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Abstract

A new model of quantum random walks is introduced, on lattices
as well as on finite graphs. These quantum random walks take into
account the behavior of open quantum systems. They are the exact
quantum analogues of classical Markov chains. We explore the “quan-
tum trajectory” point of view on these quantum random walks, that is,
we show that measuring the position of the particle after each time-
step gives rise to a classical Markov chain, on the lattice times the
state space of the particle. This quantum trajectory is a simulation
of the master equation of the quantum random walk. The physical
pertinence of such quantum random walks and the way they can be
concretely realized is discussed. Differences and connections with the
already well-known quantum random walks, such as the Hadamard
random walk, are established.
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1 Introduction

Random walks [1, 2] are a useful mathematical concept, which found suc-
cessful applications, e. g., in physics [2], computer science [3], economics
[4] and biology [5]. Basically, the trajectory of a random walk consists of
a sequence of random steps on some underlying set of connected vertices
[2]. It is appealing to extend the concept of the classical random walk to
the quantum domain. Quantum walks can be introduced in a discrete time
[6] and in a continuous time [7] fashion. While for a classical random walk
the probability distribution of the position of the walker depends only on
the transition rates between the nodes of the graph, in the quantum case
[8] the probability amplitude of the walker depends on the dynamics of his
internal degrees of freedom. The appearance of interference effects makes
these walks truly quantum. These quantum random walks, that we shall call
Unitary Quantum Walks (for a reason which will appear clear in Section 10)
have been successful for they give rise to strange behaviors of the probability
distribution as time goes to infinity. In particular one can prove that they
satisfy a rather surprising Central Limit Theorem whose speed is n, instead
of
√
n as usually, and the limit distribution is not Gaussian, but more like

functions of the form (see [9]):

x 7→
√

1− a2 (1− λx)

π (1− x2)
√
a2 − x2

,

where a and λ are constants.
Unitary quantum walks found wide application in quantum computing

[10]. Although, the physical implementation of any quantum concept is
usually difficult due to unavoidable dissipation and decoherence effects [11],
experimental realizations of unitary quantum random walks have been re-
ported. Implementations with negligible effect of decoherence and dissipa-
tion were realized in optical lattices [12], on photons in waveguide lattices
[13], with trapped ions [14] and free single photons in space [15].

Recently, there has been interest in understanding the role of quantum
transport in biological systems [16]. Naturally, this raises the question of
finding a framework for quantum walks in an open environment, for which
dissipation and decoherence will play a non negligible role. On the contrary,
such open quantum walks may even assist in the understanding of quantum
efficiency.

Over the last decade the implications of an open system approach to
the dynamics of quantum walks have been addressed [17]. Usually in these
approaches the amount of dissipation and decoherence is minimal compared
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to the unitary driven coherence in the system of interest. In particular,
effects of small amounts of decoherence have been shown to enhance some
properties of quantum walks that make them useful for quantum computing.
Recently, the framework of quantum stochastic walks was proposed [18], that
allows to study the direct transition between classical random and quantum
walks. Recently this transition was observed in various experiments [19].
General quantum walks on a lattice have been shown to have an interesting
asymptotic behavior [20].

The purpose of this article is to introduce a formalism for discrete time
open quantum walks, which is exclusively based on the non-unitary dynamics
induced by the local environments. The formalism suggested is similar to the
formalism of quantum Markov chains [21] and rests upon the implementation
of appropriate completely positive maps [11, 22]. Our approach is rather
different from [21] for we put the emphasis on the quantum random walk
character of these quantum Markov chains, we study their properties with
the random walk point of view (limit distribution, transport properties, etc),
we study their physical pertinence and make a physical connection with the
unitary quantum random walks.

As we will show below the formalism of the open quantum random walks
includes the classical random walk and through a physical realization proce-
dure a connection to the unitary quantum walk is established. Furthermore,
the OQRW allows for an unravelling in terms of quantum trajectories. In
general, the behavior of the walk can not be explained in terms of classical
or unitary walks. The particular properties of the OQRW make it a promis-
ing candidate for modeling of quantum efficiency in biological systems and
quantum computing.

2 General Setup

We now introduce the general mathematical and physical setup of the Open
Quantum Random Walks. For sake of completeness we recall in this section
several technical lemmas which ensure that our definitions are consistent.
We omit their proofs as they all consist in easy exercises of Analysis.

We are given a set V of vertices, which might be finite or countable
infinite. We consider all the oriented edges {(i, j) ; i, j ∈ V}. We wish
to give a quantum analogue of a random walk on the associated graph (or
lattice).

We consider the space K = CV , that is, the state space of a quantum
system with as many degrees of freedom as the number of vertices; when
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V is infinite countable we put K to be any separable Hilbert space with an
orthonormal basis indexed by V . We fix an orthonormal basis of K which we
shall denote by (|i〉)i∈V .

Let H be a separable Hilbert space; it stands for the space of degrees
of freedom (or chirality as they call it in Quantum Information Theory [8])
given at each point of V . Consider the space H⊗K.

For each edge (i, j) we are given a bounded operator Bi
j on H. This

operator stands for the effect of passing from j to i. We assume that, for
each j ∑

i

Bi
j

∗
Bi

j = I , (1)

where the above series is strongly convergent (if infinite). This constraint
has to be understood as follows: “the sum of all the effects leaving the site
j is I ”. It is the same idea as the one for transition matrices associated to
Markov chains: “the sum of the probabilities leaving a site j is 1”.

By Lemma 2.1 which follows, to each j ∈ V is associated a completely
positive map on the density matrices of H:

Mj(ρ) =
∑

i

Bi
jρB

i
j

∗
.

Lemma 2.1 Let (Bi) be a sequence of bounded operators on a separable
Hilbert space H such that the series

∑
iB
∗
iBi converges strongly to a bounded

operator T . If ρ is a positive trace-class operator on H then the series∑
i

BiρB
∗
i

is trace-norm convergent and

Tr

(∑
i

BiρB
∗
i

)
= Tr (ρT ) .

The operators Bi
j act on H only, we dilate them as operators on H ⊗ K

by putting
M i

j = Bi
j ⊗ |i〉〈j| .

The operator M i
j encodes exactly the idea that while passing from |j〉 to |i〉

on the lattice, the effect is the operator Bi
j on H.

By Lemma 2.2, which follows, the series
∑

i,j M
i
j
∗
M i

j converges strongly
to the operator I.
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Lemma 2.2 Let K and H be separable Hilbert spaces. Consider an orthonor-
mal basis (|i〉) of K. Assume that Bi

j are bounded operators on H such that,

for all j, the series
∑

iB
i
j
∗
Bi

j is strongly convergent to I. Define the bounded
operators

M i
j = Bi

j ⊗ |i〉〈j|

on H⊗K. Then the series
∑

i,j M
i
j
∗
M i

j converges strongly to I.

As a consequence we can apply Lemma 2.1 to the set of operators (M i
j)i,j

and the mapping

M(ρ) =
∑

i

∑
j

M i
j ρM

i
j

∗
(2)

defines a completely positive map on H⊗K.

We shall especially be interested in density matrices on H ⊗ K with the
particular form

ρ =
∑

i

ρi ⊗ |i〉〈i| , (3)

where each ρi is not exactly a density matrix on H: it is a positive and
trace-class operator but its trace is not 1. Indeed the condition that ρ is a
state aims to ∑

i

Tr (ρi) = 1 . (4)

The importance of those density matrices is justified by the following.

Proposition 2.3 Whatever is the initial state ρ on H⊗K, the density matrix
M(ρ) is of the form (3).

Before proving this proposition, let us recall a basic result on partial
traces.

Lemma 2.4 Let ρ be a trace-class operator on H ⊗ K and (|j〉) be an or-
thonormal basis of K. The operator

(I ⊗ |i〉〈j|) ρ (I ⊗ |j〉〈i|)

can be written as
ρj ⊗ |i〉〈i|

for some trace-class operator ρj on H, which we shall denote by 〈j| ρ |j〉.
Furthermore we have

Tr (〈j| ρ |j〉) = Tr
(
ρ (I ⊗ |j〉〈j|)

)
.
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We can now come back to the proof of the proposition.
Proof [of Proposition 2.3] We have

M(ρ) =
∑
i,j

(
Bi

j ⊗ |i〉〈j|
)
ρ
(
Bi

j

∗ ⊗ |j〉〈i|
)

=
∑
i,j

(Bi
j ⊗ I)(I ⊗ |i〉〈j|) ρ (I ⊗ |j〉〈i|)(Bi

j

∗ ⊗ I) .

If we put ρj = 〈j| ρ |j〉 (as in Lemma 2.4), we get

M(ρ) =
∑
i,j

(Bi
j ⊗ I)(ρj ⊗ |i〉〈i|)(Bi

j

∗ ⊗ I)

=
∑
i,j

Bi
jρjB

i
j

∗ ⊗ |i〉〈i| .

Each of the operators Bi
jρjB

i
j
∗

is positive and trace-class, hence so is the

operator
∑

j≤M Bi
jρjB

i
j
∗
. But we have

Tr

(∑
j≤M

Bi
jρjB

i
j

∗
)

=
∑
j≤M

Tr (ρjB
i
j

∗
Bi

j) .

As
∑

iB
i
j
∗
Bi

j = I, each of the operators Bi
j
∗
Bi

j is smaller than I (in the sense

that I−Bi
j
∗
Bi

j is a positive operator). Hence, Tr (ρjB
i
j
∗
Bi

j) ≤ Tr (ρj), as can
be easily checked. This shows that∑

j

Tr
(
Bi

jρjB
i
j

∗)
<∞

and that
∑

j≤M Bi
jρjB

i
j
∗

converges in trace-norm to a positive trace-class

operator
∑

j B
i
jρjB

i
j
∗

which satisfies

Tr

(∑
j

Bi
jρjB

i
j

∗
)

=
∑

j

Tr (ρjB
i
j

∗
Bi

j) .

In particular by Lemma 2.1 we have,∑
i

Tr

(∑
j

Bi
jρjB

i
j

∗
)

=
∑

i

∑
j

Tr (ρjB
i
j

∗
Bi

j)

=
∑

j

Tr

(
ρj

(∑
i

Bi
j

∗
Bi

j

))
=
∑

j

Tr (ρj)

= 1 .
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This means that the series (in the variable i)

∑
i

(∑
j

Bi
jρjB

i
j

∗
)
⊗ |i〉〈i|

is trace-norm convergent. We now immediately have the relation

∑
i,j

Bi
jρjB

i
j

∗ ⊗ |i〉〈i| =
∑

i

(∑
j

Bi
jρjB

i
j

∗
)
⊗ |i〉〈i| .

This proves that M(ρ) is of the form (3). �

The states of the form (3) are mixtures of initial states ρi on each site i,
but they express no mixing between the sites. An immediate consequence of
the proof of Proposition 2.3 is the following important formula.

Corollary 2.5 If ρ is a state on H⊗K of the form

ρ =
∑

i

ρi ⊗ |i〉〈i| ,

then

M(ρ) =
∑

i

(∑
j

Bi
jρjB

i
j

∗
)
⊗ |i〉〈i| . (5)

This is exactly the quantum analogue of a usual random walk: after one
step, on the site i we have all the contributions from those pieces of the state
which have travelled from j to i.

3 Open Quantum Random Walks

If the state of the system H⊗K is of the form

ρ =
∑

i

ρi ⊗ |i〉〈i| ,

then a measurement of the “position” in K, that is, a measurement along the
orthonormal basis (|i〉)i∈V , gives the value |i〉 with probability

Tr (ρi) .
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As proved in Corollary 2.5, after applying the completely positive map M
the state of the system H⊗K is

M(ρ) =
∑

i

∑
j

Bi
j ρj B

i
j

∗ ⊗ |i〉〈i| .

Hence, a measurement of the position in K would give that each site i is
occupied with probability ∑

j

Tr
(
Bi

jρjB
i
j

∗)
. (6)

Now, let us see what happens if the measurement is performed after two
steps only. In this case, the state of the system is

M2(ρ) =
∑

i

∑
j

∑
k

Bi
jB

j
k ρk B

j
k

∗
Bi

j

∗ ⊗ |i〉〈i| .

Hence measuring the position, we get the site |i〉 with probability∑
j

∑
k

Tr
(
Bi

jB
j
k ρk B

j
k

∗
Bi

j

∗
)
. (7)

Clearly, there is no way to understand the probability measure given in (7)
for two steps with the help of only the probability measure on one step (6).
One needs to know the density matrices ρk.

The random walk which is described this way by the iteration of the
completely positive map M is not a classical random walk, it is a quantum
random walk. The rules for jumping from a site to another are dictated by
the sites, but also by the chirality. This is what we call an “Open Quantum
Random Walk”.

Let us resume these remarks in the following proposition, which follows
easily from the previous results and remarks.

Proposition 3.1 Given any initial state ρ(0) on H ⊗ K, then for all n ≥ 1
the states ρ(n) =Mn(ρ(0)) are all of the form

ρ(n) =
∑

i

ρ
(n)
i ⊗ |i〉〈i| .

They are given inductively by the following relation:

ρ
(n+1)
i =

∑
j

Bi
j ρ

(n)
j Bi

j

∗
.
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For each n ≥ 1, the quantities

p
(n)
i = Tr (ρ

(n)
i ) , i ∈ V

define a probability distribution p(n) on V, it is called the “ probability distri-
bution of the open quantum random walk at time n”.

Before going ahead with the properties of the Open Quantum Random
Walks, let us introduce a few examples.

4 Examples on Z
It is very easy to define a stationary open quantum random walk on Z. Let
H be any Hilbert space and B,C be two bounded operators on H such that

B∗B + C∗C = I .

Then we can define an open quantum random walk on Z by saying that one
can only jump to nearest neighbors: a jump to the left is given by B and a
jump to the right is given by C. In other words, we put

Bi−1
i = B and Bi+1

i = C

for all i ∈ Z, all the others Bi
j being equal to 0.

Starting with an initial state ρ(0) = ρ0⊗|0〉〈0|, after one step we have the
state

ρ(1) = Bρ0B
∗ ⊗ |−1〉〈−1|+ Cρ0C

∗ ⊗ |1〉〈1| .

The probability of presence in |−1〉 is Tr (Bρ0B
∗) and the probability of

presence in |1〉 is Tr (Cρ0C
∗).

After the second step, the state of the system is

ρ(2) = B2ρ0B
2∗ ⊗ |−2〉〈−2|+ C2ρ0C

2∗ ⊗ |2〉〈2|+
+ (CBρ0B

∗C∗ +BCρ0C
∗B∗)⊗ |0〉〈0| .

The associated probabilities for the presence in |−2〉, |0〉, |2〉 are then

Tr (B2ρ0B
2∗), Tr (CBρ0B

∗C∗ +BCρ0C
∗B∗) and Tr (C2ρ0C

2∗) ,

respectively.
One can iterate the above procedure and generate our open quantum

random walk on Z.
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As further example, take

B =
1√
3

(
1 1
0 1

)
and C =

1√
3

(
1 0
−1 1

)
.

The operators B and C do satisfy B∗B + C∗C = I. Let us consider the
associated open quantum random walk on Z. Starting with the state

ρ(0) =

(
1 0
0 0

)
⊗ |0〉〈0| ,

we find the following probabilities for the 4 first steps:

| − 4〉 | − 3〉 | − 2〉 | − 1〉 |0〉 |+ 1〉 |+ 2〉 |+ 3〉 |+ 4〉
n = 0 1
n = 1 1

3
2
3

n = 2 1
9

3
9

5
9

n = 3 1
27

5
27

11
27

10
27

n = 4 1
81

10
81

27
81

26
81

17
81

The distribution obviously starts asymmetric, uncentered and rather wild.
The interesting point is that, while keeping its quantum behavior time after
time, simulations show up clearly a tendancy to converge to a normal centered
distribution.

A proof of this fact, in this particular example, is accessible making use of
the translation invariance of the walk and using Fourier transform techniques,
in the same way as as is done (though, in a quite different language) in
[20]. It is to be noticed that such methods do not give explicit or accessible
parameters for the limit Gaussian distribution. Indeed, such methods are
based on the spectral behavior near the origin of a particular perturbation of
the dynamics; the associated parameters are then in general hard to compute.
Another approach to these central limit behaviors is developed in [23], based
on Markov chain and random media techniques; it gives rise to more general
results than [20] and it gives rise to explicit parameters for the Gaussian limit
distributions.

Coming back to our example, Figure 1 below shows the distribution ob-
tained at times n = 4, n = 8 and n = 20.

One can produce examples where several Gaussians are appearing, in-
cluding the case where Gaussians are reduced to Dirac masses. It is to be
noted that the rigorous proof of such asymptotic behaviors, where several
Gaussians are appearing, is out of reach with simple arguments like Fourier
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Figure 1: An O.Q.R.W. on Z which gives rise to a centered Gaussian at the
limit, while starting clearly uncentered (at time n = 4, n = 8, n = 20)

transforms. In the article [20], cited above, their techniques only allow to
consider the case of a single Gaussian distribution at the limit. A detailed
study of Central Limit Theorems for O.Q.R.W. is presented in [23], where
some of the cases with several Gaussians are considered. A general Central
Limit Theorem for O.Q.R.W. is, at the time we write, still an open problem.
In this article, we stick to numerical simulations only and we refer to [23] for
a detailed study of central limit theorems in this context.

For example, let us takeH being of dimension 5. For the sake of a compact
notation, we put C2 = cos(2t), C4 = cos(4t), S2 = sin(2t) and S4 = sin(4t).
Consider the matrices

B =
1

4



0 −2S2 − S4 0 2S2 − S4 0

−2S2 − S4 0 −2
√

3
2
S4 0 2S2 − S4

0 −2
√

3
2
S4 0 −2

√
3
2
S4 0

2S2 − S4 0 −2
√

3
2
S4 0 −2S2 − S4

0 2S2 − S4 0 −2S2 − S4 0


and

C =
1

8


L 0 C 0 L′

0 4(C2 + C4) 0 4(−C2 + C4) 0
C 0 2(1 + 3C4) 0 C
0 4(−C2 + C4) 0 4(C2 + C4) 0
L′ 0 C 0 L

 ,

where

L = 3 + 4C2 + C4, L′ = 3− 4C2 + C4, C = −
√

6(1− C4) .

Simulations of this open quantum random walk indicates that the limit be-
havior exhibits two Gaussians plus a Dirac soliton. The two Gaussians get
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slowly constructed, point by point, as the soliton loses its mass. In Figure 2
we show the time evolution when the parameter t is equal to t = π/40, the
initial state being ρ(0) = 1

5
I ⊗ |0〉〈0| . Changing the parameter t makes the

0 50 100 150 200
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0.10

0.15

0.20

0.25

0.30

0 50 100 150 200
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0.15

0.20

0.25

0.30

0 50 100 150 200

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2: Two Gaussians moving towards right are constructed point by point
while the soliton loses its mass (parameter t = π/40, times n = 50, n = 100,
n = 200).

Gaussians moving at different speeds and even change their direction.

5 Examples on Graphs

In order to give examples on finite graphs it is useful to fix a notation. We
shall denote the operators involved in the open quantum random walk in a
way similar to the notation of stochastic matrices for Markov chains. If the
set of vertices is V = {1, . . . , V }, we shall denote the operators Bi

j inside a
V × V -matrix as follows: 

B1
1 B2

1 . . . BV
1

B1
2 B2

2 . . . BV
2

...
...

...
...

B1
V B2

V . . . BV
V

 .

That is, on line j are all the operators for the contributions Bi
j which start

from j and go to another site i. The usual property for stochastic matrices
that the sum of each line is 1, is replaced by

∑
iB

i
j
∗
Bi

j = I for each line.
With this notation one can easily describe examples. On the graph with two
vertices we consider the transition operators of the form(

D1 D2

B C

)
where D1 and D2 are any diagonal matrices such that D∗1D1 + D∗2D2 = I
and where

B =

(
0
√
p

0 0

)
and C =

(
1 0
0
√

1− p

)
,
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for some p ∈ (0, 1). It is easy to prove rigorously that the density matrix of
these examples always converges to(

1 0
0 0

)
⊗ |2〉〈2| .

This is to say that the “mass” is always asymptotically leaving the site |1〉
in order to “charge” the site |2〉 only.

The above idea can be pushed further to a chain of N sites connected as
follows 

D1 D2 0 0 . . . 0 0 0
D3 0 D4 0 . . . 0 0 0
0 D5 0 D6 . . . 0 0 0
...

. . . . . . . . . . . .
...

...
...

0 0 0 0 . . . D2N−3 0 D2N−2

0 0 0 0 . . . 0 B C


.

Then any initial state, for example any state of the form ρ0 ⊗ |1〉〈1|, will
converge to the state (

1 0
0 0

)
⊗ |N〉〈N | .

Though this example is rather classical in its behavior, it is interesting for it
gives a model of a sort of “excitation transport”: giving any initial state on
the site 1 only, the state will then be, more or less quickly, transported along
the chain and will end up into the excited state on the site |N〉, see [24] for
example.

An important open problem is to be noted in this context. In the case of
classical Markov chain on a finite (or even countable) graph, a classification
of the behaviors is well-known. The nodes are separated into recurrent and
transient ones. The definition of a recurrent or a transient node is rather
simple and clear (a node is transient if, starting from it one can reach another
node with strictly positive probability, but with no probability of coming
back; if it is not transient a node is recurrent). It is well-known that the
invariant measures are exactly supported by the recurrent nodes.

Regarding the few examples described above, it is natural to wonder if
there exists some equivalent characterization for OQRW. How can one see on
the Bj

i ’s that a given node will be “recurrent”, that is, will be in the support
of the invariant states? For the moment, no obvious answer appeared to
this question; the characterization of recurrence and transience seems not so
simple in this quantum context.
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6 Recovering Classical Markov Chains

Let us now come back to the general setup of Open Quantum Random Walks.

It is very interesting to notice that all the classical Markov chains can
be recovered as particular cases of Open Quantum Random Walks. We only
treat here the homogenous case, the discussion would be similar in the non-
homogeneous case.

Consider P = (P (j, i)) a stochastic matrix, that is P (j, i) are classical
probability transitions on V . They express the transition probabilities of a
Markov chain (Xn) on V , that is,

P (j, i) = P(Xn+1 = i |Xn = j) .

In particular, recall that ∑
i∈V

P (j, i) = 1

for all j.

Proposition 6.1 Put H = K = CV and consider any family of unitary
operators U i

j on CN , i, j ∈ V. Consider the operators

Bi
j =

√
P (j, i)U i

j .

They satisfy ∑
i

Bi
j

∗
Bi

j = I

for all j. Furthermore, given any initial state ρ(0), the associated open quan-
tum random walk (Mn) has the same probability distributions (p(n)) as the
classical Markov chain (Xn) with transition probability matrix P and initial
measure

p
(0)
i = Tr (〈i| ρ(0) |i〉) .

Proof The relation on the operators Bi
j is obvious for∑

i

Bi
j

∗
Bi

j =
∑

i

P (j, i)U i
j

∗
U i

j =
∑

i

P (j, i)I = I .

Whatever is the initial state ρ, if we put ρi = 〈i| ρ |i〉, we get by Proposition
2.3 and its proof

M(ρ) =
∑

i

(∑
k

P (k, i)U i
kρkU

i
k

∗
)
⊗ |i〉〈i| .
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The probability to be located on site i is then∑
k

P (k, i) Tr
(
U i

kρkU
i
k

∗)
=
∑

k

P (k, i) Tr (ρk) .

That is, we get the classical transition probabilities for a classical Markov
chain on the set V , driven by the transition probabilities P (i, j) and with

initial measure p
(0)
i = Tr (ρi).

After two steps, the probability to be located at site i is∑
k

∑
l

P (l, k)P (k, i) Tr
(
U i

kU
k
l ρlU

k
l

∗
U i

k

∗
)

=
∑

k

∑
l

P (l, k)P (k, i) Tr (ρl) .

That is, once again the usual transition probabilities for two steps of the
above Markov chain. It is not difficult to get convinced, by induction, that
this works for any number of steps. �

7 Quantum Trajectories

We shall now describe a very interesting and convenient way to simulate
OQRWs by means of Quantum Trajectories. This property seems very im-
portant when one wants to study the limit behavior of these quantum random
walks (see [23]).

The principle of the quantum trajectories associated to an open quantum
random walk is the following. Starting from any initial state ρ on H⊗K we
apply the mapping M and then a measurement of the position in K. We
end up with a random result for the measurement and a reduction of the
wave-packet gives rise to a random state on H⊗K of the form

ρi ⊗ |i〉〈i| .

We then apply the procedure again: an action of the mapping M and a
measurement of the position in K.

Theorem 7.1 By repeatedly applying the completely positive map M and a
measurement of the position on K, one obtains a sequence of random states
on H⊗K. This sequence is a non-homogenous Markov chain with law being
described as follows. If the state of the chain at time n is ρ⊗ |j〉〈j|, then at
time n+ 1 it jumps to one of the values

1

p(i)
Bi

jρB
i
j

∗ ⊗ |i〉〈i| , i ∈ V ,
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with probability
p(i) = Tr

(
Bi

jρB
i
j

∗)
.

This Markov chain (ρ(n)) is a simulation of the master equation driven by
M, that is,

E
[
ρ(n+1) | ρ(n)

]
=M(ρ(n)) .

Furthermore, if the initial state is a pure state, then the quantum trajectory
stays valued in pure states and the Markov chain is described as follows. If
the state of the chain at time n is the pure state |ϕ〉⊗ |j〉, then at time n+ 1
it jumps to one of the values

1√
p(i)

Bi
j |ϕ〉 ⊗ |i〉 , i ∈ V ,

with probability

p(i) =
∥∥Bi

j |ϕ〉
∥∥2
.

Proof Let ρ⊗ |j〉〈j| be the initial state. After acting by M the state is∑
i

(Bj
i ρB

j
i

∗
)⊗ |i〉〈i| .

Measuring the vertices, gives the site i with probability

p(i) = Tr (Bj
i ρB

j
i

∗
) .

By the usual wave-packet reduction postulate, the state after having been
measured with this value is

1

p(i)
(Bj

i ρB
j
i

∗
)⊗ |i〉〈i| .

This state being given, if we repeat the procedure, then clearly the next
step depends only on the new state of the system. We end up with a (non-
homogenous) Markov chain structure.

On average, the values of this Markov chain after one step is

E
[
ρ(n+1) | ρ(n) = ρ⊗ |j〉〈j|

]
=
∑

i

p(i)
1

p(i)
(Bj

i ρB
j
i

∗
)⊗ |i〉〈i|

=
∑

i

(Bj
i ρB

j
i

∗
)⊗ |i〉〈i|

=M(ρ(n)) .
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If ρ is a pure state |φ〉〈φ| ⊗ |i〉〈i|, then it stays a pure state at each step.
Indeed, any initial pure state |φ〉〈φ|⊗ |i〉〈i| will jump randomly to one of the
states

1

pj
i

Bj
i |φ〉〈φ|B

j
i

∗ ⊗ |j〉〈j|

with probability
p(i) = Tr (Bj

i |φ〉〈φ|B
j
i

∗
) .

In other words, it jumps from the pure state |φ〉⊗|i〉 to any of the pure states

1√
p(i)

Bj
i |φ〉 ⊗ |j〉

with probability

p(i) =
∥∥Bj

i |φ〉
∥∥2

.

We have a classical Markov chain valued in the space of wave functions of the
form |φ〉 ⊗ |i〉. On average, this random walk simulates the master equation
driven by M. �

8 Realization Procedure

It is natural to wonder how such Open Quantum Random Walks can actually
be realized physically. We shall here discuss a way to achieve it.

For the sake of a simple discussion, we restrict ourselves in this section
to the case where either V is finite, or the number of non-vanishing Bi

j’s is
finite for every fixed j. This is the case in all our examples and makes all the
sums finite in the following.

Consider an open quantum random walk on V with chirality space H and
with associated transition operators Bi

j. Recall that we have supposed that∑
i∈V

Bi
j

∗
Bi

j = I

for all j ∈ V . Hence, for all j ∈ V there exists a unitary operator U(j) on
H⊗K whose first column (we choose |1〉 to be the first vector) is given by

U i
1(j) = Bi

j .

This unitary operator is a unitary operator that dilates the completely pos-
itive map

Mj(ρ) =
∑

i

Bi
j ρB

i
j

∗
.
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In other words, the completely positive map Mj on H is the partial trace
of some unitary interaction between H and some environment E . It is well-
known that the dimension of the environment can be chosen to be the same
as the number of Krauss operators appearing in the decomposition of Mj,
that is, in our case they are indexed by V . Hence the environment can be
chosen to be E = K.

The state space on which one performs the realization procedure is H⊗
K1 ⊗ K2 where K1 and K2 are two copies of K. Let us present the main
ingredients which shall appear in the realization procedure.

Each unitary operator U(j) defined above acts on H⊗K1. We construct
the unitary operator

U =
∑

j

U(j)⊗ |j〉〈j|

which acts now on H⊗K1 ⊗K2 .

We shall also need the so-called swap operator S on K1 ⊗K2 defined by

S(|j〉 ⊗ |k〉) = |k〉 ⊗ |j〉 .

It is a unitary operator on K1 ⊗ K2 which simply expresses the fact of ex-
changing the two systems K1 and K2.

We shall also use a decoherence procedure on the space K1, along the basis
(|i〉). By this we mean the following: if the system is in a superposition of
pure states

|ϕ〉 =
∑

i

λi |i〉 ,

then this system is coupled to an environment in such a way and in a suffi-
ciently long time, for the state of K1 to become∑

i

|λi|2 |i〉〈i| .

This is to say that we have chosen a coupling of K1 with some environment
which makes the off-diagonal terms of the density matrix |ϕ〉〈ϕ| converge ex-
ponentially fast to 0. This kind of decoherence is now well-known in physics.
It is rather easy to describe an environment and an explicit Hamiltonian
which will produce such a result, we do not develop this point here, see [25]
for example.

Finally, we shall need a refreshing procedure, that is, if K1 is in any state
ρ then we put it back to the state |1〉〈1|. By this we mean either that the
system K1 is taken away and re-prepared in the state |1〉〈1|, or that a new
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copy of K1 in the state |1〉〈1| is brought into the game in order to replace
the old copy, which will play no role anymore (see [25] for theoretical setup,
or [26] for concrete experiments).

Proposition 8.1 Consider the quantum system H⊗K1⊗K2, together with
some initial state

ρ(0) =
∑

k

ρk ⊗ |1〉〈1| ⊗ |k〉〈k| .

If we perform successively

1) an action of the unitary operator U ,

2) a decoherence on the basis (|i〉) of the system K1,

3) an action of the swap operator I ⊗ S
4) a refreshing of the system K1 to the state |1〉〈1|
then the state of the system becomes

∑
k

(∑
l

Bk
l ρlB

k
l

∗
)
⊗ |1〉〈1| ⊗ |k〉〈k| .

That is, one reads the first step of the dissipative quantum random walk on
H⊗K2.

By iterating this whole procedure one produces the dissipative quantum
random walk on H⊗K2.

Proof The unitary operator U(k) admits a decomposition

U(k) =
∑
i,j

U i
j(k)⊗ |j〉〈i| .

In particular we have ∑
j

U i′

j (k)∗ U i
j(k) = δi,i′I .

On the spaceH⊗K1⊗K2 the operator U as defined above is then decomposed
into

U =
∑
i,j,k

U i
j(k)⊗ |j〉〈i| ⊗ |k〉〈k| .

Now starting in a pure state |φ〉 ⊗ |1〉 ⊗ |k〉, we get

U (|φ〉 ⊗ |1〉 ⊗ |k〉) =
∑

j

U j
1 (k)|φ〉 ⊗ |j〉 ⊗ |k〉 =

∑
j

Bj
k|φ〉 ⊗ |j〉 ⊗ |k〉 .
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This is the first step of the procedure.
The second step consists in performing a decoherence on the first space

K. The pure state ∑
j

Bj
k|φ〉 ⊗ |j〉 ⊗ |k〉

is then mapped to the density matrix∑
j

Bj
k|φ〉〈φ|B

j
k

∗ ⊗ |j〉〈j| ⊗ |k〉〈k| . (8)

Applying I ⊗ S to the state (8) we get the state∑
j

Bj
k|φ〉〈φ|B

j
k

∗ ⊗ |k〉〈k| ⊗ |j〉〈j| . (9)

On the space H and the second space K one can now read the first step of
our quantum random walk.

Finally, refresh the first space K into the state |1〉, we then end up with
the state ∑

j

Bj
k|φ〉〈φ|B

j
k

∗ ⊗ |1〉〈1| ⊗ |j〉〈j| ,

on which one can apply our procedure again.
If the initial state is not a pure state but a density matrix, a mixture of

pure states, it is not difficult to see that the procedure described above gives
the right combination and the right final state. �

To summarize, the quantum random walk is obtained in the following
way. Dilate each of the maps Lk into a unitary operator U(k) on H ⊗ K1,
start in the desired initial state on H and the second space K2, with the
first space K1 being in the state |1〉, then iterate the following procedure on
H⊗K1 ⊗K2:

– apply the unitary operator
∑

k U(k)⊗ |k〉〈k|,
– perform a decoherence on K1

– apply the unitary shift I ⊗ S
– refresh the first space K1 into the state |1〉.
The dissipative quantum random walk now appears on H⊗K2.

9 Examples of Realization Procedure

Let us illustrate this realization procedure with two of the physical examples
developed in Sections 4 and 5.
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In the case of stationary walks on Z the procedure can be considerably
simplified, as follows. The procedure we describe below is slightly different
from the one presented in Proposition 8.1, but it is actually the same one,
presented in a different way, taking into account several simplifications offered
by the model.

Consider an open quantum random walk on Z driven by two operators B
and C on H. Consider a unitary operator U on H⊗ C2 of the form

U =

(
B X
C Y

)
,

that is, a dilation of the completely positive map driven by B and C. Let
K = CZ and consider the space H⊗C2⊗K. On the space C2⊗K we consider
the shift operator given by

S(|0〉〈0| ⊗ |k〉〈k|) = |0〉〈0| ⊗ |k − 1〉〈k − 1|

and
S(|1〉〈1| ⊗ |k〉〈k|) = |0〉〈0| ⊗ |k + 1〉〈k + 1| .

Now, let us detail the procedure. Starting with a state |ϕ〉 ⊗ |0〉 ⊗ |k〉 we
apply the operator U ⊗ I and end up with the state

B|ϕ〉 ⊗ |0〉 ⊗ |k〉+ C|ϕ〉 ⊗ |1〉 ⊗ |k〉 .

Applying the decoherence on C2 we get the state

B|ϕ〉〈ϕ|B∗ ⊗ |0〉〈0| ⊗ |k〉〈k|+ C|ϕ〉〈ϕ|C∗ ⊗ |1〉〈1| ⊗ |k〉〈k| .

Applying the shift operator, the state becomes

B|ϕ〉〈ϕ|B∗ ⊗ |0〉〈0| ⊗ |k − 1〉〈k − 1|+ C|ϕ〉〈ϕ|C∗ ⊗ |1〉〈1| ⊗ |k + 1〉〈k + 1| .

Refreshing the space C2 we end up with

B|ϕ〉〈ϕ|B∗ ⊗ |0〉〈0| ⊗ |k − 1〉〈k − 1|+ C|ϕ〉〈ϕ|C∗ ⊗ |0〉〈0| ⊗ |k + 1〉〈k + 1| .

One can read the first step of the dissipative quantum random walk onH⊗K:

B|ϕ〉〈ϕ|B∗ ⊗ |k − 1〉〈k − 1|+ C|ϕ〉〈ϕ|C∗ ⊗ |k + 1〉〈k + 1| .

Let us now detail the case of the first example of Section 5, the open
quantum random walk on the 2-vertices graph.
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Consider a two-level quantum system H coupled to another two-level
quantum system K1 via the Hamiltonian

H = iγ(σ+ ⊗ σ− − σ− ⊗ σ+)

where

σ+ =

(
0 1
0 0

)
and σ− =

(
0 0
1 0

)
.

Then the unitary evolution associated to this Hamiltonian, for a time length
t = 1 (and ~ = 1) is given by

U = e−iH =


1 0 0 0
0 cos(γ) − sin(γ) 0
0 sin(γ) cos(γ) 0
0 0 0 1

 .

Hence, for a good choice of γ, that is, for sin(γ) =
√
p we have

U =


1 0 0 0
0
√

1− p −√p 0
0

√
p

√
1− p 0

0 0 0 1

 .

In other words U is of the form

U =

(
C X
B Y

)
as a block matrix on K1, where B and C are those matrices associated to
our example. This is to say that we have given here an explicit dilation of
the completely positive map associated to the matrices B and C.

If D1 and D2 are two diagonal matrices satisfying D∗1D1 +D∗2D2 = I then
assume, for simplicity only, that they have real entries

D1 =

(
a 0
0 α

)
, D2 =

(
b 0
0 β

)
,

with a2 + b2 = α2 + β2 = 1. Then, one can write a = cos(λ) and α = cos(µ).
Considering the Hamiltonian

K =

(
λ 0
0 µ

)
⊗
(

0 −i
i 0

)
,
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we get that e−iK is of the form

V =

(
D1 X ′

D2 Y ′

)
.

We have realized a concrete physical dilation of the completely positive map
associated to D1 and D2.

Following Proposition 8.1, consider on H⊗K1 ⊗K2 = C2 ⊗C2 ⊗C2 the
unitary evolution (

V 0
0 U

)
,

written as a block matrix on K2. This is to say that H is coupled to K1 with
the Hamiltonian K when K2 is in the state |1〉〈1| and H is coupled to K1

with the Hamiltonian H when K2 is in the state |2〉〈2|.
In this context, the swap operator S takes the following simple form on

K1 ⊗K2

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Then, following the four steps of Proposition 8.1 gives a realization of the
associated quantum random walk on H⊗K2.

10 Unitary Quantum Random Walks

The Open Quantum Random Walks we have been describing up to now
are actually very different from the well-known Unitary Quantum Random
Walks, such as the Hadamard random walk (see Introduction for some ref-
erences). This is to say that they produce probability distributions which
are not of the same type as the ones usually observed with the Hadamard
quantum random walks.

It seems to us that there is no way to produce limit distributions such
as the one observed in the Hadamard quantum random walk central limit
theorem, with open quantum random walks. The limit behaviors of Open
Quantum Random Walks seems to be all Gaussian or mixtures of Gaus-
sians. The dissipative character of our quantum random walks makes them
very different from the unitary evolution describing the usual type of quan-
tum random walks. There is no inclusion, direct connection or simplification
which establishes a direct link between OQRW and Unitary Quantum Ran-
dom Walks.
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However, there is quite a surprising and strong link between the two
types of quantum random walks which appears via the physical realization
procedure presented in Section 8. Under some conditions on the Bj

i ’s, by
modifying this procedure one can produce the usual unitary quantum walks.
We insist again on the fact that this connection does not say that OQRW
can give rise to Unitary Quantum Walks in some cases, but only that by
modifying one step of the physical procedure, we get the unitary random
walks. Let us develop all this here.

Let V be a set of vertices, let H be a Hilbert space representing the
chirality. For each pair (i, j) in V2 we have a bounded operator Bi

j on H.
Instead of the usual condition ∑

i

Bi
j

∗
Bi

j = I

for all j, we shall ask here a much stronger condition, namely for all j, j′ ∈ V∑
i

Bi
j

∗
Bi

j′ = δjj′I . (10)

In other words, being given two starting points j and j′, the sum of the
“contributions” which go to the same points i ∈ V vanish, unless j = j′ in
which case we recover the usual condition.

Note that there is no analogue of this condition for classical Markov
matrices.

Let us illustrate this condition with an example. For a stationary quan-
tum random walk on Z we are given two operators B and C on H which
represent the effect of making one step to the left or one step to the right.
The usual condition, obtained by taking j = j′ gives

B∗B + C∗C = I .

Now, taking j′ = j + 1, we get a supplementary condition:

C∗B = 0 .

This is the only new condition added to the usual one in that case. Note
that these two conditions together imply in particular that B+C is unitary.

These two conditions are typically satisfied by the following family of
examples. Let

U =

(
a b
c d

)
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be a unitary matrix on C2. Put

B =

(
a b
0 0

)
and C =

(
0 0
c d

)
.

Then, B and C satisfy

B∗B + C∗C = I and C∗B = 0 .

This is typically the case with Hadamard random walk where

U =
1√
2

(
1 1
1 −1

)
.

Let us see what happens, in the general context, with this additional
condition. The point is the following, if we are given a pure state on H⊗K
of the form

|ψ〉 =
∑

i

|ϕi〉 ⊗ |i〉

with the condition
‖ψ‖2 =

∑
i

‖ϕi‖2 = 1

then the state

|ψ′〉 =
∑

i

(∑
j

Bi
j|ϕj〉

)
⊗ |i〉

is of the same form and satisfies

‖ψ′‖2 =
∑

i

∑
j,j′

〈ϕj , B
i
j

∗
Bi

j′ ϕj′〉

=
∑
j,j′

〈ϕj , δjj′I ϕj′〉

=
∑

j

‖ϕj‖2

= 1 .

Hence, at each step we get a state of the form

|ψ〉 =
∑

i

|ϕi〉 ⊗ |i〉

with the condition
‖ψ‖2 =

∑
i

‖ϕi‖2 = 1 .
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In particular it determines, at each step, a probability distribution on V by
putting

P (i) = ‖ϕi‖2 .
This is exactly the picture for the Unitary Quantum Random Walks, such
as the Hadamard quantum random walk.

Now the interesting point is the way one can physically realize such Uni-
tary Quantum Random Walks and the way this construction is similar to the
one of Open Quantum Random Walks.

Proposition 10.1 If the transition operators Bi
j satisfy the more restrictive

condition (10), then applying the same physical procedure as in Proposition
8.1 without the decoherence step (step 2) gives rise to a unitary quantum
random walk.

Proof Let us follow again the steps of the construction in Proposition 8.1.
Starting in a pure state |φ〉 ⊗ |1〉 ⊗ |k〉, we get

U (|φ〉 ⊗ |1〉 ⊗ |k〉) =
∑

j

U j
1 (k)|φ〉 ⊗ |j〉 ⊗ |k〉 =

∑
j

Bj
k|φ〉 ⊗ |j〉 ⊗ |k〉 .

This is the first step of the procedure.
We now skip the decoherence part and apply I ⊗ S to the state. We get

the state ∑
j

Bj
k|φ〉 ⊗ |k〉 ⊗ |j〉 . (11)

On the space H and the second space K one can now read the first step of
the quantum random walk.

Finally, refresh the first space K into the state |1〉, we then end up with
the state ∑

j

Bj
k|φ〉 ⊗ |1〉 ⊗ |j〉 ,

on which one can apply our procedure again. We recognize the action of the
type of quantum random walks we announced. �
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[18] J. D. Whitfield, C. A. Rodŕıguez-Rosario, A. Aspuru-Guzik, Phys. Rev.
A 81, 022323 (2010)

[19] D. Pandey, N. Satapathy, M. S. Meena, and H. Ramachandran, Phys.
Rev. A 84, 042322 (2011); M. A. Broome et al., Phys. Rev. Lett. 104,
153602 (2010); A. Schreiber et al., Phys. Rev. Lett. 106, 180403 (2011);
A. Regensburger et al., Phys. Rev. Lett. 107, 233902 (2011).

[20] A. Ahlbrecht, H. Vogts, A. H. Werner, and R. F. Werner, J. Math. Phys.
52, 042201 (2011).

[21] S. Gudder, Found. Phys. 40 Numbers 9-10, 1566, (2010); S. Gudder, J
Math. Phys., 49 072105, (2008)

[22] K. Kraus, States, Effects and Operations: Fundamental Notions of
Quantum Theory (Springer Verlag 1983); R. Alicki, K. Lendi, Quan-
tum Dynamical Semigroups and Applications (Springer Verlag 1987)

[23] S. Attal, N. Guillotin-Plantard, C. Sabot: “Central-Limit Theorems for
Open Quantum Random Walks”, preprint.

[24] T. Renger and V. May, J. Phys. Chem. A 102, 4381 (1998)

[25] S. Attal, Y. Pautrat: “From repeated to continuous quantum interac-
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