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Abstract

Quantum stochastic calculus is extended in a new formulation in which its stochastic integrals
achieve their natural and maximal domains. Operator adaptedness, conditional expectations and
stochastic integrals are all defined simply in terms of the orthogonal projections of the time filtra-
tion of Fock space, together with sections of the adapted gradient operator. Free from the exponential
vector domain of Hudson-Parthasarathy, our stochastic integrals may be satisfactorily composed yield-
ing quantum Ito formulae for operator products as sums of stochastic integrals. Quantum stochastic
calculus has been approached through classical Ito theory, and through noncausal stochastic analysis.
Our theory extends both of these approaches and may be viewed as a synthesis of the two. The main
application is existence and uniqueness for the Attal-Meyer equations for implicit definition of quantum

stochastic integrals.

I. Introduction

It is well-known that the usual theory of probability is not sufficient to de-
scribe the random-type phenomenons observed in quantum mechanics. The point
is that a probability theory is needed which takes into account several probability
spaces at the same time, and which follows the, now universally accepted, mathe-
matical formalism of quantum mechanics. This formalism imposes to consider an
extension of the usual theory of probability which deals with operators on Hilbert
space instead of random variables. This is the so-called quantum probabilty the-
ory. The usual theory is recovered when considering only multiplication operators.
Following this quantum probability theory, a theory of quantum noises, quantum
processes and quantum stochastic integration has been developed in this opera-
tor setting (mainly in order to describe the behaviour of quantum open systems
([Dav])). Our article participates to the attempt of elaborating a quantum stochas-
tic calculus in which the analytical difficulties have been overcomed, and which
could become as usable and useful as the usual stochastic calculus. Already, in
some good contexts, one could derive a C?T¢ quantum stochastic calculus ([ViS]),
but the problem of identifying the full domain and explicit action of quantum
stochastic integrals was still open. In this article, we completely solve this prob-
lem.

In the original formulation of quantum stochastic calculus ([HP1]), the ho-
mogeneity of exponential vectors with respect to the continuous tensor product
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structure of Fock space F is a cornerstone. Quantum stochastic integrals are con-
structed from families of operators defined of these exponential vectors and satis-
fying some adaptedness property. The quantum stochastic integrals are therefore
necessarily defined on coherent domains too. Operator multiplication of quantum
stochastic integrals is thus inadmissible, strictly speaking, within this coherent
vector formulation, since quantum stochastic integrals typically do not leave co-
herent domains invariant. Only inner products of quantum stochastic integrals
acting on coherent vectors may be formed. Perhaps surprisingly, this limitation
has not been felt until recently — a rich stock of quantum stochastic processes has
been constructed through an effective theory of quantum stochastic differential
equations. This limitation does make itself felt when one is interested in algebraic
questions — for example the structure of the collection of bounded—operator—valued
quantum semimartingales ([At1]).

One way in which quantum stochastic calculus has been extended beyond
the coherent vectors is by means of the Hitsuda—Skorohod integral of anticipative
processes ([Hit], [Sko]), and the related gradient operator of Malliavin calculus
([G-T], [N-Z]). In this noncausal formulation ([Bel], [Lin]), the action of each of
the quantum stochastic integrals is defined explicitly on vectors in Fock space,
and the essential quantum It6 formula (in inner product form) is seen in terms
of the Skorohod isometry. Neither coherent vector domains, nor adaptedness of
the operator integrals is required. Set against these advantages, the domains of
both the annihilation and number integrals in the noncausal formulation are still
restricted to parts of Dom+/N (where N is the number operator) — even when the
resulting operator is bounded. This unnatural domain limitation again precludes
operator composition of quantum stochastic integrals.

A second way in which the coherent vector formulation of quantum stochastic
calculus has been extended is by means of an abstract Ito calculus on Fock space
([A-M)). Specifically, this formulation allows all vectors of the Fock space to admit
an abstract predictable representation: f = IE[f]+ fooo &5 dxs. Once this is done,
one obtains a formula, for the action of quantum stochastic integrals, which makes
sense for all vectors in F. For example, if X; = f(f H,dAl and f; = fot &g dxs,

then X;f; = fOt(XSES + H, f,) dxs. This leads to a definition of quantum stochas-
tic integrals which agrees with the coherent vector formulation when restricted to
coherent vector domains. In this [to calculus formulation, operator composition of
quantum stochastic integrals is admitted. Under some conditions, the domain of
quantum stochastic integrals may be the whole of F. This fact plays an important
role in the theory of quantum semimartingale algebras, quantum square and an-
gle brackets ([At1], [ViS]). The main disadvantage of this formulation is that the
defining equations for the quantum stochastic integrals only give them implicitly.
In fact the definitions amount to a kind of abstract stochastic differential equation
and, up to now, the general existence and uniqueness of solutions for these equa-
tions was not known. Moreover, the maximal domains of these quantum stochastic
integrals have been far from clear.

The purpose of this work is to unify and extend all these approaches. We
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wish to understand the relationship between the noncausal and the It6 calculus
formulations. We seek definitions which preserve the advantages of each whilst
removing its disadvantages. In other words, definitions which (a) give the action
of quantum stochastic integrals explicitly in terms of the process being integrated,
(b) contain no unnatural domain limitations, (c) settle the existence and unique-
ness question for the stochastic differential equations arising in the It6 calculus
approach, and (d) permit operator composition of quantum stochastic integrals.
In this article we develop a theory of quantum stochastic calculus which satisfies
each of these criteria.

The main idea in this work is to base the calculus on a finely—tuned formula-
tion of operator adaptedness, which exploits an adapted gradient operator inspired
by classical stochastic calculus. Immediate advantages include a much clearer
picture of the relationship between quantum and classical It6 calculus, and an
explicitness of the criterion for adaptedness which imposes no unnecessary domain
constraints. For example, the domain of a t—adapted operator H should be all of F
when H is bounded, and should not be limited to an algebraic tensor product. On
coherent vector domains this definition agrees with the usual definition. The new
definition frees us from any prescribed domains; moreover it leads to a definition of
time s—conditional expectation for operators on F which satisfies all the algebraic
properties one could hope for, given the vagaries of unbounded operators.

The above refinement of operator adaptedness is also the point of departure
for new definitions of quantum stochastic integrals. In particular, the gradient
operator (used in the noncausal formulation) is replaced by the adapted gradient.
This overcomes the unnatural domain constraint while maintaining explicitness of
action of the quantum stochastic integrals. The connection with the It0 calcu-
lus formulation is then seen through commutation relations between the Skorohod
integral and the adapted gradient. We are able to show that our quantum stochas-
tic integrals solve the stochastic differential equations arising in the It6 calculus
formulation, and that as solutions they are unique with maximal domains. By
uniqueness and maximality we mean that any process X which is, say, a creation
integral of a measurable adapted Fock operator process H in the It6 calculus for-
mulation must satisfy X, C AJ(H), where AJ(H) is the creation integral of H
in our formulation. Adapted operators and quantum stochastic integrals may be
freely composed, and a quantum It6 formula results.

A brief preliminary account of this work has appeared in [A-L]. That paper
contains a section demonstrating how Fermion field operators, defined as quantum
stochastic integrals ([HP2]), achieve their natural domains — namely all of Fock
space — when considered from the viewpoint advocated here.

I1. Notations and conventions

Let I" denote the finite power set of IR, that is the set of finite subsets of
IR,. Let Hy be a fixed separable complex Hilbert space. Since, for n =1,2,...,
{s € R} : sy < --- < s,} is in bijective correspondence with (™) the set of
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n-elements subsets of IR, through the map s — {s1,..., s, } taking a point in the
Cartesian product to the collection of its coordinates, Lebesgue measure induces
a measure on I'™). By letting ) € T be an atom of measure unity, we arrive
at a o-finite measure on I' = |, I'(™) — the symmetric measure (or Guichardet
measure) associated with Lebesgue measure on IR, ([Gui]). Guichardet-Fock space
(or simply Fock space) is then the Hilbert space tensor product F = Ho ® L3(I),
which we may identify with the space of (classes of) square—integrable Ho—valued
maps on I' : L2(T;Hg), by continuous linear extension of the map v ® k — k(-)v.
Such vectors will be written simply vk. Elements of I will always be denoted
by lower case greek letters o, (3, 0, T, w, ..., and integration with respect to the
symmetric measure on I' will be written simply fr f(o)do. The cardinal of an
element o of I' is denoted by #o.
The following elementary identity is fundamental (see [L-P] for a proof).

f-Lemma— Let g be a measurable nonnegative (resp. (Bochner) integrable) map
from T x T to IR (resp. Ho). Let G be the function on T' defined by

G:0— Z g9(a, o).

aCo

Then G is measurable nonnegative (resp. integrable) and

/FG(O—) da:/F/Fg(a,ﬁ) dadg.

For any measurable ¢ : IR — C, let ¢(N) be the operator on F given by

o(N)f(o) = p(#0)f(c); Domp(N) = {f €F: /F lo(#0)12 || £ (0)|]2 do < oo}.

In other words, ¢ (V) is the operator obtained by applying the functional calculus
to the number operator N on F. We define the subspaces:

Flao) — DomaN, fora>1, K= ﬂ Dom o™ (2.1a)
a>1
Fr= {f € F :supp (f) C U '™, for some m} (2.10)
n<m

Here is a list of set—theoretic notation and measure—theoretic convention that
we shall adopt throughout. Let s, € IR and w,o,7 € I, then wyy = w N [0,1],
wip = w N [t,00[, etc...; vo = max{s:s € o}, o_ = o\{vo}, xc = min{s: s € o},
for o # 0; wUs = wU{s}, and for s € o, o\s = 0\{s}; “o < 77 means s < ¢ for all
seo,tenTy={wel:wcl0,s},I*={weTl:wcC[s,o0l}; “ora.a. 7> s
means for almost all 7 € I'® (here s is fixed), whereas “for a.a. (7 > s)” means for
almost all elements of {(7,5) € T x IRy : 7 > s}; Fs = Ho® L3(T'), F* = L2(T'®).

Fock space has a continuous tensor product structure, in the following sense:
for each s > 0, the map f® g — (w— f(ws))g(w[s)) extends uniquely to an
isometric isomorphism from (the Hilbert space tensor product) Fs ® F* onto F.
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Associated with any function ¢ : IR, — C is the corresponding product func-
tion w(p) : I' — €, given by [w(¢)](0) = [[,c, ¢(8), with the usual convention
that an empty product gives 1. If ¢ is (Lebesgue) integrable then 7(¢p) is easily
seen to be integrable, with [[n(¢)](c)do = exp{[ ¢(s) ds}. When ¢ € L*(IR;)
we write £(p) for the measure equivalence class of m(p), thus e(p) € L2(I).
We also write dg for £(0), which maps @ to 1, and all other o to 0. These are
called the coherent or exponential vectors of Fock space, partly due to the re-
lation: (e(¢),e(v)) = exp{yp,?), and their normalized forms are known as co-
herent states in quantum physics. The exponential vectors are linearly indepen-
dent, and form an overcomplete family (if M is a dense subset of L?(IRy), then
E(M) = lin{e(p) : ¢ € M} is dense in L?(T")) ([HP1]). Note that, along with
Fp, the space & = E(L?(IRy)) is contained in the subspace K. In the continuous
tensor product structure of F, the vector ve(p) € F arises as ve(ps) ® €(¢s),
where Ps] = ]1[0751()0 and Pls = ]1[3700[@.

Finally, except when explicitly stated otherwise, all tensor products will be
algebraic; thus if A is the Hilbert space tensor product of 4, and H,, and if U; is
a subspace of H; (i = 1,2) then U; ® Us is the linear span of {u; ® uy : u; € U;} in
H, moreover if R; is an operator on H;, then R ® Rs is the operator on H with
domain Dom R; ® Dom Rs, and obvious action.

IT1. Calculus in Fock space

Our aim in this section is twofold. Firstly we construct part of It6-calculus on
Fock space, describing familiar probabilistic concepts in this unfamiliar language
whilst emphasizing its universality. Secondly, we develop relationships between
the components of this calculus (derivative, projection, integral). These will be
applied later, once we have introduced noncommutative processes. In this section,
H will denote an arbitrary separable Hilbert space — in practice H will be either
IR or C or our initial space Hg, and F will denote H ® L*(T') = L?(T; H).

I11.1. Integration

The measurable structure on I' X IR is the completed product measure of the
Guichardet measure on I' and the Lebesgue measure on IR. We need a spectrum
of integrability conditions for a Hilbert space valued map z from I' x IR, .

Definition 3.1~ Let  be amap I' x IR, — H. We write z5(w) for z(w, s).

(ai) z is time-integrable if
e for a.a. w, the map z.(w) is integrable IRy — H.
e The a.e. defined map [~ zsds:w — [ z,(w) ds is square-integrable.

(aii) = is absolutely time-integrable if
e 7 is measurable
e the map (w, s) = ||zs(w)|| is time-integrable.

(aiii) = is Bochner-integrable if
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e for a.a. s, the map x is square-integrable I' — H
e the a.e. defined map s — z; is integrable IR, — F.

(bi) z is Skorohod-integrable if
e the map S(x) : 0 — > ., 7s(0\s) is square-integrable I' — .

(bii) z belongs to Dom S if
e z is square-integrable I' x IR, — H
e z is Skorohod-integrable

(bii) z is absolutely Skorohod-integrable if
e z is measurable I' x IR, — H
e the map (w, s) — ||zs(w)|| is Skorohod-integrable I" x IR, — IR.

fooo zsds and S(z) are called the time integral of x, and Skorohod integral of
x, respectively. The following results are classical ([D-U], [Str], [Lin]).

Proposition 3.2~ Let x be a map I' x IRy — H.

(ai) If x is square-integrable, then x is locally Bochner-integrable, and

/0 el ds < Vi ( / t / s () 2 o ds) -

(aii) If x is Bochner-integrable then x is absolutely time-integrable, and

H/wxsds)\ s/°°||xs||ds.
0 0

(bi) If = is measurable then

/OO /Oo/ 24 (w U D)) ||act(wUs)||dwdtds§/oo/#w 0 (w)]|2 dov ds.
0 0 N 0 IN

(bii) If x is square-integrable and the function (w,s,t) — (xs(w Ut),x4(w U s)) is
integrable, then = € Dom(S) and

|S(z)]|? :/0 ||37s||2d8+/ / / Zs(wUt), z4(w U s)) dwdt ds. (3.1)

(biii) If x is absolutely Skorohod-integrable, then x is square-integrable and the
function (w, s,t) = ||zs(w Ut)|| ||ze(w U s)|| is integrable. 0

Identity (3.1) will be referred to as the Skorohod isometry.

Definition 3.3 - Let z beamap I' x IRy — H.
(a) z is adapted if z5(w) = 0 unless w € T's.
(b) z is Ito-integrable if x is adapted and the map

T = {0 o) e

ZTyvs(0_) otherwise
is square-integrable in o.
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Z(x) is then called the Ité-integral of z. Like fooo xzsds and S(x), it will be
viewed as an element of F.

As with the time and Skorohod integrals, Ito-integrability depends only on
the measure equivalence class of x, and the Ito-integral lifts to a mapping from
measure equivalence classes into F. In contrast to time integrals and Skorohod
integrals, Ito-integrable maps are necessarily measurable.

Definition 3.4~ A wector process is a family z = (x;),5, in F. It is adapted if
zs € Fs for each s, and measurable if the map s — x4 is (strongly) measurable.

For a measurable vector process z, there is a measurable map z : ' x IRy — H
such that Z4(-) is a version of z for each s. If z is adapted, then Z may be chosen
to be adapted in the sense of Definition 3.3. The measure equivalence class of =
is unique, and we shall therefore abuse notation by using x for the process as well
as the map.

We leave to the reader the following easy application of our definitions.

Proposition 3.5 Let z be an adapted map I' x IR, — H. Then the following are
equivalent:

(a) z is Ité-integrable; (b) x is Skorohod-integrable; (c) x is square-integrable.

Moreover, in any of these cases we have Z(z) = S(x) and

IZ(@)|? = / " Jal? ds. (3.2)

O

We call the identity (3.2) Ité-isometry. Comparison with (3.1) shows that
Skorohod isometry extends Ito-isometry beyond adapted maps.

Following [At2], Z(z) is also denoted [~ ¢ dx;, for it may actually be proved
that Z(x) is an integral with respect to some curve (x;),~o on F.

We end this subsection with some notations we shall employ later. For all
a < be R, U{+o0}, we denote by f: xy dxs (resp. f: z¢ dt, S°(z)) the Ito-integral
(resp. time-integral, Skorohod integral) of the process z; = x 1, 4(t), t € IR

Note that the Skorohod integrability of x does not imply the Skorohod inte-
grablity of Ny, p(-)x.. The same goes for time-integrability. This is an essential
feature of the integrals, however it does not arise for absolute time integrals, ab-
solute Skorohod integrals, or for It6 integrals.

I11.2. Differentiation and Projection

Definition 3.6 — For a map f with source space I', let Vf and Df be the maps
with source space I' x IR, given by

Vf(w,s)=flwUs); Df(w,s)=1r,(w)f(wUs).
The target space will be either H, €' or IR,. We exploit this freedom as follows.

The operators V and D commute with || - || in the sense that if k(w) = ||f(w)||%,
where f : ' — H, then Vk(w,s) = ||V f(w,s)| (and the same for D).

7



S. Attal and J.M. Lindsay

Proposition 3.7—Let f be a measurable map I' — H. Then Vf and Df are
measurable maps and

/0 h / IV (w, )2 d ds = / 40| f(0)|? do (3.30)
/0 N / 1D (w, 5)? dw ds = / 1£ (@) do - (|7 @). (3.30)

Proof
Straightforward application of the gf —Lemma. a

It follows that we may view V and D as (measure equivalence) class mappings.
When f € F, we call Vf and Df the stochastic gradient of f, and the adapted
gradient of f, respectively. Moreover, we write DomV for the domain of the
stochastic gradient as an unbounded Hilbert space operator F — L?(T' x IRy ;H).
Thus DomV = {f € F: Vf € L*(T x R ;H)}.

Definition 3.8~ For 0 € I', s € IR, and a map f with source space I, let V, f,
D, f and P;f be the maps with source I', given by

Vof(w)=fwUo); Dyf(w)=1p,, (w)f(wUo); Psf=1p,f.
Thus, writing D, f for Dy, f, we have
Dsf =Df(s); Dof =1
and
D,f=Ds,---Ds [ if c={s1<--<s,}
The following algebraic relations are evident for s < ¢:

POf:f(m)(s(ba PsPtf:PtPsf:Psf7 (34(1)
DtDsf = DtPsf = 0; (34 b)
DsPtf = PtDsf = Dsf; (34 C)
as is the reproducing relation D, f(o) = f(oc UT) for o < 7, with special cases:
f(w)=Duf)(0) = Dy f(w-) (3.4d)

when w # ().

II1.3. Integro-differential and Adjoint Relations

First we relate Skorohod integration with stochastic differentiation, and give
the adapted counterpart.

Proposition 3.9 Let f € F and let z : I' x IR, — H be Skorohod-integrable:
(a) If the map (w, s) — (zs(w), f(wU s)) is integrable, then

/ /xs , Vsf(w)) dwds.



Maximal Quantum Stochastic Calculus
(b) If z is Ito—integrable, then

</Oooa:sdxs,f>:/Ooo<xs,Dsf>ds.

Proof
More straightforward application of the 3-Lemma. O

Next we summarize the Hilbert space properties of the stochastic and adapted
gradients and the Skorohod and It6-integrals. For further details see [Lin].

Theorem 3.10— Let /N ® I denote the (self-adjoint multiplication operator on
L2(T x Ry;H) given by VN @ I 25(w) = VH#w z5(w).

(a) (§,DomS) and (V,Dom V) are closed, densely defined operators.

(b) S* =V (and V* =S8).

(¢c) DomS D Dom+/N ® I; DomV = Dom+/N.

(d) The Ito—integral is an isometric operator L?>(Taq; H) — F with final space
[6]*, whose adjoint is the adapted gradient D:

DI =1Ti.e. Dy /00 Todxs =z forallz € L*(Taq;H), a.a. t € Ry;
KerD = (ImT)* = Cdy; :
ID = Pgie f= P0f+/OODsdeS for all f € F.
0
(e) The Skorohod integral is an extension of the Ité integral: T = S‘LZ

(Fad §H) )

(f) The adapted gradient is the closure of the product of the adapted projection and
the stochastic gradient: D = PV. O

Our philosophy in this paper is to treat the maps D, like operators on F,
exploiting the fact that D is a bounded operator on F so that, unlike V, it is
defined on the whole of F. With each f € F, D, f is a well-defined element of F
for almost every s. Of course the null set depends on f, and for this reason D; is
not an operator on F in the usual sense — we shall speak of almost everywhere
defined operators on F. We take this viewpoint in order to exploit the relations
(3.4). On measure equivalence classes of maps such as elements of F, there are
the a.e. relations D;Dsf = DyPsf = 0; DsP,f = P,Dsf = Dsf for a.a. (s < t),
and the a.e. reproducing property D, f(o) = f(c UT) for a.a. (o < 7).

I11.4. Commutation Relations

In this subsection we describe the effect of the operators P, and the a.e. defined
operators D; on Skorohod and time integrability. The relations we obtain will be
applied to quantum stochastic integrals. Note the a.e. properties

f€.7::>PSf,Dsf€]:5; f6f3,8<t:>th:0. (35)
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Proposition 3.11- Let x be a measurable map I' x IR, — H. If P, x; is square
integrable for almost every t > 0, then the following are equivalent:

(a) z is Skorohod-integrable.

(b) (i) Njo4((-) Dy x. is Skorohod-integrable for a.a. t.
(ii) the map t — S§(Dy x.) + Py x4 is It-integrable.

In this case, we have, for a.a. t,

Proof
In view of the identity

Ip, (o) S(z)(c Ut) Z]lrt o)ljg41(s) zs(o\s U t) + T, (o) z¢(0),

s€o
we have
D S(z)(0) = S(Tjo,4(-) Dy w.) (o) + (Pr ) (o). (3.7)
If z is Skorohod-integrable then, since P;x; is square-integrable, Tjg4(-) D¢ x. is
Skorohod-integrable and (3.6) holds for a.a. ¢; moreover, the a.e. defined map
(o,t) = S{(D¢x.)(0) + Py x¢)(0) is adapted and square integrable, and thus It6-
integrable. Conversely, if = satisfies (b) then, since z is measurable and

Awmem:AfAWwaWww,

x is Skorohod-integrable by (3.7). O

Proposition 3.12— Let z be a measurable map T' x IRy — H. If the map z.(0)
1s integrable then the following are equivalent:

(a) x is time integrable.
(b) (i) Dy x. is time integrable for a.a. t
ii) the map t — [° Dy x5 ds is square—integrable.
0

In this case we have the a.e. identity

Dt/ Tsds = / D,z ds. (3.8)
0 0
Proof

Let x be time integrable. Then, for a.a. (w,t), the map s — Ip,(w)zs(w U t)
is integrable and so, for a.a. t,

Dt/ooo 2 ds(w) = TIr, (w) /Oooxs(wut) ds:/ooo Ir, (w)zs(w U t) ds
- [ iz as,
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for a.a. w. Hence, for a.a. t, Dy z. is time-integrable and (3.8) holds — in particular,
the map t — [ (D; z,)(w) ds is square-integrable.

Conversely, if (b) holds, then the map z.(w) is either z.(0) or (D, x.)(w-)
and so is integrable for a.a. w. Moreover the map a € T'\ {0} — fooo zs(a)ds
is the composition of the measure isomorphism o — (a_,Va) from I' \ {#} into
L*(I' x IR) and the square integrable map (w,t) — [;°(D;zs)(w) ds. Hence it is
square integrable, so that z is time integrable. a

The following one is straightforward.

Proposition 3.13 — Let x be a measurable map I' x IRy — H, and let t > 0.

(a) If x is time integrable then Py x. is time integrable and

/Ptxsds:Pt/ Tgds.
0 0

(b) If x is Skorohod integrable then Ny 4 Pix. is Skorohod integrable, and
St(Pyx.) = P, S(x).

Moreover, if also W o[(-) P x. is Ito—integrable, then Py x. is Skorohod inte-
grable, and

S(P,z.) = P, S(x) + / P, z, ds.
t

O

Notice that each of the supplementary conditions in Propositions 3.11, 3.12

and 3.13 — namely square-integrability of lp,z; for a.a. t, integrability of z.(0)) and

It6-integrability of Wy, of(+)P: 2. — is a condition on the IR -valued map (w, s)

|zs(w)||. In view of the fact that P, and D; “commute” with the norm || - ||%

(see the remark following Definition 3.6) each of these results also holds if time

and Skorohod integrability are replaced by absolute time and absolute Skorohod
integrability respectively.

IV. Operator adaptedness

In this section we extend the class of domains for the operators and processes
of quantum stochastic calculus beyond the exponential domains that have been
used so far. We give three characterizations of a notion of adaptedness for Fock
space operators. Hudson and Parthasarathy defined all operators and processes
on domains consisting of exponential vectors and, in their definition of operator
adaptedness, exploited the homogeneity of these vectors in the continuous tensor
product structure of Fock space: e(¢) = e(p,)) ® e(¢rs) for s> 0.

In our approach both the allowable domains and the criteria for adaptedness
are described wholly in terms of the projection operators (P;) and sections of the
adapted gradient D. Fundamental for us are the a.e. relations:

Dsf:Pstf; DtPsf:O; (4'1)
DsPtf:PtDsf:Dsf; (42)
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for s < t, and the a.e. reproducing property

f(w) = Dy, f(ws))- (4.3)
These hold for any measure equivalence class of map f with source I' — in particular,
for f € F.

The new condition for operator adaptedness is equivalent to the original one
on exponential domains. However, the new condition frees us from exponential
domains allowing us in particular to work on all of F for bounded operators,
and to multiply unbounded operators. We show that the collection of s—adapted
operators is closed under operator sums and products. Our definition gives a
procedure for manufacturing an adapted operator from any Fock space operator.
This is exploited in our discussion of conditional expectation in the next section;
it is also relevant to maximality questions, for operator domains, considered later.

IV.1. Definitions and basic properties

Definition 4.1 Let s > 0 be fixed. A subspace V of F is s-adapted if f € V
implies P;f € V and D;f € V for a.a. t > s.

Differential definition of adaptedness— An operator H on F is s-adapted if
1.1 Dom H is an s-adapted subspace
1.2 For all f € Dom H

(i) PsHf = P;HP; f;

(i) Di:Hf = HD, f for a.a. t > s.

We next give an equivalent definition.

Proposition 4.2 (Integral definition of adaptedness)— An operator H on F is
s-adapted if and only if it satisfies

II.1 Dom H 1is an s-adapted subspace
11.2 For all f € Dom H,
(i) HP,f = P,HP, f
(ii) HDyf € F; for a.a. t > s;
(111) (HDy f)s>s defines an Ito-integrable process, and

H(f—Psf) <=H/ thdXt> =/ HD:f dx.

Proof
Suppose that H is s-adapted. Then, by (4.1) and (4.3),

HP, f(w) = (D, HP; f)(ws) = (HDu( Psf)(ws)) = Ir, (w) (HPs f)(w)
= (PHP;f)(w)

12
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for a.e. w, so I1.2 (i) holds. Moreover, by (4.1), 1.2 (ii) implies I1.2 (ii). By 1.2 (ii)
we also have, for a.a. t > s HDyf = DyH f so (HD,f);>s is an adapted square
integrable process, and is therefore It6-integrable. Finally,

[ / " HDyf dxt] (@) = D o () Dy H ) @) = Ty () (1) ()
(- PYHS) (@) = [H(f — Pf)] )

for a.a. w, so that H is s-adapted in the integral sense.
Conversely, suppose that H is s-adapted in the integral sense. Then 1.2 (i)

holds since the It6 integral of a process on [s,o0[ is orthogonal to Fs;. Thus
HP, = P;H on Dom H and we have

HD,f = D, / HD, [ dy, = DH(f — P,f) = Dy(I - P)Hf = D,H],

so that H is s-adapted. O

Note that, combining the above characterizations of adaptedness, we obtain
the following.

Corollary 4.3 — An operator H on F is s-adapted if and only if it has an s-adapted
domain on which the commutation relations HPs = P;H and HDy; = DyH for a.a.
t > s, are satisfied. 0

The above characterization of adaptedness is the most useful one, but it is
sometime good to keep in mind that the commutation condition with Ps can be
weakened.

Combining I.2 (i) with I1.2 (i) and iterating 1.2 (ii) we also see that an operator
H on F is s-adapted if and only if it has an s-adapted domain on which the
commutation relations HP;f = PsHf and HD,.f = D, Hf for a.a. T € ',7 > s
are satisfied.

In view of the relations Ps(g ® h) = h(0)g ® dyp and D,(9 ® h) = g ® D, h for
a.a.7 > s, for g € Fs and h € F?, if Vy is any subspace of F;, then the algebraic
tensor product Vy; ® F° is an s-adapted subspace. Moreover, if H, is an operator
on Fg, then Hy; ® I° with domain Dom H; ® F? is an s-adapted operator.

We now come to our main operational definition.

Proposition 4.4 (Projective definition of adaptedness) — An operator H on F is
s-adapted if and only if it satisfies:

II1.1 Dom H is an s-adapted subspace.

1.2 For f € Dom H,
Hf(w) = (HP;Dy, [)(ws))-
for a.a. w.

Proof
If H is s-adapted then, by (4.3) and 1.2 (ii),

Hf(w) = (D Hf)(ws) = (HDy(, f)(ws) = (PsH Dy, f)(ws))

13
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for a.a. w, so II1.2 follows from Corollary 4.3.
Conversely, suppose that H is s-adapted in the projective sense above. Then

(PsH f)(w) = I, (w)(HPs Dy, f)(ws)) = Ir, (w)(HPs f)(w) = (PHP; f)(w)
for a.a. w, so that H satisfies 1.2 (i). For a.a. w and ¢t > s we have
HD,f(w) = (HPsD, D f)(ws))

= ]IFt (w)(HPSD(wUt)(Sf)((w U t)s))
= 1Ip, (w)(Hf)(wUt) = DH f(w),

so that H satisfies 1.2 (ii) also, and H is therefore s-adapted. O

From the projective definition it is easy to see that s-adapted operators satisfy
HP,f = P,Hf fort > s, whenever both sides are defined: f € Dom H N"Dom H P;.
Therefore H is also t-adapted for each ¢ > s for which Dom H is a t-adapted
subspace. It also follows from the projective definition of adaptedness that if two
s-adapted operators H and H' agree on F, N Dom H N Dom H’, then they agree
on Dom H N Dom H'.

Furthermore, let D be a s-adapted domain. Let H be an operator defined
on D N F,, with values in F,. The operator H', defined on D by [H'f](c) =
[HP;D, , f](0s)) is a s-adapted operator which coincides with H on DN F; ; it is
unique with these properties. H' is called the s-adapted extension of H.

Proposition 4.5— Let H be an s-adapted operator on F. Then for all f € F and
g € Dom H,

(f, Hy) = /F Ir(8)(P.Dgf, HP,Dgg) db.

Proof
This follows easily from the a.e. reproducing property and the ¥-Lemma. O

The adjoint of a densely defined s-adapted operator H may fail to be s-
adapted as it stands. However we shall see in the next section that conditioning
an operator which is adjoint to H yields an s-adapted operator adjoint to H. Let
As denote the collection of all s-adapted operators on F.

Proposition 4.6 — A; is a subset of the collection of all (not necessarily bounded)
operators on F which is closed under operator products and linear combinations.

Proof

Let H and H' be s-adapted operators on F, and let f € Dom(HH'). Then
Psf and D.f lie in Dom(H"), H'P;f = P;H'f and H'D,f = D,H'f for a.a.
t > s, since f € Dom(H') and H' is s-adapted. But H'f € Dom H and H
is s-adapted, so PsH'f and D H'f lie in DomH, H(P;H'f) = PsHH'f and
H(D.H'f)= D:HH'f for a.e. t > s. This shows that A; is closed under operator
multiplication. Since an intersection of s-adapted subspaces is s-adapted, A is
also closed under addition. It is obviously closed under scalar multiplication. O

14



Maximal Quantum Stochastic Calculus

A fails to be an associative algebra only in the same sense in which the
collection of all unbounded operators on F does, namely that an element H whose
domain is not all of F fails to have an additive inverse, and scalar multiplication
by 0 yields not the zero operator, but its restriction to Dom H.

IV.2 Examples and previous definitions

We first show that when restricted to exponential domains our definition
coincides with that of Hudson and Parthasarthy (HP). Let us fix s > 0. Let
M be a subset of L?(IRy) and let V; be a subspace of Hy. The pair (Vy, M) is
s-admissible if

(i) Vo ® E(M) is dense in F;

(ii) ¢4 € M whenever ¢ € M and t > s.

An operator H on F is HP-s-adapted with respect to (Vo, M), if

1. (Vo, M) is an s-admissible pair, and Dom H = V5 @ £(M).

2. For each u € Vi and ¢ € M we have

(i) Hug[@s]] € Fs;

(H) HUE((p) = (HU*?(%])) ® 6(90[5)'
Choices of M that have been found useful include L2(IR.) itself; dense sub-
spaces of L2(IR,) such as L2(IRy) N LS (IR, ); the set {p € (L2 N L™®)(IRy) :

loc

llell2 < 1 and ||¢|leoc < 1} and, in view of a result of Partharasathy and Sunder
([P-S]), one could also use the collection of indicator functions {lp : B C R4
Borel with finite Lebesgue measure}.

Proposition 4.7 Let V =V, ® E(M) where Vy is a subspace of Hy and M is
a subset of L>(IRy), such that V is dense in F, and let H be an operator on F
with domain V', then

(a) V is an s-adapted subspace if and only if the pair (Vy, M) is s-admissible;
(b) H is an s-adapted operator if and only if H is HP-s-adapted with respect
to the pair (Vo, M).

Proof

(a) Since Pve(p) = ve(py), and Dyve(p) = @(t)ve(py) for a.a. t, this is
immediate.

(b) In either case Hve(py)) € Fs, so that for a.a. 7,

(Hve(pa)) ® (pps)) (1) = (Hoe(q)) (1)) ] (e
teETs

(HP ve (ps/\‘r[ Ts] H <P
teTs

= (HPsDr,ve(0))(75)-

15
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Therefore Hve(p) = Hve(ps)) ® €(gys) if and only if

(Hve(9))(7) = (HPs Dy ve(p))(7s))
for a.a. 7, so (b) holds. O

Our definition thus specializes precisely to the usual one when restricted to
exponential domains. We next show that, as well as these, all domains used
previously for quantum stochastic calculus are (fully) adapted — that is they are
s-adapted for every s > 0. Recall the subspaces of F defined in (2.1).

(a) F itself is obviously adapted. This is useful as it is the natural domain for all
bounded-operator-valued processes.

(b) K is adapted In fact each F( is an adapted subspace, since P, leaves
Dom(y/a ) invariant and

(e @]
/ / a?|| Dy f (w) ||2dwdt:a_1/ /a#(“’Ut)Hf(wUt)||2]lpt(w)dwdt
0 I
_ N _ N
=a '|DVa f]? <aMVa fI.

This is the natural domain for both non-causal (quantum) stochastic calculus and
for integral-sum kernel operators on F.

(c) Fy is adapted since if supp f C Nl = Un<n ™), then supp P, f ¢ 'Vl and
supp Dy f c TN-1,

(d) lin{®@™ ¢ : ¢ € M,n > 0}, the symmetric tensor algebra over a subspace M
of L?(IR.), is adapted provided only that Ljo,41» € M whenever ¢ € M and t > 0,
since Dy (@™ ¢) = o(t) @™~ (ol 4).

() Ky :== {f € F:3IT,C,K > 0s.t. suppf C I'r and ||f(w)| < CK#«},
is adapted since both the support and boundedness properties are clearly undis-
turbed by both P, and D;: for example |D;f(w)|| < C'K#“  where C' = CK.

This is the original domain used by Maassen for expressing quantum stochastic
integrals as integral-sum kernel operators ([Maal).

V. Conditional expectation and operator processes

The projective definition of adaptedness leads to a natural way of defining
conditional expectation for Fock space operators. When applied to any operator
it yields an s-adapted operator; when applied to an operator which is already s-
adapted, it yields an extension of the operator to a natural domain for the purposes
of quantum stochastic calculus.

V.1. Conditioned spaces

The idea is to construct the domain of the conditioned operator so that it
is maximal given the domain constraint of the unconditioned operator. Thus, for
any subspace V of F, its time s-conditioned space is the subspace

D,V):={feF:PD,f eV foraa. t> s}
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Clearly ID4(V) is an s-adapted subspace. Here is a list of further properties of
this construction.

Proposition 5.1 Let V and V' be subspaces of F.

(0) Ds(F) =F, Ds(VNV') =D, (V) N IDs (V).

(i) IDs(V') is a t-adapted subspace for all t > s.

(i) If V is s-adapted then IDs(V) D V.

(i) For s < t, Dy(Dy(V)) = D,(Dy(V)) = D, (V).

(iv) Ds(V) D (VNF,) @ F°.

(v) Let s < a <b. If (2¢)tela,p] i5 @ IDs(V')-valued Ito-integrable vector process,
then f; Ty dxo € Ds(V).

Proof
These are routine verifications. For example in (v), f; Ty dxy € Fp © F, S0
that P,D., f; Xy dXy = PsD;_xy, if T € Ty \ Ty, and 0 otherwise. O

Thus the map ID; manufactures an s-adapted subspace from any subspace
V', which moreover contains V if V is already s-adapted. (i) is a tower property
of the maps, and (v) is a technical property which will be useful later.

V.2. Conditional expectation of operators

We come now to a central definition of our approach. To define conditional ex-
pectations of operators, we take our cue from the projective definition of adapted-
ness. Thus if H is an operator on F and s > 0, let V' be the subspace of F consisting
of those f in IDs(Dom H) for which the a.e. defined map 7 — Lps(7)PsHPs D, f
is square integrable I' — F. For f € V there is a unique element of F, denoted
IE[H]f, satisfying the a.e. identity

(E[H]f)(w) = (HPs Dy, f)(ws))- (5.1)
The time s-conditional expectation of H is the resulting operator IE [H] with
domain V. Thus

Dom(IE[H]) ={f € F: PsD,f € DomH for a.a. T > s;
T+ lps (1) Ps HPs D, f is square — integrable}.

It is easily verified that IF[H| is an s-adapted operator. Our first result on
conditional expectation therefore includes an extension of Proposition 4.5.

Proposition 5.2 Let H be an operator on F, and let s > 0.
(a) IB,[H] = IE,[HP,) = IE,[P,HP,].

(b) If g € Dom IE [H]|, then P,IE4[H|g = IE,[H|Psg = P;HPsg.
(c) If g € IE;[H] and f € F, then

(f, IEs[H]g) = /r Irs (B)(PsDpf, HP;Dgg) df3.

17
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(d) If (H, H") is an adjoint pair of operators on F then (IE,[H|, IEs[H']) is also
an adjoint pair.

(e) If H and IE¢;[H] are densely defined, then IEs[H|* D IFs[H*].

Proof
(a) and (b) are immediate consequences of the definition. (c) follows from (b)
and Proposition 4.5. (d) follows from (c), and (e) from (d). O

Notice that if H is s-adapted then the subspaces Fs N Dom H and F5 N
Dom(IEs[H]) coincide, and IE;[H]g = Hg for g in this subspace. It follows that

E,H|P,f = HP,f and IE,[H|D,f = HD,f,

whenever Psf (respectively D, f) belongs to Dom IE[H], equivalently belongs to
Dom H. We next give a list of the basic properties of time s-conditional expecta-
tion. A refinement of (d) of the above proposition is included.

Theorem 5.3 Let H and H' be operators on F.

(o) IEs[I| =1, IEs]H + \H'| D IE,[H|+ ME([H'] for A € C.

(i) IEs[H] is t-adapted for everyt > s.

(i) H is s-adapted if and only if Dom H is an s-adapted subspace and H C
E [H].

(#13) For allt > s >0, IE,; o IEy[H| = IE; 0o IE,[H] = IE,[H].

(iv) IE4[H] D Hy ® I*, with domain (FsNDom H) ® F*, where Hyg = P;Hyg.

(v) If H, IE;[H| and IE;[H|* are all densely defined, then IEs[H|* is an s-
adapted operator and IEs[H|* D IE [H*].

(vi) If H is bounded (with domain F) then IEs[H] is bounded (with domain
F) too, with norm at most ||H||.

(vii) If H is a non-negative operator, then so is IE;[H].

(viii) If S is an s-adapted operator, then IE;[HS] D IE[H|S.

(iz) If B is an s-adapted and bounded operator, then IE;[BH| D BIE [H].

(x) If H= Hy; ® H®, where Hy is an operator on Fs and H® is an operator

on F*, then IE,[H| includes the operator (§g, H’6g)Hs ® I®, provided only that
dp € Dom(H?).

Proof

Most of these properties follow from straightforward applications of the rela-
tions (4.1-4.3), the j -Lemma and Propositions 5.1 and 5.2, to the definitions. For
example, (i) follows from Proposition 5.1(i) and the remark following proposition
4.4. Parts (iii) and (v) are a little more delicate.

(iii) For f € F, f € DomIE, o IE;[H] if and only if P;D,f € Dom IE;[H]
for a.a. a > s, and the map a — 1ps(a)PsIE;[H|PsD, f is square-integrable. By
Proposition 5.2, these hold if and only if

18
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(a) PLDgP;D,f € DomH for a.a. >t and a.a. o > s.
(b) B+ Wpe(B)P.HP,DgP;s D, f is square-integrable for a.a. a > s.
(¢) a+ lrs(a)PsHPsD,f is square-integrable.
But since ¢t > s, P,DgP;Dqof = dp(8)PsDqf for a.a. § and (b) is vacuous, so
f € DomIE; o IE4[H] if and only if f € Dom IE;[H|, moreover
I, o E,[H] (1) = (Eu[HIPDug, P)w) = (HPDy f)(w,)) = B [H] ()

for a.a. w. Hence I o IE,[H| = IE4[H].
There remains to prove that IE; o IEs[H| = IE;[H]. But f € DomIE; o IE;[H|
means

(a) PsDgP,D,f € Dom H for a.a. > s and a.a. a > t.

(b) B+ Mps(B)PsHP;DgP,D, f is square-integrable for a.a. a > t.
(¢) a— lre(a) P, IEs[H|P; D, f is square-integrable.

That is,

(a) PsDgf € Dom H for a.a. 8 > s.

(b) B+ 1ps(B)Ps HPsDgf is square-integrable.

(¢) a— Lrt(a)P.DyIES[H]f is square-integrable.

The first two conditions exactely mean f € Dom IE[H]; condition (c) is
trivial.

(v) From Proposition 5.2(d), all that remains to be proved is that IE[]* is
s-adapted under the assumption that, along with H and IE [H], it is densely
defined. Thus let f € V* := Dom IE,[H]* and let g € V := Dom IE;[H]. Then,
by Proposition 5.2(a)

(Psf, IE,[H]g) = (f, IE,[H]Psg) = (P.IEs[H]" f, g).
Thus Psf € V* and IE;[H|*P;f = P;IE;[H|* f. Next note that, for any k,h € F,
P.k is locally Ito-integrable, and (D.k,h) = (D.k, P.h) is locally integrable with

fab(Dtk, hy dt = (k, fab P;hdx:). Using this, together with Proposition 4.5 and the
fact that PIE[H|f = IEs[H|P;f for t > s, we obtain

b b
/ﬁwmmwm:mmmmww=/mammmw

for b > s. Since b is arbitrary, there is a null subset N, of [s,00[ such that
(Def, IEs[H)g) = (D ESH* f,g) for t € Ny. Let g run through a countable family
in V, whose linear span is a core for the closure of IF;[H]|, we see that for a.a.
t>s, Dif € V* and IE;[H|*Dyf = DyIE[H|*f. Hence IE;[H|* is s-adapted. O

In view of property (ii) above, one says that an operator H is mazimally
s-adapted if IE;[H] = H.

Property (v) expresses the sense in which conditional expectation commutes
with the adjoint operation. When applied to already s-adapted operators, or
maximally s-adapted operators, it gives us the following useful result.
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Corollary 5.4 - Let H be an operator on F which is densely defined and s—adapted.
If IE4[H] is closable, then

(o) E[H*] = E,H]*; (b) E,[H]| = IE,[H| (provided that H* is s-
adapted).

In particular, the operators IE;[H|* and IE;[H| are mazimally s-adapted.

Proof

By (v) and (ii), [Es(IEs[H]*) D IEs[H]* D IE;[H*]. But H C IE[H], so
H* D IEi[H]*, therefore IE{[H*| D IEs(IEs[H]*). Combining these we obtain
E H*] D IE;{[H]* D IE;[H*], which gives (a). Since IE;[H*] is closed we may
apply (a) to H*: IE,[(H*)*| = [E;[H*]* = (IEs;[H]*)*, to obtain (b). O

Thus, if H is densely defined, closable and maximally s-adapted, then both
H* and H are maximally s-adapted too. Let A% denote the collection of closed,
densely defined and maximally s-adapted operators on F. As complement to
Proposition 4.6 we have:

Proposition 5.5 The collection A¥ is closed under the Hilbert space adjoint
operation, and contains B(F) N As which is a strongly closed unital x-subalgebra
of B(F) isomorphic to B(Fy).

Proof

The first part is contained in Corollary 5.4. Let H € B(F) N As, then for
u € Fs, Hu® 0g) = HP;(u ® d5) = PsH(u ® 65) = u' ® g, for some u' €
Fs. Therefore, for v € F°, H(u ® v)(0) = HP, Dy (u® v)(0s)) = v(o)H(u®
dp)(0s)) = (v ®v)(0). It follows that H = Hy ® I¢ for an operator Hy on B(Fy).
Conversely, if H; € B(F;) then Hy ® I® is s-adapted by (x) of Theorem 5.3, and
H,® I, = IEs[Hs ® I;] by the Corollary, so Hs; ® I* is s—adapted. Clearly the
map Hy — Hy, ® I® is an isomorphism. ad

V.3. Fock operator processes

A Fock operator process is a family of operators H. = (H)s>0 on F. The do-
main of a process H., denoted Dom H., is Ny>9 Dom H,. A Fock operator process
is measurable (respectively, continuous) if H.f is a measurable map (respectively,
continuous map) IR, — F for each f € Dom H., and H. is adapted if, for each
s > 0, H, is s-adapted. For a Fock operator process H., we define a process fl\.,
as follows: R

H, = IE¢{[Hs], s>0. (5.1)

Thus H, is an adapted Fock operator process and when the original process H.
is adapted itself, Hy D H, for each s. Thus, when applied to adapted processes
this procedure systematically extends the domains of the constituent operators of
the process so that they become mazimally adapted. This is helpful for dealing
with unbounded-operator-valued processes — in particular for providing a robust
definition of Fock operator martingale.
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A martingale is an adapted Fock operator process H. satisfying
IE,[H] C H, fort > s> 0. (5.2)

By the tower property of conditional expectations (5.2) may be written IE [H;] C
IE [Hg|. A martingale H. is complete with closure Hy, if Hy, is an operator on F
such that R
E H,] C H for s > 0. (5.3)

For any operator H on F, the process H. defined by Hy, = IE [H| is a complete
martingale (by the tower property again), with closure H. Martingales of this form
will be called ezact. Note that closures are non-unique (every martingale has a
truly trivial closure). Finally an adjoint pair of (adapted) Fock operator processes
is a pair of (adapted) processes (H., H') such that, for each s > 0, (H,, H]) is an
adjoint pair of (s-adapted) operators. As we have already remarked adaptedness
of one of the pair does not entail adaptedness of the other. If H. is a Fock operator
process, and Dom H. is dense, then by Bessel’s equality H} f = > (Hsep, f)en
for any Hilbert basis for F selected from Dom H., so H* is measurable if H. is.

Let A denote the collection of adapted Fock operator processes, let A# =
{H € A: Hy € A¥ for each s}, let A = {H. € A: H, € B(F) for each s}, and
let M be the collection of Fock operator martingales. From Propositions 4.4 and
5.5 we have:

Proposition 5.6~ A is closed under operator sums and products, A¥ is closed
under operator adjoints and A° is a unital x-algebra contained in A¥#. O

Due to the (unavoidable) inclusion relations involved in the definition of mar-
tingales there is a dirth of algebraic properties of M. However, the sum of two ex-
act martingales is a complete martingale, and the collection of bounded-operator-
valued martingales forms a linear space closed under the adjoint operation. More-
over the following *-subalgebra of A has been investigated in [At1]:

A" = {H. € A®: 3 Radon measure u s.t. ||(Hy — H,) f||> + ||(Hf — H) f||?
+ [|[(PsHy — Hs) f|| < p([s,£), V> s > 0, f € Fs st [[f]| = 1}

Elements of A" are shown to be expressible as sums of quantum stochastic integrals
of processes in A®, and the resulting integrals are characterized.

VI. Quantum stochastic integrals

In this section we introduce new definitions of stochastic integrals, of adapted
Fock operator processes, with respect to the basic martingales of quantum stochas-
tic calculus. The technical core of the section is on commutation relations between
the noncommutative stochastic integrals and sections of the adapted gradient op-
erator. We verify that the integrals produce operator martingales, and that the
martingales are complete.

In order to unify the notations, the time integral fooo g; dt of a vectors process
(9¢);>0 Will sometime be denoted L(g.).
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VI.1. Definitions

Let H. be an adapted Fock operator process. For Q = P or D, let VQ(H)
denote the subspace of F consisting of those f which satisfy

e Q,D,f € DomH, for a.a.(s < T)

e the a.e. defined map (s,7) — lps (1) HsQs D, f is measurable Ry xI" — F.

If f € V9(H.) then there is a measurable map HPf:T x Ry — Hy, written
(w, s) = HE f(w), such that Tp () H2 f(- UT) is a representative of H,Q,D, f for
a.a. (s < 7). The map HC f is uniquely defined up to a set of measure zero, and
satisfies the defining a.e. identity

H f(w) = (HyQsDy(, f)(ws))- (6.1)

We emphasize here that, for each s > 0, while H SQ f is a measurable map I' — H,,
it need not be square-integrable — in other words, in general H? f ¢ F. Thus H. Q f
should not be thought of as a Fock vector process — in general it isn’t.

However, the following result describes subspaces on which the maps H® f
simplify, and also gives conditions on H. for the spaces V?(H.) to have a sim-
ple description. Recall that the domain of the stochastic gradient V coincides
with that of /N (Theorem 3.10). For any Fock operator process H., define two
associated subspaces:

V(H)={f € DomH.: H f is measurable IRy — F},
VV(H) = {f €e DomVN : V,f € Dom H, for a.a. s; H.V.f is measurable}.

Proposition 6.1 - Let H. be a Fock operator process:
(a) If H. is adapted then

feVH)=> feVP(H) HP f=H.f;
feVV(H)= feVPH),HPf=HV.f.

(b) If H. is measurable, then
(i) V(H.) = Dom H.
(ii) If H. is also adapted, then VF(H.) D Dom H..
(¢) If Dom H; is dense for each s, Dom H* is dense, and H* is measurable, then
(i) VV(H.)) = {f € Dom+/N : V,f € Dom H, for a.a. s}.
(ii) If H. is also adapted, then VP(H.)) = {f € F: DyD, f € Dom Hy for a.a.
(s< 1)}
(d) If H. is measurable and if, for each s, Hy is bounded (and everywhere defined),
then

(i) VV(H.) = Dom+V/N;
(ii) If H. is also adapted, then VP(H.) = VP (H.) = F.

Proof
(ai) This follows easily from the a.e. reproducing property.
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(aii) Let f € VV(H). Then f € Dom+/N, for a.a. (s < 7) PsD,V.f =
P,V,D.f = DsD,f, and for a.a. s, Vgf € Dom H;. Thus if H. is adapted,
DsD,f € DomH, for a.a. (s < 7), and 1ps(7)HsDsD, f = lps(7)Ps D, H; Vs f,
which is a measurable function of (s,7). Hence f € VP(H.) and, for a.a. (s,w)
HP f(w) = H,V,f(w) by the a.e. reproducing property.

(b) This is immediate.

(c) Let H. satisfy the conditions of (c), and let (e,,) be a Hilbert basis for F selected
from Dom(H*).

(i) If f € Dom+/N and V,f € Dom H, for a.a. s then, by Bessel’s equality,
for a.a. s, HV,f = > (HYen,Vsf)e,. But this is manifestly a measurable
function of s, therefore f € VV(H.).

(ii) If H. is adapted and f € F satisfies DsD,f € Dom Hy for a.a. (s < 7),
then by another application of Bessel’s equality, for a.a. (s < 7),

Ips (1)H Dy D, f = 1r+ (1) Y (Hjen, Dy D-f)

n

which is a measurable function of (s, 7). Thus f € VP (H.).

(d) This is a special case of (c). O
The creation, number, annihilation and time integrals of an adapted Fock

operator process H. are given respectively by the actions:

ANH)f =8SHTf) 1w > (H,P.Dy, f)(ws))

SEw

N(H)f = S(HDf) W Z(HstDw(sf)(wS))

SEw

AH)f = LHPf) : w s /()OO(HSDsDw(Sf)(wS)) ds

T(H)f=LHPf): w— /O OO(HSPSDw(S F)(way) ds

with the following natural domains:
Dom AT(H.) = {f € VP(H.) : HF f is Skorohod-integrable};
Dom N(H.) = {f € VP(H) : HP f is Skorohod-integrable};
Dom(A(H.)) = {f e VP(H.)) : HP f is time-integrable};
Dom(T(H.)) = {f € VF(H)) : H” f is time-integrable};
Recall equation (5.1) defining the ex/t\ension of an adapted Fock operator pro-
cess H. to its maximally adapted form H.. From the remarks following Proposi-

tion 5.2, it follows that VQ(H.) = VQ(H.) and HOf = H?f for f € VQ(H.) and
@ = P or D. Therefore each of the quantum stochastic integrals is unaffected by
allowing the integrand to achieve its maximally adapted form:

A(H.) = A(H) (6.2)
for A= AT N, AorT.
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The following linear relations are clear form the definitions:
VeH +K)D>VeH)NVO(K.); VeAH) =V9(H); V9(0) = F;
AH. + K.)DA(H.)+ A(K.); A(AH.) = AA(H.); A(0) = 0;
where H. and K. are adapted Fock operator processes, A € C \ {0}, Q = P or D
and A = AT, N, A or T. Multiplicative relations between the quantum stochastic
integrals constitute the quantum It6 product formulae, to be described in the final
section.

Notice that each of the quantum stochastic integrals is associated with either
an adapted derivative or a projection, and with either Skorohod or time integra-
tion. It will considerably simplify the development of the basic theory if we forge
a unified notation to describe the integrals. Thus to each quantum stochastic in-
tegrator A we associate R € {S, L} as well as Q* € {P, D} as follows: (A, R, Q)
equals either

(A1, 8, P), (N,S,D), (A,L,D) or (T,L,P). (6.3)
Thus A is determined by the pair (R*, Q") and vice versa. The definitions of the
four quantum stochastic integrals are thereby unified:
Dom(A(H.)) = {f € VY(H.) : H? f is R-integrable}
A(H) =R(H?f)
where Q = Q*, R = RA and A = AT, N, A or T. They are frequently used in the

sequel.
The following identities are easily established.

Lemma 6.2- Let H. be an adapted Fock operator process, and let f € VR(H)),
where QQ = P or D. Then the following relations hold (a.e.):

Dyf,Pf € VO (I 4H.)
DyH? f = N y(s)H2 Do f + DH,Qs f
PHZ f = o y(s)HEPif + Ty oo( () PH Qs f
PHY f = HiQ:f.

In particular, g 4((s)(DeHE f)(w) gives a version of Tjg4(s)(HE Dy f)(w) which
is jointly measurable in (s,t,w). O

VI.2. Commutation relations

We next apply the commutation relations defined in I11.4 to quantum stochas-
tic integrals. This allows us to deduce adaptedness and martingale properties in
the next subsection. It is also the first step towards solving the problems raised
by It6 calculus approach to quantum stochastic calculus (see VIII.2).

In the sequel, A;(H.) denotes A(K.) with K, = Tjg 4(s)Hs.

Theorem 6.3~ Let H. be an adapted Fock operator process, and let f € VQ(H)),
where Q = Q" and A = AT or N. Then the following are equivalent:
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(a) f € DomA(H.)
(b) (i) Dif € DomAy(H.) for a.a. t;
(ii) t — Ne(H.) Dy f + Hi Q1 f is Ito-integrable.
When these hold, we have the a.e. identity

DiA(H.)f = Ae(H) Dy f + HiQ1f (6.8)

Proof

In view of (6.7), Proposition 3.11 applies to H?f. If f € Dom A(H.) then
H®f is Skorohod-integrable so ]l[o,t[(-)DtH.Q f is Skorohod-integrable for a.a. ¢,
and

DyS(H?f) = S{(D,HO f) + P,HP f,
which is square-integrable in ¢. By (6.5) and (6.7), f satisfies (b), and the a.e.
identity (6.8) holds. Conversely, if f satisfies (b) then, since (6.14) implies that
Ay(H)Dyf (w) = S§(HO D, f) = S(DH? f),

Proposition 3.11 gives the Skorohod-integrability of H® f - in other words f €
Dom A(H.). O

Theorem 6.4— Let H. be an adapted Fock operator process, and let f € VO (H.)
be such that (H.Q.f)(D) is integrable, where Q@ = Q* and A = A or T. Then the
conditions (a) and (b) are equivalent:

(a) (i) f € DomA(H.); and (ii) H.Q.f is time-integrable.
(b) (i) Dif € DomA,(H.) for a.a. t;

(ii) D:H.Q.f is time-integrable for a.a. t;

(iii) the maps t — A¢(H.)Dyf and t — L(DH.Q.f) are Ito-integrable.
When these hold we have the a.e. identity,

D,A(H.)f = Ay(H.)D,f + L(D.H.Q.¥). (6.9)

Proof

In view of (6.7), H? f(0) is integrable and so Proposition 3.12 applies. If
f € DomA(H.) and H.Q.f is time-integrable then, by Proposition 3.12, both
D.H Q fand D;H.QQ.f are time-integrable for a.a. ¢, and

L(DH®f) = D,L(HP f) = D,A(H.)f; L(DH.Q.f) = D:L(H.Q.f);

both of which are square-integrable in t. By (6.5) therefore, D;f € Dom A;(H.),
(6.9) holds and both A(H.)D,f and L(D;H.Q.f) are square-integrable in ¢t. Thus
f satisfies (b). Conversely, if f satisfies (b) then, by Proposition 3.12, H.Q.f
is time-integrable and, by (6.5) D;H2f = W 4(-)H2Dsf + D,H.Q.f, which is
time-integrable by (bi) and (bii), with time-integral A;(H.)D.f + L(D:H.Q.f),
which is Ito-integrable by (biii). Hence, using Proposition 3.12 once more, HY f
is time-integrable — in other words f € Dom(A(H.)), so that (a) holds. 0
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Proposition 6.5— Let H be an adapted Fock operator process, and let t > 0.
(a) If f € Dom A(H.), where A € AT or N, then P;f € DomA;(H.) and

(b) If f € Dom A(H.), where A = A or T, then 2t is time-integrable and
L(Z") = PA(H.)f (6.11)

where 2zt = (]I[O,t[(‘)H.QPtf + U oo[(VPH.Q.f), and Q = Q™.
(c) If f € F and P,f € Dom(A(H.)), where A = AT, N or A, then Pif €
Dom(A¢(H.)) and

(d) If A = N or A, then the subspaces Fy N Dom A(H.) and F; N Dom A4(H.)
coincide, and

A(H)P,f = A(H.)P;f (6.13)
whenever P,f € Dom Ay (H.).
Proof
Each of these commutation relations follows easily from Proposition 3.13 by
using (6.6). O

V1.3 Adaptedness and martingale properties

The next two results show that our definitions synchronize satisfactorily.

Proposition 6.6 —Let H. be an adapted Fock operator process, and let t > 0.
Then each of the operators Al(H.), Ny(H.), A¢(H.) and T,(H.) is u-adapted for
all u>t.

Proof

Let f € DomA;(H.) and let w > t. First note that, by (6.4), P,f, D, f €
V(Mo cop(-)H.). Since A, (Np(-)H.) = A¢(H.) and Ny oof(-) Pulpo () H.Q.f =
0. Theorem 6.4 implies that P,f € DomA;(H.) and P,A:(H.)f = A(H.)P,f.
Since T 4f(u)HuQuf = 0, Theorem 6.3 implies that D,f € DomA;(H.) and
Ay(H)Dyf = DyAy(H.)f for A = AT or N. For A = A or T, (6.5) implies that
D HRf = HYD,f for s < t. Therefore, by Proposition 3.12, ]1[07t[(-)H.QDuf is
time-integrable, so that D, f € Dom A(H.), and

A(H)Dyf = Lo(HODyf) = Li(DyHO f) = D Ly(H? f) = D, Ay(H.) .

This completes the proof. a

Theorem 6.7 - Let H. be an adapted Fock operator process. Then (Ay(H.))¢>o is
a complete martingale with closure A(H.), for A = AT, N or A.

Proof

Let ¢ > 0, let u € [t,00] and let f € Dom(E:[A,(H.)]). Then P.Dgf €
Dom(A,(H.)), the map 8 — lp«(B)P,Ay(H.)P,Dgf is square-integrable I' — F,
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and IE[A,(H.)]f(w) = (PAw(H.)PuDy, f)(wy)) for a.a. w. Thus, by Theorem
6.5(c), f € Dom(IE[A¢(H.)]) and IE:[Ay(H.)]f = IE4{A,(H.)|f. This shows that

Ey[Au(H)] C I [A(H.)], (%)
and so A.(H.) is a complete martingale, with closure A(H.). O

In view of Theorem 6.5(d), equality holds in the (complete) martingale inclu-
sion relations (x) in the cases A = N or A:

IE{N(H)|=IE{N:y(H.)]; IE]A(H)|=IEA;(H.)].
In other words the martingales IE.[N.(H.)] and IE.[A.(H.)| are exact.

VII. Restricted domains and adjoint relations

In Section VIII we shall see and exploit maximality of the domains of definition
of the quantum stochastic integrals introduced above. In this section we introduce
restricted domains for quantum stochastic integrals, which lead to good adjoint
relations, and also It6 product relations to be proved in Section IX.

Let H. be an adapted Fock operator process and recall the definitions (6.1)
and (6.2). We define the restricted quantum stochastic-integrals #A(H.) as follows:

Dom BA(H) = {f e V9(H.) : H?f is absolutely R-integrable},

where Q = Q* and R = R” are as given by (6.3), and absolute R-integrability is
defined in Definition 3.1.
A simplifying feature of restricted quantum stochastic-integrals is the inclu-
sions:
Dom A, (H.) > Dom ®A(H)

for s < t. Another is that the processes t — £A;(H.) are continuous (see below).

Lemma 7.1- Let f € DomBA(H.) where H. is an adapted Fock operator process
and A is a quantum stochastic-integrator, and let Q = Q. Then H.Q.f is an
adapted Fock vector process, which is

o [té-integrable if A = AT or N;
e absolutely time-integrable if A=A or T.

Proof

Since f € VQ(H.), s — H,Q.f = Trs(0)H,QsDyf is a measurable map
R, — F. Since H,Q,f = Ir,H? f, H Q.f is (absolutely) Skorohod-integrable if
A = A' or N, and is absolutely time-integrable if A = A or T. Since H.Q.f is an
adapted Fock vector process, the result follows. O

Lemma 7.2 Let X = BA(H)) for some adapted Fock operator process H. and
quantum stochastic-integrator A. If f € Dom X then

(i) P.f € Dom X; for allt > 0; (ii) Dyf € Dom X; for a.a. t.
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Proof
Let z(w,s) = |[[H2f(w)||, so that x is R-integrable, where Q@ = Q* and
R = RA are given by (6.3). By Proposition 3.13, 1| 4{(-) P;z. is R-integrable, and
by (6.5),
To,41(5) Pecs (w) = Npo g (s) 1 HZ Pef (W)
so that P,f € Dom #A;(H.) for each t > 0. Using Proposition 3.12 and (6.6)
instead, the above argument yields (ii). O

Proposition 7.3— Let H. be an adapted Fock operator process, and let A be one
of the quantum stochastic-integrators. Then

(a) Ay (H.) is u-adapted for each u > t;

(b) if A = AT, N or A then BA.(H)) is a complete martingale with closure
RAH).

Proof

Let X = BA(H.) - both as operator and as process — let (R, Q) be the pair
associated with A according to (6.3), and let ¢ > 0.

(a) In view of Proposition 6.6 it suffices to show that Dom(X}) is a u-adapted
subspace, for each u > a. Let f € Dom(X;), then the map k£ : (w,s) —
L +(s)||HE f(w)|| is R-integrable. By (6.4), (6.5) and (6.6), if v > u > ¢ then
Puf; va € VQ(]I[O,t[()H)7

o, ()| HE Puf ()| = (Puks) (W) < ks(w), 1

T,y () (HZ Do f) W)l = (Doks) (w), 2
for a.a. (w,v). By (1), P,f € Dom(X;), and by (2), together with Propositions
3.11 and 3.12, D, f € Dom(X;) for a.a. v. Thus Dom(X}) is u-adapted.

(b) By (a), (Xs)s>0 is an adapted Fock operator process so that, in view
of Proposition 6.7, it suffices to show that Dom(/F;[X.]) C Dom(IE[X;]). Let
f € Dom(IE;[X.]), then P,D,f € DomX. C Dom(X;) and, since A.(H.) is a
complete martingale with closure A(H.),

PtXtPtDTf == PtAt(H)PtDTf == PtA(H)PtDTf == PtXPtD.,—f

for a.a. 7 > t. Therefore 7 — lp:(7)P, X P D, f is square-integrable — in other
words f € Dom IF;[X;]. This gives the required inclusion. 0

Proposition 7.4— Let H. be an adapted Fock operator process, and let A be a
quantum stochastic-integrator. Then the process BA.(H.) is continuous.

Proof

Let X. = BA(H), let R = R* and Q = Q* according to (6.3), and let
f € Dom X. Writing k for the map (w, s) — ||H? f(w)||, we have

IXuf = Xefll = IR (HE )| < R (k).
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Thus, if A = AT or N,

1Xuf — XS] S/tu/dw{ks(w)}2ds+/tu/tu/rks(wut)kt(wUs)dwdtds,

which is finite by Proposition 3.2. If A = A or T, then

||Xuf—th||S/F{/tuks(w)ds}2dw<oo.

Thus continuity follows in all four cases by Monotone Convergence. ad

Our next result is an extension of the First Fundamental Formula for quantum
stochastic calculus ([Par]) beyond exponential domains.

Proposition 7.5 -

(a) Let H. be an adapted Fock operator process. If f € Dom ®A(H.)) then for
all g € F, the map

(8, ,6) — ]11"3 (,6) <HSQSDﬁf, RsDﬂg> (71)

18 integrable and
| [ i (B)H.QuDs . RDyg) dids = (A1) .. (7.2)

Here (Q,R) = (P,D),(D,D),(D,P) or (P, P), respectively, for A = AT, N, A
orT.

(b) Let (H.,H.T) be an adjoint pair of adapted Fock operator processes. If f €
Dom A(H.) and g € Dom AT(H') (with (AT)T = A,NT = N, (A)T = AT and TT =
T ) and the map (7.1) is integrable, then

(M(H.)f,9) = (f,AT(HT)g). (7.3)

Proof
In case (a) straightforward calculation leads to the estimate

/ [ 1 (BIH.Q.Dpf, R Do)l dpds < [ w)la(w)]]. do

where

h(w) =D I(HyQs Dy, f)(wa)l

SEw

if A= A" or N, and

hw) = / T HQuDo f) (w0 ds

if A=A or T. Similar calculation also reveals the identity (7.2).
(b) If (7.1) is integrable then

(HsQsDuy, )(ws))s (RsDu,9)(ws))) = ((QsDuy, £)(ws)); (HIRs Doy, 9) (wy)))
is an identity of integrable functions of (w, s), which integrates up to (7.3). O
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Corollary 7.6 — Let (H, H) be an adjoint pair of adapted Fock operator processes.

(a) Then (BA.(HT),BAT(H.)) is also an adjoint pair of adapted Fock operator
processes.

(b) If BA(H.) is densely defined, then (RA(H.))* > AT(HT).

The next result is an Integration by Parts Lemma which contains the essential
part of one form of the quantum It6 product formula described in the final section.
It is an extension of the Second Fundamental Formula for quantum stochastic
calculus ([Par]), beyond exponential domains.

Theorem 7.7 Let F* be adapted Foqk operator processes, (et A? be quantum
stochastic-integrators, and let X' = BAY(F?), for i =1,2. If f* € Dom X?, then

(X1f X2 f2 / /npt FlQ;Dﬁfl,XfR,}Dﬁﬁ)

+ (X} RIDg ', FRQIDpf?) +e(R', R2)<F£Q%Dﬁf1, F2QiDpf?) | dBdt,

where € equals 1 if A*, A% € {AT N} (R' = R? = D), and equals 0 otherwise, and
the pair (R, Q%) = (RN, QM) is defined as in Proposition 7.5.

Proof

First note that, since X* is a restricted domain quantum stochastic-integral,
ft € Dom X! for each u and, by Lemma 7.1, F!Q¢f? is Ito6-integrable if A* = AT
or N and is absolutely time-integrable if A® = A or T. Moreover, successive
application of Theorems 6.3 and 6.4, together with Theorem 6.5 gives, for R = P
or D, that D, f* € Dom X, so Dgf* € DomXiﬂ and thus R;Dgf* € Dom(X}) for
a.a. u, B and (t < B). Therefore, since also f¢ € V@i (F?), each of the expressions
in the integrand is a.e. well-defined.

Let R = S if A* = AT or N and £ otherwise. For the rest of the proof we
divide the possibilities into four cases, and it is convenient to remove the clutter
of superscripts from the argument by substituting as follows:

F:F15G2F27X:X17Y2X27f:flag:f2’
Q = QI,QI — Q2,R: RI,RI — R2,R: Rl,RI — R2.
We therefore have to estblish the identities

(Xf,Yg) / / Ire (8){(F,Q:Ds f, YiRi Dag)

+(XeRDpf, GiQiDgg) + E(R, R')(FyQ:Dg f, GeQyDpg)} dB dt. *
We have
(X[, Yg) = (R(FO[),R' (G2 g)),
in which F€ f is absolutely R-integrable, and G?'g is absolutely R/ -integrable.
Case (a): A1, A% € {A,T}. Then R = R' = P, F®f and G? g are absolutely time-

integrable, and Fubini’s Theorem ensures both the integrability of the function
®: (w,t,u) — (F2f(w), G (w)), and that its integral is (X f,Yg). Integrating &
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first over the region {t < u} using the u-adaptedness of X,,, the a.e. reproducing
property (3.8), (6.5) and (6.7), gives

[ [ 0xus),68 gt dudo
_ /Ooo /F (XuPuDuy, F)(@a))s (PuGQ Do, 9)(way)) dw du

:/0 Aﬂrt(ﬂ)(XtRéDﬂf,GtQ;Dﬁg> dpdt.

The integral of ® over the region {u < ¢} may be obtained by the same argument
via complex conjugation, and the sum of the two agrees with (x).

Case (b): A' € {AT N}, A2 € {A,T}. Then R = D and R' = P; F9f is
absolutely Skorohod-integrable and G® g is absolutely time-integrable; moreover,
Fubini’s Theorem together with the f-Lemma ensure both the integrability of the

function ¥ : (w,t,u) — (F2f(w), GY (wUt)), and that the value of the integral is
(X f,Yg). Integrating ¥ over the region {¢ < u}, and arguing as in Case (a), gives

//FZ“M )(F2 f(a\t),GY (@) dadu

tEa

- / | (Xuf(@).6E (@) dard

=/0 A]lr‘t(ﬂ)(XtRéDﬂf, GtQiDgg) dpdt.

Integrating ¥ over the region {u < t} we have, since D;Dgg € Dom(Y;) for a.a.
(t < B),

/O h / duw / 1o o () (F £(), (G Dy Doy 9) (1)) df do
- /O N /F (P Doy, ) (wiy), (YeDs Do ) (wy) o dt

- /O /F I+ (8)(FiQ:Dg £, YiRe Dyg) dB dt.

Therefore the result holds in this case.

Case (c): A' € {A, T} and A € {AT, N}. This is simply the complex conjugate
of Case (b).

Case (d): A',A? € {AT N}. Then R = R! = D so that e = 1, F¥f and G¥g
are Skorohod integrable and the Skorohod isometry (3.1) ensures that both of the
maps ® : (w,t) = (F2 f(w), G2 g(w)) and T : (w, t,u) — (F2 f(wUu), G g(wUt))
are integrable, and also that the sum of their integrals is (X f,Yg). The integral
of ® is simply fooo Jr Ir: (B)(FiQ¢Dg f, G:Q; Dpg) dB dt by the f-Lemma. Since
D,D. f € Dom Xy for a.a. (u < 7), the integral of U over the region {t < u} is

0.u[(){(F2Dy Dy, f)(way), QY g(w Ut)) dt dw du
Lo

31



S. Attal and J.M. Lindsay

_ /Ooo /F " No,u(){(F2DuDay, f)(auy \ 1), (GZ Do, 9) (o)) dovdu

tEau)

— /O'OO /F<(XuDuDa(uf)(au))7 (PuGSIDa(ug)(au)» do du

_ / Ipe (8)(X:D: D f, G2 Q. Dyg) dB dt.
0

Again the integral of ¥ over the region {u < t} is given by symmetry, and
yields the first term in (). Thus the result holds in this final case too. O

VIII. Relation to previous approaches

In this section we show that the integrals defined in the previous two sections
are consistent with previous formulations.

The exponential vector formulation of quantum stochastic integrals is sub-
sumed by each of the noncausal and the It6 calculus formulations. Thus we do
not make it explicit.

VIII.1. Noncausal approach

Let H. be a Fock operator process. Recall the notation at the beginning of
Section VI. The noncausal quantum stochastic integrals are defined as follows:

NOAVH)f=S(H.f); NYN(H)f = S(HV.f);

NCA(H.)f:/OOOHSVSfds; NCT(H.)f:/OOOHSfds;

with respective domains,
Dom(NYCAT(H))={f € V(H): H.f € DomS}
Dom(NON(H))={f € VV(H): HV.f € Dom S}
Dom(NCA(H)) = {f e VV(H.) : HV.f is Bochner-integrable}
Dom(YYT(H.)) = {f € V(H) : H.f is Bochner-integrable}.
The relationship between these integrals, when applied to an adapted process

H., and our integrals, is the same as that for the original quantum stochastic
integrals (coherent vector-formulation).

Theorem 8.1 - Let H. be a Fock operator process. If H. is adapted, then
NCA(H) c A(H.) for A = AT or N;
NOAH) c BA(H.) for A=A orT.

Proof

Since, for a map x : I' x IR, — Hyp, = is Skorohod-integrable if z € Dom S,
and z is absolutely time-integrable if z is Bochner-integrable, the result follows
immediate from Proposition 6.1. O
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VIII.2. It6 calculus approach

Let F., G., H. and K. be four adapted Fock operator processes which are
measurable and have common domain V| where V is a subspace of F containing
Vo ® E(M) for some admissible pair (Vp, M), and which also satisfy the local
integrability (and implied measurability) conditions:

t
/ (IEPFI? + |G D fI2 + 1 Do fll + 1K Po fll ds < 00, (8.1)
0

for all f € V, t > 0. In [A-M], an adapted Fock operator process X. with domain
V', is denoted by

t t t t
/FSdAI-i—/ Gsts—i—/ HsdAs—i-/sts
0 0 0 0

provided that, for each f € V,t > 0,
(i) D.f € Dom(X,) for a.a. s; Lo 4(-)X.D.f is square-integrable;

[e%¢) t
(11) th :/ Xs/\tDsf dXs + / {FsPsf + Gstf} dXs
0 0

t
+ f {H,D,f + K,P,f} ds. (8.2)
0

When V = V5 ® £(M), this is equivalent to X; being the corresponding
Hudson-Parthasarthy quantum stochastic-integral, and under various conditions
the representation (8.2) is valid on larger domains V. This is exploited, in partic-
ular, in the QS-integral representability of regular semimartingales ([At1]). How-
ever, since the Fock operator process X. appears on the right hand side, (8.2)
represents a kind of Fock space-valued stochastic differential equations. In other
words, the Fock operator process X. is only defined implicitly through (8.2). It
was not known in general whether these equations had a solution; nor whether any
solution it might have is unique; and moreover, it is not known what the correct
(maximal) domain is for a Fock operator solution process. We shall see that our
integrals completely solve all three of these problems.

For A = AT, N, A or T, define Q; = P;, Dy, D;, P, respectively (as in VI.1)
and r; = X¢, Xt t,t respectively. If (H),, is an adapted process of operators on
F then equation (8.4) for the process X. = A.(H.) reads

[e’s) t
th :/0 XsAtDsdes+/() Hstdes- (A(H))

We wish to give a meaning to the sentence “X. is a solution to equation (A(H.))”.
A workable meaning would be the following :

For each f € F, if either side of the equation (A(H.)) is well-defined then
both sides are and they almost everywhere equal.

That is, a process X. is said to be a solution to (A(H.)) if
a) f € Dom X; if and only if i) Dsf € Dom Xp¢ for a.a.s > 0,
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ii) Qsf € Dom H; for a.a.s < t,
iii) [ || XsneDs f]|? ds < o0,
iv) [7[|HsQsf]|> ds < oo for A = AT, N,
[T | HsQs f] ds < oo for A = A, T;
b) for all f € Dom X; equation (A(H.)) holds true.

Lemma 8.2 If X. solves (A(H.)) then X. is an adapted process of operators.

Proof

Let f € Dom X;. Let g = P;f. We have D;g = 0 for a.a.s > tand D;g = D, f
for a.a.s < t; furthermore Psg = Psaif. It is thus clear that g satisfies the
conditions a) i)-iv). That is, g € Dom X;. Now, let h = D, f for some u > t. We
have h € Dom X; by applying condition a)i) to f. We have proved that Dom X}
is a t-adapted domain.

Furthermore, by equation (A(H.)) we have

t t
H&f=/2ukwm+/fuhwm=&ﬂf
0 0

and
D Xif = Xe Dy f
for a.a.u > t. We have proved that X; is a t-adapted operator. O

The following theorem proves equation (A(H.)) always admits a solution, that
the solution is always unique (up to domain restrictions) and that the maximal
(in terms of domain) solution is our A .(H.).

Theorem 8.3 — For any adapted process H., any integrator A, the process A (H.)
solves equation (A(H.)).
Any other solution X. of (A(H.)) is such that X; C BAy(H.) for all t.

Proof
Let us first prove that ®A.(H.) solves the equation (A(H.)). Let X; =
RAL(H.), for all t € IR,. By Theorem 6.3, 6.4 and by Lemma 7.1 we have that
f € Dom X, if and only if it satisfies conditions a)i)-iv). Furthermore, integrating
equations (6.8) and (6.9) with respect to dy; show that X,f satisfies equation
(A(H.)). This proves that X. solves equation (A(H.)).
Conversly, suppose that X. is an adapted process of operators which solves
(A(H.)). Let f € Dom X;. We have
0 A=At N
[&ﬂ@_{ﬁmﬁJWMsﬁAzAT
and for a.a.o={t1 < ... <t} #0
[X:f](0) =[Xt,neDr, fl(t1s - tat)
N { [Hy, Q¢ f1(t1, - tn—1) Mo 4y(tn) if A=AT N
[IH Qs f)(tr, - ., tn) ds ifA=A,T.
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But, we can now apply the same formula to [X; AeDy, fl(t1,. .. th—1) :
(Xt atDe, fl(t1, .-« stn—1) = [Xt, _ atDt,_ Dy, fl(t1, ..., tn_2)
[Ht,_,Qtoy De, fl(t1, - tne2) Mo g (tn—1) if A= AT N
{ Jo"[HsQsDy, f1(t1, ... tn_1)ds ifA=AT.
And so on, we finally get, putting ¢,,+1 =t and o = 0,
[Xef1(0) = [XeyatDy, - - - Dy, f](0)
Zizt:gt_n [Hy, Qi Dy, ... Dy, fl(t1, ... ;) if A= AT N
{ Sy He Qs Dy - Dy, fl(tyy - ) ds i A= AT

_ Zzegi [HstDa(sf](os)) lfA:ATaN
S o JU T He Qs Dy - Dy, fl(tr, - t)ds i A= AT

{ > ece [HiQs Do, fl(0)) if A= AT N
JolHsQs Dy fl(05)) ds  if A= A,T.
This proves that X;f = A¢(H.)f for all f € Dom X;. O

IX. Quantum It6 formula

In this section we shall show that on their restricted domains at least, our
quantum stochastic-integrals behave as we would wish under operator multiplica-
tion. Products of quantum stochastic-integrals are given by integration by parts
with a “correction” term when Wick ordering of the integrators has been violated.

Theorem 9.1 Let X = BAYF) and Y = BA%(G) where F and G are adapted
Fock operator processes, and the ordered pair (A, A?) is either (N, AT), (N, N),
(A,N) or (A, A"). If W is the adapted Fock operator process given by

Wi = BAHFY) + BAZ(XG) + BA(FG), (%)

where A is respectively AT, N, A or T, then Z = XY — W is a restriction of the
2€T0 process.

Proof
By Theorem 8.2 it suffices to show that the equation

t
th _/ Zstdes =0 (O)

0
is well-defined and valid for all f € F; NDom Z;. Therefore let f be such a vector;

let R denote time or Itd integration if respectively A = A or N; and let Q = P
or D if respectively, A2 = AT or N. By Corollary 8.6, W satisfies

t t
Wtf_/o WspsdeS:/O X,GsQ.fdxs + RE(FY.D f)+REFGQ.f). (1)
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Moreover, by Corollary 8.6 and Theorem 6.3 we have

t
XY, f = /0 X,D,Yif) +Rb(F.D.Y )

t
_ /0 X {YeDof +GoQuf}dxs + REAFYDL+GQFY) ()

with all the implied domain conditions holding. But the It6-integrability of the
process X.G.Q.f and the R-integrability of F.G.Q.f on [0,t[ imply that YsD,f €
Dom X for a.a. s € [0,¢[, and that X.Y.D.f is It6-integrable on [0, ¢[, and allow
us to write X;Y;f as a sum of four integrals. Comparison of (1) and (2) therefore
reveals that the equation (0) is indeed well-defined and valid. 0

Theorem 9.2 Let X = BAY(F) and Y = BA%(G) where F and G are adapted
Fock operator processes and A' and A? are quantum stochastic-integrators, and let

W = BAYFY.) + BA?2(X G) + e BA(FG).
Then, for all g € DomY NDom W,
g € Dom(XH)* and (XT)*Yg=Wy,
provided that F has an adapted adjoint process F1 such that XT = BALT(FT)
is densely defined. Here e\ is AT, N, A or T if the ordered pair (A(l),A(2)) 18
respectively (N, AT), (N,N), (A,N) or (A, A"), and is zero otherwise.
Proof
If g € DomY NDom W then, by Theorem 7.7, Proposition 7.5 and Corollary
" (XTf,Yg) = (f,Wg) V f€Dom(X").
Since X1 is densely defined, this implies that Yg € Dom(XT)*, and
(XT)*Yg = (AY(FY) + A*(XG) + A(FQ))g.
The result follows. O

As a consequence of this theorem we have the quantum Ito formula
BAYF)RA?(G)g = (BAYN(FY) + BAY(X.G) + eRA(FQ))g,

where X; = BAL(F), Y, = BA?(G) and €A is the Ito-correcting quantum stocha-
stic integrator, whenever g lies in the domain of both left and right hand side
operators.
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