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Université de Lyon 1, C.N.R.S.

Institut Camille Jordan

21 av Claude Bernard

69622 Villeubanne cedex, France

2
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Abstract

We consider a non-interacting bipartite quantum system HAS ⊗ HBS undergoing
repeated quantum interactions with an environment modeled by a chain of indepen-
dent quantum systems interacting one after the other with the bipartite system. The
interactions are made so that the pieces of environment interact first with HAS and
then with HBS . Even though the bipartite systems are not interacting, the interac-
tions with the environment create an entanglement. We show that, in the limit of
short interaction times, the environment creates an effective interaction Hamiltonian
between the two systems. This interaction Hamiltonian is explicitly computed and
we show that it keeps track of the order of the successive interactions with HAS and
HBS . Particular physical models are studied, where the evolution of the entanglement
can be explicitly computed. We also show the property of return of equilibrium and
thermalization for a family of examples.

1 Introduction

Initially introduced in [2] in order to justify the quantum Langevin equations, Quantum
Repeated Interaction models are currently a very active line of research. They have found
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various applications: quantum trajectories [11, 12, 13, 3, 4], thermalization of quantum
systems [5, 1]. Moreover several famous physical experiments, such as the ones performed
by S. Haroche’s team, correspond exactly to Quantum Repeated Interaction schemes ([6,
7]).

Repeated Quantum Interactions are particular discrete time evolutions of Open Quan-
tum Systems where the typical situation is the one of a quantum system HS in contact
with an infinite chain of quantum systems

⊗
kHk. Each quantum system Hk interacts

with HS one after the other during a time duration h. More concretely, H1 interacts with
HS during a time duration h and then stops interacting, the second quantum system H2

then interacts with HS and so on. The continuous time limit, when h goes to zero, has
been studied in detail in [2]. Remarkably, it has been shown that such discrete time mod-
els, under suitable renormalization, converge to the quantum Langevin equations, that is,
quantum stochastic differential equations.

In this article, we concentrate on the following particular situation. We consider that
the system HS is composed of two quantum systems HA

S and HB
S which do not interact

together. This “uncoupled” system undergoes Quantum Repeated Interactions as follows.
Each piece Hk of the environment interacts first with HA

S during a time duration h without
interacting withHB

S and then interacts withHB
S without interacting anymore withHA

S . For
example, in the spirit of the experiments driven by Haroche et al (cf [6, 7]), the bipartite
system can been thought of as two isolated cavities with a magnetic field trapping several
photons in each cavities. A chain of two-level systems (such as Rydberg atoms in some
particular state, as in the experiment) are passing through the cavities, one after the other,
creating this way an entanglement in between the photons of each cavities.

Our work is motivated by entanglement considerations. While the systems HA
S and HB

S

are not initially entangled and while there is no direct interaction between them, our special
scheme of Quantum Repeated Interactions creates naturally entanglement. More precisely,
we show that this scheme of interaction, in the continuous-time limit, is equivalent to a
usual Quantum Repeated Interaction model where, actually, HA

S interacts with HB
S . In

other words, our special scheme of Quantum Repeated Interactions creates spontaneously
an effective interaction Hamiltonian between HA

S and HB
S . We explicitly compute the

associated interaction Hamiltonian.

The article is structured as follows. In Section 2, the bipartite Repeated Quantum
Interaction model is described in details. In Section 3, we focus on the continuous-time
limit, that is, when the time interaction between the systemsHk andHS = HA

S⊗HB
S goes to

zero. More precisely, we derive the quantum stochastic differential equation representing
the limit evolution. This allows to identify the effective coupling Hamiltonian. Section
4 is devoted to the study of the evolution of the entanglement between HA

S and HB
S in

the physical example of the spontaneous emission of a photon. In Section 5, we derive the
Lindblad generator of the limit evolution in the case of a thermal environment, represented
by a Gibbs state. We then study the property of return to equilibrium, that is, the
asymptotic convergence for all initial state toward an invariant state.
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2 Description of the Bipartite Model

This section is devoted to the presentation of the model. As announced, we consider a
quantum system HS = HA

S ⊗HB
S , where HA

S and HB
S do not interact together. This means

that the free evolution of HS is given by

HA ⊗ I + I ⊗HB,

where HA and HB are the free Hamiltonians of HA
S and HB

S . This system is coupled to an
environment made of an infinite chain of identical and independent systems :

TΦ =
⊗
k∈N∗

Hk,

where Hk = H for all k.
The interaction between HS and the infinite chain is described by a model of Quantum

Repeated Interactions, that is, the copies of H interact ones after the others with HS and
then stop interacting. A single interaction between a copy of H and HS = HA

S ⊗ HB
S is

described by a particular mechanism, the interaction is divided into two parts: the system
H interacts first with HA

S during a time h without interacting with HB
S , then the system

H interacts with HB
S during a time h without interacting with HA

S .
In terms of Hamiltonians, the evolution of the coupled system HA

S ⊗ HB
S ⊗ H can be

described as follows. For the first interaction, we consider an Hamiltonian of the form

HA
tot = HA ⊗ I ⊗ I + I ⊗ I ⊗HR + λHA

I , (1)

where HR represents the free Hamiltonian of H, the operator HA
I represents the interaction

Hamiltonian between H and HA
S (this operator acts as the identity operator on HB

S ) and
λ is a coupling constant. In a similar way, the second evolution is described by

HB
tot = I ⊗HB ⊗ I + I ⊗ I ⊗HR + λ′HB

I , (2)

where this time HB
I acts non-trivially only on H and HB

S and acts as the identity operator
on HA

S . Again λ′ represents also the coupling constant of the second interaction.
Each of the operators HA

tot and HB
tot give rise to a unitary evolution during the time

interval h:

UA = e−ihH
A
tot , UB = e−ihH

B
tot . (3)

Since the space H interacts first with HA
S and then HB

S , the resulting evolution is then

U = UBUA. (4)

Let us stress that, in more general setup, the interaction between H and HS should
have been given by an Hamiltonian of the form

H̃tot = HA ⊗ I ⊗ I + I ⊗HB ⊗ I + I ⊗ I ⊗HR + λ̃ H̃I ,
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where H̃I would have been a general interaction Hamiltonian. This would have given rise
to a usual unitary evolution of the form

Ũ = e−i2hH̃tot . (5)

In the specific model considered in this article, since HA
I and HB

I do not commute, we
cannot directly put the unitary (4) under the form (5), at least not in a natural way!
Though, we shall prove that, in the continuous-time limit, our model with U = UBUA is
equivalent to a general model with some explicit effective interaction between HA

S and HB
S .

Let us make precise now the form of the interaction Hamiltonians involved in (1) and
(2). We assume in this work that all the Hilbert spaces involved in the model, that is, the
spaces H, HA

S and HB
S are finite dimensional. For a reason which will appear clearer in

the article, we choose the dimension of H to be of the form N + 1, for some N ∈ N∗. We
consider an orthonormal basis of H, denoted by {e0, e1, . . . , eN}, made of eigenvectors of
HR and where the vector e0 is the ground state of HR.

Consider the associated canonical operators aij defined by

aijek = δikej ,

for all i, j and k in {0, . . . , N}. With this notation, we have

HR =
N∑
j=0

λj a
j
j ,

where the λj’s are the eigenvalues of HR.
As interaction Hamiltonians we shall only consider operators of the form

HA
I =

N∑
j=1

Vj ⊗ I ⊗ a0j + V ∗j ⊗ I ⊗ a
j
0 ,

HB
I =

N∑
j=1

I ⊗Wj ⊗ a0j + I ⊗W ∗
j ⊗ a

j
0 ,

where the Vj’s are operators on HA
S and the Wj’s are operators on HB

S .
As usual in the Schrödinger picture, the evolutions of states (density matrices here) on

HA
S ⊗HB

S ⊗H are given by
ρ 7−→ Uρ U∗ ,

where we recall that U takes the particular form U = UBUA in our context.

Now, we are in the position to describe the whole interaction between HA
S ⊗HB

S and the
chain

⊗
kHk, with Hk = H = CN+1. The scheme is as follows. The first copy H1 interacts

with HA
S ⊗ HB

S during a time 2h while the rest of the chain remains isolated. Then, the
first copy disappears and the second copy comes to interact and so on... Before making
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precise the evolution, we need to introduce a notation for the operators acting only on Hn

and being the identity operator on the rest of the whole space. If A is an operator on H,
we extend it as an operator on

⊗
kHk but acting non-trivially only on Hn by putting

A(n) =
n−1⊗
k=1

I ⊗ A⊗
⊗
k>n+1

I .

On HA
S ⊗HB

S

⊗
kHk we consider the family of unitary operators (Un)n∈N∗ , where Un acts

as U on HA
S ⊗HB

S and the n-th copy of H and as the identity on the rest of the chain. The
operator Un represents actually the interaction between HA

S ⊗HB
S and Hn. More precisely,

the operator Un is defined as Un = UB
n U

A
n , where UA

n = e−ihH
A
tot,n with

HA
tot,n = HA ⊗ I ⊗ I + I ⊗ I ⊗HR(n) + λ

N∑
j=1

Vj ⊗ I ⊗ a0j(n) + V ∗j ⊗ I ⊗ a
j
0(n) , (6)

and the corresponding description for UB
n .

The whole evolution is finally described by a family of unitary operators (Vn)n∈N∗ which
are given by

Vn = UnUn−1 . . . U1 . (7)

As a consequence, if the initial state of HA
S ⊗HB

S

⊗
kHk where the density matrix ρ0, then

the state after n interactions is
Vn ρ0 V

∗
n .

Now that the discrete-time evolution is clearly described, we shall investigate its continuous-
time limit.

3 Effective Interaction Hamiltonian

This section is devoted to derive the continuous time limit of our special scheme of repeated
interactions, i.e. the limit when the time parameter h goes to 0. In order to obtain a relevant
limit, the authors of [2] have shown that the total Hamiltonian has to be properly rescaled
in terms of h. In particular, it is crucial to strengthen the interaction in order to see its
effect at the limit. More precisely, translated in our context, the total Hamiltonians have
to be of the following form:

HA
tot = HA ⊗ I ⊗ I + I ⊗ I ⊗HR +

1√
h

N∑
i=1

(
Vj ⊗ I ⊗ a0j + V ∗j ⊗ I ⊗ a

j
0

)
, (8)

HB
tot = I ⊗HB ⊗ I + I ⊗ I ⊗HR +

1√
h

N∑
j=1

I
(
⊗Wj ⊗ a0j + I ⊗W ∗

j ⊗ a
j
0

)
. (9)

Let us stress that in the above expressions the coupling constants appearing in (1) and (2)
have been replaced by 1/

√
h. We denote by b · c the floor function. One can show that
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the operators (Vbt/hc)t defined in (7) converge to a family of operators (Ut)t satisfying a
particular quantum stochastic differential equation.

More precisely, in [2], it is shown that one can embed the space TΦ into some appro-
priate Fock space Φ; the discrete time interaction, described by (Vbt/hc)t, appears naturally
as an approximation of a continuous one described by a family of unitary operators (Ut)t
acting on Φ; the family (Ut) is the solution of a particular quantum stochastic differential
equation describing continuous-time interaction between small systemHS and the quantum
field Φ. In our context, the complete description of the Fock space Φ and the details of the
convergence result are not necessary. Nevertheless the “created” interaction Hamiltonian
appears naturally in the expression of the limit (Ut). We shall prove the following result
by exhibiting only the essential points allowing to apply the theorems of [2].

Theorem 3.1. When the interaction time h goes to 0, the family (Vbt/hc)t converges
strongly to a family of unitary operators (Ut) which is the solution of the quantum stochastic
differential equation

dUt =

[
− i(HA ⊗ I + I ⊗HB + 2λ0 I ⊗ I)

−1

2

∑
j

V ∗j Vj ⊗ I + I ⊗W ∗
jWj + 2Vj ⊗W ∗

j

]
Ut dt

− i
N∑
i=1

(Vj ⊗ I + I ⊗Wj)Ut da
0
j(t) + (V ∗j ⊗ I + I ⊗W ∗

j )Ut da
j
0(t) . (10)

Remark. Note that in the expression (10) the terms (a0j(t)) and (aj0(t)) are quantum
noises. They are particular operators on the limit Fock space Φ. The exact definition of
these operators is not needed here and we refer to [10] for complete references.

Proof. In order to prove this result we shall apply the Theorem 13 of [2]. The essential
step is to identify the relevant terms when expanding

U = UBUA = e−ihH
B
tot e−ihH

A
tot ,

in terms of h. More precisely, on HA
S ⊗HB

S ⊗H, one can decompose U as

U =
∑
i,j

U i
j(h)⊗ aij, (11)

where the U i
j(h)’s are operators on HA

S ⊗ HB
S . This way, we shall find the asymptotic

expression of U i
j(h) in order to apply the convergence results of [2].

In order to obtain the asymptotic expression of U i
j(h), let us study HA

tot and HB
tot in

details. Using a decomposition similar to (11), the operators HA
tot and HB

tot can be seen

6



as matrices whose the coefficients are operators on HA
S ⊗ HB

S . In particular, they can be
written as follows

HA
tot =



HA ⊗ I + λ0I ⊗ I 1√
h
V ∗1 ⊗ I 1√

h
V ∗2 ⊗ I · · · 1√

h
V ∗N ⊗ I

1√
h
V1 ⊗ I HA ⊗ I + λ1I ⊗ I 0 · · · 0

1√
h
V2 ⊗ I 0 HA ⊗ I + λ2I ⊗ I

. . . 0
...

...
. . .

. . .
...

1√
h
VN ⊗ I 0 0 · · · HA ⊗ I + λNI ⊗ I


and

HB
tot =



I ⊗HB + λ0I ⊗ I 1√
h
I ⊗W ∗1 1√

h
I ⊗W ∗2 · · · 1√

h
I ⊗W ∗N

1√
h
I ⊗W1 I ⊗HB + λ1I ⊗ I 0 · · · 0

1√
h
I ⊗W2 0 I ⊗HB + λ2I ⊗ I

. . . 0
...

...
. . .

. . .
...

1√
h
I ⊗WN 0 0 · · · I ⊗HB + λNI ⊗ I

 .

Hence we obtain a Taylor expansion of UA as

UA =


DA

0 −i
√
hV ∗1 ⊗ I −i

√
hV ∗2 ⊗ I · · · −i

√
hV ∗N ⊗ I

−i
√
hV1 ⊗ I DA

1 −1
2hV1V

∗
2 ⊗ I · · · −1

2hV1V
∗
N ⊗ I

... −1
2hV2V

∗
1 ⊗ I DA

2
. . .

...
...

...
. . .

. . .
...

−i
√
hVN ⊗ I −1

2hVNV
∗
1 ⊗ I −1

2hVNV
∗
2 ⊗ I · · · DA

N

+O(h3/2)

and of UB as

UB =


DB

0 −i
√
hI ⊗W ∗1 −i

√
hI ⊗W ∗2 · · · −i

√
hI ⊗W ∗N

−i
√
hI ⊗W1 DB

1 −1
2hI ⊗W1W

∗
2 · · · −1

2hI ⊗W1W
∗
N

... −1
2hI ⊗W2W

∗
1 DB

2
. . .

...
...

...
. . .

. . .
...

−i
√
hI ⊗WN −1

2hI ⊗WNW
∗
1 −1

2hI ⊗WNW
∗
2 · · · DB

N

+O(h3/2) ,

where the diagonal coefficients are, for all j = 1, . . . , N ,

DA
0 = I ⊗ I − ihHA ⊗ I − ihλ0I ⊗ I −

1

2
h
∑
j

V ∗j Vj ⊗ I ,

DA
j = I ⊗ I − ihHA ⊗ I − ihλjI ⊗ I −

1

2
hVjV

∗
j ⊗ I ,

DB
0 = I ⊗ I − ihI ⊗HB − ihλ0I ⊗ I −

1

2
h
∑
j

I ⊗W ∗
jWj ,

DB
j = I ⊗ I − ihI ⊗HB − ihλjI ⊗ I −

1

2
hI ⊗WjW

∗
j .

7



This way, computing UBUA in asymptotic form, the coefficients U i
j(h) of the matrix U for

i, j = 0, . . . , N are, up to terms in h3/2 or higher

U0
0 = I ⊗ I − ih(HA ⊗ I + I ⊗HB + 2λ0I ⊗ I)

− 1

2
h
∑
j

(
V ∗j Vj ⊗ I + I ⊗W ∗

jWj + 2Vj ⊗W ∗
j

)
, (12)

U j
0 = −i

√
h(V ∗j ⊗ I + I ⊗W ∗

j ) , (13)

U0
j = −i

√
h(Vj ⊗ I + I ⊗Wj) , (14)

U j
j = I ⊗ I − ih(HA ⊗ I + I ⊗HB + 2λjI ⊗ I)

− 1

2
h(VjV

∗
j ⊗ I + I ⊗WjW

∗
j + 2V ∗j ⊗Wj) , (15)

Uk
j = −1

2
h(VjV

∗
k ⊗ I + I ⊗WjW

∗
k + 2V ∗k ⊗Wj) . (16)

One can easily check that

lim
h→0

U i
j(h)− δij I ⊗ I

hεi,j
= Lij ,

where ε0,0 = 1, ε0,j = εj,0 = 1/2 and εi,j = 0 and where

L0
0 = −i(HA ⊗ I + I ⊗HB + 2λ0I ⊗ I)− 1

2

∑
j

V ∗j Vj ⊗ I + I ⊗W ∗
jWj + 2Vj ⊗W ∗

j ,

Lj0 = −i(V ∗j ⊗ I + I ⊗W ∗
j ) ,

L0
j = −i(Vj ⊗ I + I ⊗Wj) ,

Lij = 0.

These are exactly the conditions of [2] and the result follows.

Now that we have derived Eq. (10), we are in the position to identify the interaction
Hamiltonian which has been “created” by the environment. To this end, we compare the
limit equation (10) with the one one could have obtained with a usual repeated quantum
interaction scheme.

Theorem 3.2. The quantum stochastic differential equation (10) represents an evolution,
on HA

S ⊗ HB
S coupled to a Fock space Φ, which can be obtained from the continuous-time

limit of a usual repeated interaction scheme with the following Hamiltonian on HA
S⊗HB

S⊗H

H̃tot = HA,B
0 ⊗ I + 2 I ⊗ I ⊗HR +

1√
h

∑
j

Sj ⊗ a0j + S∗j ⊗ a
j
0 , (17)

where Sj = Vj ⊗ I + I ⊗Wj and where the free Hamiltonian of HA
S ⊗HB

S is given by

HA,B
0 = HA ⊗ I + I ⊗HB +

i

2

∑
j

V ∗j ⊗Wj − Vj ⊗W ∗
j . (18)
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In particular the term
i

2

∑
j

(
V ∗j ⊗Wj − Vj ⊗W ∗

j

)
represents an effective interaction Hamiltonian term created by the environment between
HA
S and HB

S .

Proof. With the expression of the Hamiltonian (17), using again the results of [2], the
continuous-time limit (h goes to zero) gives rise to the QSDE

dŨt = L0
0Ũt dt+

∑
j

Lj0Ũt da
j
0(t) + L0

j Ũt da
0
j(t) , (19)

where

L0
0 = −i(HA,B

0 + 2λ0I ⊗ I)− 1

2

∑
j

S∗jSj,

L0
j = −iSj and Lj0 = −iS∗j .

In Eq. (10), the coefficient L0
0 is

L0
0 = −i(HA ⊗ I + I ⊗HB + 2λ0I ⊗ I)− 1

2

∑
j

V ∗j Vj ⊗ I + I ⊗W ∗
jWj + 2Vj ⊗W ∗

j

which can also be written as

L0
0 =− i

(
HA ⊗ I + I ⊗HB + 2λ0I ⊗ I +

i

2

∑
j

V ∗j ⊗Wj − Vj ⊗W ∗
j

)

− 1

2

∑
j

(Vj ⊗ I + I ⊗Wj)
∗(Vj ⊗ I + I ⊗Wj) .

We now see that Eq.(10) is exactly a QSDE of the same form as Eq.(19) but with

HA,B
0 = HA ⊗ I + I ⊗HB +

i

2

∑
j

V ∗j ⊗Wj − Vj ⊗W ∗
j and Sj = Vj ⊗ I + I ⊗Wj .

The result follows.

Remark 1. One can wonder if we can recover the above result and the description of the
created interaction Hamiltonian only by knowing the separate evolutions (that is when
only HA

S or HB
S is involved). Using again the results of [2] one can describe the separate

evolution and get

dŨA
t = [−i(HA + λ0I)− 1

2

∑
j

V ∗j Vj]Ũ
A
t dt− i

∑
j

VjŨ
A
t da

0
j(t) + V ∗j Ũ

A
t da

j
0(t) , (20)

9



which is the limit of V A
[t/h] = UA

[t/h] . . . U
A
1 . The corresponding evolution for HB

S coupled to
the Fock space Φ is given by

dŨB
t = [−i(HB + λ0I)− 1

2

∑
j

W ∗
jWj]Ũ

B
t dt− i

∑
j

WjŨ
B
t da

0
j(t) +W ∗

j Ũ
B
t da

j
0(t) , (21)

which is the limit of V B
[t/h] = UB

[t/h] . . . U
B
1 . At that stage, with only (20) and (21) in hands

it is not clear how to derive Eq.(10). In particular, it is not obvious how to describe the
fact that the quantum field, at time t, acts first with HA

S and then with HB
S .

Remark 2. Note that the interaction Hamiltonian is not symmetric in HA
S and HB

S due to
the fact that each auxiliary system H acts with HA

S before HB
S . Somehow the evolution

keeps the memory of the order of the interaction.

We shall now illustrate our results by studying the creation of entanglement in some
simple physical model.

4 Evolution of Entanglement for Spontaneous Emis-

sion

The physical model considered in this section is the spontaneous emission of photons. More
precisely, the systems HA

S , HB
S and H are 2-level systems, hence both represented by the

state space C2. The free dynamics HA, HB and HR are given by the Pauli matrix

σz =

(
1 0
0 −1

)
.

The operators V1 and W1 are V1 = W1 = a10. Applying Theorem 3.1, the limit evolution is

dUt =

[
−i(σz ⊗ I + I ⊗ σz + 2I ⊗ I)− 1

2
S∗S +

1

2
(a01 ⊗ a10 − a10 ⊗ a01)

]
Ut dt

− iSUt da01(t)− iS∗Ut da10(t) , (22)

where S = a10 ⊗ I + I ⊗ a10.

In order to study the entanglement of a system evolving according to Eq.(22), we
compute its Lindblad generator. Indeed, from the solution (Ut)t∈R+ of Eq.(22), we consider
associate the semigroup of completely positive maps (Tt)t∈R+ defined by

Tt(ρ) = TrH(Ut(ρ⊗ |Ω〉〈Ω|)U∗t ) ,

for all state ρ of HA
S ⊗ HB

S and all t ∈ R+, where Ω represents the ground (or vacuum)
state of the associated Fock space Φ. The infinitesimal generator of (Tt) is then given by

L(ρ) =− i
[
σz ⊗ I + I ⊗ σz +

i

2
(a01 ⊗ a10 − a10 ⊗ a01), ρ

]
+

1

2

(
2SρS∗ − S∗Sρ− ρS∗S

)
.
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Note that this generator can also be simply recovered from the limit of the completely
positive discrete-time semigroup associated to the completely positive operator l(h) defined
by

l(h)(ρ) = TrH(U(ρ⊗ |e0〉〈e0|)U) (23)

=
∑
i

U0
i (h) ρU0

i (h)∗ (24)

= ρ+ hL(ρ) + ◦(h) . (25)

Now we are in the position to study the entanglement between the system HA
S and

HB
S . In particular, we shall study the so-called entanglement of formation (see [14] for

an introduction). It is worth noticing that an explicit formula does not hold in general;
though, in [14] an explicit formula has been derived for particular initial states. These initial
states are called “X states” for their matrix representations look like an X. A particular
feature of such states is that their particular form is preserved under the dynamics and
the entanglement of formation can be computed explicitly in terms of the concurrence of
Wooters [15].

In order to make concrete the X representation, we consider the following basis of
HA
S ⊗HB

S :
B = (|e0 ⊗ e0〉, |e0 ⊗ e1〉, |e1 ⊗ e0〉, |e1 ⊗ e1〉) .

A general X state in this basis is then

ρ =


a 0 0 y
0 b x 0
0 x c 0
y 0 0 d


with the conditions that a, b, c, d are non-negative reals such that a+b+c+d = 1, |y|2 ≤ ad
and |x|2 ≤ bc. As proved in [14], the concurrence of Wooters of such a state is

C(ρ) = 2 max(0, |y| −
√
bc, |x| −

√
ad) (26)

and its entanglement of formation is given by the general formula, shown by Wooters [15],

E(ρ) = h

(
1 +

√
1− C(ρ)2

2

)
, (27)

where h(x) = −x log2(x)− (1− x) log2(1− x).
One can now compute the action of L on a X state and after computation we get

L(ρ) =


x+ x+ b+ c 0 0 y(−1− 4i)

0 d− b− x− x d− c− x 0
0 d− c− x d− c 0

y(4i− 1) 0 0 −2d

 .
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Using the development of etL in series, it is obvious to see that the X representation is
preserved during the evolution. Unfortunately, in general, the expression of Ln(ρ) for all
n is not computable and we cannot obtain the expression of etL(ρ) for all ρ. However, we
are able to compute the expression of etL(ρ) for those states defining the basis B.

• A straightforward computation shows that |e0 ⊗ e0〉〈e0 ⊗ e0| is an invariant state of the
dynamics (one can check that L(|e0 ⊗ e0〉〈e0 ⊗ e0|) = 0) and there is no entanglement
of formation. Of course, for such an initial state the dynamics of spontaneous emission
generates no interaction at all with the environment!

• Consider now another initial state ρ01 = |e0⊗e1〉〈e0⊗e1| corresponding to the case a = 0,
b = 1, c = 0, d = 0, x = 0 and y = 0. This state represents the system HA

S in its ground
state and HB

S in its excited state. One can easily check that we get for all n ≥ 1

Ln(ρ01) =


(−1)n+1 0 0 0

0 (−1)n 0 0
0 0 0 0
0 0 0 0

 .

This gives directly that

ρ01t = etL(|e0 ⊗ e1〉〈e0 ⊗ e1|) =


1− e−t 0 0 0

0 e−t 0 0
0 0 0 0
0 0 0 0

 (28)

= |e0 ⊗ (1− e−t)e0 + e−te1〉〈e0 ⊗ (1− e−t)e0 + e−te1| (29)

The entanglement of formation is obviously zero. Which was to be expected also, as the
initial state of HA

S is |e0〉 is invariant under the repeated interactions and generates no
interaction with the environment; hence the environment is here interacting with HB

S only.

In the two next cases we shall see effective creation of entanglement.
• Consider the initial state ρ10 = |e1 ⊗ e0〉〈e1 ⊗ e0| corresponding to the case a = 0,

b = 0, c = 1, d = 0, x = 0 and y = 0. For all n ≥ 1, we get

Ln(ρ10) =


(−1)n+1(n2 − n+ 1) 0 0 0

0 (−1)n(n− 1)n (−1)nn 0
0 (−1)nn (−1)n 0
0 0 0 0

 .

This way, we have for all time t,

ρ10t = etL(|e1 ⊗ e0〉〈e1 ⊗ e0|) =


1− (1 + t2)e−t 0 0 0

0 t2e−t −te−t 0
0 −te−t e−t 0
0 0 0 0

 . (30)
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In this case the entanglement of formation is then

E(ρ10t ) = h

(
1 +
√

1− 4t2e−2t

2

)
. (31)

In particular, this quantity is positive for all t > 0 (see figure). One can check that the
maximum is reached at time 1 when the state is

1− 2 e−1 0 0 0
0 e−1 −e−1 0
0 −e−1 e−1 0
0 0 0 0

 .

In this case we see that there is spontaneous creation of entanglement which increases until
time 1 and next decreases exponentially fast to zero, see Fig. 1.

Figure 1: Time evolution of Wooters’ concurrence, initial state e1 ⊗ e0

• The last case concerns ρ11 = |e1 ⊗ e1〉〈e1 ⊗ e1|. In particular, this corresponds to the
case a = 0, b = 0, c = 0, d = 1, x = 0 and y = 0. After computations we get

Ln(ρ11) = (−1)n


5× 2n − 6− n(n+ 3) 0 0 0

0 −5(2n − 1) + n(n+ 3) −2n+1 + n+ 2 0
0 −2n+1 + n+ 2 −2n + 1 0
0 0 0 2n

 .

This gives for all time t,

ρ11t =


1− (t2 − 4t+ 6)e−t + 5e−2t 0 0 0

0 (t2 − 4t+ 5)e−t − 5e−2t (2− t)e−t − 2te−2t 0
0 (2− t)e−t − 2e−2t e−t − e−2t 0
0 0 0 e−2t

 .

(32)
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The concurrence of Wooters is then

C(ρ11t ) = 2 max[0, |(2− t)e−t − 2e−2t| −
√

(1− (t2 − 4t+ 6)e−t + 5e−2t)e−2t] .

and the entanglement of formation is

E(ρ11t ) = h

(
1 +

√
1− C(ρ11t )2

2

)
. (33)

The behavior is mostly the same as in the previous case (see Fig 2), with the important
difference that the entanglement, initially starting at 0, takes a strictly positive time to
leave the value 0.

Figure 2: Time evolution of Wooters’ concurrence, initial state e1 ⊗ e1

5 Thermal Environment

In this section, we investigate the bipartite model in presence of a thermal environment.
To this end, we consider that the reference state of each copy of H is the Gibbs state

ωβ =
1

Z
e−βH

R

,

where β is positive and Z is a normalizing constant (as usual β is the inverse of the
temperature). In the orthonormal basis {e0, . . . , eN} of eigenvectors of the Hamiltonian
HR, the state ωβ is diagonal and is expressed as

ωβ =
∑
j

βj |ej〉〈ej| , (34)

14



where βj = e−βλj/Z, with
∑

j βj = 1.
Let us stress that the limit evolution described in [2] is crucially related to the fact that

the state of H is a pure state. With a general state of the form ωβ, in order to compute
the limit evolution in terms of a unitary evolution on a Fock space, one has to consider the
so-called of G.N.S. representation of the dynamics. This techniques has been successfully
developed in [1] in order to derive the quantum Langevin equation associated to the action
of a quantum heat bath.

5.1 Limit Lindblad Generator

Here we shall not describe such results but we focus only on the Lindblad generator. As
in the previous section this generator can be obtained from the continuous-limit of the
discrete one. To this end we define the discrete generator lβ(h) including temperature by

lβ(h)(ρ) = TrH(U(ρ⊗ ωβ)U) =
∑
k

βkTrH(U(ρ⊗ |ek〉〈ek|)U) =
∑
j,k

βk U
k
j ρU

k∗
j . (35)

Proposition 5.1. In terms of h, the asymptotic expression of lβ(h) is given by

lβ(h)(ρ) = ρ+ hLβ(ρ) + ◦(h),

where

Lβ(ρ) =− i

[
HA ⊗ I + I ⊗HB +

i

2

N∑
j=1

(βj − β0)(Vj ⊗W ∗
j − V ∗j ⊗Wj), ρ

]
(36)

− 1

2

N∑
j=1

βj
(
SjS

∗
j ρ+ ρSjS

∗
j − 2S∗j ρSj

)
− 1

2

N∑
j=1

β0
(
S∗jSjρ+ ρS∗jSj − 2SjρS

∗
j

)
,

where Sj = Vj ⊗ I + I ⊗Wj.
Furthermore, the interaction Hamiltonian between HA

S and HB
S created by repeated in-

teractions with the environment is

i

2

N∑
j=1

(βj − β0)(Vj ⊗W ∗
j − V ∗j ⊗Wj) .

Proof. Plugging the asymptotic expressions (12) – (16) into (35) and putting

15



Sj = Vj ⊗ I + I ⊗Wj for all j ≥ 1, we get, up to terms in h3/2 or higher,

lβ(ρ) = ρ+ h
(
− i
[
HA ⊗ I + I ⊗HB, ρ

]
− 1

2

N∑
j=1

βj(VjV
∗
j ⊗ I + I ⊗WjW

∗
j + 2V ∗j ⊗Wj)ρ

− 1

2

N∑
j=1

βjρ(VjV
∗
j ⊗ I + I ⊗WjW

∗
j + 2V ∗j ⊗Wj)

∗

− 1

2

N∑
j=1

β0(V
∗
j Vj ⊗ I + I ⊗W ∗

jWj + 2Vj ⊗W ∗
j )ρ

− 1

2

N∑
j=1

β0ρ(V ∗j Vj ⊗ I + I ⊗W ∗
jWj + 2Vj ⊗W ∗

j )∗

+
N∑
j=1

β0SjρS
∗
j + βjS

∗
j ρSj

)
,

which can be written in the usual form

lβ(ρ) =ρ+ h
(
− i

[
HA ⊗ I + I ⊗HB +

i

2

N∑
j=1

(βj − β0)(Vj ⊗W ∗
j − V ∗j ⊗Wj), ρ

]

− 1

2

N∑
j=1

βj
(
SjS

∗
j ρ+ ρSjS

∗
j − 2S∗j ρSj

)
− 1

2

N∑
j=1

β0
(
S∗jSjρ+ β0ρS

∗
jSj − 2SjρS

∗
j

))
.

This way, the interaction Hamiltonian naturally appears in the Hamiltonian part.

5.2 Return to Equilibrium in a Physical Example, Thermaliza-
tion

On a particular example we shall study the asymptotic behavior of the dynamics described
above.

Recall that HA
S , HB

S and H are CN+1. We assume that the free evolutions satisfy
HA = HB = HR. The total Hamiltonian operators are

HA
tot = HA ⊗ I ⊗ I + I ⊗ I ⊗HR +

1√
h

N∑
j=1

a0j ⊗ I ⊗ a
j
0 + aj0 ⊗ I ⊗ a0j , (37)

HB
tot = I ⊗HB ⊗ I + I ⊗ I ⊗HR +

1√
h

N∑
j=1

I ⊗ a0j ⊗ a
j
0 + I ⊗ aj0 ⊗ a0j . (38)

This is a generalization of the spontaneous emission (see [1]).
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Applying Proposition 5.1 we get the expression of the Lindblad generator

Lβ(ρ) =− i

[
HA ⊗ I + I ⊗HB +

i

2

N∑
j=1

(βj − β0)(aj0 ⊗ a0j − a0j ⊗ a
j
0), ρ

]

− 1

2

N∑
j=1

βj
(
SjS

∗
j ρ+ ρSjS

∗
j − 2S∗j ρSj

)
− 1

2

N∑
j=1

β0
(
S∗jSjρ+ ρS∗jSj − 2SjρS

∗
j

)
,

where Sj = aj0 ⊗ I + I ⊗ aj0.
Now, we are in the position to consider the problem of return to equilibrium. More

precisely, we shall show that there exists a unique state ρ∞ such that

lim
t→+∞

Tr(etLβ(ρ)X) = Tr(ρ∞X) ,

for all initial state ρ and all observable X on HA
S ⊗HB

S . The state ρ∞ is an invariant state.
In the case of finite dimensional Hilbert spaces, a general result, proved by Frigerio and

Verri [9] and extended by Fagnola and Rebolledo [8] gives a sufficient condition, in the case
where the system has a faithful invariant state ρ∞. The criterion is the following. Let L,
defined by

L(ρ) = −i[H, ρ] +
∑
j

−1

2
{C?

jCj, ρ}+ CjρC
?
j ,

be the Lindblad generator of a quantum dynamical system. The property of return to
equilibrium is satisfied if{

H,Lj, L
∗
j ; j = 1, . . . , N

}′
=

{
Lj, L

∗
j ; j = 1, . . . , N

}′
, (39)

where the notation {}′ refers to the commutant of the ensemble.
In our context we shall prove the following return to equilibrium result.

Theorem 5.2. On HA
S ⊗HB

S , the dynamical system whose Lindblad generator is given by

Lβ(ρ) =− i

[
HA ⊗ I + I ⊗HB +

i

2

N∑
j=1

(βj − β0)(aj0 ⊗ a0j − a0j ⊗ a
j
0), ρ

]

− 1

2

N∑
j=1

βj
(
SjS

∗
j ρ+ ρSjS

∗
j − 2S∗j ρSj

)
− 1

2

N∑
j=1

β0
(
S∗jSjρ+ ρS∗jSj − 2SjρS

∗
j

)
,

where Sj = aj0 ⊗ I + I ⊗ aj0, has the property of return to equilibrium.
Moreover, the limit invariant state is

ρβ =
e−β(H

A⊗I+I⊗HB)

Z
,

where Z is a normalizing constant.
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Proof. First, one can check that ρβ is a faithful invariant state since

Lβ(ρβ) = 0 .

The rest of proof is then based on the result of Fagnola and Rebolledo by showing that
the commutants

{
HA ⊗ I + I ⊗HB +

i

2

N∑
j=1

(βj − β0)(aj0 ⊗ a0j − a0j ⊗ a
j
0), Sk, S

∗
k ; k = 1, . . . , N

}′
and

{Sk, S∗k ; k = 1, . . . , N}′

are simply trivial.
Recall that in this physical system the operators Sk are ak0 ⊗ I + I ⊗ ak0 for all k ≥ 1.

Let us prove now that {Sk, S∗k ; k = 1, . . . , N}′ is trivial. Consider an element K of this
commutant. This element K can be written with respect to the canonical basis (aij)i,j=0,...,N

as

K =
N∑

i,j=0

Ki
j ⊗ aij ,

where the Ki
j’s are operators on CN+1. Since the operators K and Sk commute for all

k ≥ 1, we get equality between

KSk =

(
N∑

i,j=0

Ki
j ⊗ aij

)(
ak0 ⊗ I + I ⊗ ak0

)
=

N∑
i,j=0

Ki
ja
k
0 ⊗ aij +

N∑
i,j=0

Ki
j ⊗ aijak0

=
N∑

i,j=0

Ki
ja
k
0 ⊗ aij +

N∑
j=0

K0
j ⊗ akj

and

SkK =
(
ak0 ⊗ I + I ⊗ ak0

)( N∑
i,j=0

Ki
j ⊗ aij

)
=

N∑
i,j=0

ak0K
i
j ⊗ aij +

N∑
i,j=0

Ki
j ⊗ ak0aij

=
N∑

i,j=0

ak0K
i
j ⊗ aij +

N∑
i=0

Ki
k ⊗ ai0 .

From the commutation of K and S∗k , we also have equality between

KS∗k =

(
N∑

i,j=0

Ki
j ⊗ aij

)(
a0k ⊗ I + I ⊗ a0k

)
=

N∑
i,j=0

Ki
ja

0
k ⊗ aij +

N∑
i,j=0

Ki
j ⊗ aija0k

=
N∑

i,j=0

Ki
ja

0
k ⊗ aij +

N∑
j=0

Kk
j ⊗ a0j

18



and

S∗kK =
(
a0k ⊗ I + I ⊗ a0k

)( N∑
i,j=0

Ki
j ⊗ aij

)
=

N∑
i,j=0

a0kK
i
j ⊗ aij +

N∑
i,j=0

Ki
j ⊗ a0kaij

=
N∑

i,j=0

a0kK
i
j ⊗ aij +

N∑
i=0

Ki
0 ⊗ aik .

From these equalities and since the operators (aij)i,j=0,...,N form a basis, the following system
of equations is obtained for k = 1, . . . , N ,

K0
0a

k
0 = ak0K

0
0 +K0

k

a0kK
0
0 = K0

0a
0
k +Kk

0 ,

for j, k, l = 1, . . . , N with k 6= j

K0
j a

l
0 = al0K

0
j

a0kK
0
j = K0

j a
0
k +Kk

j

K0
j a

0
j +Kj

j = a0jK
0
j +K0

0 ,

and

Kj
0a

0
l = a0lK

j
0

Kj
0a

k
0 = ak0K

j
0 +Kj

k

Kj
0a

j
0 +K0

0 = aj0K
j
0 +Kj

j ,

and for i, j, k, l = 1, . . . , N with k 6= i and l 6= j

Ki
ja
k
0 = ak0K

i
j

Ki
ja

0
l = a0lK

i
j

Ki
ja
i
0 +K0

j = ai0K
i
j

Ki
ja

0
j = a0jK

i
j +Ki

0 .

We now concentrate on all these equations in order to prove that the Ki
j’s are all equal to

0. Note that the commutation of a matrix M = (mij)i,j=0,...,N with ak0 for k = 1, . . . , N
implies that for all p ≥ 1 and q = 0, . . . , N with q 6= k

m00 = mkk , mp,0 = 0 and mk,q = 0 .

The commutation of M with a0k gives that for all p ≥ 1 and q = 0, . . . , N with q 6= k

m00 = mkk , m0,p = 0 and mq,k = 0 .
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Thus since K0
j a

l
0 = al0K

0
j for all j, l = 1, . . . , N , the matrices K0

j are of the form
m00 m01 . . . m0N

0 m00 0 0
...

. . . . . . 0
0 . . . 0 m00

 .

In the same way, from Kj
0a

0
l = a0lK

j
0 for all j, l = 1, . . . , N , we deduce that the matrices

Kj
0 are of the form 

m00 0 . . . 0
m10 m00 0 0

...
. . . . . . 0

mN0 . . . 0 m00

 .

Consider now the equations associated to Ki
j for i, j 6= 0. Since we get Ki

ja
k
0 = ak0K

i
j and

Ki
ja

0
l = a0lK

i
j for k, l = 1, . . . , N with k 6= i and l 6= j, the matrix Ki

j is a diagonal matrix
whose coefficients are all equal to m00 except the column j and the row i with for the
moment only zero coefficients on the first row and the first column.

In the following, the coefficients of a matrix Ki
j are denoted by (mij

kl)k,l=0,...,N . We work
then on the equation Ki

ja
i
0 +K0

j = ai0K
i
j. This equality gives that the diagonal coefficients

of K0
j are 0 and for l = 1, . . . , N with l 6= i,

mij
00 = mij

ii +m0j
0i and m0j

0l = −mij
il .

Then, from Ki
ja

0
j = a0jK

i
j + Ki

0 we deduce that the diagonal coefficients of Ki
0 are 0 and,

for l = 1, . . . , N with l 6= j,

mij
00 = mij

jj +mi0
0j and mi0

l0 = −mij
lj .

From the equalities Kj
0a

k
0 = ak0K

j
0 + Kj

k and a0kK
0
j = K0

j a
0
k + Kk

j with k 6= j, we finally

obtain that all the matrices Kj
0 , K0

j and Kj
k are vanishing for j 6= k. For j = k, the

equalities Kj
0a

j
0 + K0

0 = aj0K
j
0 + Kj

j allow us to conclude that the only non zero operators

are the Kj
j ’s for j = 0, . . . , N and all equal to m00

00I.

Hence, we have proved that the commutant {Sk, S∗k ; k = 1, . . . , N}′ is reduced to the
operators of the form λI ⊗ I with λ in C. Then the commutant{

HA ⊗ I + I ⊗HB +
i

2

N∑
j=1

(βj − β0)(aj0 ⊗ a0j − a0j ⊗ a
j
0), Sk, S

∗
k ; k = 1, . . . , N

}′

is by definition a subset of {Sk, S∗k ; k = 1, . . . , N}′. Therefore it is trivial too. This proves
that the system has the property of return to equilibrium, applying [8].

Since this state ρβ is the invariant state of HA
S ⊗HB

S , one deduces the thermalization
of HA

S and HB
S by the environment.

20



References

[1] S. Attal, A. Joye, “The Langevin Equation for a Quantum bath”, Journal of Func-
tional Analysis, 247, (2007), p. 253-288.

[2] S. Attal, Y. Pautrat, “From Repeated to Continuous Quantum Interactions”, Annales
Henri Poincaré, 7, 2006.
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