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Abstract

In this paper, we define and study strong right-invariant sub-Riemannian structures on
the group of diffeomorphisms of a manifold with bounded geometry. We derive the Hamil-
tonian geodesic equations for such structures, and we provide examples of normal and of
abnormal geodesics in that infinite-dimensional context. The momentum formulation gives a
sub-Riemannian version of the Euler-Arnol’d equation. Finally, we establish some approxi-
mate and exact reachability properties for diffeomorphisms, and we give some consequences
for Moser theorems.

Keywords: group of diffeomorphisms, sub-Riemannian geometry, normal geodesics, abnormal
geodesics, reachability, Moser theorems.

AMS classification: 53C17, 58D05, 37K65.

Contents

1 Introduction 2

2 Sub-Riemannian structures on groups of diffeomorphisms 3
2.1 Definition of the manifold Ds(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Sub-Riemannian structure on Ds(M) . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Horizontal curves and end-point mapping . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Sub-Riemannian distance and action . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Geodesics on Ds(M) 10
3.1 Preliminary discussion: Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . 10
3.2 Normal geodesic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Abnormal geodesic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Necessary conditions for optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Momentum formulation: sub-Riemannian Euler-Arnol’d equation . . . . . . . . . . 16
3.6 Proof of Theorems 2, 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Examples of geodesic equations 20
4.1 Normal geodesic equations in D(Rd) . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Spaces of vector fields with Gaussian kernels . . . . . . . . . . . . . . . . . 20
4.1.2 Gaussian kernels for sub-Riemannian distributions in Rd . . . . . . . . . . . 21

4.2 Singular curves with Dirac momenta in shape spaces of landmarks . . . . . . . . . 23

∗Johns Hopkins University, Center for imaging science, Baltimore, MD, USA (sarguil1@johnshopkins.edu).
†Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, and Institut

Universitaire de France, F-75005, Paris, France (emmanuel.trelat@upmc.fr).

1



5 Reachability properties in the group of diffeomorphims 24
5.1 Approximate reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Exact reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Moser theorems with horizontal flows . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 30

A Proof of Theorem 6 30

1 Introduction

The purpose of this paper is to define and study right-invariant sub-Riemannian structures on the
group of diffeomorphisms of a manifold with bounded geometry, with a particular emphasis on
strong structures which are natural structures from a geometric viewpoint. Our work generalizes
to the sub-Riemannian case former studies by Arnol’d (see [6]) or by Ebin and Marsden (see[20])
done in the Riemannian case. In particular, we provide a suitable framework which paves the way
towards addressing problems of fluid mechanics settled in a sub-Riemannian manifold.

Our work was initially motivated by problems arising in mathematical shape analysis (see[46]).
The general purpose of shape analysis is to compare several shapes while keeping track of their
geometric properties. This is done by finding a deformation, mapping one shape onto the others,
which minimizes a certain action that depends on the properties of the shape. Such approaches have
been used in the analysis of anatomical organs in medical images (see [24]). A deformation can be
viewed as the flow of diffeomorphisms generated by a time-dependent vector field (see [19, 42, 43]).
Indeed, when considering the studied shapes as embedded in a manifold M , diffeomorphisms induce
deformations of the shape itself. Such deformations preserve local (such as the smoothness) and
global (such as the number of self-intersections) geometric properties of the shape. The set of all
possible deformations is then defined as the set of flows of time-dependent vector fields on the space
He of “infinitesimal transformations”, which is a subspace of the Hilbert space Γs(TM) of all vector
fields on M of Sobolev class Hs. We will show, in this paper, that the group of diffeomorphisms
of M inherits in such a way of a right-invariant sub-Riemannian structure.

Recall that a sub-Riemannian manifold is a triple (M,H, h), where M is a (usually, finite-
dimensional) manifold and (H, h) is a Riemannian subbundle of the tangent space TM of M , called
horizontal distribution, equipped with a Riemannian metric h. Horizontal curves are absolutely
continuous curves on M with velocity in H. Their length is defined with respect to the metric h,
and then the corresponding sub-Riemannian distance between two points is defined accordingly.
We refer the reader to [11, 35] for a survey on sub-Riemannian geometry in finite dimension.

For a Lie group G with right Lie algebra g, a right-invariant sub-Riemannian structure is
uniquely determined by the choice of a fixed subspace h ⊂ g equipped with an inner product. The
corresponding sub-Riemannian structure is then induced by right translations.

The group of diffeomorphisms Ds(M) of Sobolev class Hs of a manifold M with bounded
geometry is a Hilbert manifold. It is a topological group for the composition of diffeomorphisms
for which the right-composition by a fixed element is smooth. As a consequence, Ds(M) admits
right-invariant vector fields, the space of which can be identified with the space Γs(TM) of all vector
fields on M of Sobolev class Hs. This allows to define right-invariant sub-Riemannian structures
on Ds(M), like for finite dimensional Lie groups, as follows: the choice of a pre-Hilbert space
(He, 〈·, ·〉), with He a subspace of Γs(TM), generates by right translation a weak Riemannian
subbundle (H, 〈·, ·〉) of TDs(M). Horizontal curves t 7→ ϕ(t) of this structure are the flows of
time-dependent vector fields t 7→ X(t) such that X(t) ∈ He almost everywhere.
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There are two main difficulties emerging when studying such a structure.
The first one is that the subbundle H obtained is, in general, only continuous. This is due to

the fact that Ds(M) is not a Lie group. One way to address that difficulty is to consider a subspace
of vector fields of larger regularity, but as a counterpart the resulting subbundles are not closed.

The second problem is that we are dealing here with an infinite-dimensional sub-Riemannian
manifold. To the best of our knowledge, sub-Riemannian geometry has been left very much un-
explored in the infinite-dimensional context. A weak sub-Riemannian structure on D∞(M) has
been briefly studied in [29] in relation to the transport of smooth volume forms by diffeomorphisms
with a sub-Riemannian cost (also see [23]). The metric in [29] is not right-invariant though. A
controllability theorem on smooth diffeomorphisms has been established in [3], in an approach-
ing context. We also mention the recent paper [25], in which the authors establish the geodesic
equations for certain infinite-dimensional weak sub-Riemannian geometries. In this reference, the
manifolds considered are modeled on general convenient spaces (see [30]), and horizontal distri-
butions are closed, with a closed complement. This framework does not involve the case of dense
horizontal distributions, that we can deal with using the tools developped in the present paper
(and which appear naturally, e.g., when studying shape spaces), and that are required in order to
guarantee the smoothness of the structure.

In this paper, we define strong right-invariant sub-Riemannian structures on the group Ds(M)
of diffeomorphisms, and we investigate some properties of such structures. We characterize the
geodesics, which are critical points of the action A between two end-points. In infinite dimension a
serious difficulty emerges, due to the fact that the range of the differential of the end-point mapping
needs not be closed. This problem is particularly significant in our setting, because the horizontal
distribution itself is not closed in general. This leads to a new type of geodesics, which we call
elusive geodesics, that cannot be detected using an adequate version of the Pontryagin maximum
principle (as will be extensively discussed). However, we provide sufficient conditions for a curve to
be a critical point of the action, in the form of certain Hamiltonian equations, allowing us to prove
the existence of a global Hamiltonian geodesic flow. Finally, we establish some results generalizing
to this infinite-dimensional setting the famous Chow-Rashevski theorem, and their applications to
volume form transport.

The paper is organized as follows.
In Section 2, we recall some results on manifolds with bounded geometry and on their groups

of diffeomorphisms. We define strong right-invariant sub-Riemannian structures on these groups,
and we establish the metric and geodesic completeness for the corresponding sub-Riemannian
distance; In Section 3, we compute the differential and the adjoint of the end-point mapping, and we
establish the normal and abnormal Hamiltonian geodesic equations in the group of diffeomorphims.
Examples of normal geodesics are provided in Section 4, as well as a characterization of abnormal
curves with Dirac momenta. Finally, in Section 5, we change viewpoint to establish approximate
and exact reachability results under appropriate sufficient conditions, generalizing the usual Chow-
Rashevski and ball-box theorems of finite-dimensional sub-Riemannian geometry (see [11, 35]).

2 Sub-Riemannian structures on groups of diffeomorphisms

Let d ∈ N∗, and let (M, g) be a smooth oriented Riemannian manifold, where M is a smooth
manifold of dimension d equipped with a Riemannian metric g. We assume that M has bounded
geometry, that is, we assume that its global injectivity radius inj(M) is positive and that one of
the following equivalent conditions is satisfied:

1. For every i ∈ N, the Riemannian norm of the i-th covariant derivative of the curvature tensor
of M is bounded.
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2. For every i ∈ N, there exists Ci > 0 such that |dig| 6 Ci in every normal coordinate chart
(defined by the Riemannian exponential map of M) of radius inj(M)/2 on M .

In this section, we are going to define a sub-Riemannian structure on the manifold Ds(M), which is
the connected component of the neutral element of the group of diffeomorphisms of M of Sobolev
class Hs.

2.1 Definition of the manifold Ds(M)

Let us first settle some notations and recall some results about the manifold structure of the space
Hs(M,N) of mappings from M to N of Sobolev class Hs, for s large enough. Here, (N,h) is
another smooth Riemannian manifold with bounded geometry, and s ∈ N.

Let f : M → N be a smooth mapping. Its differential is a section of the vector bundle T ∗M⊗M
f∗TN, where f∗TN = {(x, v) ∈M × TN | v ∈ Tf(x)N}. The metrics g and h and the Levi-Civita
connections on M and N induce (unique) Riemannian metrics and connections on T ∗M ⊗ f∗TN
(and bundles of tensors of higher order), which we use to define |df |2s =

∑s
i=0

∫
M
|∇̃if(x)|2 dVol(x),

for every integer s, where Vol is the Riemannian volume on M , and ∇̃ stands for the connection
on T ∗M ⊗ f∗TN . Then, for every integer s > d/2, we define the set Hs(M,N) of functions from
M to N of Sobolev class Hs as that of C1 functions from M to N such that |df |2s−1 < +∞ (see
[21, 22, 40]). The tangent space TfH

s(M,N) at f is the set of measurable sections X of f∗TN
such that

|X|2s =

s∑
i=0

∫
M

|∇iX(x)|2 dxg < +∞, (1)

where ∇ stands for the connection on f∗TN . Note that any X ∈ TfHs(M,N) is bounded and
that there exists C > 0 such that hf(x)(X(x), X(x)) 6 C|X|s for every x ∈ N .

The set Hs(M,N) is a Hilbert manifold (for s > d/2), with tangent space at any f ∈ Hs(M,N)
given by TfH

s(M,N) = {X ∈ Hs(M,TN) | πN ◦ X = f}, i.e., if Xf ∈ TfH
s(M,N) then

Xf (x) ∈ Tf(x)N .

If s > d/2 + `, with ` ∈ N \ {0}, then we have a continuous inclusion Hs(M,N) ↪→ C`(M,N).
Moreover, if M is compact, then the inclusion Hs+1(M,N) ↪→ Hs′+1(M,N), with s′ < s, is
compact.

Taking M = N , we are now in a position to define Ds(M) (see [21, 20]). We denote by
Hs

0(M,M) the connected component of e = idM in Hs(M,M), and by Diff(M) the set of C1

diffeomorphims on M .

Definition 1. We define
Ds(M) = Hs

0(M,M) ∩Diff(M),

that is, Ds(M) is the connected component of e = idM in the space of diffeomorphisms of class Hs

on M .

In the sequel, we denote by Γs(TM) the set of vector fields of class Hs on M .

From now on, throughout the paper, we assume that s > d/2 + 1.
Then, the set Ds(M) is an open subset of Hs(M,M), and thus is an Hilbert manifold. For

every ϕ ∈ Ds(M), we have TϕDs(M) = TϕH
s(M,M) = Γs(TM) ◦ ϕ.

The set Ds(M) is also a topological group for the composition (ϕ,ψ) 7→ ϕ ◦ ψ, and we list
hereafter some of the regularity properties of the composition mappings (see [21, 22, 40]).

For every ψ ∈ Ds(M), the right multiplication Rψ : ϕ 7→ ϕ◦ψ is a smooth mapping from Ds(M)
to Ds(M). The differential of Rψ at some point ϕ ∈ Ds(M) is the mapping dRψ : TϕDs(M) →
Tϕ◦ψDs(M) given by dRψ(ϕ).X = X ◦ ψ, for every X ∈ TϕDs(M).
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For every ϕ ∈ Ds(M), the left multiplication Lϕ : ψ 7→ ϕ ◦ ψ is a continuous mapping from
Ds(M) to Ds(M), but has no more regularity unless ϕ itself is more regular. For instance, if ϕ
is of class Hs+1, then Lϕ is of class C1 and its differential at some point ψ ∈ Ds(M) is given by
dLϕ(ψ) = (dϕ)◦ψ. Actually, for every k ∈ N, the mapping (ϕ,ψ) ∈ Ds+k(M)×Ds(M) 7→ ϕ◦ψ ∈
Ds(M) is of class Ck.

It is important to note that Ds(M) is not a Lie group because, although the right multiplication
is smooth, the left composition in Ds(M) is only continuous. It can however be noticed that the
set D∞(M) = ∩s>d/2+1Ds(M) is a Lie group. More precisely, endowed with the inverse limit
topology, D∞(M) is an inverse limit Hilbert Lie group, which is a particular type of a Fréchet Lie
group (see [37]).

Let us now identify the right-invariant vector fields on Ds(M). Note first that the tangent
space TeDs(M) of Ds(M) at e = idM coincides with the space Γs(TM) of vector fields of class
Hs on M . Using the smoothness of the right multiplication, we consider the set of right-invariant
vector fields X̂ on Ds(M), that is the set of vector fields X̂ : Ds(M) → TDs(M) that satisfy
X̂(ϕ) = X̂(e) ◦ ϕ. Therefore, we have the identification:

{right-invariant vector fields on Ds(M)} ' TeDs(M) ' Γs(TM).

Although Ds(M) is not a Lie group, it behaves like a Lie group.

Curves on Ds(M). For every ϕ(·) ∈ H1(0, 1;Ds(M)), the time-dependent right-invariant vector
field X(·) = ϕ̇(·) ◦ ϕ(·)−1 ∈ L2(0, 1; Γs(TM)) is called the logarithmic velocity of ϕ(·). Note that,
by definition, we have ϕ̇(t) = X(t) ◦ ϕ(t) for almost every t ∈ [0, 1].

Any curve ϕ(·) ∈ H1(0, 1;Ds(M)) of diffeomorphisms is the flow of a time-dependent right-
invariant vector field on Ds(M) whose norm is square-integrable in time. Conversely, thanks to
a generalized version of the Cauchy-Lipschitz theorem (see, e.g., [41]), any time-dependent right-
invariant vector field X(·) ∈ L2(0, 1; Γs(TM)) generates a unique flow ϕXe (·) ∈ H1(0, 1;Ds(M))
such that ϕXe (0) = e, and therefore defines a unique curve ϕX(·) = ϕXe (·) ◦ ϕ0 for any fixed
ϕ0 ∈ Ds(M).

In other words, given any ϕ0 ∈ Ds(M), there is a one-to-one correspondence

X(·)←→ ϕX(·)

between time-dependent vector fields X(·) ∈ L2(0, 1; Γs(TM)) and curves ϕ(·) ∈ H1(0, 1;Ds(M))
such that ϕ(0) = ϕ0.

2.2 Sub-Riemannian structure on Ds(M)

A sub-Riemannian manifold is usually defined as a triple (M,∆, h), where M is a manifold and
(∆, h) is a smooth Riemannian subbundle of the tangent space TM of M, called horizontal dis-
tribution, equipped with a Riemannian metric h.

Here, we keep the framework and notations of Section 2.1. We take M = Ds(M), and we
are going to define a (right-invariant) horizontal distribution on the manifold Ds(M), endowed
with a (right-invariant) Riemannian metric, that is, to define a (right-invariant) sub-Riemannian
structure on the infinite-dimensional manifold Ds(M).

To this aim, in what follows we are going to consider a subspace He of Γs(TM), consisting of
vector fields that may have more regularity than Hs. This subset of vector fields is not necessarily
closed. Indeed, in imaging problems the space He is often defined thanks to a heat kernel, as
a RKHS (see Remark 2), and then this set of analytic vector fields is a proper dense subset of
Γs(TM). We will provide examples hereafter.
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More precisely, let k ∈ N be arbitrary. Recall that we have assumed that s > d/2 + 1.
Throughout the paper, we consider an arbitrary subset He ⊂ Γs+k(TM), endowed with a Hilbert
product 〈·, ·〉 such that (He, 〈·, ·〉) has a continuous inclusion He ↪→ Γs+k(TM).

Definition 2. We consider the subbundle Hs of TDs(M) defined by Hsϕ = RϕHe = He ◦ ϕ for
every ϕ ∈ Ds(M), endowed with the (fibered) metric 〈X,Y 〉ϕ = 〈X ◦ϕ−1, Y ◦ϕ−1〉. This subbundle
induces a sub-Riemannian structure on Ds(M), that we refer to as the strong right-invariant sub-
Riemannian structure induced by He on Ds(M).

Note that the mapping (ϕ,X) 7→ X ◦ ϕ gives a parametrization of Hs by Ds(M)×He, which
is of class Ck.

If k > 1, then, for any integer s′ such that s < s′ 6 s + k, the restriction of Hs to Ds′(M)
coincides with Hs′ . In particular, for a fixed diffeomorphism ϕ ∈ Ds′(M), we have Hsϕ = Hs′ϕ =
He ◦ ϕ. Hence Hsϕ does not depend on s and we will simply write it as Hϕ.

Let us provide hereafter two typical and important examples of a subset He.

Example 1. The simplest example of a strong right-invariant sub-Riemannian structure on the
group of diffeomorphisms Ds(M) is obtained by taking He = Γs+k(TM) and 〈X,X〉 = |X|2s+k (as
defined by (1)). Then Hsϕ is the set of all X ∈ Hs(M,TM) such that X(x) ∈ Tϕ(x)M for every

x ∈M and X ◦ ϕ−1 ∈ Γs+k(TM).
For k = 0, we have Hsϕ = TϕDs(M) and we obtain a Riemannian structure on Ds(M). More-

over, using a careful computation and the change of variable x = ϕ(y) in the integral of (1), it can
be seen that the Riemannian structure is actually smooth, not just continuous.

Such metrics have been studied in [7, 10, 34], seen as “weak” Riemannian metrics on the group
of smooth diffeomorphisms (in contrast with “strong” metrics as in [14]).

For k > 1, He is a proper dense subset of Γs(TM).

Example 2. Let ∆ be a smooth subbundle of TM , endowed with the restriction of the metric g
to ∆. We define the space He =

{
X ∈ Γs+k(TM) | ∀x ∈M X(x) ∈ ∆x

}
of all horizontal vector

fields of class Hs+k. Then Hϕ is the set of all X ∈ Hs(M,TM) such that X(x) ∈ ∆ϕ(x) for every

x ∈M and X ◦ ϕ−1 ∈ Γs+k(TM).
If k = 0 then Hs is a closed subbundle of TDs(M), and hence it has a closed orthogonal

supplement. We can note that this specific situation enters into the framework studied in [25]
where partial results concerning the geodesic equations have been established.

If k > 1 then Hs is neither closed, nor dense in TDs(M).
Note that, although the parametrization (X,ϕ) 7→ X ◦ ϕ is only continuous, H is actually a

smooth subbundle of TDs(M) because the subbundle ∆ itself is smooth.
This example, where we design a sub-Riemannian structure on Ds(M) induced by a sub-

Riemannian structure on the finite-dimensional manifold M , has also been considered with s = +∞
in [29], where Moser theorems for horizontal flows have been derived (see also Section 5.3 for such
theorems), and in [12, 13] in order to handle corrupted data by means of hypoelliptic diffusions.

Note that, as we will see in Section 5, the case k = 0 in Example 2 is the only non-trivial case
on which (up to our knowledge) we have an exact reachability result.

These examples show that the parametrization (X,ϕ) 7→ X◦ϕ may not be the most appropriate
one in some particular situations. We will however keep this point of view throughout the paper,
so as to remain as general as possible.

Remark 1. In Definition 2, we consider “strong” sub-Riemannian structures. This is in contrast
with “weak” sub-Riemannian structures on Ds(M), for which the norm induced by 〈·, ·〉 on He
is not complete. Such weak structures allow to deal with more general metrics such as the one
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coming from the L2 inner product on vector fields, given by 〈X,Y 〉 =
∫
M
gx(X(x), Y (x)) dVolg(x).

When He is the set of volume-preserving vector fields, this metric induces a smooth Riemannian
metric on the group of volume-preserving diffeomorphisms of M , whose geodesics are the solutions
of the Euler equations on M (see [6, 20]).

Remark 2. Any Hilbert space He of vector fields of class at least Hs, with s > d/2, admits
a reproducing kernel [45, 46]. This means that the operator H∗e → He given by the inverse of
the isometry X 7→ 〈X, ·〉, is the convolution with a section K of the bundle L(T ∗M,TM) =
TM ⊗ TM →M ×M , called the reproducing kernel of He.

Any element P of the dual Γ−s(T ∗M) of Γs(TM) can be represented by a one-form with (dis-
tributional) coefficients of class H−s, so that P (X) =

∫
M
P (x)(X(x)) dx, for every X ∈ Γs(TM)

(the integral is computed in coordinates by means of a partition of unity). Such a P is called
a co-current. By restriction, any co-current P ∈ Γ−s(T ∗M) also belongs to the dual H∗e of He.
In particular, for any (x, p) ∈ T ∗M , the linear form p ⊗ δx : X 7→ p(X(x)) belongs to H∗e , and
the unique element Y such that 〈Y, ·〉 = p ⊗ δx on He is denoted by K(·, x)p. Then K(x, y)
is a linear mapping from T ∗yM to TxM , that is an element of TyM ⊗ TxM . Moreover, for ev-
ery co-current P ∈ Γ−s(T ∗M), the unique element Y such that 〈Y, ·〉 = P on He is given by
Y (x) =

∫
M
K(x, y)P (y) dVolg(y). In particular, K is of class at least Hs on M ×M .

We are now in a position to consider horizontal curves on Ds(M) for the strong right-invariant
sub-Riemannian structure induced by He (see Definition 2), and to define the corresponding con-
cept of sub-Riemannian distance.

2.3 Horizontal curves and end-point mapping

Recall that He has a continuous inclusion in Γs+k(TM), with k > 0 and s > d/2 + 1 integers.

Definition 3. An horizontal curve for the strong right-invariant sub-Riemannian structure induced
by (He, 〈·, ·〉) on Ds(M) is a curve ϕ(·) ∈ H1(0, 1;Ds(M)) such that ϕ̇(t) ∈ Hsϕ(t) for almost every

t ∈ [0, 1]. Equivalently, ϕ(·) is the right-translation of the flow of a time-dependent vector field
X(·) ∈ L2(0, 1;He).

For every ϕ0 ∈ Ds(M), we define Ωϕ0 as the set of all horizontal curves ϕ(·) ∈ H1(0, 1;Ds(M))
such that ϕ(0) = ϕ0. We define the mapping Φϕ0 : L2(0, 1;He) → Ωϕ0 by Φϕ0(X(·)) = ϕX(·),
where ϕX(·) is the unique solution of the Cauchy problem ϕ̇X(·) = X(·) ◦ ϕX(·), ϕX(0) = ϕ0. We
have Ωϕ0

= Φϕ0
(L2(0, 1;He)).

Lemma 1. We assume that k > 1. For every ϕ0 ∈ Ds(M), the mapping Φϕ0
: L2(0, 1;He)→ Ωϕ0

is a Ck diffeomorphism, and the set Ωϕ0
is a Ck submanifold of H1(0, 1;Ds(M)).

Proof. Using the correspondence ϕ(·)↔ X(·) described in Section 2.1 (for ϕ0 fixed), it suffices to
prove that the graph in H1(0, 1;Ds(M)) × L2(0, 1;He) of the Ck mapping X(·) 7→ ϕX(·) is a Ck
manifold, globally parametrized by X(·) 7→ (ϕX(·), X(·) ◦ ϕX(·)).

We denote by H1
ϕ0

(0, 1;Ds(M)) the set of ϕ(·) ∈ H1(0, 1;Ds(M)) such that ϕ(0) = ϕ0. We de-
fine H1

ϕ0
×L2(0, 1;TDs(M)) as the fiber bundle over H1

ϕ0
(0, 1;TDs(M)) defined by {(ϕ(·), δϕ(·)) ∈

H1
ϕ0

(0, 1;Ds(M)) × L2(0, 1;TDs(M)) | δϕ(t) ∈ Tϕ(t)Ds(M) for a.e. t ∈ [0, 1]}. We consider the
affine vector bundle morphism C : H1(0, 1;Ds(M))× L2(0, 1;He)→ H1

ϕ0
× L2(0, 1;TDs(M)) de-

fined by C(ϕ(·), X(·))(t) = ϕ̇(t) − X(t) ◦ ϕ(t). Then C is of class Ck and Ωϕ0 = C−1({0}). In
coordinates on Ds(M), we have ∂ϕC(ϕ(·), X(·)).δϕ(·) = δϕ̇(·) − d(X(·) ◦ ϕ(·)).δϕ(·), which is a
continuous linear differential operator of order one, and the linear Cauchy-Lipschitz theorem in
Banach spaces implies that it is an isomorphism. The lemma follows from the implicit function
theorem.
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We will often identify a horizontal curve ϕ(·) ∈ Ωϕ0
with its logarithmic velocity X(·) =

ϕ̇(·) ◦ ϕ(·)−1.

Definition 4. For every ϕ0 ∈ Ds(M), the end-point mapping endϕ0
: Ωϕ0

→ Ds(M) is defined
by endϕ0

(ϕ(·)) = ϕ(1), for every ϕ(·) ∈ Ωϕ0
.

The end-point mapping is of class Ck.

Definition 5. An horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M)) is said to be singular if the codimension
of Range(d endϕ0

(ϕ(·))) in Tϕ1
Ds(M) is positive.

Remark 3. An horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M)) is singular if and only if there exists
Pϕ1
∈ T ∗ϕ1

Ds(M) \ {0} such that (d endϕ0
(ϕ(·)))∗.Pϕ1

= 0.
Examples of singular curves of diffeomorphisms are provided in Section 4.2. We will see that

such curves can easily be built by considering a sub-Riemannian manifold M on which there exists
a nontrivial singular curve γ(·) (such manifolds do exist, see, e.g., [35]), and by taking He as the
set of horizontal vector fields of class Hs+k on M , as explained in Example 2. Then the flow
of any horizontal vector field X such that X ◦ γ(·) = γ̇(·) happens to be a singular curve of
diffeomorphisms.

Theorem 3 (further) will provide an Hamiltonian characterization of singular curves.

Given ϕ0 and ϕ1 in Ds(M), we consider the set Ωϕ0,ϕ1
= end−1

ϕ0
({ϕ1}) of horizontal curves

steering ϕ0 to ϕ1.

Remark 4. The set Ωϕ0,ϕ1
need not be a submanifold of Ωϕ0

, due to the fact that endϕ0
need not

be a submersion. In the finite-dimensional context, a singularity of this set is exactly a singular
curve, that is a critical point of the end-point mapping, or equivalently, the projection of an
abnormal extremal (see [15, 35]). In infinite dimension, the situation is more complicated because
of the possible existence of proper subsets that are dense. More precisely, since we are in infinite
dimension, either of the three following possibilities may occur:

1. Range(d endϕ0(ϕ(·))) = Tϕ1Ds(M);

2. the codimension of Range(d endϕ0(ϕ(·))) in Tϕ1Ds(M) is positive;

3. Range(d endϕ0(ϕ(·))) is a proper dense subset of Tϕ1Ds(M).

In finite dimension, only the first two possibilities occur. In the first case it is usually said that
ϕ(·) is regular, and in that case Ωϕ0,ϕ1 is, locally around ϕ(·), a submanifold of Ωϕ0 .

However, in the present infinite-dimensional framework, the first possibility never occurs. In-
deed, it is required that k > 1 for the end-point mapping to have a differential, and then we
have

Range(d endϕ0
(ϕ(·))) ⊂ Γs+1(TM) ◦ ϕ1  Tϕ1

Ds(M).

In particular, we have to deal with the third possibility. In the context of controlled partial
differential equations, this third possibility corresponds to a situation where the control system is
approximately controllable but not exactly controllable.

2.4 Sub-Riemannian distance and action

Definition 6. The sub-Riemannian length L(ϕ(·)) and the sub-Riemannian action A(ϕ(·)) of
an horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M)) with logarithmic velocity X(·) = ϕ̇(·) ◦ ϕ(·)−1 ∈
L2(0, 1;He) are respectively defined by

L(ϕ(·)) =

∫ 1

0

√
〈X(t), X(t)〉dt and A(ϕ(·)) =

1

2

∫ 1

0

〈X(t), X(t)〉dt.
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The sub-Riemannian distance dSR between two elements ϕ0 and ϕ1 of Ds(M) is defined as the
infimum of the length of horizontal curves steering ϕ0 to ϕ1, with the agreement that dSR(ϕ0, ϕ1) =
+∞ whenever there is no horizontal curve steering ϕ0 to ϕ1.

An horizontal curve ϕ(·) : [0, 1]→ Ds(M) is said to be minimizing if dSR(ϕ(0), ϕ(1)) = L(ϕ(·)).

We have dSR(ϕ0, ϕ1) = dSR(e, ϕ1 ◦ ϕ−1
0 ), that is, dSR is right-invariant. Concatenation and

time-reversals of horizontal curves are horizontal as well, hence dSR is at least a semi-distance,
and the subset {ϕ1 ∈ Ds(M) | dSR(e, ϕ1) <∞} is a subgroup of Ds(M) that depends only on the
space He itself (i.e., for fixed He, it does not depend on s as long as He ⊂ Γs(TM)). It is proved in
Theorem 1 below that dSR is a distance. Moreover, it follows from the Cauchy-Schwarz inequality
that L2 6 2A, and therefore dSR(ϕ0, ϕ1) is equal to

√
2 times the infimum of the square root of

the action over all horizontal curves steering ϕ0 to ϕ1. Therefore, as in classical finite-dimensional
sub-Riemannian geometry, minimizing the length over horizontal curves between two end-points
is equivalent to minimizing the action over this set.

Theorem 1. The sub-Riemannian distance dSR is indeed a distance (taking its values in [0,+∞]),
that is, dSR(ϕ0, ϕ1) = 0 implies ϕ0 = ϕ1. Moreover, any two elements ϕ0 and ϕ1 of Ds(M) with
dSR(ϕ0, ϕ1) < +∞ can be connected by a minimizing horizontal curve, and (Ds(M), dSR) is a
complete metric space.

Proof. The proof follows, in the context of sub-Riemannian geometry, some arguments of [42].
Firstly, in order to prove that dSR(ϕ0, ϕ1) = 0 implies ϕ0 = ϕ1, since dSR is right-invariant, it

suffices to prove that ϕ1 6= e implies dSR(e, ϕ1) > 0. Let ϕ(·) ∈ Ωe be an horizontal curve such
that ϕ(0) = e and ϕ(1) = ϕ1 6= e, and let X(·) be its logarithmic velocity. Let x ∈ M such that
ϕ1(x) 6= x. Setting x(t) = ϕ(t, x), we have ẋ(t) = X(t, x(t)), and then, 0 < dM (x, ϕ1(x))2 6∫ 1

0
gx(t)(X(t, x(t)), X(t, x(t))) dt, where dM is the Riemannian distance on M . Since there exist

positive constants C1 and C2 such that gy(Y (y), Y (y)) 6 C1|Y |2s 6 C2〈Y, Y 〉, for every y ∈ M

and for every Y ∈ He, it follows that 0 < dM (x, ϕ1(x))2 6 C2

∫ 1

0
〈X(t), X(t)〉dt = 2C2A(ϕ(·)).

Since this inequality is true for every horizontal curve ϕ(·) steering e to ϕ1, we get that 0 <
dM (x, ϕ1(x)) 6 dSR(e, ϕ1) (note by the way that this inequality holds true for every x ∈M).

Secondly, since the structure is right-invariant, it suffices to prove that any ϕ1 ∈ Ds(M) such
that dSR(e, ϕ1) < ∞ can be reached from e by a minimizing horizontal curve. In order to prove
this fact, we use the following lemma, which itself mainly follows from the Sobolev embedding
theorem (see [5] for the proof).

Lemma 2. Let (Xn(·))n∈N be a bounded sequence of L2(0, 1;He), consisting of logarithmic ve-
locities of horizontal curves (ϕn(·))n∈N such that ϕn(0) = e = idM . Then, there exist X̄(·) ∈
L2(0, 1;He), corresponding to the horizontal curve ϕ̄(·), and an increasing sequence (nj)j∈N of
integers such that (Xnj (·))j∈N converges weakly to X̄(·) as j tends to +∞, and such that

sup
t∈[0,1]

dHs+k−1(U,M)(ϕ
nj (t), ϕ̄(t))→ 0,

as j tends to +∞, for every compact subset U of M .

Let (Xn(·))n∈N be a minimizing sequence of L2(0, 1;He), associated with horizontal curves
(ϕn(·))n∈N, for the problem of minimizing the action over all horizontal curves steering e to ϕ1. By
Lemma 2, up to some subsequence, the sequence (Xn(·))n∈N converges weakly to X̄(·), associated
with an horizontal curve ϕ̄(·) such that ϕ̄(1) = ϕ1 (note that s + k − 1 > d/2). Hence ϕ̄(·) is an
horizontal curve steering e to ϕ1, and by lower semi-continuity of the action, we have A(ϕ̄(·)) =
1
2

∫ 1

0
〈X̄(t), X̄(t)〉dt 6 lim infn

1
2

∫ 1

0
〈Xn(t), Xn(t)〉dt, and hence ϕ̄(·) is a minimizing horizontal

curve steering e to ϕ1.
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Let us finally prove that (Ds(M), dSR) is complete. Let (ϕn1 )n∈N be a Cauchy sequence of
Ds(M). Then (ϕn1 )n∈N is a Cauchy sequence as well in C0(M,M) for the metric topology of
uniform convergence on compact subsets, which is complete, and therefore converges to some
ϕ̄1 ∈ C0(M,M). To conclude, it suffices to prove that ϕ̄1 ∈ Ds(M) and that dSR(ϕn1 , ϕ̄1) → 0 as
n→ +∞.

For every integer m > n, let Xn,m(·) be the logarithmic velocity of a minimizing horizontal
curve ϕn,m(·) steering ϕn1 to ϕm1 . For every n, the sequence (Xn,m(·))m>n (indexed by m) is
bounded in L2(0, 1;He), and hence from Lemma 2, up to some subsequence it converges weakly to
some X̄n(·) ∈ L2(0, 1;He), which is the logarithmic velocity of an horizontal curve ϕ̄n(·). Moreover
ϕm1 = ϕn,m(1)→ ϕ̄n(1) in C0(M,M) as m→ +∞. But since ϕm1 → ϕ̄1, it follows that ϕ̄n(1) = ϕ̄1.
In particular, ϕ̄1 ∈ Ds(M) and ϕ̄n1 (·) is an horizontal curve steering ϕn1 to ϕ̄1. By weak convergence
of Xn,m(·) to X̄n(·) as m→ +∞, and by lower semi-continuity, we infer that

dSR(ϕ̄1, ϕ
n
1 )2 6 2A(ϕ̄n(·)) =

∫ 1

0

〈X̄n(t), X̄n(t)〉dt

6 lim inf
m→∞

∫ 1

0

〈Xn,m(t), Xn,m(t)〉dt = lim inf
m→∞

2A(ϕn,m(·)) = lim inf
k→∞

dSR(ϕn1 , ϕ
m
1 )2.

The equality in the last part is due to the fact that ϕn,m(·) is a minimizing horizontal curve steering
ϕn1 to ϕm1 . Since (ϕn1 )n∈N is a Cauchy sequence, the right-hand side of the above inequality tends
to 0 as n→ +∞, and hence dSR(ϕ̄1, ϕ

n
1 )→ 0 as n→ +∞.

Remark 5. The topology defined by dSR is always finer or as coarse as the manifold topology
of Ds(M). Indeed, C ′|X|s 6 〈X,X〉 implies that dSR is greater than C ′ multiplied by the strong
Riemannian distance induced by the structure described in Example 1 with k = 0. But it was
proved in [14] that this last metric induces the intrinsic manifold topology on Ds(M).

3 Geodesics on Ds(M)

We keep the framework and notations used in the previous sections.

Definition 7. A geodesic ϕ(·) ∈ H1(0, 1;Ds(M)) is an horizontal curve which is a critical point of
the action mapping A restricted to Ωϕ(0),ϕ(1). In other words, for any C1 family of horizontal curves
s ∈ (−ε, ε) 7→ ϕs(·) ∈ Ωϕ(0),ϕ(1), with ε > 0 and ϕ0(·) = ϕ(·), we have dA(ϕ(·)).∂sϕs(·)|s=0 = 0.
With a slight abuse of notation, we will denote by Tϕ(·)Ωϕ(0),ϕ(1) the set of all such infinitesimal
variations ∂sϕ

s(·)|s=0.
A geodesic ϕ(·) is said to be minimizing if L(ϕ(·)) = dSR(ϕ(0), ϕ(1)).

Note that, obviously, any minimizing horizontal curve is a geodesic.

3.1 Preliminary discussion: Lagrange multipliers

In finite dimension, the critical point property usually leads to a Lagrange multipliers relation,
which provides a first-order necessary condition for optimality, itself allowing us to derive Hamil-
tonian geodesic equations. Here, since we are in infinite dimension, the situation is more complex
and we do not have necessarily a nontrivial Lagrange multiplier. Let us be more precise with this
important difficulty, because it justifies the point of view that we are going to adopt in the sequel.
The discussion goes as follows.

Let ϕ(·) ∈ H1(0, 1;Ds(M)) be a minimizing horizontal curve steering ϕ0 ∈ Ds(M) to ϕ1 ∈
Ds(M). Then ϕ(·) is a geodesic, that is, a critical point of the action A restricted to Ωϕ0,ϕ1

=
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end−1
ϕ0

({ϕ1}). Defining the mapping Eϕ0
: L2(0, 1;He) → Ωϕ0

→ Ds(M) by the composition
Eϕ0

= endϕ0
◦ Φϕ0

, and defining the mapping Fϕ0
: L2(0, 1;He)→ Ds(M)× R by

Fϕ0
(X(·)) = (Eϕ0

(X(·)), A(Φϕ0
(X(·)))) = (endϕ0

(ϕX(·)), A(ϕX(·))),

it follows that the logarithmic velocity X(·) of ϕ(·) is a critical point of Fϕ0
; or, in other words,

the differential dFϕ0(X(·)) is not surjective, that is, Range(dFϕ0(X(·))) is a proper subset of
Tϕ1Ds(M)× R. Then, there are two possible cases:

1. either the codimension of Range(dFϕ0
(X(·))) in Tϕ1

Ds(M)×R is positive, which is equivalent
to the fact that ker((dFϕ0(X(·)))∗) 6= {0},

2. or the space Range(dFϕ0(X(·))) is dense in Tϕ1Ds(M) × R, which is equivalent to the fact
that ker((dFϕ0(X(·)))∗) = {0}.

The first case means that we have a nontrivial Lagrange multiplier, and the second case means that
there does not exist any nontrivial Lagrange multiplier. Note that the second case can never occur
in finite dimension. Here, since we are in infinite dimension, we have to face with this additional
difficulty.

Since dΦϕ0
: L2(0, 1;He) → Tϕ(·)Ωϕ0

is an isomorphism, it follows that, for the geodesic
ϕ(·) = ϕX(·), there are two possible issues:

1. There exists (Pϕ1
, p0) ∈ T ∗ϕ1

Ds(M)× R \ {(0, 0)} such that

(d endϕ0
(ϕ(·)))∗.Pϕ1

+ p0dA(ϕ(·)) = 0. (2)

This is a Lagrange multipliers relation. In finite dimension, only this first possibility does
occur, and leads to the Pontryagin maximum principle (see, e.g., [41] for this point of view).
Note that the Lagrange multiplier (Pϕ1

, p0) is defined up to some multiplying scalar, and
usually it is normalized by distinguishing between two subcases:

(a) Normal case: p0 6= 0. In that case, we normalize the Lagrange multiplier so that
p0 = −1. Then (2) implies that dA(ϕ(·)) = (d endϕ0(ϕ(·)))∗.Pϕ1 , and in that case we
will then derive the so-called normal geodesic equations.

(b) Abnormal case: p0 = 0. In that case, (2) implies that (d endϕ0(ϕ(·)))∗.Pϕ1 = 0 (and
for instance we can normalize the Lagrange multiplier by normalizing Pϕ1

). This is
equivalent to saying that the corank of d endϕ0

(ϕ(·)) is positive: in other words, ac-
cording to Definition 5, ϕ(·) is a singular curve. In that case, we will then derive the
co-called abnormal geodesic equations, which are the Hamiltonian characterization of
singular curves.

Remark 6. If ϕ(·) is a singular curve, then there exists Pϕ1 ∈ T ∗ϕ1
Ds(M)\{0} such that

(d endϕ0
(ϕ(·)))∗.Pϕ1

= 0. In other words, there exists an abnormal Lagrange multiplier.
This Lagrange multiplier is not necessarily unique (up to some multiplying scalar), and
the dimension of the space of such Lagrange multipliers is usually called the corank
of the singular curve (see [15, 16] where generic properties are established for singular
curves in finite dimension).

2. The mapping (dFϕ0(X(·)))∗ is injective, that is, if we have (2) for some (Pϕ1 , p
0) ∈ T ∗ϕ1

Ds(M),
then (Pϕ1 , p

0) = (0, 0).

This case is peculiar to the infinite-dimensional setting, and can never occur in finite dimen-
sion. In that case a necessary condition for optimality in the form of a Pontryagin maximum
principle cannot be derived (see [32, Chapter 4]). This leads us to state the following defini-
tion.
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Definition 8. A geodesic ϕ(·) ∈ H1(0, 1;Ds(M)) is said to be elusive whenever the mapping
(dFϕ0

(X(·)))∗ is injective.

In what follows, we are going to state a Pontryagin maximum principle for non-elusive geodesics
(that is, for the first case of the above discussion), and derive the normal and abnormal geodesic
equations.

Remark 7. The concept of elusive geodesic is new, and is specific to the infinite dimension. What
is important to understand is that elusive geodesics escape to the dual analysis in terms of Lagrange
multipliers, due to the topology of the ambient space.

As it follows from the definition of an elusive curve, a Lagrange multiplier cannot exist because,
although the mapping dFϕ0(X(·)) is not surjective, its range is however dense in the target space
Tϕ1Ds(M)×R. This difficulty, which is specific to the infinite-dimensional setting, is actually well
known in constrained optimization. In [31] the author provided some weak regularity conditions
under which the existence of Lagrange multipliers can be established for a general nonlinear pro-
gramming problem. He showed that the topology of the target space plays an important role, and
he established a connection between the choice of suitable function spaces and the existence of
Lagrange multipliers.

Before commenting on this choice, let us first provide an easy way to exhibit elusive geodesics.
The idea relies on the fact that He is not closed in Γs(TM) = TeDs(M), which results in “missing”
some initial momenta. For example, if ϕ0 = e and if k > 3, then restricting Hs to Ds+1(M) gives
new initial momenta P0, namely, those belonging to Γ−s−1(T ∗M) \ Γ−s(T ∗M) (where Γ−s(T ∗M)
is the dual of Γs(TM) = TeDs(M)).

Based on this idea, the method to exhibit elusive geodesics consists of “decreasing the or-
der” of the cotangent space, in the following sense. The Hilbert space (He, 〈·, ·〉), with He =
Γs+3(TM), induces a right-invariant sub-Riemannian structure on Ds+1(M). Anticipating a bit,
let t 7→ (ϕ(t), P (t)) be a normal geodesic on T ∗Ds+1(M) with ϕ(0) = e and P (0) ∈ Γ−s−1(T ∗M)\
Γ−s(T ∗M). Then, we claim that ϕ(·) is an elusive horizontal curve for the sub-Riemannian struc-
ture induced by (He, 〈·, ·〉) on Ds(M).

Indeed, it is clear that horizontal curves starting at e coincide for both structures. Let us prove
that ϕ(·) can have neither a normal nor an abnormal Lagrange multiplier, in the sub-Riemannian
structure on Ds(M). If there would exist a normal Lagrange multiplier, then the corresponding
initial momentum P ′(0) ∈ Γ−s(T ∗M) would satisfy P (0) = P ′(0) on He = Γs+3(TM) which is
dense in Γs(TM), and we would have P ′(0) = P (0), which is impossible. There cannot exist an
abnormal Lagrange multiplier, because the range of d ende(ϕ(·)) contains Hϕ(1) = Tϕ1

Ds+3(M),
which is dense in Tϕ1Ds(M). This proves the claim.

Conversely, we can get new normal geodesics for a right-invariant sub-Riemannian structure on
Ds(M) induced by a Hilbert subspace of vector fields with continuous inclusion in Γs+3(TM), by
restricting it to Ds+1(M), adding extra initial momenta by increasing the order of the cotangent
bundle. In such a way, some elusive geodesics become normal geodesics. Note that it may happen
that some elusive geodesics become abnormal curves because of the increased range in the choice
of momenta. However, note also that this simple process does not turn every elusive geodesic into
either a normal or an abnormal geodesic.

We conclude that, in accordance with [31], the choice of the cotangent space (and thus, the
choice of the topology of the target space) is important. The stronger is the topology in the
target space, and the larger is the dual, but then the Lagrange multipliers become more and more
irregular. It is therefore reasonable to avoid choosing a too strong topology in the target space.

In our setting there does not seem to exist a best possible choice for the cotangent bundle
(better in the sense that, by adding new possibilities for the initial momenta, we would turn every
possible elusive geodesic into either a normal or an abnormal geodesic). The question of finding
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a “good” space of initial or final momenta (implying the absence of elusive geodesics) is open
and seems quite difficult.1 For instance, the authors found examples of Hilbert Lie groups (more
precisely, `2(N,R4), with R4 equipped with the Engel group structure) for which the natural space
of momenta is not even locally convex.

Following this preliminary discussion, we are now going to derive the normal and abnormal
geodesic equations, which are Hamiltonian characterizations of non-elusive geodesics. We stress
again that, in general, no such Hamiltonian characterization can be derived for an elusive geodesic.

We will prove that any solution of the normal geodesic Hamiltonian equations, if it is well
defined on [0, 1], projects onto a geodesic (critical point of the action). Therefore, instead of giving
necessary conditions to minimize the action, we are rather going to provide sufficient conditions
under which we have a non-elusive geodesic.

Hereafter, we first establish the normal geodesic equations, then the abnormal geodesic equa-
tions, and we finally provide necessary conditions for optimality. The three theorems are then
proved together.

3.2 Normal geodesic equations

Let KHe : H∗e → He be the inverse of the operator X 7→ 〈X, ·〉. By analogy with the classical
Riemannian case, we call this operator the sub-musical isomorphism. We define the Ck vector
bundle morphism KHϕ : T ∗ϕDs(M)→ TϕDs(M) by KHϕ = dRϕKHe dR∗ϕ for every ϕ ∈ Ds(M).

Definition 9. We define the normal Hamiltonian h : T ∗Ds(M)→ R by

h(ϕ, P ) =
1

2
P (KHϕP ), (3)

for every (ϕ, P ) ∈ T ∗Ds(M).

The expression (3) means that, as in classical sub-Riemannian geometry (see [35]), h(ϕ, P ) is
the squared norm of P for the cometric induced on T ∗Ds(M) by the sub-Riemannian structure.
This is the usual way to define the normal Hamiltonian.

In canonical coordinates, we have KHϕP = X(ϕ, P ) ◦ ϕ, with X(ϕ, P ) = KHe(dRϕ)∗.P , and
hence

h(ϕ, P ) =
1

2
P (X(ϕ, P ) ◦ ϕ) =

1

2
〈X(ϕ, P ), X(ϕ, P )〉.

Note that (ϕ, P ) 7→ X(ϕ, P ) is of class Ck.
Denoting by ω the canonical strong symplectic form on T ∗Ds(M), the symplectic gradient∇ωh :

T ∗Ds(M)→ TT ∗Ds(M) of h (which is of class Ck−1) is defined by the relation dh = ω(∇ωh, ·). In
canonical coordinates, we have ∇ωh = (∂Ph,−∂ϕh), where ∂Ph ∈ T ∗∗ϕ Ds(M) = TϕDs(M) thanks
to the natural isomorphism between a Hilbert space and its bidual space, and we have

∇ωh(ϕ, P ) =
(
KHϕP,−(∂ϕKHϕP )∗.P

)
= (X(ϕ, P ) ◦ ϕ,−(∂ϕ(X(ϕ, P ) ◦ ϕ))∗.P ).

1Note that these difficulties are also due to the fact that the sub-Riemannian problem consists of minimizing the
action A(ϕ(·)) over all horizontal curves ϕ(·) such that endϕ0 (ϕ(·)) = ϕ1, that is, of minimizing a functional under an
infinite number of constraints. Assume that, instead, we consider the problem of minimizing the penalized functional
J(X(·)) =

∫ 1
0 〈X(t), X(t)〉dt+G(endϕ0 (ϕX(·))). If G is C1 and bounded below, then this (unconstrained) penalized

problem has at least one solution X(·), and there exists a momentum mapping t 7→ P (t) such that P (1)+dGϕ(1) = 0
and such that (ϕ(·), P (·)) is solution of the normal geodesic Hamiltonian geodesic equations (4). This claim follows
from an easy adaptation of the proofs of the results in the present paper (see also [5]). This framework can be used
in order to “approach” a target diffeomorphism ϕ1 with an horizontal curve, by choosing a penalization function G.
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Theorem 2. We assume that k > 2. Then the symplectic gradient of h is of class Ck−1 and admits
a global flow: for every ϕ0 ∈ Ds(M) and every P0 ∈ T ∗ϕ0

Ds(M), there is a unique global solution
(ϕ(·), P (·)) : R→ T ∗Ds(M) (meaning that P (t) ∈ T ∗ϕ(t)D

s(M) for every t) of

(ϕ̇(t), Ṗ (t)) = ∇ωh(ϕ(t), P (t)), t ∈ R, (4)

and such that (ϕ(0), P (0)) = (ϕ0, P0). This global flow is of class H1 with respect to t, and of class
Ck−1 with respect to the initial conditions (ϕ0, P0). Moreover, ϕ(·) is a geodesic on any sub-interval
of R, which implies that the norm of its logarithmic velocity is constant.

Definition 10. In the conditions of Theorem 2, ϕ(·) is said to be a normal geodesic, the couple
(ϕ(·), P (·)) is said to be a normal extremal lift of ϕ(·), and P (·) is called a covector.

Theorem 2 says that, if k > 2, then Ds(M) admits a global normal geodesic flow, of class H1

in time and Ck−1 in the initial conditions. Note that, since h is of class Ck, it is already clear that
∇ωh is of class Ck−1 and thus admits a unique maximal flow. The fact that integral curves of ∇ωh
project onto geodesics will be proved in Section 3.6, and the global property of the flow will be
proved thanks to the momentum formulation stated in Section 3.5.

Remark 8. In canonical coordinates, the normal geodesic equations (4) are written as

ϕ̇(t) = KHϕ(t)
P (t), Ṗ (t) = −(∂ϕKHϕ(t)

P (t))∗.P (t).

Note that, if K is the reproducing kernel associated with He (see Remark 2), then we have

∂tϕ(t, x) =

∫
M

K(ϕ(t, x), ϕ(t, y))P (t, y) dyg,

∂tP (t, x) = −P (t, x)

∫
M

∂1K(ϕ(t, x), ϕ(t, y))P (t, y) dyg,

for every x ∈M .
Note that these equations are not partial differential equations or integro-differential equations.

They are ordinary differential equations whose terms are C1 and non-local. The main interest of
this formulation is that the geodesic equations are completely explicit, and can be implemented
numerically with relative ease and efficiency. The computation of the reproducing kernel of He,
which is no easy task, is not required. However, in many cases, particularly in shape analysis, He
is not given explicitly: instead, it is defined through an explicit kernel, which simplifies matters
greatly (see [5, 45, 46] and Section 4).

Remark 9. According to the notations above, the logarithmic velocity of a normal geodesic ϕ(·)
is given by

X(·) = X(ϕ(·), P (·)) = KHe(dRϕ(·))
∗.P (·).

Remark 10. If He has a continuous inclusion in Γs(TM) for every s ∈ N (which implies that He
has a continuous injection in the Fréchet space of smooth vector fields), then, since any compactly
supported co-current P (that is, any one-form with distributional coefficients) belongs to Γ−s(T ∗M)
for some s ∈ N, it follows that any such P generates a locally minimizing normal geodesic starting at
e. Therefore, the Fréchet Lie group D∞(M) = ∩s>d/2+1Ds(M) inherits of a strong right-invariant
sub-Riemannian structure.
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3.3 Abnormal geodesic equations

The abnormal geodesic equations actually provide as well a Hamiltonian characterization of singular
curves.

Definition 11. We define the abnormal Hamiltonian H0 : T ∗Ds(M)×He → R by

H0(ϕ, P,X) = P (X ◦ ϕ) = P (dRϕ.X).

Since X is of class Hs+k, it follows that H0 is of class Ck. We have ∂XH
0(ϕ, P,X) = (dRϕ)∗.P ,

where the partial derivative ∂XH
0 : T ∗Ds(M) × He → H∗e is understood as a partial derivative

along the fibers of a vector bundle. The symplectic gradient ∇ωH0 : T ∗Ds(M)×He → TT ∗Ds(M)
of H0, defined by the relation dH0 = ω(∇ωH0, ·), is given in canonical coordinates (ϕ, P ) on
T ∗Ds(M) by ∇ωH0(ϕ, P,X) = (X ◦ ϕ,−(∂ϕ(X ◦ ϕ))∗.P ).

Theorem 3. We assume that k > 2. Let ϕ(·) ∈ H1(0, 1;Ds(M)) be an horizontal curve with
logarithmic velocity X(·) = ϕ̇(·) ◦ ϕ(·)−1. Then ϕ(·) is a singular curve if and only if there exists
a mapping P (·) on [0, 1], of class H1 in time, such that P (t) ∈ T ∗ϕ(t)D

s(M) \ {0} and

(ϕ̇(t), Ṗ (t)) = ∇ωH0(ϕ(t), P (t), X(t)), (5)

∂XH
0(ϕ(t), P (t), X(t)) = (dRϕ(t))

∗.P (t) = 0, (6)

for almost every t ∈ [0, 1].

Definition 12. In the conditions of Theorem 3, the couple (ϕ(·), P (·)) is said to be an abnormal
lift of the singular curve ϕ(·), and P (·) is said to be a singular covector.

3.4 Necessary conditions for optimality

The following result is an extension of the usual Pontryagin maximum principle (see [38]) to our
specific infinite-dimensional setting.

Theorem 4. We assume that k > 1. Let ϕ(·) ∈ H1(0, 1;Ds(M)) be a minimizing horizontal curve
with logarithmic velocity X(·) = ϕ̇(·) ◦ ϕ(·)−1. Then ϕ(·) is a geodesic, and:

• either ϕ(·) is a normal geodesic, and in that case, it is the projection onto Ds(M) of a normal
extremal lift (ϕ(·), P (·)) on [0, 1] (satisfying (4) on [0, 1]);

• or ϕ(·) is a singular curve, and in that case, it is the projection onto Ds(M) of an abnormal
extremal lift (ϕ(·), P (·)) on [0, 1] (satisfying (5)-(6) almost everywhere on [0, 1]);

• or ϕ(·) is elusive.

Remark 11. In finite dimension, it has been established in [39] and in [1] that the set of end-points
of normal geodesics is an open dense subset of the ambient manifold. Although such a result is not
established in our infinite-dimensional context (it is all the more difficult than one has also to deal
with elusive curves), it is however expected that, in some appropriate sense, the ”generic” case of
the above theorem is the first one (normal geodesics).

Besides, it has been established in [15, 16] that, in finite-dimensional sub-Riemannian geometry,
for generic (in a strong Whitney sense) horizontal distributions of rank greater than or equal to
three, any singular curve cannot be minimizing. Although such a result seems currently out of reach
in our infinite-dimensional setting, we do expect that, since our distribution is infinite-dimensional,
there is no minimizing singular curve for generic distributions.
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3.5 Momentum formulation: sub-Riemannian Euler-Arnol’d equation

Before stating the momentum formulation of the sub-Riemannian geodesic equations, we recall a
few notions.

Push-forward and pull-back. For Y ∈ Γs(TM) and ϕ ∈ Ds+1(M), we define the push-forward
of Y by ϕ by

ϕ∗Y = (dϕ.Y ) ◦ ϕ−1 ∈ Γs(TM).

The pull-back of Y by ϕ is then defined by ϕ∗Y = (ϕ−1)∗Y . It is well-known that, when Y is of
class Hs+1, and for X ∈ Γs+1(TM), we have

d

dt
(ϕX(t)∗Y )|t=0 = [Y,X] = −[X,Y ] ∈ Γs(TM),

where [X,Y ] = XY − Y X = dY.X − dX.Y is the usual Lie bracket between two vector fields on
M .

Remark 12. Note that we have ϕ∗Y = d(Lϕ ◦Rϕ−1)(e).Y, which, keeping the Lie group analogy
in mind, can also be denoted Adϕ(Y ) [33]. This leads us to introduce the adjoint representation
adX : Γs+1(TM)→ Γs(TM) of a vector field X ∈ Γs+1(TM) by

adXY =
d

dt
(ϕX(t)∗Y )|t=0 = −[X,Y ].

See [21, 30, 40] for more details.

Now for µ ∈ Γ−s(T ∗M) ' Γs(TM)∗, we define the pull-back of µ by ϕ by the dual formula

ϕ∗µ(Y ) = µ(ϕ∗Y ).

The push-forward ϕ∗µ of µ by ϕ is, of course, given by (ϕ−1)∗µ.
The Lie derivative of µ with respect to X ∈ Γs+1(TM) is then given by

LXµ(Y ) =
d

dt
(ϕX(t)∗µ(Y ))|t=0 = µ

(
d

dt
(ϕX(t)∗Y )|t=0

)
= −µ([X,Y ]) = ad∗Xµ(Y ).

Note that Y needs to belong to Γs+1(TM) in this formula, so LX is an operator Γ−s(T ∗M) →
Γ−s−1(T ∗M).

Momentum formulation. We now define the momentum map µ : T ∗Ds(M)→ Γ−s(T ∗M) by
µ(ϕ, P ) = (dRϕ(e))∗.P .

Proposition 1. We assume that k > 1. Let ϕ(·) ∈ H1(0, 1;Ds(M)) be either a normal geodesic
or a singular curve, with logarithmic velocity X(·) ∈ L2(0, 1;He). Let (ϕ(·), P (·)) be an extremal
lift (either normal or abnormal) of ϕ(·). We denote by µ(t) = µ(ϕ(t), P (t)) the corresponding
momentum along the extremal, which is continuous in time.

Then the curve µ(·) has Sobolev class H1 in the coarser space Γ−s−1(T ∗M), with derivative
given almost everywhere by

µ̇(t) = −ad∗X(t)µ(t) = −LX(t)µ(t), (7)

for almost every t ∈ [0, 1]. As a consequence, we have

µ(t) = ϕ(t)∗µ(0),

for every t ∈ [0, 1].
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Proof. Let Y ∈ Γs+1(TM) ⊂ Γs(TM) and let t ∈ [0, 1]. Then, in canonical coordinates, we have

µ(t)(Y ) = P (t)(Y ◦ ϕ(t)) = P (0)(Y ) +

∫ t

0

(
P (τ)(dY ◦ ϕ(τ).X ◦ ϕ(τ)) + Ṗ (τ)(Y ◦ ϕ(τ))

)
dτ.

Since the derivative of the covector is given, in both normal and singular cases, by

Ṗ (τ)(Y ◦ ϕ(τ)) = −P (τ)(∂ϕ(X(τ) ◦ ϕ(τ)).Y ◦ ϕ(τ)) = −P (τ)((dX(τ).Y ) ◦ ϕ(τ)),

for every τ ∈ [0, t], we infer that

µ(t)(Y ) = P (0)(Y ) +

∫ t

0

(P ((dY.X(τ)− dX(τ).Y ) ◦ ϕ)) dτ

= µ(0)(Y ) +

∫ t

0

P (τ)([X(τ), Y ] ◦ ϕ(τ)) dτ

= µ(0)(Y ) +

∫ t

0

µ(τ)([X(τ), Y ]) dτ

= µ(0)(Y )−
∫ t

0

ad∗X(τ)µ(τ)(Y ) dτ.

Note that t 7→ ad∗X(t)µ(t) belongs to L2(0, 1; Γ−s−1(T ∗M)). Indeed, the Lie bracket of vector fields

yields a continuous bilinear mapping (Γs+1(TM))2 → Γs(TM), and thus

|ad∗X(t)µ(t)(Y )|2 6 C

(
max
t∈[0,1]

|µ(t)|−s
)2√

〈X,X〉|Y |2s+1.

Here, the notation | · |−s stands for the usual operator norm on the dual space Γ−s(T ∗M) =
(Γs(TM))∗.

Since k > 1 and ϕ(·) is horizontal, we have ϕ(τ) ∈ Ds+1(M) for every τ ∈ [0, t], hence, from
the above equation, we easily infer that µ(t) = ϕ(t)∗µ(0) on Γs+1(TM), which is dense in Γs(TM).
The proposition follows.

Remark 13. Since k > 1, any normal geodesic ϕ(·) is of class C1. Moreover, X(t) = KHeµ(t) and
we recover the classical formula for critical points of the action on Lie groups (see [27, 33])

µ̇(t) = −ad∗KHeµ(t)µ(t).

The differential equation (7) is the generalization of the famous Euler-Arnol’d equation to our
sub-Riemannian setting.

It can be noted that, in the Riemannian case, and for smooth vector fields, we have KHead∗X =
adTXKHe , and it follows that the above equation is equivalent to

Ẋ(t) = −adTX(t)X(t), (8)

where adTX is the transpose of the operator adX with respect to the Hilbert product 〈·, ·〉. As is well
known, we then obtain the Euler equation for the weak L2 metric (see [6, 20]) on vector fields with
divergence zero, and with other metrics we obtain other equations, such as KdV, Camassa-Holm
(see the survey paper [8]). Let us note that, if M = Rd, then (7) is equivalent to

∂tµ(t) = −(X(t).∇)µ(t)− (div(X(t))µ(t)− (dX(t))∗µ(t),
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which has the same form as that of the usual EPDiff equation. In some sense, the differential
equation (8) is the version on the tangent space of the differential equation (7), which lives on the
cotangent space.

In the sub-Riemannian framework of the present paper, we cannot write the differential equation
(8) on the tangent space, because He is usually not a subspace of Γs(TM) that is invariant under
adX (and then, we do not have KHead∗X = adTXKHe). This same restriction already appears in
the finite-dimensional setting where the geodesic equations can only be written in the cotangent
space, but not in the tangent space.

Because of the loss of a derivative, it is harder to prove the existence of solutions of the
differential equation µ̇ = −ad∗KHeµµ without using Theorem 2. On the other hand, once the
existence and uniqueness of the geodesic flow is ensured, the momentum formulation can be used
to find various quantities conserved by the geodesic flow. For example, we have the following result.

Corollary 1. In the context of Proposition 1, the support of P (·), and its order of regularity2 up
to Sobolev class Hs+k−1, are preserved on [0, 1].

Proof. This is an immediate consequence of the formula µ(t) = ϕ(t)∗µ(0), using the fact that
ϕ(t) ∈ Ds+k(M) as a flow of vector fields of class Hs+k. Hence, the order of regularity of µ up to
Sobolev class Hs+k is obviously constant along the curve, and the support of µ(t) is the image by
ϕ(t) of the support of µ(0). Using P = (dRϕ)∗µ, the result follows.

3.6 Proof of Theorems 2, 3 and 4

Let us first compute the adjoint of the derivative of the end-point mapping.

Lemma 3. Let ϕ(·) ∈ Ωϕ0
be an horizontal curve with logarithmic velocity X(·) = ϕ̇(·) ◦ ϕ(·)−1.

We set ϕ1 = ϕ(1) = endϕ0
(ϕ(·)). For every Pϕ1

∈ T ∗ϕ1
Ds(M), the pull-back (d endϕ0

(ϕ(·)))∗.Pϕ1

of Pϕ1 by d endϕ0(ϕ(·)) is a continuous linear form on L2(0, 1;He), and can therefore be identified
to an element of L2(0, 1;He)∗ = L2(0, 1;H∗e), given by

((d endϕ0(ϕ(·)))∗.Pϕ1)(t) = ∂XH
0(ϕ(t), P (t), X(t)) = (dRϕ(t))

∗.P (t), (9)

for almost every t ∈ [0, 1], where (ϕ(·), P (·)) : [0, 1]→ T ∗Ds(M) is the unique absolutely continuous
mapping solution of (ϕ̇(t), Ṗ (t)) = ∇ωH0(ϕ(t), P (t), X(t)) on [0, 1] and P (1) = Pϕ1 .

Proof of Lemma 3. In local coordinates, the fibered part of the differential equation of the lemma
is Ṗ (t) = −(∂ϕ(X(t) ◦ ϕ(t)))∗.P (t), which is a linear differential equation. The Cauchy-Lipschitz
theorem for linear differential equations therefore ensures global existence and uniqueness of a
solution P (·) of class H1 (and thus, absolutely continuous) such that P (1) = Pϕ1

. Let us now prove
the formula (9). The mapping X(·) 7→ ϕX(·) is of class Ck, with k > 1, and is defined implicitly
by the differential equation ϕ̇X(t)−X(t) ◦ϕX(t) = 0 for almost every t ∈ [0, 1], with ϕX(0) = ϕ0.
To compute its derivative δϕ(·) = dϕX(X(·)).δX(·) in the direction δX(·) ∈ L2(0, 1;He), we
differentiate this differential equation in local coordinates, and obtain that δϕ̇(t)− δX(t)◦ϕX(t)−
∂ϕ(X(t) ◦ ϕX(t)).δϕ(t) = 0 for almost every t ∈ [0, 1], with δϕ(0) = 0. For every δX(·) ∈
L2(0, 1;He), this Cauchy problem has a unique solution δϕ(·), and we have d endϕ0

(ϕ(·)).δX(·) =

2Here, we refer to the regularity of the coefficients that appear in the (distributional-valued) 1-form with which
P (0) is identified. For example, if P (0) is identified with a 1-form whose coefficients belong to the space of Radon
measures on M , then the same holds for P (t), for every time t.
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δϕ(1). Moreover, we have∫ 1

0

∂XH
0(ϕ(t), P (t), X(t)).δX(t) dt =

∫ 1

0

P (t)(δX(t) ◦ ϕ(t)) dt

=

∫ 1

0

P (t)(δϕ̇(t)) dt−
∫ 1

0

P (t) (∂ϕ(X(t) ◦ ϕ(t)).δϕ(t)) dt

=

∫ 1

0

(
P (t)(δϕ̇(t)) + Ṗ (t) (δϕ(t))

)
dt

= Pϕ1(δϕ(1)) = (d endϕ0(ϕ(·)))∗.Pϕ1 ,

which yields (9).

Theorem 3 follows from Lemma 3 because ϕ(·) is a singular curve if and only if then there
exists Pϕ1 ∈ T ∗ϕ1

Ds(M) \ {0} such that (d endϕ0(ϕ(·)))∗.Pϕ1 = 0.

Let ϕ0 and ϕ1 be two elements of Ds(M), and let ϕ(·) ∈ Ωϕ0,ϕ1 . Since Ωϕ0,ϕ1 = end−1
ϕ0

({ϕ1}),
we have Tϕ(·)Ωϕ0,ϕ1

⊂ ker(d endϕ0
(ϕ(·))) (see Definition 7 for the definition of the set of all

infinitesimal variations). Note that, if d endϕ0
(ϕ(·)) were surjective, then Ωϕ0,ϕ1

would be, locally
at ϕ(·), a Ck submanifold of Ωϕ0

, and then Tϕ(·)Ωϕ0,ϕ1
= ker(d endϕ0

(ϕ(·))). But, as already said,
in our context only the inclusion is true.

Since Tϕ(·)Ωϕ0,ϕ1 ⊂ ker(d endϕ0(ϕ(·))), if there is some Pϕ1 ∈ T ∗ϕ1
Ds(M) such that dA(ϕ(·)) =

(d endϕ0
(ϕ(·)))∗.Pϕ1

, then ϕ(·) is a critical point of A restricted to Ωϕ0,ϕ1
(and hence ϕ(·) is a

geodesic steering ϕ0 to ϕ1). Conversely, according to the discussion done at the beginning of
Section 3, this Lagrange multiplier relation is satisfied whenever ϕ(·) is a geodesic steering ϕ0 to
ϕ1 which is neither singular nor elusive.

Besides, the differential dA(ϕ(·)) ∈ L2(0, 1;H∗e) is given by dA(ϕ)(t) = 〈X(t), ·〉. It follows
from Lemma 3 that

(dA(ϕ(·))− d endϕ0(ϕ(·))∗.Pϕ1) (t) = 〈X(t), ·〉 − ∂XH0(ϕ(t), P (t), X(t)),

for almost every t ∈ [0, 1], where P (·) : [0, 1] → T ∗Ds(M) is the unique solution of (ϕ̇(t), Ṗ (t)) =
∇ωH0(ϕ(t), P (t), X(t)) on [0, 1] and P (1) = Pϕ1

. Defining the total Hamiltonian by

H : T ∗Ds(M)×He → R
(ϕ, P,X) 7→ P (X ◦ ϕ)− 1

2 〈X,X〉,

we have ∇ωH = ∇ωH0, and (dA(ϕ(·))− (d endϕ0
(ϕ(·)))∗.Pϕ1

) (t) = −∂XH(ϕ(t), P (t), X(t)) for
almost every t ∈ [0, 1]. We have obtained the following lemma.

Lemma 4. Let ϕ0 ∈ Ds(M). Let X ∈ L2(0, 1;He) be the logarithmic velocity of an horizontal
curve ϕ(·) ∈ H1(0, 1;Ds(M)) starting at ϕ0. The two following statements are equivalent:

• There exists an absolutely continuous fibered mapping (ϕ(·), P (·)) : [0, 1] → T ∗Ds(M) such
that (ϕ̇(t), Ṗ (t)) = ∇ωH(ϕ(t), P (t), X(t)) for almost every t ∈ [0, 1] and P (1) = Pϕ1

, and
such that

0 = ∂XH(ϕ(t), P (t), X(t)) = (dRϕ(t))
∗.P (t)− 〈X(t), ·〉,

for almost every t ∈ [0, 1].

• There exists Pϕ1 ∈ T ∗ϕ1
Ds(M) \ {0} such that dA(ϕ(·)) = (d endϕ0(ϕ(·)))∗.Pϕ1 .

Under any of those statements, ϕ(·) is a (normal) geodesic.
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For every fixed (ϕ, P ) ∈ T ∗Ds(M), the equation ∂XH(ϕ, P,X) = 0 yields 〈X, ·〉 = (dRϕ)∗.P ,
whose unique solution is given by X(ϕ, P ) = KHe(dRϕ)∗.P . Then we obtain the normal Hamilto-
nian h : T ∗Ds(M)→ R by setting

h(ϕ, P ) = H(ϕ, P,X(ϕ, P )) =
1

2
P (X(ϕ, P ) ◦ ϕ) =

1

2
〈X(ϕ, P ), X(ϕ, P )〉.

Theorems 2 and 4 follow, except for the global property of the flow in Theorem 2.

Lemma 5. The geodesic flow defined in Theorem 2 is global.

Proof. Let (ϕ(·), P (·)) : I = (a, b) → T ∗Ds(M) be the maximal solution to the Cauchy problem
(ϕ̇(t), Ṗ (t)) = ∇ωh(ϕ(t), P (t)), (ϕ(0), P (0) = (ϕ0, P0), with 0 ∈ I. Since ∇ωh has a well-defined
maximal flow when k > 2, it suffices to prove that, if b < +∞, then (ϕ(t), P (t)) converges to a
limit (ϕb, Pb).

Let X(·) be the logarithmic velocity of ϕ(·) and, for t ∈ I, let µ(t) = (dRϕ(t))∗P (t). Then,
we have µ(t) = ϕ(t)∗µ(0) for every t ∈ I. Since ϕ(·) is a geodesic, we have ‖X(t)‖ = ‖X(0)‖ 6
C‖X(0)‖s+k for every t ∈ I, which immediately implies that ϕ(t) −→

t→b
ϕb in the topology of

Ds+k(M) for some ϕb ∈ Ds+k(M). On the other hand, the mapping Ds+1(M) × Γ−s(T ∗M) →
Γ−s(T ∗M) defined by (ϕ, µ) 7→ ϕ∗µ is continuous, so that µ(t) = ϕ(t)∗µ(0) −→

t→b
µb = ϕb∗µ(0) and

P (t) −→
t→b

Pb, with µb = dR∗ϕbPb.

The same argument shows that a = −∞.

4 Examples of geodesic equations

4.1 Normal geodesic equations in D(Rd)

In this section, we assume that M = Rd. Let s0 be the smallest integer such that s0 > d/2. It
is easy to prove that for every integer s > s0 + 1, the group Ds(Rd) coincides with the set of
diffeomorphisms ϕ of Rd such that ϕ − IdRd ∈ Hs(Rd,Rd), and is an open subset of the affine
Hilbert space IdRd +Hs(Rd,Rd) (endowed with the induced topology, see Section 2.1).

Since we are in Rd, we have TDs(Rd) = Ds(Rd) × Hs(Rd,Rd) and T ∗Ds(Rd) = Ds(Rd) ×
H−s(Rd, (Rd)∗). Therefore, a covector P ∈ T ∗ϕDs(Rd) is a one-form on Rd with distributional

coefficients in H−s(Rd), denoted by P = P1dx
1 + · · ·+Pddx

d = (P1, . . . , Pd). For a vector field X,
we can also write X = X1e1 + · · ·+Xded = (X1, . . . , Xd), with (ei) the canonical frame of Rd.

The Euclidean inner product of two vectors v and w of Rd is denoted by v · w. The notation
vT stands for for the linear form w 7→ c · w. Conversely, for a linear form p ∈ (Rd)∗, we denote by
pT the unique vector v in Rd such that p = vT .

These notations are extended to vector fields and to 1-forms with distributional coefficients, by
setting (X1e1+· · ·+Xded)

T = X1dx1+· · ·+Xddxd and (P1dx
1+· · ·+Pddxd)T = P1e1+· · ·+Pded.

4.1.1 Spaces of vector fields with Gaussian kernels

Let He be the Hilbert space of vector fields on Rd associated with the reproducing kernel K :
Rd × Rd → End((Rd)∗,Rd) defined by K(x, y)p = e(x, y)pT , for every p ∈ (Rd)∗, with e(x− y) =

e−
|x−y|2

2σ , for some σ > 0. This space is widely used in shape deformation analysis (see [44, 45, 46]).
Note that the mapping (x, y) 7→ e(x − y) is equal (up to a multiplying scalar) to the heat kernel
at time σ.

The elements of He are analytic, and all their derivatives decrease exponentially at infinity,
henceHe ⊂ Hs(Rd,Rd) for every s ∈ N. Moreover, for every one-form with tempered distributional
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coefficients P , the vector field X such that 〈X, ·〉 = P on He is given by X(x) =
∫
Rd e(x −

y)P (y)T dy, for every x ∈ Rd. For every (ϕ, P ) ∈ T ∗Ds(Rd) = Ds(Rd)×H−s(Rd,Rd), the solution
of ∂XH(ϕ, P,X) = 0 is X(ϕ, P )(x) =

∫
Rd e(x−ϕ(y))P (y)T dy. Therefore, the normal Hamiltonian

is given by

h(ϕ, P ) =
1

2
P (X(ϕ, P ) ◦ ϕ) =

1

2

∫
Rd×Rd

e(ϕ(x)− ϕ(y))P (x) · P (y) dy dx.

Since e(x− y) = e(y − x) and de(x).v = − 1
σ e(x)(x · v), we get that the normal geodesic equations

are written in the distributional sense as

∂tϕ(t, x) =

∫
Rd
e(ϕ(t, x)− ϕ(t, y))P (t, y)T dy,

∂tP (t, x) =
1

σ

∫
Rd×Rd

e(ϕ(t, x)− ϕ(t, y)) (ϕ(t, x)− ϕ(t, y))
T
P (t, x) · P (t, y) dy.

A particularly simple example is when P = a ⊗ δx0
, with a ∈ (Rd)∗ (that is, P (X) = a(X(x0))).

In that case, we have h(ϕ, P ) = 1
2a · a, hence ∂ϕh(ϕ, P ) = 0 and therefore P is constant along the

geodesic flow, and ∂tϕ(t, x) = e−
|ϕ(t,x)−ϕ(t,x0)|2

2σ aT . Note that, in this case, the particle ϕ(t, x0) =
x0 + taT is a straight line with constant speed a · a.

4.1.2 Gaussian kernels for sub-Riemannian distributions in Rd

Let X1, . . . , Xk be smooth pointwise linearly independent vector fields on Rd, with k 6 d, which are
bounded as well as all their derivatives. These vector fields generate a sub-Riemannian structure
on Rd (see [11, 35] for this classical construction), with horizontal curves t 7→ x(t) satisfying the

differential equation ẋ(t) =
∑k
j=1 uj(t)Xj(x(t)) for almost every t, with uj ∈ L2(0, 1;R) for every

j = 1, . . . , k. We consider the kernel K(x, y)p = e(x, y)
∑k
j=1 p(Xj(y))Xj(x).

Let us first prove that K is the reproducing kernel of a Hilbert space of vector fields He. For
any compactly supported one-form P with distributional coefficients, an easy computation gives
K(x, ·)P =

∑k
j=1

(∫
Rd e(x− y)P (y)(Xj(y)) dy

)
Xj(x), where P (y)(Xj(y)) = P1(y)X1

j (y) + · · · +
Pd(y)Xd

j (y). The vector K(x, ·)P is well defined since the vector fields y 7→ e(x − y)Xj(y) are
smooth and all their derivatives decrease exponentially at infinity, and P is a compactly supported
one-form with distributional coefficients. Then we have

P (K(·, ·)P ) =

k∑
j=1

∫
Rd
e(x− y)P (y)(Xj(y))P (x)(Xj(x)) dy dx.

In order to check that K is the reproducing kernel of a Hilbert space of vector fields, it is sufficient
to check that P (K(·, ·)P ) > 0 for any such one-form P , and P (K(·, ·)P ) = 0 if and only if the
vector field x 7→ K(x, ·)P is identically equal to 0 (see [46]). For such a P , we set pj(x) =

P (x)(Xj(x)), for j = 1, . . . , k. Then we have K(x, ·)P =
∑k
j=1

∫
Rd e(x − y)pj(y) dy Xj(x), and

therefore P (K(·, ·)P ) =
∑k
j=1

∫
Rd e(x − y)pj(y)pj(x) dy dx. Since (x, y) 7→ e(x − y) is the heat

kernel at time σ, it follows that
∫
Rd e(x− y)T (y)T (x) dy dx > 0 for any distribution T on Rd, with

equality if and only if T = 0. Therefore, P (K(·, ·)P ) is nonnegative, and is equal to 0 if and only
if p1 = · · · = pk = 0, in which case K(x, ·)P = 0 for every x in Rd. We have thus proved that K is
the reproducing kernel of a Hilbert space of vector fields He.

Moreover, any element of He can be written as x 7→ u1(x)X1(x) + · · · + uk(x)Xk(x) (and is
horizontal with respect to the sub-Riemannian structure on Rd induced by the Xi), where the uj ’s
are analytic functions with all derivatives decreasing exponentially at infinity. In particular, the
inclusions He ⊂ Hs(Rd,Rd) are continuous for every integer s.
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Remark 14. It could be more natural to replace e(x − y) with the sub-Riemannian heat kernel
associated with the sub-Laplacian X2

1 +· · ·+X2
k , but since such kernels are much harder to compute,

we will keep the Euclidean heat kernel.

For every (ϕ, P ) ∈ T ∗Ds(Rd) = Ds(Rd) × H−s(Rd,Rd), the solution of ∂XH(ϕ, P,X) = 0

is X(ϕ, P )(x) = K(x, ϕ(·))P =
∑k
j=1

(∫
Rd e(x− ϕ(y))P (y)(Xj(ϕ(y))) dy

)
Xj(x). The normal

Hamiltonian is given by

h(ϕ, P ) =
1

2

k∑
j=1

∫
Rd×Rd

e(ϕ(x)− ϕ(y))P (y)(Xj(ϕ(y)))P (x)(Xj(ϕ(x))) dy dx.

We infer that the normal geodesic equations are written as

∂tϕ(t, x) =

k∑
j=1

(∫
Rd
e(ϕ(t, x)− ϕ(t, y))P (t, y)(Xj(ϕ(t, y))) dy

)
Xj(ϕ(t, x)),

∂tP (t, x) =
1

σ

k∑
j=1

∫
Rd
e(ϕ(t, x)− ϕ(t, y))(ϕ(t, x)− ϕ(t, y))TP (t, y)(Xj(ϕ(t, y)))P (t, x)(Xj(ϕ(t, x))) dy

−
k∑
j=1

∫
Rd
e(ϕ(t, x)− ϕ(t, y))P (t, y)(Xj(ϕ(t, y)))P (x)(dXj(ϕ(t, x))) dy.

Here, we have P (x)(dXj(ϕ(t, x))) = P1(x)dX1
j (ϕ(t, x)) + · · · + Pd(x)dXd

j (ϕ(t, x)). It is easy to
check that this geodesic flow preserves the support of P and its regularity.

In the simple case where P = a⊗ δx0
with a ∈ (Rd)∗, we have

X(ϕ, P )(x) = e(x− ϕ(x0))

k∑
j=1

a(Xj(ϕ(x0)))Xj(x).

Since e(0) = 1, we get h(ϕ, a ⊗ δx0
) = 1

2

∑k
j=1 a(Xj(ϕ(x0)))2. It is interesting to note that

h(ϕ, a⊗δx0
) = h∆(ϕ(x0), a), where h∆ is the normal hamiltonian for the sub-Riemannian structure

induced by the Xj ’s on Rd. Now we have ∂ϕh(ϕ, a⊗δx0
) =

(∑k
r=1 a(Xr(ϕ(x0)))a(dXr,ϕ(x0))

)
⊗δx0

.

We see that the subbundle Ds(Rd)× (Rd∗ ⊗ δx0) ⊂ T ∗Ds(Rd) is invariant under the Hamiltonian
geodesic flow. Hence, if t 7→ (ϕ(t), P (t)) is solution of the normal geodesic equations and P (0) =
a(0)⊗δx0

, then there exists a curve t 7→ a(t) ∈ Rd such that P (t) = a(t)⊗δx0
for every t. Denoting

by x(t) = ϕ(t, x) for x ∈ Rd and by x0(t) = ϕ(t, x0), we finally obtain

ẋ(t) = e(x(t)− x0(t))

k∑
j=1

a(t)(Xi(x0(t)))Xj(x(t)), ȧ(t) = −
k∑
j=1

a(Xr(x0(t)))a(dXj(x0(t))).

In particular, if x(0) = x0, we get

ẋ(t) =

k∑
j=1

a(Xj(x(t)))Xj(x(t)), ȧ(t) = −
k∑
j=1

a(Xj(x(t)))a(dXj(x(t))).

We recover the equations satisfied by a normal geodesic in Rd for the sub-Riemannian structure
induced by the Xj ’s on Rd, with initial covector a(0).
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4.2 Singular curves with Dirac momenta in shape spaces of landmarks

Let M be a complete Riemannian manifold with bounded geometry, of dimension d, let s > d/2+1
be an integer, and let He be a Hilbert space with continuous inclusion in Γs+1(TM).

It is difficult to give a complete description of any possible singular curve for the sub-Riemannian
structure induced by He. However, we know from Theorem 3 that any such curve ϕ(·) is associated
with a singular covector t 7→ P (t) ∈ T ∗ϕ(t)D

s(M), satisfying (5) and (6). In this section, we focus
on those singular curves whose singular covector is a finite sum of Dirac masses, and we prove
that they correspond to abnormal curves for a certain finite-dimensional control system in certain
manifolds, called shape spaces of landmarks.

Let us first explain what a shape space of landmarks is.

Definition 13. For every integer n ∈ N∗, the manifold of n landmarks of M is defined by

Lmkn(M) = {(x1, . . . , xn) ∈Mn | i 6= j ⇒ xi 6= xj}.

Landmarks manifolds are of great interest in shape analysis (see [46]). Since s > d/2 + 1, the
group Ds(M) has a C1 action on the manifold Lmkn(M), defined by

ϕ · (x1, . . . , xn) = (ϕ(x1), . . . , ϕ(xn)).

Note that, by definition of Lmkn(M), the mapping Rq : ϕ 7→ ϕ · q is a submersion, for every
q = (x1, . . . , xn).

To this differentiable action is associated the infinitesimal action ξ, defined as the linear bundle
morphism Γs(TM)× Lmkn(M)→ TLmkn(M) given by

ξqX = (X(x1), . . . , X(xn)),

for every q = (x1, . . . , xn) ∈ Lmkn(M) and every X ∈ Γs(TM). Then Lmkn(M) turns out to be a
shape space (as defined in [5]). Restricting this morphism to He×Lmkn(M), we obtain the control
system

q̇(t) = ξq(t)X(t), (10)

for almost every t ∈ [0, 1], that is, ẋi(t) = X(t, xi(t)), i = 1, . . . , n. In this control system, the
control is X(·) ∈ L2(0, 1;He). Note that, if ϕ(t) is the flow of X, defined as the unique solution of
the Cauchy problem ϕ̇(t) = X(t) ◦ ϕ(t) and ϕ(0) = IdM , then q(t) = ϕ(t) · q(0) for every t.

This control system can be as well seen as a rank-varying sub-Riemannian structure on Lmkn(M)
(as defined in [2]).

For every q0 ∈ Lmkn(M), the end-point mapping endnq0 : L2(0, 1;He) → Lmkn(M) is defined
by endnq0(X(·)) = q(1), where q(·) is the unique solution of the Cauchy problem q̇(t) = ξq(t)X(t),
q(0) = q0. Obviously, we have endnq0 = Rq0 ◦ ende, where Rq0(ϕ) = ϕ · q0 (and where ende is the
end-point mapping defined in Definition 4).

Proposition 2. Let ϕ(·) ∈ H1(0, 1;Ds(M)) be an horizontal curve starting at e, with logarithmic
velocity X(·). Let q0 = (x1, . . . , xn) ∈ Lmkn(M), and let q(·) = ϕ(·) · q0 be the corresponding curve
on Lmkn(M). The curve ϕ(·) is abnormal, associated with a singular covector P (·) such that

P (1) =

n∑
i=1

pi(1)⊗ δxi , pi(1) ∈ T ∗xi,0M,

if and only if q(·) is an abnormal curve for the control system (10).
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Proof. Since q(t) = ϕ(t) · q(0), we have endnq0(X(·)) = ende(X(·)) · q0. In the finite-dimensional
manifold Lmkn(M), the curve q(·) is abnormal if and only if (see, e.g., [15]) there exists p(1) =
(p1(1), . . . , pn(1)) ∈ T ∗q(1)Lmkn(M) \ {0} such that d endnq0(X(·))∗.p(1) = 0. Since the mapping

ϕ 7→ ϕ · q0 is a submersion and endnq0 = Rq0 ◦ ende, this is equivalent to the existence of P (1) ∈
T ∗ϕ(1)D

s(M)\{0} such that d ende(X)∗.P (1) = 0 and such that ker dRq0(ϕ(1)) ⊂ ker(P (1)), which

means, since dRq0(ϕ(1)).δϕ = (δϕ(x1), . . . , δϕ(xn)), that P (1) = p1(1)⊗δx1 + · · ·+pn(1)⊗δxn .

Remark 15. Since the support of P (·) and its order as a distribution remain constant in time,
we infer that, for every t ∈ [0, 1], there exist pi(t) ∈ T ∗ϕ(t,xi)

M, i = 1, . . . , n such that P (t) =

p1(t) ⊗ δx1
+ · · · + pn(t) ⊗ δxn . Using the momentum formulation from Section 3.5, and setting

p(t) = (p1(t), . . . , pn(t)), it is easy to check that (q(·), p(·)) is a curve on T ∗Lmkn(M), satisfying
the abnormal Hamiltonian equations associated with the control system (10) (see [15] for a detailed
analysis of those equations).

Remark 16. Applying the above results with n = 1, we get the statement claimed in Remark
3: singular curves on M induce singular curves on Ds(M). This resonates strongly with the next
section, where we will see that reachability in M implies reachability in Ds(M) (at least when
k = 0).

5 Reachability properties in the group of diffeomorphims

Throughout this section, (He, 〈·, ·〉) is a Hilbert space of vector fields of class at least Hs on a
Riemannian manifold M of bounded geometry and of dimension d, with continuous inclusion in
Γs(TM) and s is an integer such that s > d/2 + 1. According to Definition 2, we consider the
right-invariant sub-Riemannian structure induced by He on Ds(M).

The purpose of this section is to provide sufficient conditions on He ensuring approximate or
exact reachability from e.

Definition 14. The reachable set from e = idM is defined by

R(e) = {ϕ ∈ Ds(M) | dSR(e, ϕ) < +∞}.

In other words, R(e) is the set of all ϕ ∈ Ds(M) that are in the image of ende, i.e., that can be
connected from e by means of an horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M)).

We say that ϕ ∈ Ds(M) is reachable from e if ϕ ∈ R(e), and is approximately reachable from
e if ϕ belongs to the closure of R(e) in Ds(M).

Hereafter, we first establish a general approximate reachability result. However, in such a
general context, we cannot hope to have stronger reachability properties. In the more particular
case where the sub-Riemannian structure on Ds(M) is coming from a finite-dimensional structure
(as in Example 2), we establish an exact reachability property.

5.1 Approximate reachability

We start with the following simple result.

Proposition 3. If He is dense in Γs(TM), then R(e) is dense in Ds(M).

This result holds true as well for s = +∞. Note that, for s = +∞, it was generalized to the
context of convenient spaces in [28].

It can also be noted that it is not required to assume that M is connected. What is important
is that Ds(M) itself is connected (by definition).
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Proof. The assumption implies that Hs is dense in TDs(M). We recall the following general
lemma.

Lemma 6. Let M be a connected Banach manifold, and let B ⊂M be a closed subset such that,
for every q ∈ B, the set of initial velocities of curves in B starting at q is dense in TqM. Then
B =M.

This lemma has been proved in [18], and rediscovered in [26, Theorem D and Corollary A.2]
(where the proof is more readable). Since the closure of an orbit is an union of orbits, the result
follows.

A much more general result can be inferred from [3] in the case where M is compact.

Proposition 4. We assume that M is compact, and that{
r∑
i=1

uiXi | u1, . . . , ur ∈ C∞(M)

}
⊂ He,

where X1, . . . , Xr are smooth vector fields on M , such that any two points x and y of M can be
connected by a smooth curve x(·) on M whose velocity belongs to ∆ = Span{Xi | i = 1, . . . , r}
almost everywhere. Then R(e) contains the set D∞(M) of all smooth diffeomorphisms of Ds(M).
In particular, it is dense in Ds(M).

Proof. The main result of [3] (which is actually slightly stronger) states that, if M is compact and
if any two points x, y ∈M can be connected by a smooth curve x(·) on M whose velocity belongs
to ∆ almost everywhere, then there exists an integer m ∈ N such that, for every ϕ ∈ D∞(M),
there exist functions u1, . . . , um on M , of class C∞, and integers i1, . . . , im in the set {1, . . . , r},
such that ϕ = ϕu1Xi1 (1) ◦ · · · ◦ ϕumXim (1). The result follows.

Proposition 4 says that an exact reachability property for a given smooth sub-Riemannian man-
ifold (M,∆, g) with M compact implies an approximate reachability property on Ds(M) endowed
with the strong right-invariant sub-Riemannian structure induced by He, provided that ∆ ⊂ He.

This proposition can be applied in the framework of Example 2. A well known sufficient
condition (which is necessary in the analytic case) on a connected manifold M ensuring that any
two points of M can be joined by an horizontal curve is that the Lie algebra generated by the vector
fields X1, . . . , Xr coincides with the whole tangent space TM (bracket-generating assumption).
Under this slightly stronger assumption, we actually have an exact reachability result (see next
section).

5.2 Exact reachability

Establishing exact reachability (i.e., R(e) = Ds(M)) is hopeless for general infinite-dimensional
sub-Riemannian manifolds, unless one has specific assumptions. However, the proof of [3] can
easily be generalized to the Hs case, in the following context.

Throughout the section, we make the additional assumption that the manifold M is compact.
Let r ∈ N∗, and let X1, . . . , Xr be smooth vector fields on M . The family (X1, . . . , Xr)

induces a (possibly rank-varying) sub-Riemannian structure on M (see [11]). Note that ∆ =
Span{X1, . . . , Xr} being a rank-varying subbundle of TM does not raise any problem (see [2]
where sub-Riemannian manifolds are defined in a more general way). An horizontal curve x(·) on
M (also called ∆-horizontal curve) is a curve whose velocity belongs to ∆ almost everywhere.
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Theorem 5. We assume that{
r∑
i=1

uiXi | u1, . . . , ur ∈ Hs(M)

}
⊂ He,

and that any two points x and y belonging to the same connected component of M can be joined
by a smooth horizontal curve x(·) on M . Then R(e) = Ds(M).

Note that we do not need to assume that M is connected in this result.

Remark 17. Since the proof provided in [3] is compatible with the ILH structure of D∞(M)
(inverse limit of Ds(M) as s→ +∞), we infer that the above exact reachability is true as well on
D∞(M) when taking the ui’s in C∞(M). In particular, we recover Proposition 4.

We not not provide a proof of that result, which is a straightforward extension of the main
result of [3].

Actually, under the slightly stronger assumption that the vector fields X1, . . . , Xr are bracket-
generating, we derive hereafter a stronger result, establishing not only thatR(e) = Ds(M), but also
that the topology induced by the sub-Riemannian distance coincides with the intrinsic manifold
topology of Ds(M); and this, with a proof that is much simpler and shorter than the one of [3].

The family (X1, . . . , Xr) is said to be bracket-generating if

TxM = Span
{

[Xi1 [. . . , [Xij−1
, Xij ] . . . ](x) | j ∈ N∗, 1 6 i1, . . . , ij 6 r

}
,

for every x ∈M . This means that any tangent vector at x ∈M is a linear combination of iterated
Lie brackets of X1, . . . , Xk, in other words, if TM = Lie(∆). Under this assumption, and assuming
that M is connected, the well-known Chow-Rashevski theorem (see [11, 35]) states that any two
points of M belonging to the same connected component of M can be joined by an horizontal
curve for the sub-Riemannian structure on M .3

For any given family of indices I = (i1, . . . , ij) with 1 6 i1, . . . , ij 6 r, we denote

XI = [Xi1 [. . . , [Xij−1 , Xij ] . . . ]. (11)

Since M is compact, the family (X1, . . . , Xr) is bracket-generating if and only if there exists

a fixed family of indices I1, . . . , Im, with Il = (il1, . . . , i
l
jl) ⊂ {1, . . . , r}

jl , such that TxM =

Span(XI1(x), . . . , XIm(x)) for every x ∈M . Now let

He = {X ∈ Γs(TM) | ∀x ∈M X(x) ∈ Span(X1(x), . . . , Xr(x))}, (12)

on which we define a Hilbert product 〈·, ·〉 whose norm is equivalent to the Hs norm (1) (see Section
2.1). Note that He is an Hs(M)-module generated by X1, . . . , Xr, so that any X ∈ He can be
written as

X =

r∑
i=1

uiXi, u = (u1, . . . , ur) ∈ Hs(M,Rr),

and we have

〈X,X〉 6
r∑
i=1

‖ui‖2Hs(M).

3The converse is only true for analytic vector fields: if M and the vector fields Xi’s are analytic, and if any two
points of M can be connected by a horizontal curve, then the Xi’s are bracket-generating.
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We consider the strong right-invariant sub-Riemannian structure on Ds(M) induced by the Hilbert
space (He, 〈·, ·〉) defined by (12). The corresponding sub-Riemannian distance is denoted by dSR.
Note that

Hϕ =

{
r∑
i=1

(ui ◦ ϕ)Xi ◦ ϕ | u = (u1, . . . , ur) ∈ Hs(M,Rr)

}
,

for every ϕ ∈ Ds(M).

Remark 18. Under the assumption that the family (X1, . . . , Xr) is bracket-generating, we have

Γs(TM) =

{
m∑
i=1

uiXIi | u = (u1, . . . , um) ∈ Hs(M,Rm)

}
.

Theorem 6. We assume that the family (X1, . . . , Xr) is bracket-generating. Then there exist
C > 0, a neighborhood U of 0 in Hs(M,Rm), and a C1-submersion φ : U → Ds(M), with φ(0) = e,
such that

dSR(e, φ(u1, . . . , um)) 6 C

m∑
i=1

‖ui‖1/j
i

s . (13)

As a consequence, we have R(e) = Ds(M), and the topology induced on Ds(M) by the sub-
Riemannian distance dSR coincides with the intrinsic manifold topology of Ds(M).

Theorem 6 is proved in Appendix A.

Remark 19. Note that, as discussed in Remark 4, it is necessary to assume that k = 0 in order
to obtain exact reachability (for k > 1 we never have exact reachability). But the fact that
k = 0 causes some difficulties in the proof, in particular because the end-point mapping is then
only continuous. To overcome this problem, in the proof we use an equivalent sub-Riemannian
structure which is smooth but not right-invariant.

Remark 20. As it easily follows from our proof, φ is actually an ILH (“Inverse Limit Hilbert”)
submersion of class C1. This means that its restriction to Hs+k(M,Rm) is a submersion onto
Ds+k(M) at e, for every k ∈ N. In particular, this fact remains true when restricted to the inverse
limits C∞(M,Rm) and D∞(M), and we recover the main result of [3] for bracket-generating dis-
tributions. Although the exact reachability with controls in Hs is a straightforward generalization
of [3] (as already said), the result concerning the induced topology is new and cannot be deduced
from the proof of [3]. Theorem 6 also provides a generalization of (half of) the ball-box theorem
to infinite-dimensional sub-Riemannian geometry (see, e.g., [35] for the classical ball-box theorem
in finite dimension). Establishing the converse inequality (“second half” of the ball-box theorem)
is an open problem in infinite dimension, and does not seem to be straightforward. Indeed, the
classical proof in finite dimension uses the concept of privileged coordinates ([11, 35]), which seems
hard to generalize to our case.

Remark 21. The proof of Theorem 6 can easily be generalized to weak and non-right-invariant
metrics (in which case the sub-Riemannian topology is coarser than the intrinsic one). As a
consequence, we expect that estimates similar to (13) can be established, when restricting the
weak Riemannian metric (which is not right-invariant) from [20] to Hs, that is,

dSR(e, φ(u1, . . . , um)) 6 C

m∑
i=1

‖ui‖1/j
i

L2 .
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Remark 22. We stress again that, in the present section, we have taken a specific definition of
He. In more general cases, only a dense subset can be reached from a given point using horizontal
curves, and the topologies do not coincide. Indeed, the bracket-generating condition is an algebraic
condition, and therefore, in infinite dimension, the space generated by linear combinations of
brackets of horizontal vector fields is only dense in the tangent space of the manifold.

Remark 23. Theorem 6 generalizes some results established in [14] in the “Riemannian case”
He = Γs(TM).

Remark 24. A curve ϕ(·) ∈ H1(0, 1;Ds(M)) is horizontal for the strong right-invariant sub-
Riemannian structure on Ds(M) induced by the Hilbert space (He, 〈·, ·〉) defined by (12), if and
only if, for every x ∈ M , the curve t 7→ ϕ(t, x) ∈ M is horizontal for the (finite-dimensional)
sub-Riemannian structure generated on M by the family (X1, . . . , Xr).

It is then interesting to provide an interpretation in terms of classical transport equations and
of particle flow. Denoting by div the divergence operator associated with the canonical Riemannian
volume of M , it is well known by the DiPerna-Lions theory (see [4, 17]) that, for any given time-
dependent Lipschitz vector field X(·) : [0, 1]→ Γ(TM) with time-integrable Lipschitz coefficients,
generating a flow ϕ(·) on M , for every µ0 ∈ P(M), the transport equation

∂tµ(t) + div(µ(t)X(t)) = 0,

has a unique (measure) solution in C0(R,P(M)) such that µ(0) = µ0, given by µ(t) = ϕ(t)∗µ0,
which is the image measure (pushforward) of µ0 under ϕ(t). Here, P(M) is the set of probability
measures on M . In this context, for every x ∈M , the curve t 7→ ϕ(t, x) is usually called a particle
(starting at x), and the flow ϕ(·) is often referred to as the particle flow.

If one considers time-dependent vector fields X(·) that are, for almost every time, a linear
combination (with time-integrable Lipschitz coefficients) of the vector fields X1, . . . , Xr, then the
particle flow ϕ(·) is horizontal for the sub-Riemannian structure on Ds(M) considered above, and
the particles are exactly the horizontal curves of M .

In this context, it is then easy to derive, as a consequence of Theorem 6, a controllability
theorem for controlled transport PDE’s, of the form

∂tµ(t) +

r∑
i=1

div(µ(t)ui(t)Xi) = 0, ui(t) ∈ Hs(M).

More precisely, one has controllability in the space of absolutely continuous probability measures.
But this fact is exactly equivalent to a version of the famous Moser theorem on volume forms,
that we are going to explore in more details. Hence, this remark makes the transition with further
considerations on what can be done with horizontal flows of diffeomorphisms. In the next section
we are going to revisit the Moser trick in the context of sub-Riemannian geometry.

5.3 Moser theorems with horizontal flows

In this section, we provide some applications to the “horizontal” transport of symplectic forms and
of volume forms on a compact manifold.

As in the previous section, we assume that the manifold M is Riemannian and compact. The
canonical Riemannian measure is denoted by dxg. Let r ∈ N∗, and let X1, . . . , Xr be smooth vector
fields on M . We denote, as previously, ∆ = Span{X1, . . . , Xr}. We consider on Ds(M) the strong
right-invariant sub-Riemannian structure induced by the Hilbert space (He, 〈·, ·〉) defined by (12).

Theorem 7. We assume that s > d/2 + 1, and that any two points of M can be joined by a
∆-horizontal curve.
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1. Let µ0 and µ1 be two volume forms with respective densities f0 and f1 of class Hs−1 on M .
If
∫
M
f0(x) dxg =

∫
M
f1(x) dxg, then there exists an horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M))

such that ϕ(0) = e and ϕ(1)∗µ0 = µ1.

2. Let ω0 and ω1 be two symplectic forms on M , with coefficients of class Hs−1. If ω0 and ω1

belong to the same connected component of the same cohomology class, then there exists an
horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M)) such that ϕ(0) = e and ϕ(1)∗ω0 = ω1.

This result remains true when s = +∞.

Theorem 7 is a nonholonomic version of the usual well known Moser theorem (see [36]). The first
part has been proved in [29] for s = +∞ (and the second part was conjectured in that reference).
The difference with the usual statement is twofold: first, our statement here is for diffeomorphisms
of class Hs, for any s large enough; second, in the Moser trick, we show here that the path of
diffeomorphisms joining the initial (volume or symplectic) form to the target one can be chosen to
be horizontal.

Proof. Let µ0 and µ1 be two volume forms of class Hs−1 having the same total volume α > 0 (the
proof works exactly in the same way for symplectic forms). We denote by Vols−1

α (M) the (convex)
set of volume forms f dxg on M such that f ∈ Hs−1(M) and

∫
M
f dxg = α.

The proof goes in two steps.
First, we use the standard Moser trick, without taking care of the horizontal condition. Let

us recall this very classical method. Let Y (·) = ϕ̇(·) ◦ ϕ(·)−1 ∈ L2(0, 1; Γs(M)) be arbitrary, and
let ψ(·) ∈ H1(0, 1;Ds(M)) be the unique solution of ψ̇(·) = Y (·) ◦ ψ(·) such that ψ(0) = e. Let
µ(·) ∈ H1(0, 1; Vols−1

α (M)) be an arbitrary path of volume forms. Using the Lie derivative of a
time-dependent vector field, we have

d

dt
ψ(t)∗µ(t) = ψ(t)∗

(
LY (t)µ(t) + µ̇(t)

)
,

and therefore, if LY (t)µ(t) + µ̇(t) = 0 for almost every t ∈ [0, 1] then µ(0) = ψ(1)∗µ(1). We choose
the linear path µ(t) = (1− t)µ0 + tµ1. Let us then search a time-dependent vector field Y (·) such
that LY (t)µ(t) = −µ̇(t) = µ0−µ1, for any fixed time t. Using the Cartan formula LY = dιY + ιY d,
the fact that dµ(t) = 0, and the fact that µ0 − µ1 = dη for some (n− 1)-form η having coefficients
of class Hs, it suffices to solve ιY (t)µ(t) = η, which has a solution Y (t) of class Hs because µ(t)
is non-degenerate. The time-dependent vector field Y (·) generates a flow ψ(·) ∈ H1(0, 1;Ds(M))
such that ψ(0) = e, and with the above calculation we have µ0 = ψ(1)∗µ1 and thus µ1 = ψ(1)∗µ0.

Now, using Theorem 6, there exists an horizontal curve ϕ(·) ∈ H1(0, 1;Ds(M)) such that
ϕ(0) = e and ϕ(1) = ψ(1). The conclusion follows.

Remark 25. It is interesting to provide an alternative proof of the first point of Theorem 7, in
terms of a sub-Riemannian Laplacian, as in [29], and which does not use the exact reachability
result established in Theorem 6. The argument goes as follows.

In the proof above, we used an argument in two steps, the first of which being the classical Moser
trick. But we could have tried to construct a time-dependent vector field X(·) ∈ L2(0, 1; Γs(M))
such that X(t) ∈ ∆ almost everywhere (this condition ensuring that the generated flow ϕ(·) ∈
H1(0, 1;Ds(M)) be horizontal) and such that LX(t)µ(t) + µ̇(t) = 0 almost everywhere, for some

appropriate path µ(·) ∈ H1(0, 1; Vols−1
α (M)) such that µ(0) = µ0 and µ(1) = µ1.

This can be done, by searching X(t) in the form X(t) = ∇SRF (t), where the so-called horizontal
gradient for the (finite-dimensional) sub-Riemannian structure on M . Recall that the horizontal
gradient∇SRF ∈ ∆ is defined by g(∇SRF, v) = dF.v for every v ∈ ∆; if the vector fields X1, . . . , Xr

are locally orthonormal then ∇SRF =
∑r
i=1(LXiF )Xi (see [35]). Then, writing dµ(t) = f(t) dxg,
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the condition LX(t)µ(t) = −µ̇(t) gives LX(t)dµ(t) = −ḟ(t) dxg, and, denoting by divµ the diver-
gence operator associated with the volume form µ (defined by divµ(X) dµ = LXdµ for any vector

field X), we have to solve divµ(t)(X(t)) = −ḟ(t)/f(t). Since we posit X(t) = ∇SRF (t), this

gives 4µ(t)F (t) = −ḟ(t)/f(t), where 4µ(t) is the sub-Riemannian Laplacian associated with the
volume form µ(t) and the metric g. It is well known that, under the bracket-generating assump-
tion (also called Hörmander assumption), −4µ(t) is a subelliptic nonnegative selfadjoint operator
with discrete spectrum 0 = λ1 < λ2 < · · · < λn < · · · with λn → +∞. In particular, since
ḟ(·)/f(·) ∈ L2(0, 1;Hs−1(M)), it follows that there exists a solution F (·) ∈ L2(0, 1;Hs−1(M))
(defined up to additive constant), and hence X(·) ∈ L2(0, 1;Hs−2(M)) (at least). Note that this
reasoning gives, finally, a less precise result than in Theorem 7 (where, anyway, it is not required
to use an hypoelliptic Laplacian).

6 Conclusion

In this paper, we have provided a framework in order to define and analyze a strong (infinite-
dimensional) right-invariant sub-Riemannian structure on the group of diffeomorphisms of a (finite-
dimensional) manifold. We have shown how certain results from the finite-dimensional case can
be established in this new context (such as reachability properties), and we have also highlighted
some important differences, one of them, of particular interest, being the occurence of what we have
called elusive geodesics. Such geodesics are due to a discrepancy between the manifold topology
and the topology induced by the sub-Riemannian distance on the group of diffeomorphisms, the
latter being finer (but it may not correspond to the topology of a manifold). Indeed, restricting
the structure to a subgroup of more regular diffeomorphisms turns certain elusive geodesics into
normal geodesics, by adding new covectors to be used as initial momenta. This raises the open
question of whether one could find a set of covectors large enough to encapsulate all geodesics, so
that there would be no elusive geodesic.

Another open problem is to prove that the converse inequality of (13) in Theorem 6 holds
true as well. This might require the generalization of the concept of privileged coordinates to the
infinite dimensional case.

Finally, we stress that, in the present paper, we have focused on strong sub-Riemannian struc-
tures. A lot of interesting problems are open for weak sub-Riemannian geometries. Their study is
harder because the Hamiltonian is not always well defined. This is a well-known problem in the
study of weak Riemannian metrics (see [9] for example), and requires a case-by-case analysis. We
hope that the framework that we have developed here can serve as a base in order to address new
problems for weak sub-Riemannian structures, with many promising applications such as, using
methods similar to those of [20], the investigation of fluids with non-holonomic constraints.

A Proof of Theorem 6

We follow the method used in [35] to prove the Chow-Rashevski theorem. Of course, since we are
in infinite dimension, some new difficulties occur. The proof goes in 6 steps.

Step 1: Reduction to a neighborhood of e = Idm.

Lemma 7. The reachable set R(e) is a subgroup of Ds(M).

Proof. Let ϕ,ψ ∈ R(e). Since dSR is right-invariant, we have dSR(ϕ ◦ ψ−1, e) = dSR(ϕ,ψ) 6
dSR(ϕ, e) + dSR(ψ, e) < +∞, and therefore ϕ ◦ ψ−1 ∈ R(e).
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Using that lemma, to prove that R(e) = Ds(M), it suffices to prove that R(e) contains a
neighborhood of e. Moreover, since dSR is right-invariant, to prove that the topologies coincide, it
suffices to prove that any sub-Riemannian ball centered at e contains a neighborhood of e for the
intrinsic manifold topology of Ds(M) (this will imply as well that R(e) contains a neighborhood
of e).

Step 2: Smooth parametrization of the horizontal distribution. Let us recall that the
parametrization of Hs, given by

(ϕ,X) ∈ Ds(M)×He 7→ X ◦ ϕ ∈ TϕDs(M),

is only continuous. Because of that, it is not possible to compute in a “blind way” Lie brackets of
horizontal vector fields on Ds(M) (recall that a vector field X : Ds(M) → TDs(M) is horizontal
if X(ϕ) ∈ Hϕ, for every ϕ ∈ Ds(M)).

Remark 26. In order to avoid any confusion between vector fields on M and vector fields on
Ds(M), we will write vector fields on the infinite-dimensional manifold Ds(M) with bold letters.

To overcome the problem of the continuous parametrization of Hs, and in view of computing
Lie brackets (see Step 4 further), we will rather use the mapping defined in the following lemma,
which provides a smooth parametrization (inspired from control theory).

Lemma 8. The mapping

Ds(M)×Hs(M,Rr) −→ TDs(M)

(ϕ, u1, . . . , ur) 7−→ Xu(ϕ) =

r∑
i=1

uiXi ◦ ϕ

is smooth, and its image is equal to Hs. In particular, any such Xu is a smooth horizontal vector
field on Ds(M).

Proof. The mapping is clearly smooth, because in the sum
∑r
i=1 u

iXi ◦ ϕ, only the terms Xi ◦ ϕ
depend on ϕ, and these terms are smooth with respect to ϕ since the vector fields Xi are smooth.
Moreover, writing that uiXi ◦ϕ = ((ui ◦ϕ−1)Xi)◦ϕ, and noting that ui ◦ϕ−1 ∈ Hs(M), it follows
that

∑r
i=1 u

iXi ◦ ϕ ∈ He ◦ ϕ = Hϕ, and therefore that any Xu is an horizontal vector field on
Ds(M). Conversely, any Yϕ ∈ Hϕ can be written as Yϕ =

∑r
i=1(ui ◦ ϕ)Xi ◦ ϕ = Xu◦ϕ(ϕ). Hence

the image of the mapping is equal to Hs.

Step 3: Length of integral curves of smooth horizontal vector fields. It follows from
Lemma 8 that every vector field Xu generates a unique local flow (t, ϕ, u) 7→ Φ(t, u, ϕ) on Ds(M),
which is smooth. Moreover, any integral curve t 7→ ϕ(t) = Φ(t, u, ϕ(0)) of this flow is a smooth
horizontal curve for the right-invariant sub-Riemannian structure on Ds(M) induced by He.

Lemma 9. For every (small enough) open subset U of Ds(M), there exists C > 0 such that〈
r∑
i=1

(ui ◦ ϕ−1)Xi,

r∑
i=1

(ui ◦ ϕ−1)Xi

〉
6 C

r∑
i=1

‖ui‖2Hs ,

for every u ∈ Hs(M,Rr) and every ϕ ∈ U . Therefore the length of the curve t 7→ Φ(t, u, ϕ) is

bounded above by C

(
r∑
i=1

‖ui‖2Hs

)1/2

.
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Proof. The mapping from Ds(M)×Hs(M,Rr) to Hs(M,Rr), defined by (ϕ, u) 7→ u◦ϕ−1 = Rϕ−1u,
is continuous. This implies (see [37]) that the mapping ϕ 7→ Rϕ−1 , defined on Ds(M) with values
in the space of continuous linear operators on Hs(M,Rr), is locally bounded (although it may
fail to be continuous). Since the Hilbert norm on He is equivalent to the Hs norm, the result
follows.

Step 4: Lie brackets of horizontal vector fields. For every i ∈ {1, . . . , r} and every u ∈
Hs(M), we define Xu

i by Xu
i (ϕ) = uXi(ϕ). In other words, we have Xu

i = X(0,...,0,u,0,...,0). The
vector field Xu

i is smooth, for every u ∈ Hs(M). Therefore we can compute Lie brackets of such
vector fields.

First of all, for every (ϕ, δϕ) ∈ TDs(M), and every i ∈ {1, . . . , r}, we have dXu
i (ϕ).δϕ =

∂ϕ (uXi ◦ ϕ) (ϕ).δϕ = ui(dXi ◦ ϕ).δϕ. Hence, for every ϕ ∈ Ds(M), for all elements u and v of
Hs(M), and for all indices i and j in {1, . . . , r}, we have[

Xu
i ,X

v
j

]
(ϕ) = dXv

j (ϕ).Xu
i (ϕ)− dXu

i (ϕ).Xv
j (ϕ) = v(dXj ◦ ϕ).(uXi ◦ ϕ)− u(dXi ◦ ϕ).(vXj ◦ ϕ).

But since, obviously, one has dXi(ϕ(x)).(v(x)Xj(ϕ(x))) = v(x)dXi(ϕ(x)).Xj(ϕ(x)) for every x ∈
M , we obtain[

Xu
i ,X

v
j

]
(ϕ) = uv (dXj(ϕ(x)).Xi(ϕ(x))− dXi(ϕ(x)).Xj(ϕ(x))) = uv[Xi, Xj ] ◦ ϕ = uvXi,j ◦ ϕ.

By induction, we get the following lemma (recall that the smooth vector field XI on M is defined
in (11) by XI =

[
Xi1 , [. . . , [Xij−1

, Xij ] . . .
]
).

Lemma 10. Let j ∈ N∗, let I = (i1, . . . , ij) ∈ {1, . . . , r}j, let ϕ ∈ Ds(M), and let u1, . . . , uj be
elements of Hs(M). Then[

Xu1
i1
, [. . . , [X

uj−1

ij−1
,X

uj
ij

] . . .
]

(ϕ) = ui1 . . . uijXI ◦ ϕ.

Step 5: Taylor expansions of commutators of horizontal flows, and corresponding
length. For every i ∈ {1, . . . , r} and every ui ∈ Hs(M), we denote by (t, ϕ) 7→ Φuii (t, ϕ) the flow
of Xui

i on Ds(M). Moreover, for every j ∈ N∗ and every I = (i1, . . . , ij) ∈ {1, . . . , r}j , we define

ΦI(t, u1, . . . , uj) = Φ
−uj
ij

(t) ◦ · · · ◦ Φ−u1
i1

(t) ◦ Φ
uj
ij

(t) ◦ · · · ◦ Φu1
i1

(t).

Remark 27. Lemma 9 implies that, for every ϕ ∈ Ds(M), there exists C > 0 such that, for all ele-
ments u1, . . . , uj of Hs(M), of norm small enough, the diffeomorphisms ϕ and ΦI(1, u1, . . . , uj)(ϕ)
can be connected with a curve of length less than 2C(‖u1‖Hs + · · ·+ ‖uj‖Hs), hence

dSR(ϕ,ΦI(1, u1, . . . , uj)(ϕ)) 6 2C(‖u1‖Hs + · · ·+ ‖uj‖Hs).

The key lemma is the following.

Lemma 11. Let ϕ ∈ Ds(M), let j > 2 be an integer, and let I = (i1, . . . , ij) ∈ {1 . . . , r}j. Then

ΦI(1, u1, . . . , uj)(ϕ) = ϕ+ u1 . . . ujXI ◦ ϕ+ o(‖(u1, . . . , uj)‖jHs). (14)

Proof. From the definition of a Lie bracket, it is well known that, for fixed u1, . . . , uj in Hs(M)
and for small t ∈ R, one has

ΦI(t, u1, . . . , uj)(ϕ) = ϕ+tj
[
Xu1
i1
, [. . . , [X

uj−1

ij−1
,X

uj
ij

] . . .
]

(ϕ)+o(tj) = ϕ+tju1 . . . ujXI◦ϕ+o(tj+1).

Obviously, we have tXuk
ik

= Xtuk
ik

for every k, and hence ΦI(t, u1, . . . , uj)(ϕ) = ΦI(1, tu1, . . . , tuj)(ϕ).

As a consequence, if Φ
u1,...,uj
I (1, ϕ) has a Taylor expansion in (u1, . . . , uj), then this expansion is

given by (14). Since the term at the left-hand side of (14) is smooth in (ϕ, u), it has a Taylor
expansion in u of order j. The result follows.
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Step 6: end of the proof. Since the family (X1, . . . , Xr) is bracket-generating, there exist
subsets I1, . . . , Im of {1, . . . , r}, of increasing cardinals jk = |Ik|, such that any X ∈ Γs(TM) is an
a linear combination of XI1 , . . . , XIm (with coefficients in Hs(M)). For every k ∈ {1, . . . ,m}, we
consider the mapping φk defined on a neighborhood of (0, e) in Hs(M)×Ds(M), with values in a
neighborhood of e in Ds(M), given by

φk(u, ϕ) = ΦIk

(
1, ‖u‖

1−jk
jk

Hs u, ‖u‖1/jkHs , . . . , ‖u‖
1/jk
Hs

)
(ϕ).

This mapping is smooth with respect to u outside of 0, and it is of class C1 around 0 since,
according to Lemma 11, we have φk(u, ϕ) = ϕ + uXIk ◦ ϕ + o(‖u‖Hs), for every ϕ ∈ Ds(M).
Moreover, according to Remark 27, for every ϕ ∈ Ds(M), there exists a constant C > 0 such that

dSR(ϕ, φk(u, ϕ)) 6 C‖u‖1/jkHs . (15)

as soon as the Hs norm of u is small enough.
Finally, we consider the mapping φ defined on a neighborhood of 0 in Hs(M,Rm), with values

in Ds(M), defined by
φ(u1, . . . , um) = φm(um) ◦ · · · ◦ φ1(u1)(e).

The mapping φ is of class C1 around 0, and its differential at 0 is given by

dφ(0).(δu1, . . . , δum) =

m∑
k=1

ukXIk ∈ Γs(TM),

for every (δu1, . . . , δum) ∈ Hs(M,Rm). The mapping dφ(0) is surjective, since the vector fields
XI1 , . . . , XIn generates TM by assumption, and therefore φ is a local submersion at 0. Therefore,
the image by φ of any (small enough) neighborhood of 0 in Hs(M,Rm) is a neighborhood of e in
Ds(M). Let ε > 0 be small enough that φ is defined and smooth on the ball B of center 0 and
radius εjm in Hs(M,Rm). It follows that there exists a neighborhood Uε of e in Ds(M) such that
U ⊂ φ(B(0, εjm))). Besides, for ε > 0 small enough, (15) also implies that there exists C > 0 such
that

dSR(e, φ(u1, . . . , um)) 6 2C

m∑
k=1

‖uk‖1/jnHs 6 2mCε,

for every (u1, . . . , um) ∈ B(0, εjm). Hence, any sub-Riemannian ball centered at e contains a
neighborhood U of e for the intrinsic manifold topology of Ds(M). The theorem is proved.
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