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ABSTRACT

The principle of "indirect continuous measurement" in "open quantum system theory" is
usually described by non-usual types of stochastic differential equations. These equations
are called "stochastic Schrödinger equations" and their solutions are called "quantum tra-
jectories". Physically, they describe the random evolution of the state of a quantum system
undergoing indirect quantum measurement (such models are widely used in quantum op-
tics, quantum computing and quantum information theory). In this chapter, we consider a
physically realistic discrete-time setup for two-level quantum systems and we present the
theory of "discrete quantum trajectories". These discretetrajectories are Markov chains
which can be expressed as solutions of "discrete-time" stochastic differential equations". In
particular, these equations appear as time discretizationof "stochastic Schrödinger equa-
tions". Going to the continuous-time limit, we justify the stochastic Schrödinger equations
associated to the two-level systems. Within this approach,we obtain two different types
of behaviors described either by jump-type or diffusive-type stochastic differential equa-
tions. Finally we investigate the large time behavior of thesolutions and we prove return to
equilibrium properties for the associated physical models.
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Poisson random measure, weak convergence of stochastic differential equations, quantum
measurement, quantum trajectory.



Page (PS/TeX): 3 / 2,   COMPOSITE

i

i
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1. Introduction

Recent experiments of continuous measurement in quantum mechanics (Haroche’s team in
particular), or more precisely in quantum optics, have put into evidence the random evolu-
tion of the state of a quantum open system [25, 26]. In particular, one has experimentally
observed "quantum jumps". These experiments allow to studythe evolution of a quan-
tum system interacting with some environment. They are based of the principle of indirect
measurement on the environment, in order not to perturb the evolution of the small sys-
tem [8,12,20,22,23,33,34].

The stochastic models attached to these phenomenons are described by stochastic dif-
ferential equations, called "Stochastic Schrödinger Equations" or also "Belavkin Equa-
tions" [6–13, 15, 20, 22–24, 33, 34]. Their solutions are called "quantum trajectories", they
describe the evolution of the state of the small open quantumsystem. The stochastic differ-
ential equations which are usually obtained in this contextare of two different types. Either
they are of "jump-type":

dρt = L(ρt)dt+

(

J (ρt)

Tr[J (ρt)]
−ρt

)

(

dÑt −Tr[J (ρt)]dt
)

. (1)

whereÑt is a stochastic counting process with stochatic intensity
∫ t

0 Tr[J (ρs)]ds. The op-
eratorL corresponds to a Lindblad type operator and the operatorJ describes the evolution
of the system during the quantum jumps. This equation describes experiments which are
called "direct photon detection" (observation of the photon emission by an atom excited by
a laser).

Or it can be an equation of diffusive type:

dρt = L(ρt)dt+
(

Cρt +ρtC
⋆−Tr[(C+C⋆)ρt ]ρt

)

dWt, (2)

whereWt is a standard Brownian motion. In quantum optics, this equation describes exper-
iments called “Heterodyne or Homodyne detection”.

More complex models are described by jump-diffusion stochastic differential equations
which are mixing of the two previous types [15,32].

In the usual literature, obtaining and justifying rigorously these equations makes use of
Quantum Filtering Theory [7,10,12,19]. It is the quantum probability version of the usual
filtering technics, it makes use of fine quantum stochastic calculus and heavy von Neumann
algebra theory. Others approaches are based on classical probability and use of instrumental
process and notion of a posteriori state [9,11,15,29].

A maybe more intuitive and more physical approach for these equations is to start from
a discrete-time procedure, that is, repeated quantum interactions with measurement of the
environment ( [2, 3, 16–18, 35]). Then one obtains the stochastic Schrödinger equations by
passing to the limit to a continuous-time model [30,31].

In this chapter, we come back and apply results obtained in [30] and [31], in which
Belavkin equations are obtained with this approach. Here, we obtain the description of
the stochastic Schrödinger equations for a two level systemin contact with a spin chain.
We adapt the result of [30] and [31] in order to describe the quantum trajectories in terms
of wave function (in [30] and [31], the stochastic equationsfor the evolution of density
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matrices have been derived from the approximation procedure). Next, for a special model,
we show a property of return to equilibrium of the solution.

The chapter is structured as follows. Section 2 is devoted tothe presentation of the
model of quantum repeated interactions and quantum repeated measurements, that is the
model of "discrete quantum trajectory" . In Section 3, we present the passage to the limit
from discrete quantum trajectories to continuous quantum trajectories for two level systems.
In parallel, we present the result of existence and uniqueness of the solutions1 of equations
(1) and(2). Next we concentrate on the property of return to equilibrium.

2. Discrete-Time Quantum Trajectories

In this section we describe the physical model and the mathematical setup of indirect re-
peated quantum measurements. We describe the evolution of the small system undergoing
successive measurements through the "discrete quantum trajectories”.

2.1. Repeated Quantum Interactions

The physical situation is the following. A quantum system, with state spaceHS (often
called small systemfor it is in general finite-dimensional and/or small compared to the
environment) is undergoing repeated interactions with a chain of quantum systems⊗N∗H .
This is to say that we consider an environment which is made upof a sequence of identical
copies of a quantum system, each with state spaceH . Each pieceH of the environment
is going to interact, one after the other, with the small systemHS. This interaction lasts
for a time durationτ and is driven by a total HamiltonianHtot on HS⊗H . Hence, each
interaction is described by the unitary operator

U = e−iτHtot

onHS⊗H . In the Schrödinger picture, ifρ denotes any initial state on the tensor product
HS⊗H then the evolution of the state after this interaction is given by:

ρ 7→U ρU∗ .

After this interaction, the systemsHS andH stop interacting together, the systemHS comes
to meet a second copy ofH and they interact together in the same way as before (that
is, with following the same unitary operatorU ). And so on... the small system interacts
repeatedly with each of the independent copies ofH .

Let us develop the mathematical framework which allows describing these repeated
quantum interactions. We follow the setup of the article [3], in which these models and
their continuous limit were first introduced.

1This question is not straightforward since the coefficients, defining the equations, are not Lipschitz. Fur-
thermore the equation (1) is ill defined: in expression (1), the driving process depends on the solution that it is
supposed to drive. Hence the notion of solution is not immediate. In particular, the existence of(ρt) relies on
the existence of(Ñt) and reciprocally.
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The state space describing the whole game is

Γ = HS⊗
⊗
k∈N∗
H k , (3)

where eachH k is a copy of the Hilbert spaceH . We have to be clear about what the above
countabletensor product means:

TΦ =
⊗
k∈N∗
H k .

Recall that a countable tensor product of Hilbert spaces canonly be defined with respect to
a choice of a particular unit vectoruk in each copyH k (the so-called thestabilizing sequence
of the countable tensor product). In our case, we assume thatH k is finite dimensional and
we choose an orthonormal basis

{Xi; i ∈ N ∪{0}}

whereN is a set of the form{1, . . .N}, which is the same for eachH k. A particular role is
played by the vectorX0 which has to be considered as a reference vector for the system H ,
as we choose the stabilizing sequence to beuk = X0 for all k.

Denote byXi
k the basis vectorXi but leaving in thek-th copyH k of H . Then an Hilber-

tian orthonormal basis ofTΦ is given by all the tensor products⊗kvk where all the vectors
vk are equal toX0

k , except for a finite number of them which might be equal to someXik
k ,

ik ∈ N . This stands for a definition of the countable tensor productTΦ =⊗k∈N∗H k.

The repeated quantum interaction setup is based on two elements: the time lengthτ and
the HamiltonianHtot which describes each basic interaction. Consider the unitary operator
U = exp(−iτHtot) acting onHS⊗H and consider the unitary operatorUk on Γ which acts
asU on HS⊗H k and which acts like the identity operator on the other copiesH k′ . This
operatorUk describes the effect of thek-th interaction.

The unitary operator
Vk =Uk . . .U1

describes the effect of thek first interactions. Indeed, ifρ is any initial state onΓ, then

Vk ρV∗
k

is the state of the whole system (small system + environment)afterk interactions.

Define the elementary operatorsai
j , i, j ∈ N ∩{0} onH by

ai
j X

k = δi,k X j .

It is useful for further computations to notice that in Diracnotationai
j = |X j〉〈Xi|2. We

denote byai
j(n) their natural ampliation toTΦ acting on then-th copy ofH only.

2These are the usual "bra-ket" notations in quantum mechanics. The term|X〉 represent the vectorX in
the underlying Hilbert space. The term〈Y| represent the linear form which acts as〈Y|(|X〉) = 〈Y,X〉 where
〈,〉 corresponds to the scalar product. This way, we have|X j〉〈Xi |(|X〉) = 〈Xi ,X〉|X j〉, for all vectors|X〉. In
particular the operator|X〉〈X| corresponds to the orthogonal projector on the space generated byX.



Page (PS/TeX): 6 / 5,   COMPOSITE

i

i

Return to Equilibrium for Some Stochastic Schrödinger Equations 5

Clearly,U can always be written as

U = ∑
i, j∈N ∪{0}

U i
j ⊗ai

j

for some operatorsU i
j onH0 such that:

∑
k∈N ∪{0}

(Uk
i )

∗
Uk

j = ∑
k∈N ∪{0}

Uk
j (U

k
i )

∗
= δi, j I .

With this representation forU , it is clear that the operatorUn, representing then-th interac-
tion, is given by

Un = ∑
i, j∈N ∪{0}

U i
j ⊗ai

j(n) .

With these notations, the sequence(Vn) of unitary operators describing then first repeated
interactions can be represented as follows:

Vn+1 =Un+1Vn

= ∑
i, j∈N ∪{0}

U i
j ⊗ai

j(n+1)Vn .

But, inductively, the operatorVn acts only on then first sites of the chainTΦ, whereas the
operatorsai

j(n+1) act on the(n+1)-th site only. Hence they commute. In the following,
we shall drop the⊗ symbols, identifying operators likeai

j(n+1) with IH 0
⊗ai

j(n+1), the
operatorU i

j with U i
j ⊗ ITΦ, etc. This gives finally

Vn+1 = ∑
i, j∈N ∪{0}

U i
j Vn ai

j(n+1) . (4)

OnTΦ, one vector plays a particular role, the vector

Ω =⊗kX
0
k .

For any bounded operatorK onΓ, we define the operatorE0[K] onHS as the unique operator
onHS such that, for all trace-class operatorρ onHS we have

TrHS
(ρE0[K]) = TrΓ ((ρ⊗|Ω〉〈Ω|)K) .

That is,E0[K] is the partial trace ofK with respect to the state|Ω〉〈Ω| on TΦ.
We then have the following fundamental action of the repeated interactions, when re-

stricted to the small system.

Theorem 1 (cf [3]). The effect of the repeated interaction dynamics when restricted toHS

is given as follows. For all observable X onHS, for all n ∈N, we have

E0[V
∗
n (X⊗ I)Vn] = Ln(X) ,

where L is a completely positive map onHS whose Krauss decomposition is

L(X) = ∑
i∈N

(U0
i )

∗
X U0

i .

Any (discrete) semigroup(Ln) of completely positive maps can be obtained this way.
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Note that the completely positive mapL defined above acts on observables. It also
induces a completely positive "dual map”L∗ acting on states as follows:

L∗(ρ) = ∑
i∈N

U0
i ρ(U0

i )
∗

(5)

and which satisfies
Tr(ρL(X)) = Tr(L∗(ρ)X)

for all stateρ and all bounded operatorX on HS. Recall the usual notion of partial trace
defined as follows.

Definition-Theorem 1. Given any stateα on a tensor productH ⊗K , then there exists a
unique stateη onH which is characterized by the property:

Tr [ηX ] = Tr [α(X⊗ I) ] ,

for all X ∈ B (H ). The stateη is denoted byTrK (α) and is called thepartial trace ofη with
respect toK .

With these notations we have the following result.

Theorem 2. For every stateρ onHS and all n∈ N we have

TrTΦ(Vn(ρ⊗|Ω〉〈Ω|)V∗
n ) = (L∗)n(ρ) .

Proof: We have, for allX bounded operator onHS,

Tr((L∗)n(ρ)X) = Tr(ρLn(X))

= Tr (ρE0[V
∗
n (X⊗ I)Vn])

= Tr ((ρ⊗|Ω〉〈Ω|)V∗
n (X⊗ I)Vn)

= Tr (Vn(ρ⊗|Ω〉〈Ω|)V∗
n (X⊗ I))

= Tr (TrTΦ (Vn(ρ⊗|Ω〉〈Ω|)V∗
n ) X) .

This proves the announced result. �

2.2. Repeated Quantum Measurements

We now somehow consider a more complicated procedure. Aftereach interaction is fin-
ished, the pieceH k of environment which has just finished to interact withHS is undergo-
ing a quantum measurement of one of its observables. The random result of this quantum
measurement will give some information on the state of the whole system and in particular
on the state ofHS. The so-called quantum trajectory is the random process we obtain this
way, by looking at the knowledge we have of the state ofHS after each measurement.

Let A be any observable onH , with spectral decomposition

A=
p

∑
j=1

λ jPj ,
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theλ j ’s being the eigenvalues, thePj ’s being the eigenprojectors. We consider the natural
ampliations ofA which defines an observable onΓ by makingA acting on thek-th siteH k

only:

Ak =
k−1⊗
j=0

I ⊗A⊗
⊗

j≥k+1

I

=
k−1⊗
j=0

I ⊗
(

p

∑
j=1

λ jPj

)

⊗
⊗

j≥k+1

I

=
p

∑
j=1

λ jP
k
j ,

with obvious notations.
As a consequence, ifρ is the state ofΓ then a quantum measurement of the observable

Ak gives the valuesλ j with probability:

P[to observeλ j ] = Tr[ρPk
j ], j ∈ {1, . . . , p} .

If we have observed the eigenvalueλ j for the observableAk, the new sate of the system is

ρ j =
Pk

j ρPk
j

Tr[ρPk
j ]
.

This principle is the so-called "von Neumann projection postulate”. Now, if we perform an-
other measurement of the observableAk we obtainP[to observeλ j ] = 1. As a consequence,
a naive repeated measurement operation gives no information on the evolution of the sys-
tem. The repeated measurement procedure has to be combined with the repeated interaction
procedure in order to give non-trivial informations on the behavior of the system.

The quantum repeated measurement principle is the combination of the measurement
principle and the repeated quantum interactions. Physically, this means that each copyH k

of H interacts withHS and we perform a measurement ofAk onH k after it has interacted
with HS. After each measurement we have a new (random) state of the whole system, given
by the projection postulate. This is the so-calleddiscrete quantum trajectory.

More precisely, the initial state onΓ is chosen to be of the form

µ= ρ⊗
⊗
j≥1

η j ,

whereρ is any state onH0 and eachηi = η is a reference state onH . We denote byµk the
state representing the new state after thek first interactions, that is,

µk =Vk µV∗
k .

Let us now define the probabilistic framework in order to describe the effect of the suc-
cessive measurements. We putΩ = {1, . . . , p} and onΩN we define the cylinders of size
k:

Λi1,...,ik = {ω ∈ ΩN/ω1 = i1, . . . ,ωk = ik} .
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We endowΩN with the σ-algebraF generated by all these sets, this is thecylinder σ-
algebra. Note that for all j, the unitary operatorU j commutes with all the projectorsPk

i
such thatk < j. Hence, the state of the system afterk interactions andk measurements
which have given the respective valuesλi1, . . . ,λik is (up to normalization by the trace)

Pk
ik Uk . . . P1

i1U1 µ(U1)
∗P1

i1 . . .(Uk)
∗Pk

ik =

= Pk
ik . . . P1

i1 Uk . . .U1µ(U1)
∗ . . . (Uk)

∗P1
i1 . . . Pk

ik

= Pk
ik . . . P1

i1 µk P1
i1 . . . Pk

ik ,

where we have used thatUk commutes with anyPk′ such thatk′ 6= k.
We denote by ˜µ(i1, . . . , ik) the quantity

Pk
ik . . . P1

i1 µk P1
i1 . . . Pk

ik .

By the Kolmogorov Consistency Theorem we can define a probability measureP on
(ΩN,F ) only by specifying

P[Λi1,...,ik] = Tr[µ̃(i1, . . . , ik)] .

We also define a random sequence of states onΓ by

ρ̃k(.) : ΩN −→ B (Γ)

ω 7−→ ρ̃k(ω1 . . .ωk) =
µ̃(ω1 . . .ωk)

Tr[µ̃(ω1 . . .ωk)]
.

This random sequence of states is our discrete quantum trajectory and the operator
ρ̃k(i1, . . . , ik) represents the state of the system, after having observed the resultsλi1, . . . ,λik
for thek first measurements. This fact is made precise in the following proposition.

Proposition 1. Let (ρ̃k) be the above random sequence of states we have, for allω ∈ ΩN

ρ̃k+1(ω) =
Pk+1

ωk+1
Uk+1 ρ̃k(ω)(Uk+1)

∗Pk+1
ωk+1

Tr
[

ρ̃k(ω)(Uk+1)
∗Pk+1

ωk+1Uk+1
] .

This proposition is obvious but summarizes the quantum repeated measurement prin-
ciple. The sequencẽρk is the quantum trajectory, showing up the effect of the successive
measurements onΓ. The following theorem is an easy consequence of the previous propo-
sition.

Theorem 3. The sequence(ρ̃n)n is a Markov chain, valued in the set of states ofΓ. It is
described as follows:

P
[

ρ̃n+1 = µ| ρ̃n = θn, . . . , ρ̃0 = θ0
]

= P
[

ρ̃n+1 = µ| ρ̃n = θn
]

.

If ρ̃n = θn thenρ̃n+1 takes one of the values:

Pn+1
i Un+1θn (Un+1)

∗Pn+1
i

Tr
[

Un+1θn (Un+1)
∗Pn+1

i

] , i = 1, . . . , p,

with probabilityTr
[

Un+1θn (Un+1)
∗ Pn+1

i

]

.
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The most interesting behavior of the Markov chain of states above is obtained when one
restricts it to the small systemHS. This way we obtain a quantum trajectory on the states of
HS by considering the sequence of random states onHS:

ρn(ω) = TrTΦ(ρ̃n(ω)) . (6)

This defines a sequence of state onHS which contains the "partial" information given by the
measurement and we have the following theorem which completely describes the behavior
of this random sequence.

Theorem 4. The random sequence defined by formula(6) is a Markov chain with values in
the set of states onHS. If ρn = χn thenρn+1 takes one of the values:

TrH [(I ⊗Pi)U(χn⊗η)U∗ (I ⊗Pi)]

Tr[U(χn⊗η)U∗ (I ⊗Pi)]
, i = 1, . . . , p,

with probabilityTr [U(χn⊗η)U∗ (I ⊗Pi)].

The expectation ofρn satisfies

E[ρn] = (L∗)n(ρ0) ,

where L∗ is the completely positive map described in Theorem 2.

Proof: Assume, by induction, thatρn is given. This means that TrTΦ(ρ̃n) = ρn. The
next step of the quantum measurement gives (by Theorem 3)

ρ̃n+1 =
Pn+1

i Un+1 ρ̃n (Un+1)
∗Pn+1

i

Tr
[

Un+1θn (Un+1)
∗Pn+1

i

] ,

for somei. Hence, we have to compute

TrTΦ(P
n+1
i Un+1 ρ̃n (Un+1)

∗Pn+1
i ) .

Decomposing, with obvious notations, the spaceTΦ into HS⊗Γ[0,n] ⊗Hn+1 ⊗Γ[n+2,+∞[,
one notes that, by induction, the stateρ̃n is of the form

θn⊗η⊗
⊗

k≥n+2

η

whereθn is a state onHS⊗Γ[0,n], satisfying

TrΓ[0,n]
(θn) = ρn .

Hence, for allX, bounded operator onHS, we have

Tr
(

TrTΦ(P
n+1
i Un+1 ρ̃n(Un+1)

∗Pn+1
i )X

)

=

= Tr
(

(Pn+1
i Un+1 ρ̃n(Un+1)

∗Pn+1
i )(X⊗ I)

)

= Tr
(

Un+1 ρ̃n(Un+1)
∗ (X⊗ I[0,n]⊗Pn+1

i ⊗ I[n+2,+∞[)
)

= Tr

(

Un+1

(

θn⊗η⊗
⊗

k≥n+2

η

)

(Un+1)
∗ (X⊗ I[0,n]⊗Pn+1

i ⊗ I[n+2,+∞[)

)

= Tr
(

(θn⊗η) (Un+1)
∗(X⊗ I[0,n]⊗Pn+1

i )Un+1
)

. (7)
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But Un+1 acts only onHS⊗Hn+1, hence the operator(Un+1)
∗(X⊗ I[0,n]⊗Pn+1

i )Un+1 is an
operator onHS⊗Hn+1⊗Γ[0,n] (note the interchange of space, for simplicity of the notations)
which is of the form

((Un+1)
∗(X⊗Pn+1

i )Un+1)⊗ I[0,n] .

Hence, the quantity (7) is equal to

Tr
(

TrΓ[0,n]
(θn⊗η) (Un+1)

∗(X⊗Pn+1
i )Un+1

)

.

But TrΓ[0,n] (θn⊗η) is equal to TrΓ[0,n] (θn) = ρn⊗η . This gives finally

Tr
(

TrTΦ(P
n+1
i Un+1 ρ̃n (Un+1)

∗Pn+1
i )X

)

=

= Tr
(

(Pn+1
i Un+1(ρn⊗η)(Un+1)

∗Pn+1
i )X

)

.

But in this expression, the indexn+1 plays no more role and the expression above may as
well be written

Tr
(

(PiU (ρn⊗η)(U)∗Pi)X
)

onHS⊗H . This proves the first part of the theorem.
Let us check, the one concerning the expectation ofρn. Note that the expectation ofρ1

is equal to

E[ρ1] =
p

∑
i=1

P({i}) TrH (Pi U(ρ0⊗η)U∗Pi)

P({i})

=
p

∑
i=1

TrH (U(ρ0⊗η)U∗PiPi) for Pi acts onH only

= TrH (U(ρ0⊗η)U∗
p

∑
i=1

Pi)

= TrH (U(ρ0⊗η)U∗)

= L∗(ρ0) .

By induction, we conclude easily. �

Thanks to the above description we can express a discrete-time evolution equation for
the quantum trajectories. Let us put

L i(ρ) = E0 [(I ⊗Pi)U(ρ⊗η)U∗ (I ⊗Pi)] ,

i = 1, . . . , p. We then have for allω ∈ ΣN and allk> 0:

ρk+1(ω) =
p

∑
i=0

L i(ρk)(ω)
Tr[L i(ρk)(ω)]

1k+1
i (ω) (8)

where1k
i (ω) = 1i(ωk).
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2.3. The two-level atom model

In this section we specialise to the case whereH0 =C
2, this is the so-calledtwo-level atom

model. In most of the physical applications that we have in mind, the interacting system is
also of the formH = C

2. We denote byX0,X1 an orthonormal basis where the reference
stateη is diagonal:

η =

(

η0 0
0 η1

)

.

Let Ω,X be any orthonormal basis ofH0. For describing the interactions betweenH0

andH we chooseΩ⊗X0,X ⊗X0,Ω⊗X1,X ⊗X1 as an orthonormal basis ofH0⊗H . In
such a basis, the unitary operatorU , describing the elementary interaction, can be written
as a 2×2 matrix with coefficients being operators onH0. That is, we can writeU as:

U =

(

U0
0 U1

0
U0

1 U1
1

)

.

Let A be an observable ofH on which we want to perform a measurement. It can be written
asA= λ0P0+λ1P1 whereλi are its eigenvalues andPi the corresponding eigenprojectors.
Let (Pi

k,l )k,l=0,1 be the matrix elements of the projectorPi in the basisX0,X1. Put

L i(ρ) = ∑
k,l=0,1

Pi
k,l

(

η0U
k
0 ρ(U l

0)
∗+η1U

k
1 ρ(U l

1)
∗
)

.

Then, if ρk denotes the state of the systemHS after the k-th measurement, the stateρk+1

takes one of the two possibles values

L i(ρk)

Tr[L i(ρk)]
.

We denotepk+1 = Tr[L0(ρk)] or qk+1 = Tr[L1(ρk)] the corresponding transitions probabil-
ities.

In the rest of the chapter, we concentrate on a special case ofenvironment, whereη =
|X0〉〈X0|. This situation corresponds to a model of heat bath at zero temperature, see [5]
for more explanations and for positive temperature models (let us just stress that this choice
is crucial and that positive temperature gives rise to completely different continuous-time
behaviours). In this situation, the discrete quantum trajectory can be described in terms
of pure states. More precisely, if the initial state ofH0 is pure, the random sequence(ρk)
remains pure. This way, we can describe the evolution ofH0 with a random sequence of
vectors (wave functions).

Proposition 2. Let H0 = H = C
2 and η = |X0〉〈X0|. Let (ρk) be the discrete quantum

trajectories corresponding to the indirect measurement ofan obervable A.
If ρ0 is a pure state, that isρ0 = |ψ0〉〈ψ0|, and if the measurement is non-trivial (A is

not a multiple of the identity), then the state of the small systemρn is always a pure state.
In other terms, there exists a random sequence of wave functions(|ψn〉) such that‖ψn‖= 1
and such thatρn = |ψn〉〈ψn|, for all n ∈N.

The sequence(|ψn〉) is also called a discrete quantum trajectory.
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Proof: Since we work in 2-dimension and sinceA is not a multiple of identity, we have
A = λ0P0 + λ1P1 wherePi are one dimensionnal projector. Thus there exist two vectors
αi , i = 0,1 such thatPi = |αi〉〈αi |. Now, let ρ0 = |ψ0〉〈ψ0|, after the first measurement if
we have observed the eignevalueλi , the non normalized state describing the experiment is
described by

ρ̃1(i) = E0
[

I ⊗|αi〉〈αi |U(|ψ0〉〈ψ0|⊗ |X0〉〈X0|)U⋆ I ⊗|αi〉〈αi |
]

= ∑
k,l

∑
u,v

E0

[

I ⊗|αi〉〈αi |
(

U l
k(|ψ0〉〈ψ0|(Uu

v )
⋆⊗al

k|X0〉〈X0|av
u

)

I ⊗|αi〉〈αi |
]

= ∑
k,v

E0

[

I ⊗|αi〉〈αi |
(

U0
k (|ψ0〉〈ψ0|(U0

v )
⋆⊗av

k

)

I ⊗|αi〉〈αi |
]

= ∑
k,v

E

[

∣

∣U0
k ψ0

〉〈

U0
v ψ0

∣

∣⊗|αi〉〈αi ||Xk〉〈Xv||αi〉〈αi |
]

= E

[∣

∣

∣

∣

∣

∑
k

〈αi ,X
k〉U0

k ψ0

〉

〈

∑
v
〈αi ,X

v〉U0
v ψ0

∣

∣

∣

∣

⊗|αi〉〈αi |
]

=

∣

∣

∣

∣

∣

∑
k

〈αi ,X
k〉U0

k ψ0

〉

〈

∑
v
〈αi ,X

v〉U0
v ψ0

∣

∣

∣

∣

Now, by normalizing the vector∑k〈αi ,Xk〉U0
k ψ0, it is straightforward that we get a

vectorψ1 such thatρ1 = |ψ1〉〈ψ1|. Next, by induction we can construct a sequenceψn such
thatρn = |ψn〉〈ψn| for all n. �

Remark: Such a property is at the basis of the use of "quantum trajectory theory”
for numerical simulations of Lindblad master equations. Numerically, the description in
terms of pure states reduces the number of parameters to control (in comparaison with
density matrices) . We recover the "deterministic” dynamicby taking the expectation, that
is, E[|ψn〉〈ψn|] = L n(ρ0). In the continuous time version, similar properties are called
"unravelling3” of master equations and simulations use techniques called"Quantum Monte
Carlo simulations”.

Now, we can complete the description of our model with the help of discrete equation
which describes the stochastic evolutions of discrete quantum trajectories. To this end, let
us introduce some notations. LetP0 be the projector onα0 = (µ,ν), with ‖α0‖ = 1 andP1

the projector onα1 = (ν̄,−µ̄). Let define the following functions acting on vectors

F0(|ψ〉) =
∣

∣

[

µU0
0 +νU0

1)
]

ψ〉
F1(|ψ〉) =

∣

∣

[

ν̄U0
0 − µ̄U0

1)
]

ψ〉 .

Then, the dynamic of(ψn) can be described by the equation

|ψk+1(ω)〉 =
F0(|ψk(ω)〉)
‖F0(|ψk(ω)〉)‖

1k+1
0 (ω)+

F1(|ψk(ω)〉)
‖F1(|ψk(ω)〉)‖

1k+1
1 (ω) , (9)

for all ω ∈ ΣN. This equation corresponds to equation (8) for a two level system in terms of
wave functions, i.e. the sequence(|ψk〉〈ψk|) satisfies equation (8).

3Unravelling means the description of a wave function stochastic process (ψt ) such thatE[|ψt〉〈ψt |] =
etL(ρ0)
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In the next section, we will describe the continuous time version of these equations. To
this end, we aim at considering this discrete-time model butdepending on a time-length
parameterτ which we shall make tend to 0. That is, we want to pass from a discrete time
interaction model to a continuous time one. This way, we shall obtain the classical Belavkin
equations for quantum trajectories associated to continuous measurement. In the literature,
these equations describe a model where a two-level atom is incontact with a photon-stream.

Let τ = 1
n be the time of interaction between the small system and one element of the

environment. Let us denote byU(n) the unitary operator associated to each interaction, it
now depends of the time of interaction. If we had no measurement process on the envi-
ronment, we will be back to the problem of going from a discrete-time repeated quantum
interaction model, to a continuous time one. This problem has been completely studied
in [3]. In their article they show that, in order to get a limitevolution whenτ goes to 0,
we have to ask the operatorU(n) to satisfy certain renormalization conditions. They have
shown that the coefficientsU i

j(n) must follow well-defined time scaling in order to obtain a
non-trivial limit. Namely they have shown that the operator(V[nt] =U([nt]) . . .U1)t>0 con-
verges to an evolution(Vt)t which is a continuous operator process. This process naturally
satisfies a quantum Langevin equation which represents the evolution equation of the small
system + bath.

Our continuous measurement procedure does not differ much from their approach, ex-
cept that we perform a measurement on the environment after each interaction. This is why
we have to keep the same normalization for the coefficientsU i

j(n) in order to get a limit.
Following [3] we assume that the total Hamiltonian, describing one elementary interaction,
is of the form

Htot = H ⊗ I + I ⊗
(

γ0 0
0 γ1

)

+
√

n
(

C⊗a0
1+C∗⊗a1

0

)

.

That is, a typical dipole-type interaction Hamitonian witha renormalization in
√

n of
the field operatora0

1 and a1
0 in order to strengthen the force of the interaction while the

interaction-time decreases.
With this Hamiltonian, it is easy to check that the coefficients ofU(n) are of the form

U0
0 (n) = I +

1
n

(

−iH − iγ0I +
1
2
C∗C

)

+◦(1
n
) (10)

U0
1 (n) = −i

1√
n

C+◦(1
n
) (11)

U1
0 (n) = −i

1√
n

C∗+◦(1
n
) (12)

U1
1 (n) = I +

1
n

(

−iH − iγ1I +
1
2
CC∗

)

+◦(1
n
) . (13)

3. Continuous Trajectories

In this section, we implement the asymptotic expression of the coefficientU i
j(n) in the

description of the quantum repeated measurements for the model of the two level atom. First
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we recall the convergence of discrete models to continuous models of Belavkin equations.
Second, we show return to equilibrium results in this context.

As in shown in [30] and [31], the continuous limit of the evolution equation is com-
pletely different, depending on wether the observableA is diagonal or not in the basis of
η. The point is that the limit equation is of diffusive type when A is non-diagonal and of
Poisson type in the diagonal case. Inside each case, the behaviors are very comparable and
differ only by some coefficients. This is why, it is enough here to consider only two cases:

A=

(

0 0
0 1

)

= a1
1 ,

as representing the diagonal case, or

A=

(

0 1
1 0

)

= a1
0+a0

1 ,

as representing the non-diagonal case. Here, we focus on thedescription of quantum tra-
jectories in terms of pure states, while in [30, 31], the evolution for the density matrices is
considered.

3.1. The Poisson case

We first start with the caseA = a1
1, for which we haveP0 = a0

0. It is easy to see that we
can chooseµ= 1, ν = 0 for the description of the projectorsPi. Applying the hypothesis
(10)-(13), we obtain the probabilities

pk+1 = Tr[ρkP0] = ‖U0
0 |ψk〉‖= 1− 1

n
1
2

µk(n)+◦
(

1
n

)

qk+1 = Tr[ρkP1] = ‖U0
1 |ψk〉‖=

1
n

1
2

µk(n)+◦
(

1
n

)

,

whereµk(n) = 〈ψk,C∗Cψk〉. By remarking that1k
0 = 1−1k

1, we have the following differ-
ence equation for(ψk):

|ψk+1〉− |ψk〉=
1
n

(

−iH − 1
2
C∗C+

1
2

µk+◦(1)
)

|ψk〉+

+

(

C√
µk

− I +◦(1)
)

|ψk〉1k+1
1 . (14)

In the continuous limit, we shall see that this difference equation converges to an equa-
tion of the form

d|ψt〉 =
(

−iH − 1
2
(C∗C+µt− I)+

√
µt−C

)

|ψt−〉dt+

+
(C−√

µt− I)
√

µt−
|ψt−〉(dÑt −µt−dt) (15)
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whereµt = 〈ψt ,C∗Cψt〉 and (Ñt) is a counting process such thatt → Ñt −
∫ t

0 µsds is a
martingale. This is to say that(Ñt) is a counting process with stochastic intensity equal
to

∫ t
0 µsds. A first problem is that equation (15) is ill-defined. Indeed,the intensity of the

counting process depends on the solution itself. We need to be more precise about what we
mean by a "solution to equation (15)".

Definition 1. Let Ω,F ,P) be a probability space. Aprocess-solutionof the jump-
equation(15) is a process(ψt) and a counting process̃Nt , with intensity

∫ t
0 µsds where

µt = 〈ψt ,C∗Cψt〉, such that for all t we have

|ψt〉 = |ψ0〉+
∫ t

0

(

−iH − 1
2
(C∗C+µs−I)+

√
µs−C

)

|ψs−〉ds+

+
∫ t

0

(C−√
µs−I)

√
µs−

|ψs−〉(dÑs−µs−ds) . (16)

This notion of solution imposes the simultaneous existenceof the process|ψt〉 and the
counting process̃Nt . In order to construct such a counting process, we use a Poisson point
process.

Let (Ω,F ,P) be a probability space, on which is living a Poisson point processN on
R

2 such that the expectation of the number of pointsN(ω,B) lying inside a Borel setB is
given by

E[N( · ,B)] = λ(B)

whereλ is the Lebesgue measure onR2.
This way,N defines arandom measure B7→ N(ω,B) onR

2, whose volume element is
denoted byN(ω, dx× ds). The following theorem shows how the random Poisson measure
is used to construct the counting process.

Theorem 5( [31]). Let(Ω,F ,F t ,P) be a filtered probability space on which lives a Poisson
point process N. The following equation

|ψt〉= |ψ0〉+
∫ t

0

(

−iH − 1
2
(C∗C−µs− I)

)

|ψs−〉ds+

+
∫ t

0

∫
R

(C−√
µs− I)

√
µs−

|ψs−〉10≤x≤µs− N(dx,ds) . (17)

admits a unique solution(ψt) such that‖ψt‖ = 1 almost surely. Then the process(|ψt〉)
together with the counting process

Ñt =
∫ t

0

∫
R

10≤x≤µs−N(dx,ds) (18)

constitute a process-solution for equation (15).

Even if this theorem is just an application of the results of [31], let us explain roughly
how it is proved (this description will allow also to describe the return to equilibrium prop-
erty in the jump case).
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In equation (17) there are two parts: the ordinary differential part and the one driven by
the Poisson process. Consider the collection of jumping times of the Poisson process. If
there is no jump of the Poisson processN, we deal with an ordinary differential equation

|ψt〉= |ψ0〉+
∫ t

0

(

−iH − 1
2
(C∗C−µs− I)

)

|ψs−〉ds.

This equation admits a unique solution, from which we deducethe curvet → µt . The first
time T1 when the Poisson process has a jump under this curve, the solution |ψt〉 jumps and
takes the value

C|ψT1−〉√
µT1−

.

After this first jump, we have a new "initial" value for|ψt〉 and the process starts again in
the same way: we solve the ordinary differential equation and the solution follows it, until
it meets a jump ofN which is bellow the curve, then it jumps. And so on.

Remark: The corresponding evolution for the density matrices can beobtained by
computing the stochastic differential equation forρt = |ψt〉〈ψt . By applying the stochastic
calculus rules for random Poisson measure, we get the equation

ρt = ρ0+
∫ t

0

(

L(ρs−)−Cρs−C⋆+Tr[Cρs−C⋆]ρs−
)

ds+ (19)
∫ t

0

∫
R

(

Cρs−C⋆

Tr[Cρs−C⋆]
−ρs−

)

10<x<Tr[Cρs−C⋆]N(dx,ds), (20)

whereL is the Lindblad operator defined by

L(ρ) =−i[H,ρ]− 1
2
{C⋆C,ρ}+CρC⋆.

Thus, by definigJ (ρ) =CρC⋆,we recover the equation (1) mentionned in Introduction.

Now, that equation (17) is well understood, we wish to pass tothe continuous time limit
on equation (15). The appropriate topology for the convergence theorem proved in [31] is
the Skorohod topology. Let us recall it. For allT > 0 we denote byD ([0,T]) the space
of all càdlàg matricial process on[0,T] endowed with the Skorohod topology, that is, the
topology of the weak convergence of càdlàg processes (the convergence in distribution).

The approximation result is based on the description of a quantum trajectory as the
solution of a stochastic equation wich is a discretization of (17). In particular, from equation
(14), we can write

|ψ[nt]〉 = |ψ0〉+
[nt]−1

∑
k=0

(|ψk+1〉− |ψk〉))

= |ψ0〉+
[nt]−1

∑
k=0

1
n

(

−iH − 1
2
C∗C+

1
2

µk+◦(1)
)

|ψk〉+

+
[nt]−1

∑
k=0

(

C√
µk

− I +◦(1)
)

|ψk〉1k+1
1 , (21)

for all t ≥ 0. An adaptation of the result of [31] give us the following convergence.
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Theorem 6 ( [31]). Let T be fixed. Let(Ω,F ,P) be a probability space in which lives a
Poisson point process N. Let(|ψ[nt]〉)0≤t≤T be the discrete quantum trajectory defined by
the equation(21). This discrete quantum trajectory converges inD ([0,T]) to the process
(|ψ̃t〉)0≤t≤T which is the unique solution of the stochastic differentialequation

|ψ̃t〉 = |ψ0〉+
∫ t

0

(

−iH − 1
2

C∗C+
1
2

µt I

)

|ψ̃s〉ds

+
∫ t

0

∫
R

(

C√
µs−

− I

)

|ψ̃s−〉10<x<µs− N(dx,ds)

where µt = 〈ψ̃t ,C∗Cψ̃t〉.

This result relies on the fact that Equation (21) can be interpreted as a discrete time
stochastic differential equation which is a discretization of the jump equation.

3.2. The diffusive case

We now consider the case whereA =





0 1

1 0



 =





1
2

1
2

1
2

1
2



−





1
2 −1

2

−1
2

1
2



 . We

haveP0 =

( 1
2

1
2

1
2

1
2

)

andµ= ν = 1√
2
. Hence, after computation we obtain:

pk+1 = Tr[ρkP0] =

∥

∥

∥

∥

1√
2
(U0

0 +U0
1)|ψk〉

∥

∥

∥

∥

=
1
2
+

νk(n)√
n

+◦
(

1
n

)

, (22)

qk+1 = Tr[ρkP1] =

∥

∥

∥

∥

1√
2
(U0

1 −U0
0)|ψk〉

∥

∥

∥

∥

=
1
2
− νk(n)√

n
+◦
(

1
n

)

, (23)

whereνk(n) = Re(〈ψk,Cψk〉). here, we introduce the random variables(Xk) defined by

Xk+1 =− 1k
1−qk+1√
pk+1qk+1

,

for all k≥ 0. in terms of(Xk), the evolution equation takes the form

|ψk+1〉− |ψk〉=
1
n

(

−iH − 1
2
(C∗C−2νkC+ν2

kI)+◦(1)
)

|ψk〉+

+

(

C−νk+◦(1)
)

|ψk〉
1√
n

Xk+1 . (24)

The continuous diffusive equation which is the natural candidate to be the limit of equation
(24) is

d|ψt〉 =
(

−iH − 1
2

(

C∗C−2νtC+ν2
t I
)

)

|ψt〉dt+ (C−νt I)|ψt〉dWt , (25)

whereνt = Re(〈ψt ,Cψt〉) and(Wt)t is a one-dimensional Brownian motion.
In [30], it is shown that the convergence result is highly based on the existence and

uniqueness of the solution for such equation (let us stress that the coefficients are not Lips-
chitz). In particular, by a truncation method the followingTheorem is proven in [30].
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Theorem 7( [30]). Let (Ω,F ,F t ,P) be a probability space on which is defined a standard
Brownian motion(Wt)t . The following stochastic differential equation

d|ψt〉 =
(

−iH − 1
2

(

C∗C−2νtC+ν2
t I
)

)

|ψt〉dt+(C−νt I)|ψt〉dWt (26)

admits a unique solution. Furthermore, almost surely, for all t we have‖ψt‖= 1.

We can now consider the approximation procedure. In a similar way as the Poisson
case, we can consider the difference equation

|ψ[nt]〉 = |ψ0〉+
[nt]−1

∑
k=0

(|ψk+1〉− |ψk〉))

= |ψ0〉+
[nt]−1

∑
k=0

1
n

(

−iH − 1
2
(C∗C−2νkC+ν2

kI)+◦(1)
)

|ψk〉

+
[nt]−1

∑
k=0

(

C|ψk〉−νk|ψk〉+◦(1)
)

1√
n

Xk+1 . (27)

We have the following result.

Theorem 8. Let T be fixed. Let(Ω,F ,F t ,P) be a probability space on which is defined
a standard Brownian motion(Wt)t . Let (|ψ[nt]〉)0≤t≤T be the discrete quantum trajectory
defined by the equation(27). This discrete quantum trajectory converges inD ([0,T]) for
all T to the process(|ψ̃t〉)0≤t≤T which is the unique solution onΩ of the following stochastic
differential equation:

d|ψt〉 = (C−νt I)|ψt〉dWt +

(

−iH − 1
2

(

C∗C−2νtC+ν2
t I
)

)

|ψt〉dt (28)

whereνt = Re(〈ψt ,Cψt〉).

In a sake of completeness we give some details of how proving such a convergence. In
particular we show how to interpret the equation (27) as a discrete-time stochastic differen-
tial equation.

Proof: Define the processes

ψn(t) = |ψ[nt]〉, Vn(t) =
[nt]
n

, Wn(t) =
1√
n

[nt]−1

∑
k=0

Xk+1.

The process(ψn(t)) can be considered as the solution of the following discrete-time
stochastic differential equation

ψn(t) =

∫ t

0

(

−1
2
C∗Cψn(s−)+Re(ψn(s−),Cψn(s−)〉)Cψn(s−)

)

dVn(s)

+
∫ t

0
(Cψn(s−)−Re(ψn(s−),Cψn(s−)〉)ψn(s−)dWn(s)+ εn(t), (29)

where the termsεn(t) corresponds of the◦ terms in the equation in asymptotic form.
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In order to show thatψn(t) converges in the Skorohod space to the solution of

|ψt〉=
∫ t

0

(

−1
2
C∗C|ψs〉+νtC|ψs〉

)

ds+
∫ t

0
(C|ψt〉−νt |ψt〉)dWs

we make use of the celebrated Kurtz-Protter theorem. Let us recall it.
Recall that[X,X] is defined for a semi-martingale by the formula[X,X]t = X2

t −∫ t
0 Xs−dXs. For a finite variation processV we put Tt(V) to be the total variation ofV

on [0, t].

Theorem 9 (Kurtz-Protter, [28]). Suppose that Wn is a martingale and Vn is a finite varia-
tion process. Assume that for each t≥ 0:

sup
n

E[[Wn,Wn]t ]< ∞

sup
n

E[Tt(Vn)]< ∞

and that(Wn,Vn,εn) converges in distribution to(W,V,0) where W is a standard brownian
motion and V(t) = t for all t. Let Xn(t) be a process satisfying

Xn(t) = ρ0+ εn(t)+
∫ t

0
L(Xn(s−)dVn(s)+

∫ t

0
Θ(Xn(s−))dWn(s)

Suppose that X satisfies:

Xt = X0+

∫ t

0
L(Xs)ds+

∫ t

0
Θ(Xs)dWs

and that the solution of this stochastic differential equation is unique. Then Xn converges in
distribution to X.

In our case, the different hypothesis above are satisfied. Indeed, define a filtration for
the process(Wn(.)):

F
n

t = σ(Xi, i ≤ [nt]).

The following is proved in [Pe1].

Proposition 3. We have that(Wn(.),F
n
. ) is a martingale. The process(Wn(.)) converges to

a standard Brownian motion W. when n goes to infinity and supnE[[Wn,Wn]t ]< ∞.
Furthermore, we have the convergence in distribution for the process(Wn,Vn,εn) to

(W,V,0) when n goes to infinity.

This proves the announced convergence. �

Remark: Using Ito rules on|ψt〉〈ψt |, we get the equation for density matrices

dρt = L(ρt)dt+
(

Cρt +ρtC
⋆−Tr[(C+C⋆)ρt ]ρt)dWt ,

which corresponds to the equation (2) mentionned in the Introduction (the Linblad operator
L has the same form as the Poisson case).



Page (PS/TeX): 21 / 20,   COMPOSITE

i

i

20 S. Attal and C.Pellegrini

3.3. Return to Equilibrium

Now that the limit equations are established, we are interested into the long time behaviour

of the solutions. We specify our investigations to the special case whereC =

(

0 1
0 0

)

=

a1
0 andH = HR =

(

1 0
0 0

)

.

Writing the processes(ψt) in terms of their coordinates; that is(ψt := (xt ,yt)), the
Belavkin equations take the form































xt = x0+

∫ t

0

(

− ixs+Re(x̄sys)ys−
1
2

Re(x̄sys)xs

)

ds+
∫ t

0
(ys−Re(x̄sys)xs)dWs

yt = y0+
∫ t

0

(

−1
2

ys−
1
2

Re(x̄sys)
2ys

)

ds+
∫ t

0

(

−Re(x̄sys)ys

)

dWs

(30)

in the diffusive case, and






























xt = x0+

∫ t

0

(

− ixs+
1
2

xs|ys|2
)

ds+
∫ t

0

∫
0<x<|ys−|2

(

−xs−+1

)

N(dx,ds)

yt = y0+
∫ t

0

(

−1
2

ys+
1
2
|ys|2ys

)

ds+
∫ t

0

∫
0<x<|ys−|2

(

−ys−

)

N(dx,ds)

(31)

in the Poisson case.
In the Poisson case, note that the intensity isµt = |yt−|2, so that one can restrict ourselves

to the case where the jumps of the Poisson process are in between the linesy= 1 andy= 0
(we have namely|yt−|2 ≤ 1, for all t). The functiont → card(N(., [0,1]× [0, t])) = N t

then defines a standard Poisson process with intensity 1. ThePoisson random measure and
the previous process generate on[0,T] (for a fixedT) a sequence{(Ti ,ξi), i ∈ {1, . . . ,N t)}}
where eachTi represents the jump time ofN . Moreover the random variablesξi are uniform
random variables on[0,1]. Consequently we can write our quantum trajectory as follows































xt = x0+

∫ t

0

(

− ixs+
1
2

xs|ys|2
)

ds+
N t

∑
i=1

(

−xTi−+1

)

10<ζi<|yTi−|2

yt = y0+

∫ t

0

(

−1
2

ys+
1
2
|ys|2ys

)

ds+
N t

∑
i=1

(

−yTi−

)

10<ζi<|yTi−|2

(32)

Now, we shall investigate the large time behaviour of a solution of equation (30) or (31).
To this end we need to notice the following lemma.

Lemma 1. Let

(

xt

yt

)

be the either solution of equation (30) or (31) starting withan initial

condition of the form

(

x0

0

)

. Then, almost surely, we have yt = 0, for all t.
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Proof: Starting fromy0 = 0, in each case, it is easy to verify thatyt = 0 is a particular
solution for the corresponding stochastic differential equation describing the evolution of
(yt). As a consequence by uniqueness of solution, almost surely,yt = 0 for all t. �

Remark: In both cases, ifyt = 0 for all t, it is easy to see that the evolution of(xt) is
given by the solution ofdxt =−ixtdt.

Remark: In terms of states, this lemma expresses that ifψ0 =

(

x0

0

)

, we have almost

surely

|ψt〉〈ψt |=
(

1 0
0 0

)

= |Ω〉〈Ω|,

for all t. In other words, the state|Ω〉〈Ω| is an invariant (or stationnary state) for the
stochastic dynamic of continuous measurement (let us stress that without measurement,
i.e in the deterministic regime, it is easy to see that this state is already the invariant state).

Now we can make precise the result which states the return to equilibrium property. In
particular we focus on the large time behaviour of the partyt and we show that this process
converges to zero whent goes to infinity.

Proposition 4. Let |ψt〉=
(

xt

yt

)

be either the solution of the jump-equation or the solu-

tion of the diffusive equation, then we have

|yt |2 a.s−→
t→∞

0. (33)

Therefore, we have

yt
a.s−→

t→∞
0 (34)

and the process of pure states(|ψt〉〈ψt |), whereψt =

(

xt

yt

)

, for all t, satisfies

|ψt〉〈ψt | a.s−→
t→∞

|Ω〉〈Ω| . (35)

Proof: Let us first treat the case of the jump-equation. We need to share into two cases,
if there are jumps or if there are no jumps.

In the case where there is at least one jump. At the first jumping timeT1 we have
(

xT1

yT1

)

=

(

xT1−
yT1−

)

+

(

−xT1−+1
−yT1−

)

=

(

1
0

)

.

Following the description of the solution of the jump equation, the solution afterT1 is given

by the ordinary differential part with the new initial condition

(

1
0

)

. This initial condition

satisfiesy0 = 0, then by Lemma 1, we getyt = 0 for all t ≥ T1.
If there are no jumps, this corresponds to the eventA= {ω ∈ Ω/N(ω,{(s,x) ∈ R

2/0<
x< |ys|2}= 0}. In this situation, the evolution of(yt) is only given by the ordinary differ-
ential equation

yt = y0+
1
2

∫ t

0
(−ys+ |ys|2ys)ds.
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We want to show that|yt |2 → 0, whent goes to infinity. Derivating, we get

d
dt
(|yt |2) =

d
dt
(yt ȳt) = yt

d
dt
(ȳt)+ ȳt

d
dt
(yt) = |yt |2(|yt |2−1) .

By Lemma 1, ify0 6= 0, we have|yt |2 > 0, for all t. In this case, dividing byy2
t we solve the

equation and we get

|yt |2 = |ys|2×exp

(

−(t −s)+
∫ t

s
(|yu|2)du

)

) ,

for all t > s. In particular the functiont → |yt |2 is decreasing, then we get

|yt |2 ≤ |ys|2 exp
(

−2(t −s)+2(t −s)|ys|2
)

, (36)

for all t ≤ s. Since we have|xs|2+ |ys|2 = 1, for all s, we have|ys|2 ≤ 1, for all s. With
the estimation (36), in order to conclude, we need to remark that there exists such that
|ys|2 < 1. In the opposite case, we should have|ys| = 1, for all s. Such situation appears
actually with probability zero. Indeed, in this case the event A is A= {ω ∈ Ω/N(ω,{(s,x) ∈
R

2/0< x< 1= 0,s> 0} which is actually an event of probability zero (we haveP[{ω ∈
Ω/N(ω,{(s,x) ∈ R

2/0 < x < 1 = 0}] = limnP[{ω ∈ Ω/N(ω,{(s,x) ∈ R
2/0 < x < 1 =

0,0 < s< n}] andP[{ω ∈ Ω/N(ω,{(s,x) ∈ R
2/0 < x < 1 = 0,0 < s< n}] = exp(−n)).

Thus, there exists such that|ys|2 < 1. For thiss, by taking the limitt goes to infinity in
expression (36), we get|yt |2 → 0.

With the above discussion, for the jump equation, it is easy to conclude that

y2
t

a.s−→
t→∞

0.

Let us now treat the diffusive case. In order to prove the result we shall show first that
|yt |2 converges almost surely to a random variableu∞ whent goes to infinity. Second we
showu∞ = 0 almost surely. Using Ito rules, we get

d|yt |2 = ytdȳt + ȳtdyt +dytdȳt

= −|yt |2dt−2Re(x̄tyt)|yt |2dWt

As a consequence we have almost surely:

y2
t = y2

s +

∫ t

s
−|yu|2du+

∫ t

s
−2Re(x̄uyu)|yu|2dWu, (37)

for all t > s. Let (F t) be the filtration generated by the Brownian motion, that isF t =
σ{Wu,u≤ t}. SinceE

[∫ t
s −2Re(x̄uyu)|yu|2dWu|Fs

]

= 0, the above equation shows that

E[|yt |2|Fs]≤ E[|ys|2].

This way the process(|yt |2) is a super martingale which is bounded (for allt, we have
0 ≤ |yt | ≤ 1). Therefore, this process converges almost surely to a non-negative random
variableu∞ whent goes to infinity. In order to show that this random variable isequal to
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zero almost surely, we just have to show thatE[u∞] = 0. To this end, from Eq. 37 fors= 0,
we get

E[|yt |2] = y2
0+

∫ t

0
−E[|ys|2]ds.

Solving the equation, we get
E[|yt |2] = |y0|2e−t .

As a consequence, we get
E[y2

t ] →t→∞
0.

Now, using the Lebesque dominated convergence Theorem, we deduce thatE[u∞] = 0 and
thenu∞ = 0 almost surely. The proposition is then proved. �

Remark: In the proof, we have supposed that the initial condition is deterministic.
This result can be easily generalized by assuming that the initial condition is random and
the same result holds.

Remark: In Probability Theory, for stochastic process, we usually consider invariant
measure. Here, we are in a special case where the invariant measure is just the Dirac
measure on the state|Ω〉〈Ω|.
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