
Lecture 8

FOCK SPACES

Stéphane ATTAL

Abstract This lecture is devoted to introducing a fundamental family of
spaces in Quantum Mechanics: the Fock spaces. They are fundamental for
they represent typical state spaces for gases of particles, thermal baths, etc.
They are also an interesting playground as quantum probability spaces, for
they produce striking examples of non-commutative laws. In this lecture we
give some physical motivations for these spaces. We define the symmetric, an-
tisymmetric and full Fock spaces, together with their fundamental structures
(continuous tensor product, coherent vectors, Guichardet’s representation)
and their fundamental operators (creation, annihilation, second quantization
and Weyl operators).

In order to read this lecture, one should be familiar with general Operator
Theory, with basic Quantum Mechanics and with basic notions of Quantum
Probability. If necessary, please read Lectures 1, 5 and 7.
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8.1 Motivations

8.1.1 Physical Motivations

The discussion below is rather informal and not really necessary for under-
standing the mathematical structure of the Fock spaces. The reader can pos-
sibly directly jump to Section 8.2.

Fock spaces have interpretations in physics, they have been built in order to
represent the state space for a system containing an indefinite (and variable)
number of identical particles (an electron gas, photons, etc.). They are also of
great use in quantum field theory for they provide the setup for the so-called
second quantization procedure.

In classical mechanics, a point system is characterized by its position co-
ordinates Qi(t) and momentum coordinates Pi(t), i = 1, . . . , n. In the Hamil-
tonian description of motion there exists a fundamental function H(P,Q)
(called the Hamiltonian) which represents the total energy of the system and
satisfies the Hamilton equations:

∂H

∂Pi
= Q̇i ,

∂H

∂Qi
= −Ṗi .

If f(P,Q) is a functional of the trajectory, we then have the evolution equa-
tion

df

dt
=
∑
i

∂f

∂Pi

∂Pi
∂t

+
∂f

∂Qi

∂Qi
∂t

or else
df

dt
= {f,H}

where { · , · } denotes the Poisson bracket :

{g, h} =
∑
i

∂g

∂Pi

∂h

∂Qi
− ∂g

∂Qi

∂h

∂Pi
.

In particular we have {
{Pi, Pj} = {Qi, Qj} = 0

{Pi, Qj} = δij .
(8.1)

It happens that this is not exactly the definitions of the Pi and Qi which are
important, but the relations (8.1). Indeed, a change of coordinates P ′(P,Q),
Q′(P,Q) will give rise to the same equations of motion if and only if P ′ and
Q′ satisfy (8.1).
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In quantum mechanics the situation is essentially the same. We have a
self-adjoint operator H (the Hamiltonian) which describes all the evolution
of the state of the system via the Schrödinger equation

ih̄
d

dt
ψ(t) = Hψ(t) .

There are also self-adjoint operators Qi, Pi which represent the position and
the momentum of the system and which evolve as follows:

Qi(t) = eih̄tHQi e−ih̄tH

Pi(t) = eih̄tHPi e−ih̄tH .

Any observable A of the system satisfies the evolution equation

d

dt
A(t) = − i

h̄
[A(t),H] .

The particular observables Pi, Qi satisfy the relations{
[Pi,Pj ] = [Qi,Qj ] = 0

[Qi,Pj ] = ih̄ δijI .
(8.2)

Once again, it is not the choice of the representations of Pi and Qi as concrete
operators on a Hilbert space which is important, but the relations (8.2) which
are fundamental. They are called the Canonical Commutation Relations or
C.C.R.

In Quantum Field Theory one has to deal with an infinite number of
degrees of freedom; the position and momentum operators are indexed by a
continuous set (R3 for example). The relations (8.2) then become{

[P(x),P(y)] = [Q(x),Q(y)] = 0

[Q(x),P(y)] = ih̄ δ(x− y)I .
(8.3)

If we define

a(x) =
1√
2

(Q(x) + iP(x))

and

a∗(x) =
1√
2

(Q(x)− iP(x))

then a(x) and a∗(x) are mutually adjoint and satisfy the following relations
which are also called Canonical Commutation Relations:{

[a(x), a(y)] = [a∗(x), a∗(y)] = 0

[a(x), a∗(y)] = h̄ δ(x− y)I .
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It happens that these equations are valid only for a particular family of
particles: the bosons (photons, phonons, mesons, gravitons,...). There exists
another family of particles: the fermions (electrons, muons, neutrinos, pro-
tons, neutrons, . . . ) for which the correct relations are the Canonical Anti-
commutation Relations or C.A.R.{

{b(x), b(y)} = {b∗(x), b∗(y)} = 0

{b(x), b∗(y)} = h̄δ(x− y)I ,

where {A,B} = AB + BA is the anticommutator of operators (it has nothing
to do with the Poisson bracket but, as we never use the latter in the rest of
the lecture, there shall not be any possible confusion).

8.1.2 Realization of the Commutation Relations

A natural problem, which has given rise to a huge literature, is to describe
the possible concrete realisations of these relations. As an example, let us
consider the simplest problem: find two self-adjoint operators P and Q such
that

QP− PQ = ih̄ I . (8.4)

In a certain sense there is only one solution to this problem. This solution is
realized on L2(R;C) by the operators

Q = x (multiplication by x) and P = ih̄
d

dx
.

This is the so-called Schrödinger representation of the C.C.R. But in full
generality the Problem (8.4) is not well-posed. Indeed, one can show that the
solutions P and Q of the above problem cannot be bounded operators. One
then needs to be able to define the operators PQ and QP on good common
domains. It is actually possible to construct pathological counter-examples
(cf [RS80]). The problem becomes well-posed if we rewrite it in terms of
bounded operators.

If we put
Wx,y = e−i(xP−yQ)

and Wz = Wx,y when z = x+ iy ∈ C, it is then easy to see that the relation
(8.4) is translated into the Weyl commutation relations

WzWz′ = e−i Im 〈z,z′〉/2 Wz+z′ . (8.5)

When posed in these terms the problem has only one solution: the Schrödinger
representation (this the so-called Stone-von Neumann Theorem, cf [BR97] if
interested).
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This solution, as well as the ones for more (even infinite) degrees of free-
dom, is realized through a particular family of spaces: the symmetric Fock
spaces.

In the case of the anticommutation relations, one does not need to rewrite
them, for b(x) and b∗(x) are always bounded operators (as we shall prove
later). But the concrete realisation of the C.A.R. is always made through the
antisymmetric Fock spaces.

The importance of Fock space comes from the fact they give a natural
realization of the C.C.R. and C.A.R., whatever is the number of degrees of
freedom involved. They are a natural tool for quantum field theory.

The basic physical idea hidden behind their definition is the following.
If H is the Hilbert space describing the state space for one particle, then
H ⊗ H describes the state space for two particles of the same type. The
space H⊗n = H ⊗ · · · ⊗ H, the n-fold product, describes the state space for
n such particles. Finally the space ⊕n∈NH⊗n describes a system where there
can be any number of such particles which can disappear (be annihilated)
or appear (be created). But depending on the type of particles (bosons or
fermions), there are some symmetries which force to look at certain subspaces
of ⊕nH⊗n .

We do not aim to describe all the physics behind Fock spaces (we are not
able to), but we just wanted to motivate them. Let us now come back to
mathematics.

8.2 Fock Spaces

We now enter into the concrete construction of the Fock spaces as Hilbert
spaces.

8.2.1 Symmetric and Antisymmetric Tensor Products

Definition 8.1. Let H be a complex Hilbert space. For any integer n ≥ 1
consider

H⊗n = H⊗ · · · ⊗ H

the n-fold tensor product of H. For u1, . . . , un ∈ H we define the symmetric
tensor product

u1 ◦ · · · ◦ un =
1

n!

∑
σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n) ,
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where Sn is the group of permutations of {1, 2, . . . , n}, and the antisymmetric
tensor product

u1 ∧ · · · ∧ un =
1

n!

∑
σ∈Sn

εσ uσ(1) ⊗ · · · ⊗ uσ(n) ,

where εσ is the signature of the permutation σ.

The closed subspace of H⊗n generated by the u1 ◦ · · · ◦ un is denoted by
H◦n. It is called the n-fold symmetric tensor product of H.

The closed subspace of H⊗n generated by the u1 ∧ · · · ∧ un is denoted by
H∧n. It is called the n-fold antisymmetric tensor product of H.

In the case n = 0 we put

H⊗0 = H◦0 = H∧0 = C .

In physics the spaces H⊗n, H◦n or H∧n are called the n-particle spaces.

Definition 8.2. The scalar product

〈u1∧· · ·∧un , v1∧· · ·∧vn〉 =
1

(n!)2

∑
σ,τ∈Sn

εσ ετ 〈uσ(1), vτ(1)〉 · · · 〈uσ(n) , vτ(n)〉

can be easily seen to be equal to

1

n!
Det(〈ui, vi〉)ij .

In order to remove the n! factor we put a scalar product on H∧n which is
different from the one induced by H⊗n, namely:

〈u1 ∧ · · · ∧ un , v1 ∧ · · · ∧ vn〉∧ = Det(〈ui , vj〉)ij . (8.6)

This way, we have

‖u1 ∧ · · · ∧ un‖2∧ = n! ‖u1 ∧ · · · ∧ un‖2⊗ . (8.7)

In the same way, on H◦n we put

〈u1 ◦ · · · ◦ un , v1 ◦ · · · ◦ vn〉◦ = Per(〈ui , vj〉)ij , (8.8)

where Per denotes the permanent of the matrix (that is, the determinant
without the minus signs). This way we get

‖u1 ◦ · · · ◦ un‖2◦ = n! ‖u1 ◦ · · · ◦ un‖2⊗ .
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8.2.2 Fock Spaces

Definition 8.3. We call free (or full) Fock space over H the space

Γf (H) =

+∞⊕
n=0

H⊗n .

We call symmetric (or bosonic) Fock space over H the space

Γs(H) =

+∞⊕
n=0

H◦n .

We call antisymmetric (or fermionic) Fock space over H the space

Γa(H) =

+∞⊕
n=0

H∧n .

The element 1 ∈ C plays an important role when seen as an element of a
Fock space. We denote it by Ω and call it the vacuum vector.

It is understood that in the definition of Γf (H), Γs(H) and Γa(H) each of
the spaces H⊗n, H◦n or H∧n is equipped with its own scalar product 〈·, ·〉⊗,
〈·, ·〉◦ or 〈·, ·〉∧. In other words, the elements of Γf (H) (resp. Γs(H), Γa(H))
are those sequences f = (fn) such that fn ∈ H⊗n (resp.H◦n, H∧n) for all n
and

‖f‖2 =
∑
n∈N
‖fn‖2ε <∞

for ε = ⊗ (resp. ◦, ∧).
If one wants to write everything in terms of the usual tensor norm, an

element f = (fn) is in Γs(H) (resp. Γa(H)) if fn ∈ H◦n (resp. H∧n) for all n
and

‖f‖2 =
∑
n∈N

n!‖fn‖2⊗ <∞ .

The simplest case of a symmetric Fock space is obtained by taking H = C,
this gives Γs(C) = `2(N).

If H is of finite dimension n then H∧m = 0 for m > n and thus Γa(H) is of
finite dimension 2n. A symmetric Fock space Γs(H) is never finite dimensional.

In physics, one usually considers bosonic or fermionic Fock spaces overH =
L2(R3). In Quantum Probability, the space Γs(L

2(R+)) is very important for
quantum stochastic calculus.
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8.2.3 Coherent Vectors

In this section we only consider symmetric Fock spaces Γs(H).

Definition 8.4. Let u ∈ H be given. Note that u ◦ · · · ◦ u = u⊗ · · · ⊗ u. The
coherent vector (or exponential vector) associated to u is

ε(u) =
∑
n∈N

u⊗n

n!
(8.9)

so that
〈ε(u), ε(v)〉 = e〈u,v〉

for the scalar product in Γs(H). We denote by E the space of finite linear
combinations of coherent vectors in Γs(H).

Proposition 8.5.

1) The space E is dense in Γs(H).

2) Every finite family of coherent vectors is linearly free.

Proof. We first prove the linear independence. Let u1, . . . , un ∈ H be fixed.
Consider the sets

Ei,j =
{
u ∈ H ; 〈u , ui〉 6= 〈u , uj〉

}
,

for i 6= j. They are dense open sets inH. Hence, the set
⋂
i,j Ei,j is non empty.

In particular, there exists a v ∈ H such that the quantities θj = 〈v , uj〉 are
mutually distinct. The existence of scalars αi such that

∑n
i=1 αi ε(ui) = 0

would imply

0 =
〈
ε(zv) ,

n∑
i=1

αi ε(ui)
〉

=

n∑
i=1

αi e
zθi

for all z ∈ C. The functions z 7→ eθiz are linearly independent and the αi are
thus all equal to 0. This proves that the family

{
ε(u1), . . . , ε(un)

}
is free.

Let us now establish the density property. The identity

u1 ◦ · · · ◦ un =
1

2n

∑
εi=±1

ε1 . . . εn (ε1u1 + · · ·+ εnun)◦n

shows that the set {u◦n ; u ∈ H, n ∈ N} is total in Γs(H). As a consequence,
the identity

u◦n =
dn

dtn
ε(tu)∣∣t=0

shows the density of the space E . ut

Corollary 8.6. If S ⊂ H is a dense subset, then the space E(S) generated by
the ε(u), u ∈ S, is dense in Γs(H) .
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Proof. The equality

‖ε(u)− ε(v)‖2 = e‖u‖
2

+ e‖v‖
2

− 2Re
(
e〈u , v〉

)
shows that the mapping u 7→ ε(u) is continuous. We now conclude easily
from Proposition 8.5. ut

There exist examples of subsets S ⊂ H which are not dense in H but for
which E(S) is nevertheless dense in Γs(H). A (non trivial) example, in the
case H = L2(R), is the set S of indicator functions of Borel sets (cf [PS98]).
Whereas the set S′ of indicator functions of intervals does not have this
property ([AB02]). It is in general an open problem to characterize those
S ⊂ H such that E(S) is dense in Γs(H), even in the case H = C (!)

One of the most important property of Fock spaces is their exponential
property. For symmetric Fock spaces, this property is carried by the coherent
vectors.

Theorem 8.7 (Exponential property). Let H1, H2 be two Hilbert spaces.
Then the mapping

Uε(u⊕ v) = ε(u)⊗ ε(v)

from Γs(H1 ⊕H2) to Γs(H1)⊗ Γs(H2) extends to a unitary isomorphism.

Proof. We have

〈ε(u⊕ v) , ε(u′ ⊕ v′)〉 = e〈u⊕v , u
′⊕v′〉

= e〈u , u
′〉+〈v , v′〉

= e〈u , u
′〉e〈v , v

′〉

= 〈ε(u) , ε(u′)〉 〈ε(v) , ε(v′)〉
= 〈ε(u)⊗ ε(v) , ε(u′)⊗ ε(v′)〉 .

This proves that the mapping U is isometric. As the space E(Hi) is dense
in Γs(Hi), i = 1, 2, and the set {ε(u) ⊗ ε(v) ; u ∈ H1, v ∈ H2} is total in
Γs(H1)⊗ Γs(H2), we get that U extends to a unitary operator. ut

This exponential property of Fock space justifies the fact Fock spaces are
often considered as “exponentials of Hilbert spaces”.

There exists an interesting characterization of the space Γs(H) which also
goes in the direction of viewing Γs(H) as “the exponential of H”.

Theorem 8.8. Let H be a separable Hilbert space. If K is a Hilbert space
such that there exists a mapping

λ : H −→ K
u 7−→ λ(u)
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satisfying

i) 〈λ(u) , λ(v)〉 = e〈u , v〉 for all u, v ∈ H,

ii) {λ(u) ; u ∈ H} is total in K,

then there exists a unique unitary isomorphism

U : K −→ Γs(H)
λ(u) 7−→ ε(u) .

Proof. Clearly U, as defined above, is isometric and maps a dense subspace
onto a dense subspace. Hence it extends to a unitary operator. ut

Let us consider a simple example, that we shall follow throughout this
lecture. This is the simplest example of a symmetric Fock space: the space
Γs(C). By definition this space is equal to ⊕n∈NC and thus can be naturally
identified with `2(N). But it can be interpreted advantageously as L2(R) in
the following way.

Let U be the mapping from Γs(C) to L2(R, ν) which maps the coherent
vectors ε(z) of Γs(C) to the functions

fz(x) =
1

(2π)
1/4

ezx−z
2/2−x2/4

of L2(R). It is easy to see that

〈fz′ , fz〉L2(R) = ez
′z

and thus U extends to a unitary operator. We shall come back to this example
later on and see that this unitary isomorphism gives a nice interpretation of
the space Γs(C).

8.2.4 Guichardet’s Representation

We here make a little detour in order to describe the structure of the sym-
metric Fock space Γs(H) when H is of the form L2(E, E ,m). We shall see
that if (E, E ,m) is a non atomic, σ-finite, separable measured space then
Γs(L

2(E, E ,m)) can be written as L2(P, EP , µ) for some explicit measured
space (P, EP , µ).

Here is the main idea. If H = L2(E, E ,m), then H⊗n is naturally inter-
preted as L2(En, E⊗n,m⊗n) and H◦n is interpreted as L2

sym(En, E⊗n,m⊗n)
the space of symmetric, square integrable functions on En. If f(x1, . . . , xn) is
a n-variable symmetric function on E then f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))
for all σ ∈ Sn. Thus, if the xi are mutually distinct, we thus can see f as
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a function on the set {x1, . . . , xn}. But as m is non atomic, almost all the
(x1, . . . , xn) ∈ En satisfy xi 6= xj for all i 6= j. An element of Γs(H) is of the
form f = (fn) where each fn is a function on the n-element subsets of E.
Thus f can be seen as a function on the finite subsets of E.

Definition 8.9. More rigorously, let P be the set of finite subsets of E. Then
P = ∪n∈NPn where P0 = {∅} and Pn is the set of n-element subsets of E.
Let fn ∈ L2

sym(En, E⊗n,m⊗n) and define f on P by{
f(σ) = 0 if σ ∈ P and |σ| 6= n ,

f({x1, . . . , xn}) = fn(x1, . . . , xn) , otherwise .

Let EP be the smallest σ-field on P which makes all these functions measur-
able. Let ∆n ⊂ En be the set of (x1, . . . , xn) such that xi 6= xj for all i 6= j.
By the non-atomicity of m, we have m(En \∆n) = 0. For F ∈ EP we put

µ(F ) = 1lF (∅) +

∞∑
n=1

1

n!

∫
∆n

1lF∩Pn
(x1, . . . , xn) dm(x1) · · · dm(xn) .

For example, if E = R with the Lebesgue structure, then Pn can be identified
with the increasing simplex Σn = {(x1, . . . , xn) ∈ Rn ; x1 < · · · < xn}. Thus
Pn inherits the Lebesgue measure from Rn.

Coming back to the general setup, the measure µ that we have defined
is σ-finite and possesses only one atom: µ({∅}) = 1. We call (P, EP , µ) the
symmetric measure space over (E, E ,m).

For all u ∈ L2(E, E ,m) one defines by πu the element of L2(P, EP , µ)
which satisfies

πu(σ) =

{
1 if σ = ∅∏
s∈σ u(s) otherwise

for all σ ∈ P.

Theorem 8.10. The mapping πu 7−→ ε(u) extends to a unitary isomorphism
from L2(P, EP , µ) onto Γs(L

2(E, E ,m)).

Proof. Clearly 〈πu , πv〉 = e〈u , v〉 and the set of functions πu is total in
L2(P, EP , µ). We conclude by Theorem 8.8. ut

8.3 Basic Operators

We now come back to general symmetric and antisymmetric Fock spaces
Γs(H) and Γa(H).
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8.3.1 Creation and Annihilation Operators

Definition 8.11. For any u ∈ H we define the following operators:

– the bosonic creation operator a∗(u) from H◦n to H◦(n+1) defined by

a∗(u)(u1 ◦ · · · ◦ un) = u ◦ u1 ◦ · · · ◦ un ;

– the fermionic creation operator b∗(u) from H∧n to H∧(n+1) defined by

b∗(u)(u1 ∧ · · · ∧ un) = u ∧ u1 ∧ · · · ∧ un ;

– the bosonic annihilation operator a(u) from H◦n to H◦(n−1) defined by

a(u)(u1 ◦ · · · ◦ un) =

n∑
i=1

〈u, ui〉u1 ◦ · · · ◦ ûi ◦ · · · ◦ un ;

– the fermionic annihilation operator b(u) from H∧n to H∧(n−1) defined by

b(u)(u1 ∧ · · · ∧ un) =

n∑
i=1

(−1)i〈u, ui〉u1 ∧ · · · ∧ ûi ∧ · · · ∧ un .

Note that a∗(u) and b∗(u) depend linearly on u, whereas a(u) and b(u) depend
antilinearly on u. Actually, one often finds in the literature notations with
“bras” and “kets”: a∗|u〉, b

∗
|u〉, a〈u|, b〈u|.

Also note the following relations with respect to the vacuum vector:

a∗(u)Ω = b∗(u)Ω = u

a(u)Ω = b(u)Ω = 0 .

Definition 8.12. All the above operators extend to the space Γfs (H) (resp.
Γfa (H)) of finite sums of particle spaces, that is, the space of those f =∑
n∈N fn ∈ Γs(H) (resp. Γa(H)) such that only a finite number of fn do not

vanish. In physics this space is often called the finite particle space. This sub-
space is dense in the corresponding Fock space. It is included in the domain
of the operators a∗(u), b∗(u), a(u) and b(u) (defined as operators on Γs(H)
(resp. Γa(H))), and it is stable under their action. On this subspace we have
the following relations:
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〈a∗(u)f , f〉 = 〈f , a(u)g〉
[a(u) , a(v)] = [a∗(u) , a∗(v)] = 0

[a(u) , a∗(v)] = 〈u , v〉I
〈b∗(u)f , f〉 = 〈f , b(u)g〉
{b(u) , b(v)} = {b∗(u) , b∗(v)} = 0

{b(u) , b∗(v)} = 〈u , v〉I .

In other words, when restricted to Γfs (H) (resp. Γfa (H)) the operators a(u)
and a∗(u) (resp. b(u) and b∗(u)) are mutually adjoint and they satisfy the
C.C.R. (resp. C.A.R.).

Proposition 8.13. For all u ∈ H we have

1) b(u)2 = b∗(u)2 = 0 ,

2) ‖b(u)‖ = ‖b∗(u)‖ = ‖u‖ .

Proof. The anticommutation relation {b(u), b(u)} = 0 means 2b(u)b(u) = 0
on Γfa(H), this gives 1). Furthermore we have, on Γfa(H)

b∗(u)b(u)b∗(u)b(u) = b∗(u){b(u), b∗(u)}b(u)

= ‖u‖2b∗(u)b(u) .

In particular, for all f ∈ Γfa (H) we have

‖b∗(u)b(u)f‖2 = 〈f , b∗(u)b(u)b∗(u)b(u)f〉 = ‖u‖2 〈f , b∗(u)b(u)f〉

≤ ‖u‖2 ‖f‖ ‖b∗(u)b(u)f‖ .

In particular b∗(u)b(u) is bounded and so is b(u). The same identity above
also implies that

‖b(u)‖4 = ‖b∗(u)b(u)b∗(u)b(u)‖ = ‖u‖2‖b∗(u)b(u)‖
= ‖u‖2‖b(u)‖2 .

As the operator b(u) is null if and only if u = 0 we easily deduce that
‖b(u)‖ = ‖u‖. ut

The identity 1), for b∗(u) expresses the so-called Pauli exclusion principle:
“One cannot have two fermionic particles together in the same state”.

The bosonic case is less simple for the operators a∗(u) and a(u) are never
bounded. Indeed, we have a(u)v◦n = n〈u, v〉v◦(n−1), thus the coherent vectors
are in the domain of a(u) and

a(u)ε(v) = 〈u, v〉ε(v) . (8.10)

In particular
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sup
‖h‖=1

‖a(u)h‖ ≥ sup
v∈H
‖a(u)e−‖v‖

2/2ε(v)‖

= sup
v∈H
|〈u, v〉| = +∞ .

Thus a(u) is not bounded.
The action of a∗(u) can also be made explicit. Indeed, we have

a∗(u)v◦n = u ◦ v ◦ · · · ◦ v =
d

dε
(u+ εv)◦n∣∣ε=0

.

Thus ε(v) is in the domain of a∗(u) and

a∗(u)ε(v) =
d

dε
ε(u+ εv)∣∣ε=0

. (8.11)

The operators a(u) and a∗(u) are in particular closable for they have a densely
defined adjoint. We extend them by closure, while keeping the same notations
a(u), a∗(u) for their closure.

Proposition 8.14. The operator a∗(u) is the adjoint of a(u).

Proof. On Γfs (H) we have 〈f , a(u)g〉 = 〈a∗(u)f , g〉. We extend this relation
to f ∈ Dom a∗(u). The mapping g 7→ 〈f , a(u)g〉 is thus continuous and
f ∈ Dom a(u)∗. We have proved that a∗(u) ⊂ a(u)∗.

Conversely, if f ∈ Dom a(u)∗ and if h = a(u)∗f , we decompose f and
h as f =

∑
n fn and h =

∑
n hn. We have 〈f , a(u)g〉 = 〈h , g〉 for all

g ∈ Γfs (H). Thus, taking g ∈ H◦n we get 〈fn−1 , a(u)g〉 = 〈hn , g〉, that
is, 〈a∗(u)fn−1 , g〉 = 〈hn , g〉. This shows that hn = a∗(u)fn−1. In particular∑
n ‖a∗(u)fn‖2 is finite, f belongs to Dom a∗(u) and a∗(u)f = a(u)∗f . ut

8.3.2 Examples

In physics, the space H is often L2(R3). An element hn of H◦n is thus a
symmetric function of n variables on R3. With our definitions we have(

a(f)hn
)
(x1, . . . , xn−1) =

∫
hn(x1, . . . , xn−1, x)f̄(x) dx

and

(
a∗(f)hn

)
(x1, . . . , xn+1) =

n+1∑
i=1

hn(x1, . . . , x̂i, . . . , xn+1)f(xi) .

But in the physic literature one often uses creation and annihilation operators
indexed by the points of R3, instead of the elements of L2(R3). One can find
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a(x) and a∗(x) formally defined by

a(f) =

∫
f̄(x)a(x) dx

a∗(f) =

∫
f(x)a∗(x) dx

with (
a(x)hn

)
(x1, . . . , xn−1) = hn(x1, . . . , xn−1, x)(

a∗(x)hn
)
(x1, . . . , xn+1) =

n+1∑
i=1

δ(x− xi)hn(x1, . . . , x̂i, . . . , xn+1) .

If we come back to our example Γs(C) ' L2(R, ν), we have the creation
and annihilation operators a∗(z), a(z), z ∈ C. They are actually determined
by two operators a∗ = a∗(1) and a = a(1). They operate on coherent vectors
by

aε(z) = zε(z), a∗ε(z) =
d

dt
ε(z + t)∣∣t=0

,

as can be easily checked. On L2(R, ν) this gives

afz(x) = zfz(x) =

(
x

2
+

d

dx

)
fz(x)

a∗fz(x) =
d

dt
fz+t(x)∣∣t=0

= (x− z)fz(x) =

(
x

2
− d

dx

)
fz(x) .

The operators Q = a + a∗ and P = i(a − a∗) are thus respectively repre-
sented by the operator x and 2i ddx on L2(R), that is, the Schrödinger repre-
sentation of the C.C.R. (with h̄ = 2 !).

The operator Q = a + a∗ is self-adjoint, so it is an observable. Let us
compute its law in the vacuum state |Ω〉〈Ω|. The n-th moment of this law is
given by

〈Ω,QnΩ〉 = 〈f0, x
nf0〉

=
1√
2π

∫
xne−x

2/2 dx .

Thus the law of Q under the state |Ω〉〈Ω| is the centered gaussian law N (0, 1).
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8.3.3 Second Quantization

Definition 8.15. If one is given an operator A from an Hilbert space H to
another Hilbert space K, it is possible to extend it naturally to an operator
Γ(A) from Γs(H) to Γs(K) (and in a similar way from Γa(H) to Γa(K)) by
putting

Γ(A)(u1 ◦ · · · ◦ un) = Au1 ◦ · · · ◦ Aun . (8.12)

One sees easily that
Γ (A) ε(u) = ε(Au) . (8.13)

This operator Γ(A) is called the second quantization of A.

Definition 8.16. One must be careful that even if A is a bounded operator,
Γ(A) is not bounded in general. Indeed, if ‖A‖ > 1 then Γ(A) is not bounded.
But one easily sees that

Γ(AB) = Γ(A)Γ(B)

and
Γ(A∗) = Γ(A)∗ .

In particular if A is unitary, then so is Γ(A). Even more, if (Ut)t∈R is a strongly
continuous one parameter group of unitary operators then so is (Γ(Ut)t∈R). In
other words, by Stone’s Theorem, if Ut = eitH for some self-adjoint operator
H, then Γ(Ut) = eitH′ for some self-adjoint operator H′. The operator H′ is
denoted by Λ(H) or dΓ(H) and is called the differential second quantization
of H.

One can easily check that

Λ(H)u1 ◦ · · · ◦ un =

n∑
i=1

u1 ◦ · · · ◦ Hui ◦ · · · ◦ un (8.14)

and Λ(H)Ω = 0.
In particular, if H = I we have

Λ(I)u1 ◦ · · · ◦ un = nu1 ◦ · · · ◦ un .

This operator is called the number operator.

Proposition 8.17. We have, for all u ∈ H

Λ(H) ε(u) = a∗(Hu) ε(u) .

Proof. We have Λ(H)u◦n = n(Hu) ◦ u ◦ · · · ◦ u, so that

Λ(H)
u◦n

n!
= (Hu) ◦ u

◦(n−1)

(n− 1)!
= a∗(Hu)

u◦(n−1)

(n− 1)!
. ut
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Proposition 8.18. For all u ∈ H, we have

Λ(|u〉〈u|) = a∗|u〉a〈u| .

Proof. Indeed, we have

Λ(|u〉〈u|) ε(v) = a∗(〈u , v〉u) ε(v)

= 〈u , v〉a∗(u) ε(v)

= a∗|u〉a〈u| ε(v) . ut

Coming back to our example L2(R, ν), there is only one differential second
quantization operator (up to a scalar factor):

Λ(I) = Λ = a∗a .

With our identification, this operator is given by

Λ =

(
x

2
− d

dx

) (
x

2
+

d

dx

)
=
x2

4
− d2

dx2
− 1

2

that is

Λ +
1

2
=
x2

4
− d2

dx2
. (8.15)

In quantum physics this exactly corresponds to the Hamiltonian of the one
dimensional harmonic oscillator.

Note that Λ is self-adjoint and that its law in the vacuum state is just the
Dirac mass at 0, for ΛΩ = 0.

8.3.4 Weyl Operators

Definition 8.19. Let H be a Hilbert space. Let G be the Euclidian group of
H that is,

G =
{

(U, u) ; U ∈ U(H), u ∈ H
}
,

where U(H) is the group of unitary operators on H. This group acts on H by

(U, u)h = Uh+ u .

The composition law in G is thus given by

(U, u)(V, v) = (UV,Uv + u)
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and in particular the inverse is given by

(U, u)−1 = (U∗,−U∗u) .

Definition 8.20. For every α = (U, u) ∈ G one defines the Weyl operator
Wα on Γs(H) by

Wα ε(v) = e−‖u‖
2/2−〈u,Uv〉ε(Uv + u) . (8.16)

In particular
WαWβ = e−i Im 〈u,Uv〉Wαβ (8.17)

for all α = (U, u), β = (V, v) in G. This relation is called the Weyl commu-
tation relation.

Proposition 8.21. The Weyl operators Wα are unitary.

Proof. We have

〈Wα ε(k) , Wα ε(`)〉 = e−‖u‖
2−〈Uk , u〉−〈u ,U`〉〈ε(Uk + u) , ε(U`+ u)〉

= e−‖u‖
2−〈Uk,u〉−〈u,U`〉e〈Uk+u,U`+u〉

= e〈Uk ,U`〉 = e〈k , `〉 = 〈ε(k) , ε(`)〉 .

Thus Wα extends to an isometry. But we furthermore have

WαWα−1 = e−i Im 〈u ,−UU∗u〉Wαα−1

= e−i Im (−‖u‖2)W(I,0)

= I .

This proves that Wα is invertible and thus unitary. ut

Definition 8.22. The relation (8.17) shows that the mapping:

G −→ U(Γ (H))
α 7−→ Wα

is a unitary projective representation of G. If we consider the group G̃ made
from the set {(U, u, t), U ∈ U(H), u ∈ H and t ∈ R} with composition law

(U, u, t)(V, v, s) = (UV,Uv + u, t+ s+ Im 〈u , Uv〉)

we obtain the so-called Heisenberg group of H and the mapping (U, u, t) 7−→
eitW(U,u) is a unitary representation of G̃.

Conversely, if W(U,u,t) is a unitary representation of the Heisenberg group
of H we then have

W(U,u,t) = W(U,u,0)W(I,0,t)
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and
W(I,0,t) = W(I,0,s)W(I,0,t+s) .

This means that
W(U,u,t) = W(U,u,0)e

itH

for some self-adjoint operator H. Hence the operators W(U,u,0) satisfy the
Weyl commutation relations.

If we come back to our Weyl operators W(U,u) one easily sees that

W(U,u) = W(I,u)W(U,0) .

By definition W(U,0) ε(k) = ε(Uk) and thus

W(U,0) = Λ(U) .

Finally, writing Wu for W(I,u), we get

WuWv = e−i Im 〈u,v〉Wu+v . (8.18)

These relations are also called Weyl commutation relations. As a consequence
(W(I+tu))t∈R is a unitary group; it can be easily shown to be strongly contin-
uous.

Proposition 8.23. We have

Wtu = eit 1i (a∗(u)−a(u)) .

Proof. By definition we have

1

i

d

dt
∣∣t=0

W(I,tu) ε(k) =
1

i

d

dt
∣∣t=0

e−
t2

2 ‖u‖
2−t〈u , k〉 ε(k + tu)

= −1

i
〈u , k〉 ε(k) +

1

i

d

dt
∣∣t=0

ε(k + tu)

=
1

i
(−a(u) + a∗(u)) ε(k) . ut

Coming back to our example on L2(R), the Weyl operators are defined by

Wz ε(z
′) = e−

|z|2
2 −z̄z

′
ε(z + z′) .

We shall use them to compute the laws of some basic observables.

Proposition 8.24. The observable 1
i (za

∗−z̄a) obeys the law N (0, |z|2) in the
vacuum state. In particular, the observable za∗ + z̄a obeys the law N (0, |z|2)
in the vacuum state.
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Proof. We have

〈Ω , et(za
∗−z̄a)Ω〉 = 〈Ω , WtzΩ〉

= 〈ε(0) , Wtz ε(0)〉

= 〈ε(0) , ε(tz)〉 e−t
2|z|2/2

= e−t
2|z|2/2 . ut

Proposition 8.25. The observable Λ + αI obeys the law δα in the vacuum
state.

Proof. Indeed, we have
(Λ + αI)Ω = αΩ . ut

Lemma 8.26. We have

W−z eitΛ Wz = eit(Λ+za∗+z̄a+|z|2I) .

Proof. It is sufficient to prove that W−zΛWz = Λ + za∗+ z̄a+ |z|2I. We have

〈ε(z1) , W−z ΛWz ε(z2)〉 = 〈aWz ε(z1) , aWz ε(z2)〉

= e−|z|
2−z̄z2−z̄1z〈(z1 + z)ε(z1 + z) , (z2 + z)ε(z2 + z)〉

= (z̄1z2 + z̄1z + z2z̄ + |z|2)ez̄1z2 .

We immediatly recognize that this quantity is equal to〈
ε(z1) , (Λ + za∗ + z̄a+ |z|2I)ε(z2)

〉
. ut

Proposition 8.27. The observable Λ+za∗+ z̄a+ |z|2I obeys the Poisson law
P(|z|2) in the vacuum state.

Proof. We have

〈Ω , eit(Λ+za∗−z̄a+|z|2I)Ω〉 = 〈Wz Ω , eitΛWz Ω〉

= e−|z|
2

〈ε(z) , eitΛ ε(z)〉

= e−|z|
2

e|z|
2eit

= e|z|
2(eit−1)

which is the characteristic function of the law P(|z|2). ut
This result is one of the most remarkable of quantum probability theory.

We have two observables za∗ + z̄a and Λ + |z|2I. In the vacuum state, the
first one is gaussian N (0, |z|2), and the second is deterministic, always equal
to |z|2. The sum of this gaussian observable and this deterministic one gives
... an observable which is Poisson! Of course these two observables do not
commute and we had no reason to obtain the law of their convolution. But
one must admit that the result here is really surprising!
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Notes

There are plenty references introducing to the notion of Fock spaces, to their
use in quantum physics, ... From a reference to another the definition are
slightly different. In this chapter we mainly followed the presentation which
is commonly shared in quantum probability theory, such as in the references
[Par92], [Mey93], [Bia95]. The book of Meyer contains an original proof of
the Stone-von Neumann theorem.

In the second volume of Bratelli and Robinson’s books ([BR97]), the Fock
spaces are put into perspective with applications in quantum statistical me-
chanics (and these two volumes are a reference in this domain). All the main
theorems are there, including Stone-von Neumann, analogous characteriza-
tions of the C.A.R., etc.

The Guichardet interpretation of the Fock spaces is due to ... Guichardet
of course. It was first developed in his book [Gui72], which has nothing to do
with Quantum Probability. His approach on continuous tensor products of
Hilbert spaces has become famous and very useful in Quantum Probability.
In particular with the help of the article of H. Maassen on kernel operators
on Fock space ([Maa85]).
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