Feuille d'exercices nº 3

Suites de fonctions (II) - Théorème de convergence dominée

Exercice 1. On considère la suite de fonctions $(f_n)_{n\geq 1}$ définies sur \mathbb{R}_+^* par $f_n(x)=\left(\frac{x}{n}\right)^{nx}$.

- 1. Montrer que la suite de fonctions $(f_n)_n$ converge simplement sur \mathbb{R}_+^* vers une fonction f que l'on précisera.
- 2. Déterminer la limite $\lim_{x\to 0^+} f_n(x)$.
- 3. Que peut-on en déduire sur la suite $(f_n)_{n\geq 1}$?

Exercice 2. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur [0;1[par

$$f_n(x) = \min\left(n, \frac{1}{\sqrt{1-x}}\right).$$

- 1. Montrer que la suite de fonctions $(f_n)_n$ converge simplement sur [0;1[vers une fonction f que l'on précisera.
- 2. Pour tout $n \in \mathbb{N}$, déterminer (si elle existe) la limite $\lim_{x \to 1^-} f_n(x)$.
- 3. Que peut-on en conclure sur la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.

Exercice 3. Calculer les limites des suites dont les termes généraux sont les suivants :

1.
$$u_n = \int_0^{\pi/4} \tan(x)^n dx$$
,

2.
$$v_n = \int_0^{+\infty} \frac{1}{x^n + e^x} \, \mathrm{d}x.$$

Exercice 4. Déterminer les limites suivantes :

1.
$$\lim_{n \to +\infty} \int_0^{+\infty} \arctan(nx)e^{-x^n} dx$$
,

2.
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)\sqrt[n]{1+x^n}}$$
.

Exercice 5. Déterminer la limite, quand $n \to +\infty$, de $\int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx$. Indication: on pourra utiliser en la démontrant l'inégalité $\ln(1+u) \le u$ pour tout $u \ge 0$.

Exercice 6. Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ continue et intégrable.

Déterminer la limite quand n tend vers $+\infty$ de $n\int_0^1 \frac{f(nt)}{1+t} dt$.

Exercice 7. Montrer que $\lim_{n\to+\infty} n \int_1^{+\infty} e^{-x^n} dx = \int_1^{+\infty} \frac{e^{-x}}{x} dx$.