
DIFFEOMORPHIC SURFACE REGISTRATION WITH ATROPHY

CONSTRAINTS

Abstract. Diffeomorphic registration using optimal control on the diffeomorphism group
and on shape spaces has become widely used since the development of the Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) algorithm. More recently, a series of
algorithms involving sub-riemannian constraints have been introduced, in which the veloc-
ity fields that control the shapes in the LDDMM framework are constrained in accordance
with a specific deformation model. Here, we extend this setting by considering, for the
first time, inequality constraints, in order to estimate surface deformations that only allow
for atrophy, introducing for this purpose an algorithm that uses the augmented lagrangian
method. We prove the existence of solutions of the associated optimal control problem,
and the consistency of our approximation scheme. These developments are illustrated by
numerical experiments on brain data.

1. Introduction

Over the last couple of decades, multiple studies have provided evidence of anatomical
differences between control groups and cognitively impaired groups at the population level,
for a collection of diseases, including schizophrenia, depression, Huntington’s or dementia
[36, 18, 11, 37, 54, 42, 1, 29, 41, 52, 33]. In the particular case of neuro-degenerative diseases,
a repeated objective has been to design anatomical biomarkers, measurable from imaging
data, that would allow for individualized detection and prediction. This goal has become
even more relevant with the recent emergence of longitudinal studies, involving patients
at early stages or “converters” which showed that, when the effect is measured at the
population level, anatomical changes caused by diseases like Alzheimer’s or Huntington’s
were happening several years before cognitive impairment could be detected on individual
subjects.

Shape analyses from medical imaging data rely most of the time on a registration step
that places the subjects’ anatomies in a common coordinate system, often associated with
a template, or average shape, to which all images are co-registered [15, 44, 46, 8, 5, 6, 9,
10, 31, 32, 47, 48]. A large number of registration methods have been proposed in the
literature, with an extensive survey proposed in [40], including more than 400 references
for image registration alone. Surface registration has also been extensively developed [24,
23, 45, 17, 27, 30, 4, 49, 56, 7, 13, 28, 55, 12].

We focus in this paper on surface registration using the LDDMM algorithm, which has
been used extensively to analyze shape variation in regions of interest (ROIs) represented
by triangulated surfaces. While one its main advantages is its flexibility and its ability
to render smooth, diffeomorphic, free-form shape changes, there are situations in which
prior information is available, and should be used to enhance the results of the shape
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analysis. In this paper, we focus on situations in which no tissue growth is expected to
occur (like with brain longitudinal data). In such contexts, it is natural to ensure that
shape analysis should only detect atrophy, even when noise and inaccuracy in the ROI
segmentation process may lead in the other direction. (Here, we mean “atrophy” in the
general sense of local volume loss.) In this paper, we introduce an atrophy-constrained
registration algorithm, that include some of the ideas introduced in [2], while extending
them to inequality constraints associated to the problem we consider. This algorithm
will be described in section 2, with our numerical approach discussed in section 3. Some
theoretical results on existence of solutions and consistency of discrete approximations
are provided in section 4. An extension of the algorithm to include affine alignment is
provided in section 5. Another extension to time series is discussed in section 6. Finally,
experimental results are provided in section 7.

2. Atrophy-constrained LDDMM

2.1. Continuous Optimal Control Problem. The LDDMM algorithm implements an
“optimal control” strategy in which a template surface S0 is “driven” toward a target
surface S1 via a time-dependent process t 7→ S(t), with S(0) = S0. This is achieved by
minimizing

(1)
1

2

∫ 1

0
‖v(t)‖2V dt+D(S(1), S1)

subject to the state equation dS/dt = v(t, S(t)) where v is a smooth velocity field on R3.
By ‖v‖2V , we mean a functional norm in a reproducing kernel Hilbert space (RKHS) V , that

we will assume to be embedded in Cp0 (Rd,Rd) (the completion, for the standard supremum
norm of up to p derivatives, of the space of compactly-supported infinitely differentiable
vector fields) with p ≥ 1. This space can, for example, be defined as the Hilbert completion
of

‖v‖2V =

∫
R3

(Av(x))T v(x)dx

(originally defined for smooth vector fields), where A is a differential operator. A typical
example is A = (Id − ∆)k, where Id is the identity, ∆ is the Laplacian operator and k
is large enough to ensure that required Sobolev inclusions hold. In the general case, let
A : V 7→ V ∗ be the Hilbert duality mapping, so that Av is the linear form w 7→ 〈v , w〉V ,
and let K = A−1. The reproducing kernel of V , also denoted K, is a mapping defined on
R3 ×R3, with values in M3(R) (the set of 3 by 3 real matrices) such that, letting Ki(x, y)
denote the ith column of K(x, y), the vector field Ki(·, y) : x 7→ Ki(x, y) belongs to V for all
y ∈ R3 with, for all v ∈ V ,

〈
Ki(·, y) , v

〉
V

= vi(y), the ith coordinate of v(y). To simplify
the notation, we will assume in this paper that K is a scalar kernel, i.e., that it takes the
form K(x, y) = K(x, y) IdR3 where K is-scalar valued.

The function D in (1) is a measure of discrepancy that penalizes the difference between
the controlled surface S(·) at the end of its evolution and the target surface S1. Among
the measures introduced in the literature in combination with the LDDMM algorithm, the
most convenient computationally are designed as Hilbert-space norms between surfaces
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considered as linear forms over spaces of smooth structures. The “simplest” example,
linear forms on smooth scalar functions arising from integrating functions over surfaces,
yields the “measure matching” cost introduced in [21, 22]. “Current matching”, introduced
in [20, 45] results from integrating smooth differential forms over oriented surfaces. More
recently varifold-based cost functions [12] were designed, in which functions defined on
R3 × Gr(2,R3) (the Grassmannian manifold of 2D spaces in R3) are integrated over the
surface. Details on these cost functions, their discrete versions on triangulated surfaces,
and the computation of their gradient are provided in the cited references. To focus the
discussion, we will here assume that D is the current-matching norm for which

(2) D(S, S′) = 〈S , S〉χ − 2
〈
S , S′

〉
χ

+
〈
S′ , S′

〉
χ

where the “dot product” between surfaces is defined by

(3)
〈
S , S′

〉
χ

=

∫
S×S′

χ(s, s′)N(s)TN(s′)dAS(s)dAS(s′)

where χ is a positive definite kernel and AS , AS′ refer to the area forms on S and S′.

Interpreting (1) in optimal control language, v is the “control”, S is the “state”, and v is
optimized in order to bring the state near a desired endpoint. With this construction, each
point x0 in S0 is registered to a point x(t) = ϕ(t, x0) in S(t) that evolves according to the
differential equation dx/dt = v(t, x), with x(0) = x0. The overall evolution is diffeomorphic,
i.e., for each time t, ϕ(t, ·) can be extended to a smooth invertible transformation with
smooth inverse on R3.

To define our atrophy constraints, we assume that surfaces are closed and oriented. We
let N0(t, x0) be the outward-pointing unit normal to S0. An outward-pointing normal to
S(t) at x = ϕ(t, x0) is then given by

(4) N(t, x) = dϕ(t, x0)−TN0(t, x0)

where dϕ(t, x0) denote the differential of y 7→ ϕ(t, y) at y = x0 (a 3 by 3 matrix), with the
“−T” exponent indicating the transposed inverse. Note that N(t, ·) does not necessarily
have norm one.

We can express the atrophy constraint by the fact that the surface evolves inward at all
points, i.e., by v(t, x)TN(t, x) ≤ 0 for all x ∈ S(t) and t ∈ [0, 1]. Adding this constraint to
the original surface-matching LDDMM problem leads to the atrophy-constrained problem
of minimizing

1

2

∫ 1

0
‖v(t)‖2V dt+D(S(1), S1)

subject to ∂tS = v(t, S(t)), v(t, x)TN(t, x) ≤ 0, x ∈ S(t).

We now reformulate this problem under the assumption that S0 is parametrized with
an embedding q0 : M → R3, where M is a two-dimensional Riemannian manifold. This is
no loss of generality, since one can always take M = S0 and q0 = identity. It will also be
useful when discussing discrete approximations to relax the atrophy constraint in the form
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v(t, x)TN(t, x) ≤ ε|N(t, x)|, x ∈ S(t), which allows for a small amount of expansion, with
normal velocity less than ε. Given this, we take parametrizations q : M → R3 as state
variables, together with functions N : M → R3 and solve

Problem 1. Minimize

(5)
1

2

∫ 1

0
‖v(t)‖2V dt+D(q(1,M), S1)

(6) subject to


q(0, ·) = q0, N(0, ·) = N0,

∂tq(t, ·) = v(t, q(t, ·)),
∂tN(t, ·) = −dv(t, q(t, ·))TN(t, ·),
v(t, q(t, ·))TN(t, ·) ≤ ε|N(t, ·)|

where, with a slight change of notation, N0(m) is the outward-pointing unit normal to S0

at q0(m). N(t,m) is then an outward-pointing (not necessarily unit) normal to S(t) =
q(t,M) = ϕ(t, S0) at q(t,m). The third equation in the constraints is the time derivative
of (4).

2.2. Discrete Approximations. We now assume that surfaces are triangulated, so that
parametrizations are replaced by pairs (q, F ), where q ∈ (R3)n is a set of n vertices (where
n depends on S) and F ⊂ {1, . . . , n}3 provides the list of indices of vertices that form the
triangular faces.

We assume that the surface is oriented, so that an edge that belongs to two faces is
oriented in different directions in each face. If q = (q1, . . . , qn), and f = (i, j, k) ∈ F ,
we let S(q, f) denote the closed triangle with vertices (qi, qj , qk). We also let c(q, f) =
(qi + qj + qk)/3 be the center of mass and

(7) N(q, f) =
1

2
(qj − qi)× (qk − qi),

be the area weighted normal, this expression being invariant by circular permutation of i,
j and k (N(q, f) is oriented according to the normal to the face, with norm equal to the
area of the face). From this we define the area-weighted normal at a vertex qk by

(8) Nk(q, F ) =
∑

f∈F :k∈f
N(q, f)/3

and we let N(q, F ) = (N1(q, F ), . . . , Nn(q, F )). Finally, we let S(q, F ) be the associated
piecewise-triangular surface, namely

S(q, F ) =
⋃
f∈F

S(q, f).

To define a discrete version of Problem 1, we introduce state variables q = (q1, . . . , qn)
and N = (N1, . . . , Nn), initialized with a initial triangulation (q0, F0). We also assume a
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target surface (q1, F1). The discrete problem will minimize

1

2

∫ 1

0
‖v(t)‖2V dt+Dδ((q(1), F0), (q1, F1)),

subject to


q(0, ) = q0,N(0) = N(q0, F0),

∂tqk(t) = v(t, qk(t)),

∂tNk(t) = −dv(t, qk(t))
TNk(t),

v(t, qk(t)) ·Nk(t) ≤ ε|Nk(t)|, k = 1, . . . , n

Here, Dδ is a discrete approximation of D in (2) in which the dot product between trian-
gulated surfaces is replaced by

(9)
〈
(q, F ) , (q′, F ′)

〉
χ,δ

=
∑
f∈F

∑
f ′∈F ′

χ(c(q, f), c(q′, f ′))N(q, f)TN(q′, f ′)

(so that χ is approximated by a constant value on each face.)

Given that the end-point cost and the constraints depends on v only through the con-
figurations q(t), one shows, using standard RKHS reductions, that the optimal v takes the
form

v(t, ·) =
n∑
k=1

K(·, qk(t))αk(t)

where K is the reproducing kernel of V . Using this, the previous problem reduces to

Problem 2. Minimize

(10)
1

2

∫ 1

0

n∑
k,l=1

K(qk(t), ql(t))αk(t)
Tαl(t)dt+Dδ((q(1), F0), (q1, F1))

(11) subject to



q(0) = q0,N(0) = N(q0, F0),

∂tqk(t) =
n∑
l=1

K(qk(t), ql(t))αl(t),

∂tNk(t) = −
n∑
l=1

∂1K(qk(t), ql(t))Nk(t)
Tαl(t),∑n

l=1K(qk(t), ql(t))αl(t)
TNk(t) ≤ ε|Nk(t)|, k = 1, . . . , n

However, in the discrete case, it is possible to avoid the introduction of N as a state
variable and solve instead:

Problem 3. Minimize

(12)
1

2

∫ 1

0

n∑
k,l=1

K(qk(t), ql(t))αk(t)
Tαl(t)dt+Dδ((q(1), F0), (q1, F1))
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(13) subject to



q(0) = q0,

∂tqk(t) =

n∑
l=1

K(qk(t), ql(t))αl(t),

n∑
l=1

K(qk(t), ql(t))αl(t)
TNk(q(t), F0) ≤ ε|Nk(q(t), F0)|,

k = 1, . . . , n

Note that the apparent simplification is balanced by the fact that the constraint becomes
a more complex function of the state and controls, with Nk(q, F0) given by (7) and (8).

3. Numerical Method

Problem 3 is solved using augmented Lagrangian methods, introducing, as described in
[35], slack variables to complete inequality constraints. More precisely, let

Ckl(q) = K(qk, ql)Nk(q, F0)T

and C(q) = (Ckl(q), k, l = 1, . . . , n) the associated n×3n matrix. Let K(q) be the 3n×3n
matrix formed from blocks (K(qk, ql) IdR3 , k, l = 1, . . . , n). For a vector u, let u+ denote
the vector formed with the positive parts of each of the coordinates of u. Let |N | denote
the n-dimensional vector will kth coordinates equal to |Nk|.

The augmented Lagrangian is defined by

(14) F (α,λ) =
1

2

∫ 1

0
α(t)TK(q(t))α(t)dt+Dδ((q(1), F0), (q1, F1))

+
µ

2

∫ 1

0

∣∣∣∣∣
(
C(q(t))α(t)− ε|N(t)| − λ(t)

µ

)+
∣∣∣∣∣
2

dt− 1

2µ

∫ 1

0
|λ(t)|2dt.

Here, the parameter µ is a small positive number, λ ∈ Rn is a Lagrange multiplier and
q is considered as a function of α via the state equation ∂tq = K(q)α. The augmented
Lagrangian optimization procedure iterates the following steps (starting with initial values
(α0,λ0)):

(1) Minimize α 7→ F (α,λn) to obtain a new value αn+1 (and qn+1 via the state
evolution equation).

(2) Update λ, with λn+1 = −µ
(
C(qn+1)αn+1 − ε|N | − µλn

)+
.

(3) If needed (e.g., if |(C(qn+1)αn+1 − ε|N |)+| is larger than a threshold δn), replace
µ by a smaller number, ρµ, with ρ < 1.

The most expensive step is, of course, the first one, which requires to solve an optimal
control problem equivalent in complexity to the unconstrained problem. The computation
of ∇αF (α, λ) (the gradient of F with respect to α) uses a back-propagation algorithm,
also called the adjoint method. Since similar computations are described in multiple places
[45, 53, 14, 4], we briefly summarize it here.
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(1) Given α, compute the associated state q via ∂tq = K(q)α and evaluate the matrix
C(q).

(2) Introduce a co-state p(t) = (p1, . . . , pn) ∈ (R3)n, t ∈ [0, 1], defined by

p(1) = ∇qDδ((q, F0), (q1, F1))|q=q(1)
and

∂tp = −∇q

pTK(q)α− 1

2
αTK(q)α− µ

2

∣∣∣∣∣
(
C(q)α− ε|N | − λ

µ

)+
∣∣∣∣∣
2


(3) Define ∇αF = K(q)(α− p) + µ

((
C(q)α− ε|N | − λ

µ

)+
)T

C(q).

Remark. Ensuring that the total volume of the surface decreases (instead of enforcing
inward motion at every point) can be done very similarly to the full atrophy constraint,
using the single constraint

∑n
k=1 v(t, qk(t))

TNk(t) ≤ ε or, after reduction
n∑

k,l=1

K(qk(t), ql(t))αl(t)
TNk(t) ≤ ε,

where Nk is given by (8). It is important here to use the area-weighted normal, to discretize
the continuous constraint

∫
S(t) v(t, ·)TN(t, ·)dAS(t) ≤ ε, which provides the derivative of the

total volume with respect to time. This constraint can be rewritten as 1TnC(q(t))α(t) ≤ ε,
where 1n is the n-dimensional vector with all coordinates equal to 1. The reformulation of
the augmented Lagrangian method for this scalar constraint is straightforward and left to
the reader.

4. Existence of Solutions and Convergence

The following theorems address two important properties of the proposed method. The
first one shows that solutions of the constrained problem within our space of interest exist,
and the second one considers the issue of consistency of the discretization approach, showing
that under suitable assumptions, the solutions obtained with discrete surfaces converge to
solutions of the continuous problem. These results are proved in the appendix.

Theorem 1. Assume that V is continuously embedded in Cp0 (R3,R3) for p ≥ 2 and
that the data attachment term D is such that ϕ 7→ D(ϕ(S0), S1), defined over all Cp-
diffeomorphisms ϕ such that ϕ−id ∈ Cp0 , is continuous for the uniform Cp convergence over
compact sets. Then Problems 1, 2 and 3 always have an optimal solution v ∈ L2(0, 1;V ).

The assumption on D applies to the current norm (2) as soon as p ≥ 1.

We now introduce some assumptions to address the consistency of discrete approxima-
tions. We say that a sequence of triangulations ((qn, Fn)) converges nicely to a surface S
of class C2 if there exists an n ≥ n0 such that the following conditions are satisfied.

(i) The vertices of Sn belong to S: qn = (qn1 , . . . , q
n
mn

) with qnk ∈ S for k = 1, . . . ,mn.
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(ii) The triangulations are nested:

{qn1
1 , . . . , qn1

mn1
} ⊂ {qn2

1 , . . . , qn2
mn2
}.

In particular, we can order the collection of all vertices of the triangulations in a
countable sequence (q1, q2, . . .) and for each qj , there exists an integer nj such that
qj is a vertex in qn for all n ≥ nj .

(iii) The maximum edge length in (qn, Fn) goes to 0.
(iv) If η(qn, f) is the length of the largest edge of a face f , the ratio

area(S(qn, f))

η(qn, f)2
,

f ∈ Fn is bounded away from 0 (uniformly in n).
(v) The triangulations are close enough to S to ensure that every point x ∈ S(qn, Fn)

has a unique closest point ξ(x) on S, such that ξ is onto.

These hypotheses imply the convergence of normals as follows [34].

(vi) In addition

max
f∈Fn,p∈S(qn,f)

∣∣∣∣ N(qn, f)

|N(qn, f)|
−N(ξ(p))

∣∣∣∣→ 0

when n goes to infinity, where N is the unit normal to S.

We have the following result.

Proposition 1. Assume that (qn, Fn) converges nicely to S and (qn1 , F
n
1 ) converges nicely

to S1. Then

Dδ((q
n, Fn), (qn1 , F

n
1 ))→ D(S, S1)

when n goes to infinity, where D and Dδ are defined in equations (2), (3) (9).

We can now state our consistency theorem.

Theorem 2. Fix ε∞ > 0, and assume that V is continuously embedded in Cp0 (R3,R3) for
p ≥ 2. Let S0 and S1 be two C2 surfaces, and (Sn0 ), (Sn1 ) be two sequences of triangulations
that converge nicely to S0 and S1, respectively. Then, there exists a decreasing sequence
of real numbers εn > 0 with εn → ε∞, such that if vn ∈ L2(0, 1;V ) solves Problem 2 with
ε = εn, initial surface Sn0 and target Sn1 , then the sequence (vn)n∈N is bounded in L2(0, 1;V )
and any weak limit point v∗ of vn is a solution to Problem 1 with ε = ε∞.

5. Affine Alignment

Because the RKHS V is embedded in Cp0 (R3,R3), vector fields v ∈ V vanish at infinity.
This implies, in particular, that affine transformations do not belong to this Hilbert space,
and that the diffeomorphic registration does not incorporate any rigid alignment. If such
an alignment is needed, one can include it in the optimal control framework by completing
the control with the corresponding vector fields.
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Let the registration be computed over G n R3, where G is a subgroup of GL3(R), n
referring to the semi-direct product extending G with translations to obtain affine trans-
formations. Let g be the Lie algebra of G, with basis E1, . . . , Eh. Instead of v ∈ V , we use
a control given by (v, β1, . . . , βh, τ) with β1, . . . , βh ∈ R and τ ∈ R3, and the state equation

(15) ∂tqk(t) = v(t, q(t)) +
h∑
l=1

βl(t)Elq(t) + τ(t)

with associated cost 1
2

∫ 1
0

(
‖v(t)‖2V +

∑h
k=1 ckβk(t)

2 + c0|τ(t)|2
)
dt for some non-negative

numbers c0, c1, . . . , ch. The extension of the numerical procedure to this setting is rather
straightforward, and not detailed here. Of course, the affine components must be added to
v in the atrophy constraint v ·N ≤ ε|N |.

Consider the special case G = SO3, the rotation group (so that h = 3) and assume
that Euclidean transformations act as isometries on V , which means that, for all v ∈ V ,
R ∈ SO3, b ∈ R3, the vector field ṽ : x 7→ RT v(Rx+b) also belongs to V and ‖ṽ‖V = ‖v‖V .
Euclidean-invariant RKHS’s of vector fields are extensively described in [19], to which we
refer for more details. In the case of scalar kernels K(x, y) = K(x, y)IdR3 , Euclidean
invariance implies that K is a radial kernel, i.e., that K(x, y) = γ(|x − y|2) for some
function γ (additional conditions on γ are needed to ensure that K is a positive kernel; see
[19]). Assume finally that the end-point cost D is invariant by Euclidean transformation:
D(S, S′) = D(RS+ b, RS′+ b). In this case, the optimal control problem (using c0 = · · · =
c3 = 0) that minimizes 1

2

∫ 1
0 ‖v(t)‖2V dt+D(S(1), S1) in v,β, τ , subject to

(16)



q(0) = q0,

∂tq(t) = v(t, q(t)) +
∑3

l=1 βl(t)Elq(t) + τ(t)

∂tN(t, ·) = −
(
dv(t, q(t, ·)) +

∑3
l=1 βl(t)El

)T
N(t, ·)(

v(t, q(t)) +
∑3

l=1 βl(t)Elq(t) + τ(t)
)T

N(q(t)) ≤ ε|N(q(t))|

is equivalent to minimizing 1
2

∫ 1
0 ‖ṽ(t)‖2V dt+D(S̃(1), R1S1 + b1) in ṽ, R1, b1, subject to

(17)


q̃(0) = q0,

∂tq̃(t) = ṽ(t, q̃(t))

∂tÑ(t, ·) = −dṽ(t, q̃(t, ·))T Ñ(t, ·)
ṽ(t, q̃(t))T Ñ(t, q̃(t)) ≤ ε|Ñ(t, q̃(t))|

via the change of variable q(t) = R(t)q̃(t) + b(t), v(t, x) = R(t)−1ṽ(t, Rx + b), N(t) =

R(t)Ñ(t), with ∂tR =
∑3

l=1 βl(t)ElR, ∂tb =
∑3

l=1 βl(t)Elb(t) + τ(t), R1 = R(1)−1 and
b1 = −R(1)−1b(1). In other words, Euclidean registration via optimal control using (16) is
equivalent to the original atrophy-constrained LDDMM optimizing its target over an orbit
under the action of rigid transformations.
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Note that c0 = · · · = ch = 0 should not be used with general affine transformations
when non-compact components of the affine group are added to rotations. Intuitively,
this would allow small deformations to be scaled up to larger ones at zero cost, and one
can conjecture that the associated optimal control problem has no solutions, and admits
minimizing sequences of controls with vanishing cost at the limit. The equivalence with
a problem in which the target is allowed to vary over its orbit via affine transformations
is not true either for groups larger than the Euclidean one, essentially because invariant
kernels do not exist in such cases.

Some attention should be paid to the discretization in time t, in particular in the rigid
case. In our implementation, we use a simple Euler scheme to discretize the equation
∂tq = v(t, q), i.e., we take q(t + δt) = q(t) + δt v(t, q(t)). When using rigid registration,

however, we take, with A(t) =
∑3

l=1 βl(t)El a skew-symmetric matrix

q(t+ δt) = eδtA(t)q(t) + δt v(t, q(t)) + δt τ(t)

to discretize ∂tq = v(t, q)+Aq+τ , with the explicit expression eU = Id+ sin cU
cU

U+ 1−cos cU
c2U

U2,

cu =
√
−tr(U2) for a 3 by 3 skew-symmetric matrix U . This ensures that the rigid

registration remains a displacement, even for large values of the coefficients βl, which are
made possible by the absence of cost on this transformation.

6. Extension to Time Series

Longitudinal studies generally include more than one follow-up scan, and we now extend
our algorithm to the case of multiple targets observed at successive times. We still have a
baseline surface S0 and now assume p follow-up surfaces S1, . . . , Sp. A direct generalization
of the previous approach replaces equation (5) in Problem 1 by

(18)

∫ 1

0
‖v(t)‖2V dt+

n∑
k=1

D(S(tk), Sk)

where 0 < t1 ≤ · · · ≤ tn = 1 are attachment times, which can be fixed a priori (e.g.,
tk = k/n) or also optimized. The expression in (18) should be minimized, starting from a
baseline S0, with the same constraints as in the single-target case.

As pointed out in [38, 39, 26, 3], this formulation of longitudinal registration (with
or without atrophy) gives a special role to the baseline image and creates a bias in the
way the information is obtained by breaking the symmetry within the acquisition and
segmentation protocols that provided the images or surfaces. We address this by adding
an extra error term, D(S(t0), S0) with t0 = 0, making the sum start at k = 0 in (18).
The trajectory baseline, S(0) becomes a new variable to estimate. To ensure that the
topology of the estimated trajectory remains consistent with the data (as was originally
enforced by S(0) = S0), we assume that S(0) is a diffeomorphic transformation of another
surface (a template) of known topology. Letting S̄0 denote the template, this leads to the
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minimization of

(19) λ

∫ 1

0
‖v̄(t)‖2V dt+

∫ 1

0
‖v(t)‖2V dt+

n∑
k=0

D(S(tk), Sk)

where λ is a regularization parameter and v̄ controls a smooth deformation between the
template S̄0 and the initial point of the trajectory, S(0). More precisely, we let S(0) = S̄(1),
where S̄(t) is a template-to-baseline trajectory satisfying S̄(0) = S̄0 and ∂tS̄ = v̄(t, S̄(t)).
The cost function is then minimized in the pair of chained controls (v̄, v). While atrophy
constraints remain applicable to v, no such constraint is enforced on v̄. This algorithm has
as been implemented in Python, with examples of trajectories provided in Figure 6 and
Figure 7.

7. Experimental Results

7.1. Comparing two Shapes. Fig. 1 provides four examples of segmented hippocampus
surfaces taken from the BIOCARD longitudinal study [33, 52]. For each subject, a baseline
image is compared to a follow-up taken approximately eight years later. The color map
is proportional to the total normal displacement during the estimated deformation. The
deformation patterns with and without the atrophy constraints generally agree on where
atrophy lies, but expansion is ignored by the latter as expected.

7.2. Time Series. We now present experiments that compare time series, as described in
section 6. Our shapes are once again extracted from the BIOCARD dataset and correspond
to a selection of subjects with one baseline image and four follow-up. We ran our regis-
tration methods with and without the atrophy constraint, with results on three sequences
provided in Figures 2 and 3. It is interesting to notice when comparing the estimated
sequences with and without atrophy that the “monotonicity” constraint seems to have a
regularization effect, with an evolution pattern fairly visible in the atrophy-constrained
case, but less apparent when constraints are relaxed. This is particularly apparent in the
example shown in the second rows of Figures 2 and 3. We also computed atrophy/expansion
rates associated to these sequences, using linear regression separately at each vertex. These
are summarized in Figure 4.

8. Discussion

In this paper, we have introduced a new approach targeting atrophy in the registration of
longitudinal data, in view of applications to the analysis of neuro-degenerative diseases. We
have formulated the problem via constrained optimal control, and proposed an algorithm
that combined the adjoint method in optimal with augmented lagrangian methods. We
also provided theoretical results on the existence of solutions for the problems, and on the
consistency of our numerical scheme for approaching the solution.
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Figure 1. Four registration examples from biocard subjects. From left to
right: baseline; LDDMM surface registration (no constraint); registration
with atrophy constraint; target (eight years later). Colors on registered
surfaces reflect normal displacements, from red (atrophy) to blue (expan-
sion),with green being neutral. Color maps are on the same symmetrical
scale from -2.9mm to +2.9mm.
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Appendix A. Proof of Theorem 1

This theorem is proved along the same lines as similar statements addressing the exis-
tence of solutions for LDDMM problems [43, 16, 50, 51, 2]. We only provide a proof for
Problem 1, since Problems 2 and 3 are addressed in a very similar way.

Let vn be a minimizing sequence. The boundedness of vn in L2(0, 1;V ) implies that
(extracting a subsequence if needed) vn converges weakly in this Hilbert space to a limit
v (with a norm in L2(0, 1;V ) no larger than the lim inf of the norms of vn). This, in
turn, implies that the associated flows of diffeomorphisms ϕn (associated to vn) and their
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Figure 2. Estimated trajectories via LDDMM time series with atrophy
constraints. Each row is a different subject. The first shape (left) is the
template, which is fixed. Subsequent shapes provide baseline and follow-
up for each subject. The color mapped on the surface is proportional to
the normal displacement during the evolution starting with the baseline.
Warm colors (yellow-red) correspond to atrophy and cold colors (blue) to
expansion, while green is neutral. As a result of the constraint, no expansion
is observed in these sequences. The maximum computed atrophy is 1.03mm,
0.89mm and 1.88mm respectively, and the scale varies between these values
and their negative.

first p spatial derivatives converge uniformly (in time and space) over compact sets to ϕ
(associated to v) and its first p derivatives [16, 50]. One gets from this that D(ϕn(1, S0), S1)
converges to D(ϕ(1, S0), S1).

Letting (qn, Nn) denote the state in Problem 1 associated with the control vn, we have
qn(t) = ϕn(t, q0), Nn(t) = dϕn(t, q0)−TN0 therefore converging to q(t) = ϕ(t, q0) and
N(t) = dϕ(t, q0)−TN0 when n→∞. This and the upper bound of the L2(0, 1;V )-norm of
v implies that the cost function is minimized at v.
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Figure 3. The display is similar to the one described in Figure 2, with the
same sequences registered this time without the atrophy constraint. Sev-
eral expansion zones (blue) now appear, with estimated normal expansion
around 1.3mm on each subject. The atrophy levels and pattern are similar
to the one observed in Figure 2 even though they look reduced because of
the expansion of the color maps, who range, here, between 1.68mm, 1.33mm
,1.31mm (from top to bottom) and their negative.

We now show that v(t, q(t, x))TN(t, x) ≤ ε|N(t, x)| for all x ∈M and almost all t ∈ [0, 1].
Fixing x, and writing

vn(t, qn(t, x))TNn(t, x) = vn(t, q(t, x))TN(t, x)

+ (vn(t, qn(t, x))− vn(t, q(t, x)))TN(t, x) + vn(t, qn(t, x))T (Nn(t, x)−N(t, x))

one easily deduces from the facts that vn converges weakly to v, dvn is uniformly bounded,
qn and Nn converge uniformly to q and N , that vn(t, qn(t, x))TNn(t, x) converge weakly
to v(t, q(t, x))TN(t, x) in L2(0, 1;R). This implies that v(t, q(t, x))TN(t, x) ≤ ε|N(t, x)| for
almost all t (the set of non-positive a.e functions is a closed convex set in L2 and therefore
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Figure 4. Rate of atrophy/expansion estimated from previous trajecto-
ries. Color maps are proportional to millimeters per year in normal displace-
ment, red for atrophy and blue for expansion. The first row provides the
rates obtained under atrophy constraint, and the second row corresponds
to an estimation without constraint. The color maps are scaled over sym-
metric intervals of radii 0.692, 0.858, 1.02 in the first row. The intervals for
the second row are [−0.801, 1.43], [−1.07, 0.977] and [−1.14, 0.919].

also weakly closed). By considering a countable dense set of x’s, and using the fact that
x 7→ v(t, q(t, x))TN(t, x) is continuous, we find that v(t, q(t, x))TN(t, x) ≤ ε|N(t, x)| for all
x ∈M and almost all t ∈ [0, 1].

Appendix B. Proof of Theorem 2

We first prove Proposition 1. Let ξn and ξn1 denote the closest-point maps from S(qn, Fn)
to S and S(qn1 , F

n
1 ) to S1. For f ∈ Fn, let Sn(f) = ξn(S(qn, f)) ⊂ Fn be the image of

the triangle associated to f by ξn. Define similarly Sn1 (f) ⊂ Fn1 for f ∈ Fn1 . Let cn(f) =
ξn(c(qn, f)), cn1 (f) = ξn1 (c(qn1 , f)) be the images of the face centers on the surface. Since
the surfaces are smooth and compact and the maximal edge length of the triangulations
goes to 0, we have

max
f∈Fn

max
s∈f
|N(s)−N(cn(f))| → 0, max

f∈Fn
1

max
s∈f
|N1(s)−N1(cn(f))| → 0,
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and

max
f∈Fn,f ′∈Fn

1

max
s∈f,s′∈f ′

|χ(s, s′)− χ(cn(f), cn1 (f ′))| → 0

when n→∞. This implies that

〈S , S1〉χ =
∑
f∈S

∑
f ′∈S1

∫
Sn(f)×Sn

1 (f ′)
χ(s, s′)N(s)TN1(s′)dAS(s)dAS1(s′)

=
∑
f∈S

∑
f ′∈S1

χ(cn(f), cn1 (f ′))N(cn(f))TN1(cn1 (f ′))area(Sn(f))area(Sn1 (f ′)) + ηn(20)

where ηn → 0. Note that the first identity uses the assumption that ξ and ξ1 are bijective.
Using results from [34], we can deduce from the convergence assumptions that

max
f∈Fn

|cn(f)− c(qn, f)|, max
f∈Fn

∣∣∣∣N(cn(f))− N(qn, f)

|N(qn, f)|

∣∣∣∣
and

max
f∈Fn

|area(Sn(f))/area(S(qn, Fn))− 1|

all converge to 0, with obviously an identical statement for S1. This implies that the right-
hand side in (20) can be replaced by 〈(qn, Fn) , (qn1 , F

n
1 )〉χ,δ + η′n with η′n → 0. This and

similar arguments for the other dot products defining D and Dδ imply Proposition 1.

Remark. It is easy to check that, for some positive constant C and for any diffeomorphism
ϕ of R3,
(21)
|D(ϕ(S0), S1)−D(ϕ(qn), q1)| ≤ C|D(S0, S1)−D(ϕ(qn), q1)|max

x∈S0

(|dϕ(x)|, |dϕ(x)−1|).

We now prove Theorem 2. Let (Sn0 = (qn0 , F
n
0 )) and (Sn1 = (qn1 , F

n
1 )) be sequences of

triangulations converging nicely to smooth surfaces S0 and S1. We let E(v) denote the
cost for the continuous problem 1 (Equation (5)), and by En(v) the one associated to the
discrete problem at step n.

Using the same approach as the one used to prove Theorem 1, it is not too difficult to
prove that, if vn is a sequence of solutions of Problem 2 for the n-th triangulation and
ε = εn, then (vn) is bounded in L2(0, 1;V ), and any weak limit point v∗ of this sequence
satisfies the constraints of Problem 1 with E(v∗) no larger than the limit inferior of the
sequence E(vn). This is done in steps 4 and 5 below. For the proof to be complete, one
still need to show that v∗ is an optimal solution for Problem 1. A natural approach for
this would be to show that any solution, say v∗c , of the continuous problem is admissible
for the relaxed discrete problems, i.e., that it satisfies its constraints (because, if this is
proved, then En(v∗c ) is larger than En(vn), while converging to E(v∗c ), so that the latter
cannot be smaller than E(v∗)). The difficulty is that the constraints involve the values of
v∗c (t, ·) along the trajectories, and cannot be controlled without a uniform bound on the
supremum norm of v∗c (t, ·), which could be achieved, in our case, via a uniform bound on
‖v∗c (t, ·)‖V . Formally, one could use optimality conditions for v∗c (a Pontryagin maximum



DIFFEOMORPHIC SURFACE REGISTRATION WITH ATROPHY CONSTRAINTS 17

principle) to obtain such a bound, but such principles with infinite dimensional constraints
are rare and difficult to prove. To work around this, our proof considers a sequence vnc of
solutions of the continuous problem in which constraints are enforced only over the discrete
sets defined by the corresponding triangulation. We use the maximum principle, which is
valid in this case, to prove that ‖vnc (t, ·)‖V is bounded (uniformly in t and n) and that
vnc is an admissible solution for the discrete problem, with a suitable relaxation of the
constraints (steps 1 to 3 below). We can then wrap up the proof by noticing that E(vnc )
is necessarily smaller than the optimal cost of the continuous problem (fewer constraints),
but also larger (up to a negligible difference) that the optimal discrete cost. We now pass
to the detailed proof.

Step 1: Reduction to continuous shape with finite number of constraints. Fix ε∞ > 0, and
denote by E∞ the minimal value of the cost functional in Problem 1 with initial surface
S0 and ε = ε∞. Let

Bn = {s1, . . . , skn} ⊂M
be the increasing sequence of subsets in the parametric space M such that q0(sk) = qn0,k,
with kn the number of vertices in the n-th triangulation. Note that the sk are two by
two distincts. For each n, consider a time-dependent vector field vnc with flow ϕnc that
minimizes

E(v) :=
1

2

∫ 1

0
‖v(t)‖2V dt+D(q(1,M), S1)

subject to 
q(0, ·) = q0, N(0, ·) = N0,

∂tq(t, ·) = v(t, q(t, ·)),
∂tN(t, ·) = −dv(t, q(t, ·))TN(t, ·),
v(t, q(t, s))TN(t, s) ≤ ε∞|N(t, s)|, s ∈ Bn.

Let qnc (t) = ϕnc (t) ◦ q0, Snc (t) = ϕnc (t, S0) and Nn
c (t) = dϕnc (t) ◦ q−T0 N0 (the existence of

such a vnc is proved just as described in Appendix A). Note that any solution v with flow
ϕ of Problem 1 also satisfies these constraints, so that

E∞ =
1

2

∫ 1

0
‖v(t)‖2V dt+D(ϕ(1, S1))

≥ 1

2

∫ 1

0
‖vnc (t)‖2V dt+D(qnc (1,M), S1) = E(vnc ).

Step 2: Pontryagin maximum principle and uniform boundedness of vnc . The constraints
v(t, q(t, s))TN(t, s) ≤ ε∞|N(t, s)|, s ∈ Bn are regular constraints (and are in finite num-
ber), that is, for each parametrized C1-embedded surface q ∈ Emb1(M,R3) (where Emb1(M,R3),
the space of C1 embeddings of M in R3 is an open subset of C1(M,R3)) and any vector
field N ∈ C0(M,R3 \ {0}), the mapping

v ∈ V 7→
(
v(q(s1))TN(s1), . . . , v(q(skn))TN(skn)

)
∈ Rkn
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is surjective since the value of v can be chosen freely at the points q(s1), . . . , q(snk
). The

Pontryagin maximum principle can therefore be applied as follows (see [25, Theorems 4.1
and 4.2] for the general statement). Define the Hamiltonian of the constrained problem

Hn
c : Emb1(M,R3)× C0(M,R3 \ {0})× C1(M,R3)∗ × C0(M,R3)∗ × V × Rkn+ −→ R

by

Hn
c (q,N, p, ν, v, λ) = (p | v(q(·)))−

(
ν
∣∣ dv(q(·))TN(·)

)
− 1

2
‖v‖2V

−
kn∑
k=1

λk
(
v(q(sk))

TN(sk)− ε∞|N(sk)|
)
,

in which the notation (µ |w ) denotes the evaluation of a linear form µ at a vector w, i.e.,
(µ |w ) = µ(w). Also, define the convex set Γnc by

Γnc =
{
v ∈ V, ∀ k = 1, . . . , kn, v(qnc (t, sk))

TNn
c (t, sk) ≤ ε∞|Nn

c (t, sk)|
}
.

Then because vnc is optimal, the Pontryagin maximum principle states the following.

Lemma 1. There exists pnc : [0, 1] → C1(M,R3)∗ and νnc : [0, 1] → C0(M,R3)∗ of Sobolev

class H1, and λnc ∈ L2(0, 1;Rkn+ ) such that pnc (1) = −∇qD(qnc (1), S1), νnc (1) = 0, and, for
almost every t, and every k = 1, . . . , kn,

ṗnc (t) = −∂qHn
c (t),(22)

ν̇nc (t) = −∂NHn
c (t),(23)

0 = λk(t)
(
vnc (t, qnc (t, sk))

TNn
c (t, sk)− ε∞|Nn

c (t, sk)|
)
, k = 1, . . . , kn(24)

Hn
c (t) = max

v∈Γn
c

Hn
c (qnc (t), Nn

c (t), pnc (t), νnc (t), v, λnc (t))(25)

= max
v∈Γn

c

(pnc (t) | v(qnc (t, ·)))−
(
νnc (t)

∣∣ dv(qnc (t, ·))TNn
c (t, ·)

)
− 1

2
‖v‖2V(26)

Hn
c (t) = Hn

c (1) = max
v∈Γn

c

∫
Sn
c (1)
−∇qD(qnc (1), S1)(s)T v(s)ds− 1

2
‖v‖2V .(27)

Here, we wrote Hn
c (t) = Hn

c (qnc (t), Nn
c (t), pnc (t), νnc (t), vnc (t), λnc (t)) for short.

For almost every t, the set Γnc is convex and contains 0. The maximized function in
(26) is of the form (P | v )− 1

2‖v‖
2
V for some P ∈ V ∗. We then have that, for any v ∈ Γnc ,

(P | v − vnc (t))− 〈vnc (t) , v − vnc (t)〉V ≤ 0. Applying this to v = 0 yields

−(P | vnc (t)) + ‖vnc (t)‖2V ≤ 0

=⇒ ‖vnc (t)‖2V ≤ (P | vnc (t))

=⇒ 1

2
‖vnc (t)‖2V ≤ (P | vnc (t))− 1

2
‖vnc (t)‖2V = Hn

c (t) = Hn
c (1)
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by (27). Hence, for almost every t, we get ‖vnc (t)‖V ≤
√

2Hn
c (1). But,

Hn
c (1) ≤ max

v∈V

∫
Sn
c (1)
−∇qD(qnc (1), S1)(s) · v(s)ds− 1

2
‖v‖2V

=
1

2

∫∫
Sn
c (1)×Sn

c (1)
K(s, s′)∇qD(qnc (1), S1)(s)T∇qD(qnc (1), S1)(s′)ds′ds .

Now, note that the sequence (vnc ) is bounded in L2(0, 1;V ) by
√

2D(S0, S1), so that the
family (ϕnc (t))n∈N,t∈[0,1] is bounded in Cp(R3,R3) (just use Gronwall’s lemma). Looking
at the formula for D, we easily deduce that Hn

c (1) is bounded independently of n. In
particular, for some positive constant C, ‖vnc (t)‖V ≤ C for every n and almost every t in
[0, 1].

Step 3: Candidate for εn. Let us now return to our sequence of triangulations qn0 . Using
Gronwall’s estimates on the ODE ∂tϕ

n
c = vnc (t, ϕ) one can estimate the differences∣∣∣∣∣vnc (t, ϕnc (t, qn0,k))

T

(
Nn
c (t, sk)

|Nn
c (t, sk)|

−
(dϕnc )−T (t, qn0,k)N

n
0,k

|(dϕnc )−T (t, qn0,k)N
n
0,k|

)∣∣∣∣∣ ≤ η′′n
and ∣∣∣∣∣vnc (t, ϕnc (t, qn0,k))

T
(dϕnc )−T (t, qn0,k)N

n
0,k

|(dϕnc )−T (t, qn0,k)N
n
0,k|
− vnc (t, ϕnc (t, qn0,k))

TNk(ϕ
n
c (qn0 ), F0)

∣∣∣∣∣ ≤ η′′′n
with η′′n, η

′′′
n → 0 when n → ∞. Therefore, vnc satisfies the contraints of Problem 2 with

ε = ε∞ + η′′n + η′′′n =: εn which converges to ε∞ as n goes to infinity. Moreover, we can
choose (η′′n + η′′′n ) so that (εn) is decreasing.

Step 4: Optimality of weak limit points. Now, let us return to vn, the sequence of solutions
of Problem 2 with ε = εn for each triangulation, ϕn the flow of diffeomorphisms associated
to vn and qn = ϕn(qn0 ). Since vn is optimal,

(28) En :=
1

2

∫ 1

0
‖vn(t)‖2V dt+Dδ((q

n(1), F0), (qn1 , F1)) ≤ Dδ((q
n
0 , F0), (qn1 , F1)),

as the upper-bound is the value of the objective function at v = 0. Since the triangulations
converge nicely, Proposition 1 implies that this upper-bound can be bounded independently
of n, so that (vn)n∈N is bounded in L2(0, 1;V ) and therefore contained in a weak compact
subset. On the other hand, as vnc satisfies the discrete constraints, we get

En ≤ 1

2

∫ 1

0
‖vnc (t)‖2V dt+Dδ(ϕ

n
c (1, qn0 ), F0), (qn1 , F1))

= Enc +Dδ((ϕ
n
c (1, qn0 ), F0), (qn1 , F1))−D(Snc (1), S1)

≤ E∞ +Dδ((ϕ
n
c (1, qn0 ), F0), (qn1 , F1))−D(Snc (1), S1).



20 DIFFEOMORPHIC SURFACE REGISTRATION WITH ATROPHY CONSTRAINTS

Using (21), the nice convergence of the triangulations and the boundedness of (ϕnc (1)) and
its derivatives, we see that, as n goes to infinity

Dδ((ϕ
n
c (1, qn0 ), F0), (qn1 , F1))−D(Snc (1), S1)→ 0,

so that the right-hand side of this equation goes to E∞, and lim inf
n→∞

(En) ≤ E∞.

Now, let v∗ be a weak limit of (vn), therefore the limit of a subsequence that we still
denote (vn)n∈N. Let ϕ∗ denote the flow associated to v∗ and q∗(t) = ϕ(t, q0). Let also
S∗(t) = ϕ∗(t, S0). As mentioned in the proof of Theorem 1, the weak convergence of (vn)

to v∗ implies that

∫ 1

0
‖v∗(t)‖2V dt ≤ lim inf

n→∞

∫ 1

0
‖vn(t)‖2V dt, and that ϕn and its first p − 1

spatial derivatives converges to ϕ∗ uniformly on compact sets. Using the fact that this
property also holds for the inverse of ϕn, it is then easy to show that (qn(t), F0) converges
nicely to S∗(t) for all t ∈ [0, 1], uniformly in t. In particular Dδ((q

n(1), F0), (qn1 , F1))
converges to D(S∗(1), S1).

Therefore,
1

2

∫ 1

0
‖v∗(t)‖2V dt+D(S∗(1), S1) ≤ lim inf(En) ≤ E∞.

Therefore, all that is left is to show that v∗ is an admissible control for Problem 1 with
ε = ε∞.

Step 5: admissibility of v∗. Let x0 = (x0,1, x0,2, . . .) be the union of all the points in qn0 for
n ≥ 0. By assumption, for every k ≥ 1, there exists an nk > 0 such that for all n ≥ nk,
there exists j = jn,k such that x0,k = qn0,j . Letting xn(t) = ϕn(t,x0) and x∗(t) = ϕ∗(t,x0)

we can prove, as done in Theorem 1, that vn(t, xnk(t))TNn(t, xnk(t))/|Nn
k (t)| converges

weakly to v∗(t, x∗k(t))
TN∗(t, x∗k(t)) for almost every t and every k, where Nn(t, xnk(t)) =

Njk,n(qn(t), F0) and N∗ is the unit normal to S∗.

But for every integers n ≥ m, we have that t 7→ vn(t, xnk(t))TNn(t, xnk(t))/|Nn
k (t)| be-

longs to the closed convex subset L2(0, 1; (−∞, εm]), which is also weakly closed. Hence,
v∗(t, x∗k(t))

TN∗(t, x∗k(t)) belongs to⋂
n≥0

L2(0, 1; (−∞, εn]) = L2(0, 1; (−∞, ε∞]).

We conclude that the constraints are satisfied by v∗ for almost every t and all x∗k(t). This
in turn implies that they are satisfied for all x ∈ S∗ by continuity in x of v∗(t, ·) and N∗(t, ·)
since the sequence x∗k is dense in S∗.

References

[1] Liana G Apostolova, Paul M Thompson, Amity E Green, Kristy S Hwang, Charleen Zoumalan, Clif-
ford R Jack, Danielle J Harvey, Ronald C Petersen, Leon J Thal, Paul S Aisen, et al. 3d comparison of
low, intermediate, and advanced hippocampal atrophy in mci. Human brain mapping, 31(5):786–797,
2010.
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