Entanglement of Bipartite Quantum Systems
driven by Repeated Interactions*

S. Attal', J. Deschamps’ and C. Pellegrini’

1
Université de Lyon

Université de Lyon 1, C.N.R.S.
Institut Camille Jordan
21 av Claude Bernard
69622 Villeubanne cedex, France

2
Universita degli Studi di Genova

Dipartimento di Matematica
Via Dodecaneso 35
16146 Genova, Italy

3
Institut de Mathématiques de Toulouse

Laboratoire de Statistique et de Probabilité
Université Paul Sabatier (Toulouse III)
31062 Toulouse Cedex 9, France

Abstract

We consider a non-interacting bipartite quantum system ’Hg‘ ® 7—[? undergoing
repeated quantum interactions with an environment modeled by a chain of indepen-
dent quantum systems interacting one after the other with the bipartite system. The
interactions are made so that the pieces of environment interact first with ’Hé and
then with Hg . Even though the bipartite systems are not interacting, the interac-
tions with the environment create an entanglement. We show that, in the limit of
short interaction times, the environment creates an effective interaction Hamiltonian
between the two systems. This interaction Hamiltonian is explicitly computed and
we show that it keeps track of the order of the successive interactions with Hg‘ and
HE . Particular physical models are studied, where the evolution of the entanglement
can be explicitly computed. We also show the property of return of equilibrium and
thermalization for a family of examples.

1 Introduction

Initially introduced in [2] in order to justify the quantum Langevin equations, Quantum
Repeated Interaction models are currently a very active line of research. They have found
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various applications: quantum trajectories [11, 12, 13, 3, 4], thermalization of quantum
systems [5, 1]. Moreover several famous physical experiments, such as the ones performed
by S. Haroche’s team, correspond exactly to Quantum Repeated Interaction schemes ([6,
7).

Repeated Quantum Interactions are particular discrete time evolutions of Open Quan-
tum Systems where the typical situation is the one of a quantum system Hg in contact
with an infinite chain of quantum systems ), Hy. Each quantum system 7, interacts
with Hg one after the other during a time duration h. More concretely, H; interacts with
Hs during a time duration h and then stops interacting, the second quantum system H,
then interacts with Hg and so on. The continuous time limit, when h goes to zero, has
been studied in detail in [2]. Remarkably, it has been shown that such discrete time mod-
els, under suitable renormalization, converge to the quantum Langevin equations, that is,
quantum stochastic differential equations.

In this article, we concentrate on the following particular situation. We consider that
the system Hg is composed of two quantum systems Ha and HE which do not interact
together. This “uncoupled” system undergoes Quantum Repeated Interactions as follows.
Each piece Hy, of the environment interacts first with #4 during a time duration h without
interacting with #Z and then interacts with HE without interacting anymore with H%. For
example, in the spirit of the experiments driven by Haroche et al (cf [6, 7]), the bipartite
system can been thought of as two isolated cavities with a magnetic field trapping several
photons in each cavities. A chain of two-level systems (such as Rydberg atoms in some
particular state, as in the experiment) are passing through the cavities, one after the other,
creating this way an entanglement in between the photons of each cavities.

Our work is motivated by entanglement considerations. While the systems H% and HZ
are not initially entangled and while there is no direct interaction between them, our special
scheme of Quantum Repeated Interactions creates naturally entanglement. More precisely,
we show that this scheme of interaction, in the continuous-time limit, is equivalent to a
usual Quantum Repeated Interaction model where, actually, H4 interacts with HE. In
other words, our special scheme of Quantum Repeated Interactions creates spontaneously
an effective interaction Hamiltonian between H% and HE. We explicitly compute the
associated interaction Hamiltonian.

The article is structured as follows. In Section 2, the bipartite Repeated Quantum
Interaction model is described in details. In Section 3, we focus on the continuous-time
limit, that is, when the time interaction between the systems H; and Hg = HAQHE goes to
zero. More precisely, we derive the quantum stochastic differential equation representing
the limit evolution. This allows to identify the effective coupling Hamiltonian. Section
4 is devoted to the study of the evolution of the entanglement between H5 and HZ in
the physical example of the spontaneous emission of a photon. In Section 5, we derive the
Lindblad generator of the limit evolution in the case of a thermal environment, represented
by a Gibbs state. We then study the property of return to equilibrium, that is, the
asymptotic convergence for all initial state toward an invariant state.



2 Description of the Bipartite Model

This section is devoted to the presentation of the model. As announced, we consider a
quantum system Hg = Hi @ HE, where H4 and HE do not interact together. This means
that the free evolution of Hg is given by

HA®I+I® HP,

where H* and HP are the free Hamiltonians of #% and HE. This system is coupled to an
environment made of an infinite chain of identical and independent systems :

where H = H for all k.

The interaction between Hg and the infinite chain is described by a model of Quantum
Repeated Interactions, that is, the copies of H interact ones after the others with Hg and
then stop interacting. A single interaction between a copy of H and Hs = H4 @ HE is
described by a particular mechanism, the interaction is divided into two parts: the system
H interacts first with H4 during a time h without interacting with HZ, then the system
H interacts with HEZ during a time h without interacting with H4.

In terms of Hamiltonians, the evolution of the coupled system Hi @ HE @ H can be
described as follows. For the first interaction, we consider an Hamiltonian of the form

Hi=H'®@Iol+I®I® H+\H}, (1)

where Hp represents the free Hamiltonian of H, the operator H; represents the interaction
Hamiltonian between H and H% (this operator acts as the identity operator on HZ) and
A is a coupling constant. In a similar way, the second evolution is described by

HE =ToHP@I+I®l® HR+NHP, (2)

where this time HP acts non-trivially only on # and HE and acts as the identity operator
on Hj. Again N represents also the coupling constant of the second interaction.

Each of the operators H2, and HJ, give rise to a unitary evolution during the time
interval h:

UA — efz'mq;;t7 UB — e ithHE, (3)
Since the space H interacts first with H% and then HZ, the resulting evolution is then
U=UBUA (4)

Let us stress that, in more general setup, the interaction between H and Hg should
have been given by an Hamiltonian of the form

Hoy=H'@I®I+I@H?® I+ I®1® H+X\H;,



where H; would have been a general interaction Hamiltonian. This would have given rise
to a usual unitary evolution of the form

U = e 2o, (5)

In the specific model considered in this article, since Hi* and HZ do not commute, we
cannot directly put the unitary (4) under the form (5), at least not in a natural way!
Though, we shall prove that, in the continuous-time limit, our model with U = UBU4 is
equivalent to a general model with some explicit effective interaction between Hg and HE.

Let us make precise now the form of the interaction Hamiltonians involved in (1) and
(2). We assume in this work that all the Hilbert spaces involved in the model, that is, the
spaces H, Hg and HE are finite dimensional. For a reason which will appear clearer in
the article, we choose the dimension of H to be of the form N + 1, for some N € N*. We
consider an orthonormal basis of #H, denoted by {eg,e1,...,en}, made of eigenvectors of
H?® and where the vector e is the ground state of HT.

Consider the associated canonical operators a§- defined by

i _
a;ep = dire;

for all 7,7 and k in {0,..., N}. With this notation, we have

where the \;’s are the eigenvalues of H”.
As interaction Hamiltonians we shall only consider operators of the form

N
H =) Vielod+V;eload,
j=1
N -
Hf =) TeW;@d+10 W @ad,

J=1

where the V,’s are operators on H% and the W;’s are operators on H5.
As usual in the Schrédinger picture, the evolutions of states (density matrices here) on
HE @ HE @ H are given by
pr—UpU”,

where we recall that U takes the particular form U = UPU# in our context.

Now, we are in the position to describe the whole interaction between H4 @ HE and the
chain @, Hy, with H;, = H = CV*!. The scheme is as follows. The first copy H; interacts
with H4 @ HE during a time 2/ while the rest of the chain remains isolated. Then, the
first copy disappears and the second copy comes to interact and so on... Before making
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precise the evolution, we need to introduce a notation for the operators acting only on H,
and being the identity operator on the rest of the whole space. If A is an operator on H,
we extend it as an operator on ), H; but acting non-trivially only on H,, by putting

®I®A® X I.

k>n+1

On H§ @ HE @, Hi we consider the family of unitary operators (U, )nen+, where U, acts
as U on Hi @ HE and the n-th copy of H and as the identity on the rest of the chain. The
operator U, represents actually the interaction between H4 @ HE and H,,. More precisely,
the operator U, is defined as U, = UBUA, where UA = ¢~ éun with

H ,=H*®I1®I+1®I1® Hg(n) +AZV ®I®a)(n)+V; @ I®d(n), (6)

7j=1

and the corresponding description for UZ.
The whole evolution is finally described by a family of unitary operators (V},),en+ which
are given by
Vn == UnUn—l--.Ul. (7)

As a consequence, if the initial state of H4 @ HE @, H. where the density matrix po, then
the state after n interactions is
Vn Po Vr;k .

Now that the discrete-time evolution is clearly described, we shall investigate its continuous-
time limit.

3 Effective Interaction Hamiltonian

This section is devoted to derive the continuous time limit of our special scheme of repeated
interactions, i.e. the limit when the time parameter h goes to 0. In order to obtain a relevant
limit, the authors of [2] have shown that the total Hamiltonian has to be properly rescaled
in terms of h. In particular, it is crucial to strengthen the interaction in order to see its
effect at the limit. More precisely, translated in our context, the total Hamiltonians have
to be of the following form:

N
HY, = H'@lel+IoleHR+ TZ (Vieleod+Vielod), (8)

HE = IoHPoI+I0leHY + [(@W;@d+IeW d). (9)

uMz

Let us stress that in the above expressions the coupling constants appearing in (1) and (2)
have been replaced by 1/v/h. We denote by | -] the floor function. One can show that
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the operators (V|;/5)); defined in (7) converge to a family of operators (U;), satisfying a
particular quantum stochastic differential equation.

More precisely, in [2], it is shown that one can embed the space T'® into some appro-
priate Fock space @; the discrete time interaction, described by (V|45 ):, appears naturally
as an approximation of a continuous one described by a family of unitary operators (Uy);
acting on ®; the family (U;) is the solution of a particular quantum stochastic differential
equation describing continuous-time interaction between small system H g and the quantum
field ®. In our context, the complete description of the Fock space ® and the details of the
convergence result are not necessary. Nevertheless the “created” interaction Hamiltonian
appears naturally in the expression of the limit (U;). We shall prove the following result
by exhibiting only the essential points allowing to apply the theorems of [2].

Theorem 3.1. When the interaction time h goes to 0, the family (Viyn)): converges
strongly to a family of unitary operators (U;) which is the solution of the quantum stochastic
differential equation

dU, = [—@'(HA®I+I®HB+2/\0]®I)

1 * * *
—5 D ViVi@ I+ I@WiW; +2V; @ W} | Uy dt
J

N
—iY (V; @I+ 1@ W)U, dd)(t) + (V; @ I + 1@ W;)U, daj(t). (10)

i=1

Remark. Note that in the expression (10) the terms (a’

3(t)) and (al(t)) are quantum
noises. They are particular operators on the limit Fock space ®. The exact definition of

these operators is not needed here and we refer to [10] for complete references.

Proof. In order to prove this result we shall apply the Theorem 13 of [2]. The essential
step is to identify the relevant terms when expanding

BrrA —ihHE, —ihHZA
U — U U = e tot @ tot ,
in terms of h. More precisely, on Hi ® HE @ H, one can decompose U as

U=> Ui(h)®d, (11)
0,J

where the U}(h)’s are operators on Ha ® HE. This way, we shall find the asymptotic
expression of Ul(h) in order to apply the convergence results of [2].

In order to obtain the asymptotic expression of UZ(h), let us study HA, and HE, in
details. Using a decomposition similar to (11), the operators HZ, and HZ, can be seen



as matrices whose the coefficients are operators on Hi ® HE. In particular, they can be

written as follows

A 1 * 1 * 1 *
ﬁvlm HA@ T+ MI®T 0 0
HA = Vel 0 HA®@I+XI®1 0
ﬁVN@J 0 0 o HAQITHAI®IT
and
B 1 * 1 * 1 *
ﬁl@Wl IQHB + MI® I 0 0
HE = Tl @ W, 0 ITQHP +XI®1 0
ﬁ[@WN 0 0 o T@HB 4 ANI®I
Hence we obtain a Taylor expansion of U4 as
Dy —ivVhVF eI —ivVhRVyel - —iVhVE®I
—ivhVi ® I Dt —shViVs @I - —IhViVi el
Ut = : A=Y D4 ' : +O(h3/?)
—iVhVy @I —3hVNVF®I —ihVWVi®I - D%
and of UP as
Df —ivVhI@ Wy  —iVhI@W; -  —iVhI@ W}
—ivhI @ W, DP —ShI@WiW5 - —ihl @ WAW}
UP = : —3hI @ WaWy D¥ ' : +O(h¥?),
—iVhI @ Wy —3hI @ WyW; —Shl @ WyWs - D%
where the diagonal coefficients are, for all j =1,..., N,

. . 1 )
Dg‘:I®I—zhHA®I—zh/\OI®]—§hZVjVj®],
J

1
D} =I®1—ihH*® [ —ih\I® - ShVVi 1,
DE=T®I—ihl®H? —ibdI ol —hS Tow: W
o =I®I—ihl® —20®_§Z®jj’
J

1
DP =I®l—ihl@H” —ih\I @1~ ShI @ W;W;.



This way, computing UPU# in asymptotic form, the coefficients U j’(h) of the matrix U for
i,j=0,...,N are, up to terms in h*? or higher

Ud=1®I—ih(Ha@I+1® Hg+2\I ®1)

1 . \ .
_§hZ(VjVj®I+I®Wjo+2Vj®Wj) , (12)
J

Uj = —ivVh(V; @ I+ 1@ W), (13)
U9 = —ivVh(V; @ I+ T©W)), (14)
Ul=1®1—ih(Ha®1+1®Hp+2)M1®1)
1 . ‘Lo
— éh(vjv; @1+ 1@W,W' 42V @W;), (15)
1
Uf = =5h(V;Vi @ T+ 1@ WWi +2V @ Wj). (16)

One can easily check that
Uith) — 05, T @ T
lim Q) Y “ =L,
h—0 heii J

where €0 =1, €9j = €j0 = 1/2 and ¢, ; = 0 and where
L8:—z(HA®I+I®HB+2>\OI®I)—§Z%W®I+I®ijj+2%®wj,
j

Ly=—i(V; ol +1o W),
L)=—i(V;@I+1@W;),
L: =0.
These are exactly the conditions of [2] and the result follows. ]
Now that we have derived Eq. (10), we are in the position to identify the interaction
Hamiltonian which has been “created” by the environment. To this end, we compare the

limit equation (10) with the one one could have obtained with a usual repeated quantum
interaction scheme.

Theorem 3.2. The quantum stochastic differential equation (10) represents an evolution,
on Hi @ HE coupled to a Fock space ®, which can be obtained from the continuous-time
limit of a usual repeated interaction scheme with the following Hamiltonian on HAQHE@H

~ 1 .
Htot:H(;“’B®I+21®I®HR+ﬁ25j®a2+8;®a{), (17)
J
where S; = V; @ I +1® W; and where the free Hamiltonian of Hi @ HE is given by
J j j s 5

A,B i * *
H :HA®I+I®HB+§ZVj QW -V, @ W;. (18)
J
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In particular the term .
? * *
52 (V;ew, Ve w;)
J
represents an effective interaction Hamiltonian term created by the environment between
HE and HE.

Proof. With the expression of the Hamiltonian (17), using again the results of [2], the
continuous-time limit (h goes to zero) gives rise to the QSDE

dU, = LU, dt + Y~ LU, dai)(t) + LU, dal(t) (19)

J
where
. 1 \
LY = —i(Hy"" + 201 ® 1) — 5 > 8rs;,
J
LY=-iS; and L} =-iS;.

In Eq. (10), the coefficient LY is
ng—z‘(HA®I+I®HB+2AOI®I)—%ZK/}*X/}@IJFI@W;WJ-jLWj@W;
J
which can also be written as
ng—z‘(HA®I+I®HB+2)\OI®I—I—%ZV;*®W]-—V}-@W;‘)
J
—%Z(%®I+I®WJ~)*(%®]+I®WJ-).
J

We now see that Eq.(10) is exactly a QSDE of the same form as Eq.(19) but with

i
Hy? =HA@I+1@HP + 03 VoW, -V;eW; and S =V,el+laW,.
J

The result follows. O

Remark 1. One can wonder if we can recover the above result and the description of the
created interaction Hamiltonian only by knowing the separate evolutions (that is when
only H% or HE is involved). Using again the results of [2] one can describe the separate
evolution and get

~ 1 ~ ~ ~ .
dUA = [—i(HA + XoI) — 3 S VIR dt — i VUM dd)(t) + VUM dab(t),  (20)
- .

J
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which is the limit of V[;‘}h] = U[f/h] ...U{t. The corresponding evolution for HE coupled to
the Fock space ® is given by

~ 1 ~ ~ ~ ‘
AUP = [—i(HP + N\I) — 5 S wWiw U dt — iy WiUP dad(t) + WrUP dal)(t), (21)
- .

J

which is the limit of V[tB/h] = U[tB/m ...UP. At that stage, with only (20) and (21) in hands

it is not clear how to derive Eq.(10). In particular, it is not obvious how to describe the
fact that the quantum field, at time ¢, acts first with H4 and then with HE.

Remark 2. Note that the interaction Hamiltonian is not symmetric in H4 and HE due to
the fact that each auxiliary system H acts with H% before HEZ. Somehow the evolution
keeps the memory of the order of the interaction.

We shall now illustrate our results by studying the creation of entanglement in some
simple physical model.

4 Evolution of Entanglement for Spontaneous Emis-
sion
The physical model considered in this section is the spontaneous emission of photons. More

precisely, the systems H%, HE and H are 2-level systems, hence both represented by the
state space C2. The free dynamics H*, H? and H? are given by the Pauli matrix

/1 0
o, = 0 -1 )

The operators V; and Wy are V; = W = a}. Applying Theorem 3.1, the limit evolution is

1 1
dUy = |—i(0. @I +1®0, +2I Q1) — §S*S+§(a9®ag—a3®a?) U, dt
—iSU; da’(t) — iS*U, daj(t), (22)
where S =a} @ I + 1 ® a}.

In order to study the entanglement of a system evolving according to Eq.(22), we
compute its Lindblad generator. Indeed, from the solution (U, );er+ of Eq.(22), we consider
associate the semigroup of completely positive maps (7;);cr+ defined by

Ti(p) = Tru(Ui(p @ [9(Q)UF),

for all state p of Hi @ HE and all t € RY, where 2 represents the ground (or vacuum)
state of the associated Fock space ®. The infinitesimal generator of (7}) is then given by

' 1
Lp) = —i JZ®I+[®UZ+%(a?®aé—aé®a?),p} +§<25p5*—5*5p—p5*5'>.

10



Note that this generator can also be simply recovered from the limit of the completely
positive discrete-time semigroup associated to the completely positive operator [(h) defined
by

(M) (p) = Tru(U(p® |eo){eol)U) (23)
= 2 U pUL(h) (24)
= p+hL(p)+o(h). (25)

Now we are in the position to study the entanglement between the system H# and
HE. In particular, we shall study the so-called entanglement of formation (see [14] for
an introduction). It is worth noticing that an explicit formula does not hold in general;
though, in [14] an explicit formula has been derived for particular initial states. These initial
states are called “X states” for their matrix representations look like an X. A particular
feature of such states is that their particular form is preserved under the dynamics and
the entanglement of formation can be computed explicitly in terms of the concurrence of
Wooters [15].

In order to make concrete the X representation, we consider the following basis of
HE @ HE:

B = (Jeo @ eg), |eo @ e1), |e1 @ eg), ler @ er)) .

A general X state in this basis is then

o)

Il
QOO
o8 ot O
o0 8 ©
QL oo

with the conditions that a, b, ¢, d are non-negative reals such that a+b+c+d =1, |y|> < ad
and |z|> < be. As proved in [14], the concurrence of Wooters of such a state is

C(p) = 2max(0, |y| — v/be, 2] — Vad) (26)

and its entanglement of formation is given by the general formula, shown by Wooters [15],

E@):h(” V12_ CW) , (27)

where h(z) = —xlogy(z) — (1 — z)logy(1 — ).
One can now compute the action of L on a X state and after computation we get

T+ax+b+ec 0 0 y(—1 — 4i)
0 d—b—ZT—2 d—c—=z 0
Lip) = 0 d—c—7 d—c 0
7(4i — 1) 0 0 —2d

11



Using the development of e'* in series, it is obvious to see that the X representation is
preserved during the evolution. Unfortunately, in general, the expression of L"(p) for all
n is not computable and we cannot obtain the expression of eZ(p) for all p. However, we
are able to compute the expression of e'X(p) for those states defining the basis B.

e A straightforward computation shows that ey ® eg)(eg ® €g| is an invariant state of the
dynamics (one can check that L(|ey ® eg){ey ® eg|) = 0) and there is no entanglement
of formation. Of course, for such an initial state the dynamics of spontaneous emission
generates no interaction at all with the environment!

e Consider now another initial state p"! = |eg®e;){eg®e;| corresponding to the case a = 0,
b=1,¢=0,d=0,r=0and y = 0. This state represents the system H4 in its ground
state and HE in its excited state. One can easily check that we get for all n > 1

(—1)™' 0 00
0 (=" 0 0
n/ 01\ __
L*(p™) = 0 0 00
0 0 00
This gives directly that
1l—e® 0 00
0 et 0 0
pgl = etL(|€0®el><60®el|) = 0 0 0 0 (28)
0 0 00
= leo® (1 —e"eg+eter)leo @ (1 —e Heg + e e (29)

The entanglement of formation is obviously zero. Which was to be expected also, as the
initial state of HZ is |eg) is invariant under the repeated interactions and generates no
interaction with the environment; hence the environment is here interacting with H% only.

In the two next cases we shall see effective creation of entanglement.
e Consider the initial state p'® = |e; ® ep)(e; @ eg| corresponding to the case a = 0,
b=0,c=1,d=0,z=0and y =0. For all n > 1, we get

(=)™ (n?* —n+1) 0 0 0
0 (—D)™"(n—1)n (=1)"n 0
n/ 10\ __
0 0 0 0
This way, we have for all time ¢,
1—(1+)et 0 0 0
0 t2e7t —te7t 0
pi’ = e (ler ® ep)(er ® el) = 0 tet et O (30)

0 0 0 0

12



In this case the entanglement of formation is then

Y T
Bl = (PR,

In particular, this quantity is positive for all ¢ > 0 (see figure). One can check that the
maximum is reached at time 1 when the state is

1—2e! 0 0 0

(31)

0 el —e b 0
0 —e b et 0
0 0 0 0

In this case we see that there is spontaneous creation of entanglement which increases until
time 1 and next decreases exponentially fast to zero, see Fig. 1.

Figure 1: Time evolution of Wooters’ concurrence, initial state e; ® eg

e The last case concerns p'' = |e; ® €;)(e; ® e1|. In particular, this corresponds to the
case a=0,b=0,c=0,d=1, x =0 and y = 0. After computations we get

5x 2" —6—n(n+3) 0 0 0
o 0 502" — D 4nn+3) —27 4nt2 0
Lp™) = (=1) 0 —ont 42 ol 0
0 0 0 2n

This gives for all time ¢,
1 — (12— 4t + 6)e! + 5% 0 0 0
o 0 (t* — 4t +5)et —5e 2 (2—t)et —2te™® 0
P = 0 (2—t)et —2e7% et —e 0

0 0 0 e

(32)

13



The concurrence of Wooters is then

C(p!') = 2max|0, (2 — t)e ™ — 272 — /(1 — (t2 — 4t + 6)e~t 4 e~2t)e~21]

and the entanglement of formation is

B(o!) = h (1 V- C(”t”)2> | (33)

2

The behavior is mostly the same as in the previous case (see Fig 2), with the important
difference that the entanglement, initially starting at 0, takes a strictly positive time to
leave the value 0.

0.006 4
0.0055
0.005+
0.0045
0.004 4
0.0035
E 0.003 4
0.0025
0.002 4
0.0015
0.0014
0.0005

Figure 2: Time evolution of Wooters’ concurrence, initial state e; ® ey

5 Thermal Environment

In this section, we investigate the bipartite model in presence of a thermal environment.
To this end, we consider that the reference state of each copy of H is the Gibbs state

1
(_,L)/g = E eiﬁHR R

where [ is positive and Z is a normalizing constant (as usual ( is the inverse of the
temperature). In the orthonormal basis {ey,...,en} of eigenvectors of the Hamiltonian
H™ the state wg is diagonal and is expressed as

wp = Zﬂj lej) (e;] (34)

14



where 8; = e”"Y /7, with 3. 6; = 1.

Let us stress that the limit evolution described in [2] is crucially related to the fact that
the state of H is a pure state. With a general state of the form wg, in order to compute
the limit evolution in terms of a unitary evolution on a Fock space, one has to consider the
so-called of G.N.S. representation of the dynamics. This techniques has been successfully
developed in [1] in order to derive the quantum Langevin equation associated to the action
of a quantum heat bath.

5.1 Limit Lindblad Generator

Here we shall not describe such results but we focus only on the Lindblad generator. As
in the previous section this generator can be obtained from the continuous-limit of the
discrete one. To this end we define the discrete generator lg(h) including temperature by

lg(h)(p) = Try(U(p ® wp)U ZﬁkTTH (p® lex)ex)U) =Y B UF pUS.  (35)

7,k

Proposition 5.1. In terms of h, the asymptotic expression of lg(h) is given by

Is(h)(p) = p+ hLg(p) +o(h),

where
. N
Ly(p) = —i |HA @ I+ 10 H” + 23 (8= Bo)(V; @ W) =V} @ W), p (36)
1 - 1
-5 Z (S;Sip+ pS;S; —28;pS;) — 5 > Bo(S;Sip+ pS;S; — 28;pS7)
=1 j=1

where S; =V, @ I + 1@ W;.
Furthermore, the interaction Hamiltonian between Hg and HE created by repeated in-
teractions with the environment is

[\V]

Proof. Plugging the asymptotic expressions (12) — (16) into (35) and putting

15



S; =V, @I +1®W,for all j > 1, we get, up to terms in h*? or higher,

lo(o) =+ h(—i[HA @ L+ To HP ] - Zﬁg ViVe @+ 10 W,W +2V @ W;)p

7=1

N
1 . ) ) *
_52@'0(‘/}‘@ @1+ 1 W,W:+2V @ W)

i=1

N
]' * * *
—55 Bo(ViVi@ I+ 1@ W W;+2V; 0 W )p
j=1

N
L * * %\ *
=53 BV @ T+ TR WW, +2V; @ W)

J=1

N
+ " BuSipS; + B;S;pS; ),

j=1

which can be written in the usual form

ls(p) =p + h( — 1

. N
HA®I+I®HB+%Z(BJ'—50)(‘G®W;_Vj*®wj),p]

j=1

N N
1 * * * 1 * * *
—5 > Bi(S;Sip + pS; Sy — 285 pS;) — 5 > Bo(S;Sip + BopS; S — QSjij)) :
j=1 j=1
This way, the interaction Hamiltonian naturally appears in the Hamiltonian part. O

5.2 Return to Equilibrium in a Physical Example, Thermaliza-
tion

On a particular example we shall study the asymptotic behavior of the dynamics described
above.

Recall that H&, HE and H are CV*!1. We assume that the free evolutions satisfy
H4 = HB = H®. The total Hamiltonian operators are

Hy = HA@I@I+IIeH"+ Za RIa+aelead, (37)
\/_] :
Hp = I®HB®I+I®]®HR+TZ]®Q Ray+I®a®a. (38

This is a generalization of the spontaneous emission (see [1]).
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Applying Proposition 5.1 we get the expression of the Lindblad generator

. N
La(p) = =i [H @ I+10 H + 23 7(8; = fo) () @ ) — ) @ aj). p
j=1
1 & 1 &
NS 0SS - 25108)) — 13 A S0+ 0SS, 25,685)

j=1 j=1
where S; = a) @ I + I ® aj.

Now, we are in the position to consider the problem of return to equilibrium. More
precisely, we shall show that there exists a unique state p., such that

lim Tr(e™#(p)X) = Tr(psX),

t—+o0

for all initial state p and all observable X on H4 ® HE. The state p., is an invariant state.

In the case of finite dimensional Hilbert spaces, a general result, proved by Frigerio and
Verri [9] and extended by Fagnola and Rebolledo [8] gives a sufficient condition, in the case
where the system has a faithful invariant state p.,. The criterion is the following. Let L,
defined by

- 1 * *
L(p) = —ilH, p] + > | —5{C;Cy. p} + CipC
J
be the Lindblad generator of a quantum dynamical system. The property of return to
equilibrium is satisfied if
{H.L;,Lj=1,....N} = {L;Lsj=1,...,N}, (39)

where the notation {}’ refers to the commutant of the ensemble.
In our context we shall prove the following return to equilibrium result.

Theorem 5.2. On Hi @ HE, the dynamical system whose Lindblad generator is given by

. N
Ly(p) = =i [H @ T+ 10 H” + 23 (8; = fo) () @ ) — ) @ aj), p
j=1

1N

N
> Bi(S;8;p+ pS;S; — 257pS;) — 5 > Bo(S;Sip + pS;S; — 29pS;)
j=1

J=1

1

g

where S; = aé RQI+I® aé, has the property of return to equilibrium.
Moreover, the limit invariant state is
6—,8(H“‘®I+I®HB)
pﬁ - Z 9

where Z is a normalizing constant.
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Proof. First, one can check that pg is a faithful invariant state since

Lg(ps) = 0.

The rest of proof is then based on the result of Fagnola and Rebolledo by showing that
the commutants

N
’l/ . . %
{HA®I—|—I®HB—|—52(@-—60)(a{)®a?—a?@af)),Sk,Sk;k:1,...,N}'

j=1

and
{Sk,SZ;kJZL...,N},

are simply trivial.

Recall that in this physical system the operators Sy are af ® [ +1 @ af for all k > 1.
Let us prove now that {Sy, S;;k=1,..., N} is trivial. Consider an element K of this
commutant. This element K can be ertten with respect to the canonical basis (a )ij=o0,.
as

N
K=Y Ko,
i,j=0
where the K}’s are operators on CV*!. Since the operators K and S, commute for all
k > 1, we get equality between

N N
KSy = (ZK}@@) (af @I +I1®af) =) Klaf@ad +ZK’®a ag

%,j=0 1,j=0 ,j=0

N N
=D Kayoag+) Kid

1,7=0 7=0

and

N N N
SkK = (a§ ® I +1® ap) (ZK;ﬁ@ag‘) =Y afK;®d + ) K ®ajd

1,J=0 'J'_O EJ'_O
k
= E aOK’®a +E K| ®aj.
4,j=0

From the commutation of K and S}, we also have equality between

N N N
wsi= (S med) (o rs o) =3 Koo+ 3 Ko

,7=0 4,7=0

N N
-y Kided+Y Kied

i,j=0 i=0

i,j=0
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and

N N N
SiK=(a)®I+1®a)) (ZK;Z@a;) =Y @Ki®d+ Y K oadd

i,j=0 i,j=0 i,j=0
N N
_ 0 i o i o i
= E akKj®aj+§ K;®ay.
i,j=0 i=0

From these equalities and since the operators (a )Z j=o0,...~ form a basis, the following system
of equations is obtained for k =1,... N,

Klaf = ab K§ + K}
ay Ko = Kgaj, + Ky ,
forj7k7l:1,,NW1thk#j

Kjay = agKY
KO Kjap + K
Kjoa?—FKJJ» :a?K§)+K8,

and
Kla? = o K]
Klak = ok K] + K]
Kja) + K§ = a) K} + K7,
and for i, 5,k l=1,...,N with k #iand [ # j
Kzao —aISKZ:
K’al —alK’
Kjaf + K} = a{K;
i 0_ 0 i
Kia; = a; K; + K.

We now concentrate on all these equations in order to prove that the K}’s are all equal to
0. Note that the commutation of a matrix M = (m;;); j=o..n with af for k =1,..., N
implies that for all p > 1 and ¢ =0,..., N with ¢ # k

Moo = Mk , Mpo =0 and my,=0.
The commutation of M with a gives that for all p > 1 and ¢ =0,..., N with q # k

Moo = Mk , Mop =0 and mg, =0.
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Thus since K?aé = af)K? for all j,l =1,..., N, the matrices K;-) are of the form

Mmoo Mo1 ... MoON
0 Moo 0 0
S 0
0 oo 0 Moo
In the same way, from Kja) = alK} for all j,I = 1,..., N, we deduce that the matrices
K} are of the form
Moo 0 . 0
mi moe 0 0
: 0
mpyo ... 0 Mmoo

Consider now the equations associated to K7 for ¢,j # 0. Since we get Kjaf = afK} and
K]’:a? = a?K; for k,l=1,..., N with k # i and [ # j, the matrix K} is a diagonal matrix
whose coefficients are all equal to mgy except the column j and the row ¢ with for the
moment only zero coefficients on the first row and the first column.

In the following, the coefficients of a matrix K} are denoted by (mZ)k,lzow ~. We work
then on the equation Kjaj+ K = afK}. This equality gives that the diagonal coefficients
ofKJQ are 0 and for [ = 1,..., N with [ # i,

i ij 0j 0j ij
Mgy = mg; +mg; and  mg = —my; .

Then, from K}a) = a}K} + K{ we deduce that the diagonal coefficients of Kj are 0 and,
forl=1,..., N with [ # 7,

megy = mgjj + mfg- and  mjy = —m}j .
From the equalities Kjaf = af K} + Kj and aQK? = K% + K¥ with k # j, we finally
obtain that all the matrices K3, K and K} are vanishing for j # k. For j = k, the
equalities Kja? + K = a} K} + K 7 allow us to conclude that the only non zero operators
are the K7’s for j = 0,..., N and all equal to mg!.

Hence, we have proved that the commutant {Sg, Si;k =1,..., N} is reduced to the
operators of the form A\ ® I with A in C. Then the commutant

. N /
1 . .
{HA®I+I®HB+§§ (B; — Bo)(ah ® a — a? @ ap), Sk, ;;;k:1,...,N}

j=1

is by definition a subset of {Sy, S;;k =1,..., N}. Therefore it is trivial too. This proves
that the system has the property of return to equilibrium, applying [8]. O

Since this state ps is the invariant state of H4 ® HE, one deduces the thermalization
of H4 and HE by the environment.
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