d+1
)

d3/2λk−d.

Remark: In the algorithm, the term rTk sk = eTkmod d(Ak −Bk)ekmod d is just the
kmod d-th diagonal term of (Ak −Bk). It is difficult to give an a priori estimate on
the term c in Theorem 1. For example, if the diagonal terms of the Ak are equal to
one, since B0 = Id, r

T
k sk = 0 for every k and Bk will never be updated.

Table 5.1 computes the best (i.e., the smallest) upper bounds ε(c, d, k, λ) possible
for d = 10 for different values of k and λ. They are obtained by taking c = 1. This
will let us compare the rates of convergence of our simulations with the best possible
estimates obtainable by Theorem 1. A zero corresponds to a numerical value smaller
than the machine epsilon 2.2e-16.

ε(1, 10, k, λ) k=10 k=20 k=50 k=100

λ =0.9 5.6×106 2.0×106 8.3×104 4.4×102

λ =0.5 5.6×106 5.5×103 5.1×10−6 0

λ =0.1 6.5×104 5.6×10−4 0 0

Table 5.1: Values for ε(c, d, k, λ)

We computed the final distance δk = ‖Bk −A∗‖ between Bk and A∗ for d = 10,
various values of λ, and various numbers of steps k. We repeated the simulation 1000
times for each value of λ and k, each time with new random values for both A∗ and
every Mk, k ∈ N. Table 5.2 gives the mean value and the maximum value of δk over
these 1000 simulations for each number of steps and each λ.

k=10 k=20 k=50 k=100
mean(δk) max(δk) mean(δk) max(δk) mean(δk) max(δk) mean(δk) max(δk)

λ =0.9 1.4×10 4.7×103 7.5×100 3.8×103 1.8×10−1 8.0×100 1×10−3 1×10−1

λ =0.5 2.7×100 1.7×103 6.4×10−4 3×10−2 7.4×10−13 5.3 ×10−11 0 0

λ =0.1 6.8×10−2 7.0×100 8.3×10−12 2.1×10−9 0 0 0 0

Table 5.2: Simulation results for δ = ‖Bk − A∗‖

Comparing the two tables, we see that the numerical convergence rate is even
better than the best possible one given by Theorem 1. These simulations strongly
support the theoretical results.

5.2. Approximation of a sequence of inverses. As mentioned in the intro-
duction, our algorithm lets us compute the inverse A−1

∗ of the limit A∗ provided A∗
is invertible.

Indeed, consider the following sequences for the symmetric rank-one algorithm

sk := Akek mod d , yk = A−1
k sk = ek mod d. (5.1)

10

In other words, sk is the k mod d-th column of Ak. Then the sequence (sk)k∈N is (d, β)-
linearly independent for some β > 0 starting at some k0 large enough since, as k goes
to infinity, the finite set {sk, . . . , sk+d−1} = {Akek mod d, . . . , Ak+d−1ek+d−1 mod d}
will converge to the generating set {A∗e0, . . . , A∗ed−1}, and the sequence (sk0+k)k∈N

is therefore d-uniformly linearly independent for some k0 big enough. The smallest
singular value of the matrix

(

sk

|sk|
, . . . ,

sk+d−1

|sk+d−1|

)

(5.2)

will converge to that of
(

A∗e0
|A∗e0|

, . . . ,
A∗ed−1

|A∗ed−1|

)

,

which depends only on A∗, which gives an insight on the correct value of β. The value
of c in Theorem 1, however, cannot be guessed here either.

Take the sequence (Bk)k∈N obtained by applying the symmetric rank-one update
method, with starting point B0 = Id and using the sequence (sk)k∈N defined by (5.2).
Assuming that there exists c > 0 such that |rTk sk| ≥ c|rk||sk| for every k ∈ N, this
sequence converges to A−1

∗ by Theorem 1. The rate of convergence depends on the
dimension d and the rate of convergence of Ak. Note that Bk is much easier to
compute than A−1

k . Indeed, the complexity for the computation of the inverse of a
d × d matrix is greater than the O(d2) complexity required in each symmetric rank-
one update. This can be useful when solving approximately converging sequences of
linear equations, as we will show in the next section.

In our numerical simulation, we computed the distance δ′k between Bk and A−1
∗ for

different values of k and λ. We used the same sequence (Ak) with random coefficients
as in the previous section, with (Ak) converging linearly to a random (but invertible)
symmetric matrix A∗ with rate 0 < λ < 1. For each number of steps and each value
of λ considered, we repeated this simulation 1000 times for different A∗ and different
random matrices Ak. Table 5.3 gives the mean value and maximum value of δ′k over
these 1000 simulations.

k=10 k=20 k=50 k=100
mean(δ′k) max(δ′k) mean(δ′k) max(δ′k) mean(δ′k) max(δ′k) mean(δ′k) max(δ′k)

λ =0.9 6.5×10 2.4×104 2.0×10 4.5×103 3.5×10 2.4×104 2.2×10−1 9.1×10

λ =0.5 3.3×10 1.3×104 2.5×100 1.8×103 2.8×10−8 2.8×10−5 2.8×10−9 2.6×10−6

λ =0.1 1.4×10 6.7×103 4.8×10−9 1.9×10−6 3.7×10−11 2.8×10−8 2.2×10−12 1.4×10−10

Table 5.3: Simulation results for symmetric rank-one update on inverses

We see that δ′k = ‖Bk −A−1
∗ ‖ does decrease to zero, but with a slower rate than

that of the approximation of A∗ itself given in Table 5.2. Moreover, the maximal value
is significantly larger than the mean value for this distance. A reasonable explanation
for both discrepancies is that A∗ can be ill-conditioned when generated in such a
random way. This can cause them to be almost singular, which would have two
consequences. First, the rate of convergence of (A−1

k)k∈N to A−1
∗ is slower than that

of (A−1
k)k∈N to A∗. Therefore, the ηk,∗ from Theorem 1 is larger than in the case

described in Section 5.1. Second, the sequence sk = Akekmod d is ”less” uniformly
linearly independent (that is, the constant β from Definition 2 is smaller).

To test this hypothesis, we tried the simulation again but this time we forced A∗
to have a good conditioning. This will make the sequence of matrices Ak uniformly

11

well-conditioned. This kind of sequence can appear in certain numerical simulations of
PDEs, in cases where the Ak are discretized versions of a positive-definite self-adjoint
operator.

For the simulation, we took A∗ so that its singular values all belong to [0.5, 1.5].
For this, we used A∗ = OTDO, where D is a diagonal matrix of size 10 × 10 with
diagonal coefficients randomly generated using the uniform law on [0.5, 1.5], andO was
obtained by orthonormalizing the columns of a random matrix Z, whose coefficients
were generated using a Gaussian law. Leaving the rest of the process unchanged, we
performed 1000 simulations for the same values of λ and k as those from Table 5.3
and obtained Table 5.4.

k=10 k=20 k=50 k=100
mean(δ′k) max(δ′k) mean(δ′k) max(δ′k) mean(δ′k) max(δ′k) mean(δ′k) max(δ′k)

λ =0.9 2.3×10 2.3×103 1.1×10 2.2×103 2.5×10−1 2.5×10 2.3×10−3 1.2×100

λ =0.5 2.8×100 2.2×102 1.2×10−3 1.6×10−1 1.3×10−12 4.8×10−10 1.5×10−15 8.7×10−12

λ =0.1 3.6×10−1 3.8×10 7.4×10−12 7×10−9 1.1×10−14 4.8×10−12 8.2×10−15 1.4×10−12

Table 5.4: Simulation results for inverses of matrices with singular values in [0.5, 1.5]

As expected, the numbers on Table 4 show that the sequence (Bk)k∈N converges
to A−1

∗ much faster than in the case of a purely random A∗. In fact, the convergence
is almost as good as the one shown by Table 5.2 in the previous section. This confirms
that the method is more effective with sequences of matrices that are well scaled.

We also did an extra simulation in the case of a purely random A∗: since the
sequence (sk)k∈N in (5.1) has no reason to be particularly good (i.e., uniformly linearly
independent with a nice constant), we applied our algorithm this time by taking a
new sequence for (yk)k∈N, letting each yk be a random vector with coefficients taken
along a normal Gaussian law at each step. We still set sk = Akyk. This is done
in the hopes that, on average, the sequence sk could be ”more” uniformly linearly
independent, that is, the term β in Definition 2 could be higher. We computed the
mean values for δ′k = ‖Bk − A−1

∗ ‖ over 1000 repetition of this simulation. They are
given in Table 5.5.

k=10 k=20 k=50 k=100
λ =0.9 8.3×10 5.6×10 4.7×10 1.2×10

λ =0.5 8.5×10 2.9×10 1.0×10−4 1.2 ×10−7

λ =0.1 5.4×10 2.1×10−4 3.7×10−7 1.0×10−9

Table 5.5: Simulation results for inverses of matrices yk randomly generated

This experiment shows that taking a random sequence of vectors (yk)k∈N is not
as effective as taking the yk periodically equal to the canonical basis of Rd.

For large values of d, as k goes to infinity, this method gives us an approximation
of the whole sequence (A−1

k)k∈N and is faster than computing the inverse of Ak at
every step. Indeed, the complexity of one rank-one update is only in O(d2).

Remark: This method does not allow for better computations of the inverse of
a badly scaled matrix A by setting Ak = A for every k. A quick Matlab simulation
showed that the command inv(A) gives more precise results.

6. An application: optimal deformations of constrained shapes. The
main problem of shape deformation analysis is to find an optimal deformation from
one shape to another. From the numerical point of view, a shape is usually a collection
of distinct points qT = (xT

1 , . . . , x
T
n) where n is a positive integer and each xi is an

12

element of Rd. These points are usually a discretization of the boundary of a certain
domain in R

d. The space of such shapes is called the space Lmkd(n) of n landmarks
in R

d, i.e.,

Lmkd(n) = {q = (xT
1 , . . . , x

T
n)

T ∈ R
nd, i 6= j ⇒ xi 6= xj}.

A deformation of an initial shape q0, with qT0 = (xT
1,0, . . . , x

T
n,0), is a curve t 7→ q(t)

with q(0) = q0, of Sobolev class W 1,2, that is, an absolutely continuous curve with
square-integrable speed.

6.1. Large deformation diffeomorphic metric mapping.. The so-called
LDDMM (Large Deformation Diffeomorphic Metric Mapping) setting for studying
deformations of landmarks is used in computational anatomy [2, 6, 11].

We start by considering a Reproducing Kernel Hilbert Space V of smooth vector
fields on R

d, that is, a subspace V of C∞(Rd,Rd) equipped with a Hilbert product
〈·, ·〉V such that the inclusion V →֒ C∞(Rd,Rd) is continuous. For such a space, there
exists a matrix-valued reproducing kernel K : Rd × R

d → Md(R
d) such that, for any

x, v ∈ R
d, and every X ∈ V ,

〈K(·, x)v,X〉V = vTX(x).

Such a space V is completely determined by its reproducing kernel K. The kernel we
use in this example is given by

K(x, y) = e−
|x−y|2

2σ Id,

for some σ > 0.
Then, one considers deformations t 7→ q(t) ∈ Lmkd(n) of the form

q(t)T = (ϕX(t) · q0)T = (ϕX(t)(x1,0)
T , . . . , ϕX(t)(xn,0)

T),

where (ϕX(t))t∈[0,1] is a family of diffeomorphisms of Rd, flow of a time-dependent

vector field t 7→ X(t, ·) ∈ V on R
d such that t 7→ ‖X(t, ·)‖V is square-integrable. The

optimal deformation t ∈ [0, 1] 7→ ϕX(t) · q0 from a starting shape q0 to a target shape

q1 is the one such that the total energy 1
2

∫ 1

0
〈X(t), X(t)〉V dt is minimal. The reason

of using such a setting is that it actually provides an optimal deformation of the full
space R

d thanks to the flow ϕX .
In particular, as q(0) is the discretization of the boundary of a certain domain

U of Rd, q(t) will then be a discretization of the boundary of the deformed domain
U(t) = ϕ(t)(U).

Since it is extremely hard to determine this minimum, one usually considers the
penalized functional

Ĵ(X) =
1

2

∫ 1

0

〈X(t), X(t)〉V dt+ g(ϕX(1) · q0),

where g : Rd → R is a smooth data attachment term, minimal at q1. A classical result
[12], consequence of the solution to the spline interpolation problem for vector fields
in V , is that minimizing Ĵ is equivalent to minimizing the functional

J(u) =
1

2

∫ 1

0

n
∑

i,j=1

e
|xi(t)−xj (t)|2

2σ ui(t)
Tuj(t)dt+ g(q(1)),

13

where ui ∈ L2(0, 1;Rd) for every i = 1, . . . , n, and q(t) = (x1(t), . . . , xn(t)) satisfies
the control system

q(0) = q0, ẋi(t) =

n
∑

j=1

e
|xi(t)−xj (t)|2

2σ ui(t) a.e. t ∈ [0, 1], i = 1, . . . , n.

We can retrieve the corresponding flow ϕX by integrating the vector field

X(t, x) =

n
∑

j=1

e
|x−xj(t)|

2

2σ ui(t).

We can write this differential equation as q̇(t) = Kσ
q(t)u(t), where Kσ

q is the block

matrix of size nd × nd consisting of blocks of size d × d, with the (i, j)-th block

is equal to e
|xi(t)−xj (t)|2

2σ Id, and u = (uT
1 , . . . , u

T
n)

T ∈ (Rd)n. This is a symmetric,
positive-definite matrix for every q in Lmkd(n), and we also have

n
∑

i,j=1

e
|xi−xj |

2

2σ uT
i uj = uTKσ

q u.

In this form, this an optimal control problem in finite dimension. It has an optimal
solution which satisfies certain Hamiltonian equations, and can be solved numerically
(see[1, 11, 12]).

6.2. Shapes with constraints.. The shape deformation problem which moti-
vated the symmetric rank-one update described in this paper is an extension of the
one described in the previous section, aimed at studying several shapes simultane-
ously. Let n1, n2 be two positive integers. Assume that we have two different starting
shapes q10 and q20 , belonging to different landmark spaces Lmkd(n

1) and Lmkd(n
2),

each one being a discretization of a different domain U1 and U2 with U1 ∩ U2 = ∅.
Usually, one would just consider the total shape to be the union of those two

shapes, and deform it using a single diffeomorphism. However, the objects we want
to model should be considered as two independent shapes, as in the case of images of
different parts of the brain.

This is why, instead, we would like to model a deformation of q10 and q20 such
that they evolve independently from one another (each one being deformed by a
different diffeomorphism), but are immersed in a deformable background (deformed by
a third diffeomorphism), whose boundary coincides with the union of the boundaries
of U1 and U2: one obtains a discretization q3 of this boundary by concatenation
(q30)

T = ((q10)
T , (q20)

T) ∈ Lmkd(n
3), where n3 = n1 + n2. The total shape qT0 =

((q10)
T , (q20)

T , q30)
T) belongs to the space Lmkd(n

1)× Lmkd(n
2)× Lmkd(n

3).
The main reason for considering constrained shape deformation is to model such

a system [1]. Indeed, to model a deformation q(t)T = (q1(t)T , q2(t)T , q3(t)T) of the

total shape, we can use the control system q(0) = q0, q̇1(t) = Kσ1

q1(t)u
1(t), q̇2(t) =

Kσ2

q2(t)u
2(t), q̇3(t) = Kσ3

q3(t)u
3(t), a.e. t ∈ [0, 1], where ui ∈ L2(0, 1;Rdni

), i =

1, 2, 3. This control system can be written q̇(t) = Kq(t)u(t), where

Kq =

Kσ1

q1 0 0

0 Kσ2

q2 0

0 0 Kσ3

q3

.

14

Note that the matrix Kq is symmetric and positive definite for every q ∈ Lmkd(n
1)×

Lmkd(n
2)× Lmkd(n

3). The functional we want to minimize is therefore given by

J(u) =
1

2

∫ 1

0

u(t)TKq(t)u(t)dt+ g(q(1)).

Kq is a symmetric positive definite matrix. However, one also needs to preserve the
condition q3(t)T = ((q1(t))T , (q2(t))T) for every t ∈ [0, 1] (that is, the boundary of
the deformed background coincides with the boundaries of the deformed domains).
This means that we should impose on our control system the constraints (q̇3)T =
((q̇1)T , (q̇2)T), i.e.,

Kσ3

q3(t)u
3(t) = ((Kσ1

q1(t)u
1(t))T , (Kσ2

q2(t)u
2(t))T)T a.e. t ∈ [0, 1].

These linear constraints can be as written CKq(t)u(t) = 0, with

C =
(

In3 −In3

)

.

In conclusion, we wish to find a minimum of J(u) = 1
2

∫ 1

0 u(t)TKq(t)u(t)dt + g(q(1))

over all square-integrable functions u : [0, 1] → (Rd)n
1+n2+n3

such that q(0) = q0 and,
for almost every t in [0, 1], q̇(t) = Kq(t)u(t) and CKq(t)u(t) = 0.

Now, define for q ∈ Lmkd(n
1)×Lmkd(n

2)×Lmkd(n
1+n2) the symmetric positive

definite n3 × n3 matrix Aq = CKqC
T .

Then, according to an appropriate version of the Pontryagin Maximum Principle
([1, 10]), if u is optimal for our constrained minimization problem, and q is the curve
such that q(0) = q0 and q̇ = Kqu, then there exists an absolutely continuous curve p :

[0, 1] ∈ (Rd)n
1+n2+n3

, called the momentum of the trajectory, with square-integrable
speed such that p(1) +∇gq(1) = 0, and, for almost every t in [0, 1],

u(t) =
(

p(t)− CTA−1
q(t)CKq(t)p(t)

)

,

q̇(t) = Kq(t)

(

p(t)− CTA−1
q(t)CKq(t)p(t)

)

,

ṗ(t) = −1

2

(

p(t)− CTA−1
q(t)CKq(t)p(t)

)T

∇qKq(t)

(

p(t)− CTA−1
q(t)CKq(t)p(t)

)

.

(6.1)
Here, we used the notation aT∇qKqb for the gradient of the map q 7→ aTKqb at q, for

a, b ∈ (Rd)n
1+n2+n3

fixed. Since this is a differential equation with smooth coefficient,
it has a unique solution for fixed (q0, p0)

Remark: The system (6.1) actually consists of the Hamiltonian geodesic equa-
tions on the submanifold defined by C = 0 for the Riemannian metric whose cometric
tensor is Kq.

Moreover, in this case, t 7→ u(t)TKq(t)u(t) is constant. Hence, the minimization
of J reduces to the minimization of

J̃(p0) =
1

2

(

p0 − CTA−1
q0 CKq0p0

)T
Kq0

(

p0 − CTA−1
q0 CKq0p0

)

+ g(q(1))

with respect to the initial momentum p0 = p(0). Note that this reduction is funda-
mental in our approach.

15

The computation the gradient of J̃ requires solving an adjoint equation with coef-
ficients depending on the derivatives of the right-hand side of (6.1). This is described
in more detail in [1].

All operations involved in the computation of this gradient have complexity in
O((n1 + n2)2) at each time step, with the distinct exception of the computation of
the inverse of Aq (or, at least, the resolution of linear equations of the form Aqa = b

which appear both in (6.1) and several times in the associated adjoint equation),
whose complexity is higher.

6.3. Implementation of the symmetric rank-one update.. One of the most
time-consuming aspects of this method is the computation, at each time step, of the
inverse of Aq. We can speed things up by applying a symmetric rank-one update as
follows.

Let e0, . . . , ed(n1+n2)−1 be the canonical vector basis of Rdn1+dn2

. For any k ∈ N,
define

yk = ek mod d(n1+n2).

We start with the initial momentum p0 = 0 and let B0(t) = A−1
q0 for t ∈ [0, 1]. The

computation of A−1
q0 is necessary to compute the different gradients anyway, so this

does not add any extra time, and gives a better initial conditioning of the matrix.
Then, assuming we have constructed an initial momentum pk and a family of matrices
Bk(t), t ∈ [0, 1], we use (6.1) to compute a trajectory xk(t), replacing A−1

q by Bk(t).
Finally, at each time t, we define

sk(t) = Aqk(t)yk,

rk(t) = Bk(t)sq(t)− yk,

Bk+1(t) = Bk(t) +
rk(t)r

T
k (t)

rTk (t)sk(t)
.

We can then compute the gradient of J̃ with an adjoint equation, where any directional
derivative

∂q(Aqk(t)a)
−1(b) = −A−1

qk(t)
∂q(Aqk(t))(b)A

−1
qk(t)

a, a ∈ R
n3

, b ∈ (Rd)n
1+n2+n3

is replaced with −Bk(t)∂qAqk(t)(v)Bk(t)a. This lets us perform the minimization of

J̃ using gradient descent or a regular quasi-Newton algorithm.

As long as the algorithm gives a converging sequence of initial momenta pk, the
trajectories qk(t) will also converge to a trajectory q∗(t), making each Aqk(t), with
t ∈ [0, 1] fixed, a converging sequence, with invertible limit A∗(t). Therefore, each
Bk(t), for t ∈ [0, 1] fixed, converges to A∗(t) as k → ∞. In other words, as k → ∞,
we are indeed computing the true gradient of J̃ .

6.4. Numerical simulations. We consider the shapes q10 and q20 as an equidis-
tant discretization of n1 = n2 = n points on circles of radius 1 in R

2, centered at
(−1, 0) (resp. (2, 0)), and we try to match them with circles of radius 1 (resp. 0.9)
centered at (−0.75, 0) (resp. (1.5, 0)). See Figure 6.1.

16

Figure 6.1: Multiple shape experiment: initial shapes (two outer circles)

and target shapes (two inner circles).

This is actually a difficult matching to perform without the context of constrained
shape deformation, because deforming two separate shapes into targets that are so
close to each other is very difficult using a single diffeomorphism. Constrained multiple
shapes provide an appropriate framework for finding such a matching.

The following values are taken for the constants: σ1 = 0.5, σ2 = 0.3 and σ3 = 0.1.
We used 10 time steps, with step length ∆t = 0.1.

The first thing that we compared is the time necessary to accomplish one gradient
step using the adjoint equations to (6.1) as described in [1]. Then we measured the
time required to complete the algorithm with the same stopping condition on the
gradient algorithm. Finally, we compare how much the constraints are satisfied in the
final deformation obtained by the gradient algorithm. This is done by computing the
total value of the lack of satisfaction of the constraints

γ(u(·)) =
√

∫ 1

0

|CKq(t)u(t)|2dt.

We obtain Table 6.1. It gives a comparison between the regular method of com-
puting the exact solutions of any linear system Aqa = b appearing in the adjoint
equations, and the one using the symmetric rank-one update method described in the
previous paragraph.

Number of points n=30 n=60
Method used Regular method Rank-one update Regular method Rank-One update

Time (one step) 3.3 1 9.8 2.6
Total time 63 23 69 23

γ(u(·)) 1.0×10−15 6.6×10−1 1.0×10−15 1.1×100

Table 6.1: Comparison of the time necessary to perform a gradient

descent algorithm and satisfaction of constraints

As expected, the symmetric rank-one algorithm is much faster. However, since
the regular method computes the exact solutions for satisfying the constraints, those

17

are satisfied with great precision. This is not the case when using the rank-one update
method where we obtain γ(u(·)) = 1.1 in the case n = 60.

Remark: this value is actually quite small, since we are computing an Euclidean
norm in R

n1+n2

= R
120.

Figure 6.2 is a picture of the final deformation obtained by the rank-one up-
date (since we are in the framework of LDDMM, the deformations are induced by
diffeomorphisms, showcased by their action on a grid).

Figure 6.2: Multiple shape experiment: matching circles with the rank-one update method.

Four circles are required to fully represent the total shape: one for each of the two
shapes, and two for the background. The constraints are satisfied when the two shapes
coincide with the background, so that only two circles appear.

In Figure 6.2, the constraints forced the background and the shape to coincide on
the left-hand side. On the right-hand side, however, the background and the disk did
not move together completely and so the constraints are only approximately satisfied.
Note that while visible, the difference is rather small.

We could force the constraints to be better satisfied by increasing the number of
gradient steps. In fact, we obtained numbers as small as 1e-4 for the value of γ(u(·))
by taking a great number of steps (around 2000 or so). However, in this case, it is
faster to use the regular method.

7. Conclusion. The symmetric rank-one update used in quasi-Newton methods
for minimizing real functions can be generalized to a more abstract framework. The
algorithm this paper obtained can be used to approximate sequences of symmetric
matrices. This opens several possible applications, one of which is the computation
of the sequence of inverses of a sequence of invertible matrices. This can be applied
to compute constrained optimal controls for which the computation of the inverse of
the constraints is too computationally demanding. This is particularly useful when
tackling problems of shape deformations, where the number of constraints can be
quite large. We are hopeful that other applications of the symmetric rank-one update
method can be given.

18

However, some limitations remain. In particular, the rate of convergence may be

low, since, in higher dimensions, the term
(

1+c
c

)m+1
in the main theorem will be quite

large, because m is at least equal to the number of columns in the matrices of the
sequence and is therefore large in high dimensions. Moreover, just as for the classical
quasi-Newton algorithms, there is no clear way to find a lower bound for c, even in
the more simple cases.

REFERENCES

[1] S. Arguillère, E. Trélat, A. Trouvé, and L. Younès. Shape deformation analysis from the
optimal control viewpoint. To appear in Jounal de mathématiques pures et appliquées,
http://arxiv.org/abs/1401.0661.

[2] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis., 61(2):139–157,
2005.

[3] A. R. Conn, N. I. Gould, and P. L. Toint. Convergence of quasi-Newton matrices generated by
the symmetric rank one update. Mathematical Programming, 50(2):177–195, 1991.

[4] J. E. Dennis, Jr. and J. J. Moré. Quasi-Newton methods, motivation and theory. SIAM Rev.,
19(1):46–89, 1977.

[5] J. E. Dennis, Jr. and R. B. Schnabel. Numerical methods for unconstrained optimization and

nonlinear equations, volume 16 of Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Corrected reprint of the 1983
original.

[6] P. Dupuis, U. Grenander, and M. I. Miller. Variational problems on flows of diffeomorphisms
for image matching. Quart. Appl. Math., 56(3):587–600, 1998.

[7] P. E. Gill, W. R. Murray, and M. H. Wright. Practical optimization. Academic Press Inc.
[Harcourt Brace Jovanovich Publishers], London, 1981.

[8] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several vari-

ables, volume 30 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1970 original.

[9] G. Schuller. On the order of convergence of certain quasi-Newton methods. Numer. Math.,
23:181–192, 1974.

[10] E. Trélat. Contrôle optimal. Mathématiques Concrètes. [Concrete Mathematics]. Vuibert,
Paris, 2005. Théorie & applications. [Theory and applications].

[11] A. Trouvé. Diffeomorphism groups and pattern matching in image analysis. International

Journal of Computational Vision, 37(1):17, 2005.
[12] L. Younes. Shapes and diffeomorphisms, volume 171 of Applied Mathematical Sciences.

Springer-Verlag, Berlin, 2010.

19

