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1 Introduction

A local martingale&Z has thepredictable representation properfiyencefortiPRP)
if for any local martingaléM there exists a predictabl&;integrable proceskl
such that

t
Mt=M0+/ HedZe Wt >0.
0

This concept is of considerable intrinsic interest; as i8 kewn, it is equivalent
(when the initial filtration is trivial) to the law of being extremal [23]. The PRP
is also important for many applications, in areas such aifilg, control theory
and mathematical finance; the ideas in [4] (which concema$dimer topics) and
[1,7] (which concern the latter) may all be applied to the tingales discussed
below, for example.

A strictly stronger notion [9] than this is thehaotic-representation property
(henceforthCRP). SupposeZ is a normal martingale, i.eZ andt — Z? —t are
both martingales, and recall that the iterated stochastiégrals

/ f(ty,... tn) 02, - 02,
{0<t1<--'<tn}

are well defined for alh > 1 and deterministic, square-integrable functidns
If these integrals, together with the constant functions,dense in.?(Q,.#,P)
(where(Q,.7,P) is the underlying probability space and is generated by)
thenZ has the CRP. It is simple to verify that this implies the PRE s, if the
CRP holds, there exists a predictable procgssich that

d[Z) = B dZ +ct. 1

This is known as thetructure equatioffor Z. The following question now presents
itself: given a normal martingal@ which satisfies (1), does it have the CRP?

If @ is deterministic then Dermoune [6] afanery [8] have shown that the
CRP holds an@ has independent increments; converselig a martingale with
independent increments which satisfies (1) then the prabesgay be taken to be
deterministic [22].

The next simplest case is whé@nis affine @ = a(t) + 3(t)Z_ forallt > 0,
wherea and are real valuedEmery proved [8] that ifat = a and 8 = b for
constants andb then any martingal which satisfies (1) is unique in law and, if
b € [-2,0], has the CRP. Russo and Vallois [20] considered the caseswatend
B are locally bounded and they established boundednesshivhjidies the CRP)
if a=0,B(t) €[-2,0 and/;|B(s)| *ds< o forallt > 0.

In this article, it is demonstrated that uniqueness in lad tre CRP hold
whenever is locally bounded an@(t) € [-2,0] for allt > 0. This is established
by extending a comparison argument of Parthasarathy [@3jhow that certain
vectors are analytic for certain associated multiplicatiperators, and then by
using an idea of Kurtz [11], which allows the CRP to be dedutenh the self-
adjointness of these operators.

In fact, a stronger result is established, by lettiffg, the initial o-algebra
for Z, be non-trivial and working with structure equations wherend 3 are
L*(%p) valued. This allows proof of (an appropriate version of)dtreng Markov
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property for these martingales (callédema martingalesextending terminology
due toEmery).

A variant of the Russo-Vallois result [20, Proposition 4igljalso obtained;
the requirement thar = 0 is removed but a stronger condition is imposed3on
namely that

sup{|1+B(s)|:se€[0t]} <1  Vt=0,

i.e., B is strictly bounded away from the endpoints of the intefv&, 0] on any
compact subinterval gD, o].

The working below takes place in the Guichardet interpiataif Boson Fock
space which, as Meyer observed, serves as a universal spabe fnvestigation
of normal martingales and is therefore a completely clasgibject. Although
many of the ideas leading to the results herein came fromtgomastochastic
calculus, this article makes (almost) no explicit use ofthtechniques and may
be read by any probabilist. (The sole exception is the pré&foposition 29, for
which a purely classical demonstration seems to be lagking.

Section 2 describes Guichardet space and the chaoticsesyiegion theorem
of Kurtz; some examples of Azéma martingales are given gii@e 3. The main
results are in Section 4, together with two conjectures,Zextion 5 is concerned
with the strong Markov property.

1.1 Notation and Conventions

The expressioftp has the value 1 if the propositidhis true and 0 if it is false. The
symbol = is read as ‘is defined to equal’; the &t :=[0,[, Z, :={0,1,2,...},
N:={1,23,...},

P:={ocCR,:|0|<»} and Pn:={0 CR;:|o|=n} VneZy,

where|A| denotes the cardinality of the s&t Singleton sets are identified with
their elements, se € P; for all se R... If s, t € R} thensAt := min{s;t},

Oy »= 0Nlst] andagy := 0 N[0,t]. The quantity 8 has the value 1, as has any
empty product; an empty sum has the value 0. Thepaces considered herein
are complex in general, with the notatibP(-; R) distinguishing the real versions.

2 Preliminaries

Definition 1 Let Z = (% )i>0 be anormal martingaledefined on the probability
spacegQ,.Z,P),i.e., amartingale with cadlag paths such ttZgt—t);>o is also a
martingale, both with respect to a filtrati@s# )i~o which is right continuous and
such that%y contains allP-null sets; it is assumed throughout that thelgebra
Z is generated b¥. For alln € N the linear map

In: L(A%LA(F0)) = L(F); fro [ Fltrsee o) &2y - 02,

is a well-defined isometry, wher®" := {(ty,...,tn) e R} it < --- <ty } andlp(f)
is obtained by extending the obvious definition when

f(tl, R ,tn)(w) = 1116[31@1] s J-tne[an.bn] fo(w) Vi,...,th € An, we Q,
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wherea; < by < --- < a, <bpandfg € L2(.%) (cf. [5, XXI.1]). Let =g := L?(%),
letlg: Zo — L?(.%) be the inclusion map and let

[ee]

Zni={In(f): f €L?(A"L3(F))} VneN and = =Py
n=0

thechaos space is a closed subspace (indeed L&.Zo) submodule) of 2(.%)
(since =y, is orthogonal ta=,, if m#n). If = = L2( Z ) thenZ has thechaotic-
representation propertghenceforth, CRPgonditional on.%q (or theCRP at time
0, in Emery’s terminology [9]). If%y is trivial thenZ has the CRP in the usual
sense.

Notation 2 Recall Guichardet’s interpretation @f, the Boson Fock space over
L2(R,): @ = L?(P), whereP is the class of all finite subsets Bf, and

1117 = [ 11(0)Pdo = [F@F+ 5 [ [ftn....t) kst

forall f € ®. (Each element d?, may be regarded as a poinf®? with increasing
coordinates, andP,, inherits its measurable structure from this; a Aet P is
measurable if and only if,(ANPy) is measurable for afl > 1, where the mapping
In: Pn—= R {tg <--- <t} (t1,...,tn).)

Let @ := L?(P;L?(%)) and note that

Uu:=z—o; (UF)(0) = fo, (UF)(0) = (f|a|ol‘a‘)(0) VYo eP\Py, (2)

whereF = S In(fn), is an isometric isomorphism.
The exponential vectoin @ corresponding tai € L?(R. ) is the function
m: P — C; my(0) = [[seo U(s) andU ~1rg, = &(u), theDoléans exponential

1+/ U] dz, = 1+z| (M),

where a predictable version is takerntef E[£(u)|.%;] and the function
U (g, tn) o U(ty) - Uta) € LA(AT)

for all u € L?(R,). The linear span of the exponential vectors corresponding t
bounded functions with compact support is denefggand is dense .

Definition 3 LetZ be a normal martingale and, for ali 0, let
Z:DZ)={FeZ:(Z—Z2)Fe=}C=—=,F— (Z—-Z)F.

Note thatZ, is symmetric and closed. ({F)n>1 € D(Z) is such thaf, — F and
ZiFy — G then, passing to a subsequerieg,— F and(Z — Zo)Fn, — G almost
everywhere, s6Z — Zo)F = G. HenceF € D(Z) andZF, — ZF, as required.)
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Lemma 4 If (M,.#, ) is a finite measure space and M — R is .# measur-
able then the operator

{(GelX(#):FGell’(#)y CL2( M) — 2 M), G—FG
is self adjoint, and is bounded if and onlye$s sup|F (m)| : me M} < co.

Proof This follows from [17, Proposition VIII.3.1] and, for the fih statement,
the spectral-radius formula [17, Theorem VI1.6]. O

The following theorem is due to Kurtz [11, Théoreme 8.1 (frivial .%o and
Zp = 0; the extension is straightforward).

Theorem 5 (Kurtz) The martingale Z has the CRP conditional &y if and only
if Z;, as given in Definition 3, is self adjoint for altt O.

Definition 6 The notationF : R, — L%(%) (where¥ is a sube-algebra of%)
means that the proceBs R, x Q — C is measurable with respect to the product
o-algebraz(R,) ® 4, where(R..) denotes the Boret-algebra ok, and
F(t): Q — C; w+ F(t,w) is such thaiL[|F (t)|] < « for allt > 0.

Definition 7 The normal martingal& is anAzZma martingaléf there exist pro-

cessed, B: R, — L?(.%p;R) such that the followingtructure equatioris satis-
fied:

1Z) = /0 (AS) L B(SZe )dZstt VL0, 3)
where[Z] = ([Z]t)i>0 is the quadratic variation &; the shorthand notation
dZ]; = (A(t) + B(t)Z-) dZ +dt
is also used. Of most interest are structure equations dbthe
dZ]s = (a(t) + B(t)Z-) dZ +dt, (4)

wherea, 3: R, — R are Borel measurable.

3 Examples
Let Z be an Azéma martingale wiffy = 0 which satisfies (4).
Example 8If B =0 anda is constant then eithem = 0, in which caseZ is

Brownian motion (a theorem due to Lévy [16, Theorem I1.38)) a = a # 0,
soZ is a compensated Poisson process of the form

Z =a(Nz—t/a®)  Vt=0,

whereN is a Poisson process with intensity 1 and unit jumps [8, p.B8Ese
processes are well known to have the CRP.
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Example 9If B =0 anda is any Borel-measurable function th&ias independ-
entincrements and may be realised as followd! is a standard Brownian motion
andP an independent Poisson point proces&®qrwith intensitylg ) .o dt/ a(t)?
then

t
Z‘:/o lygoMe+ M VE>0,

whereM is a purely discontinuous martingale with jumps at the eftP such
thatAM; € {O,a(t)} for all t > 0. This explicit construction is due t&mery [8,
Proposition 4], who has demonstrated that uniqueness iatalthe CRP hold in
this case. (See also work of Dermoune [6] and Utzet [22].)

Remark 10If Z has independent increments then, by [22, p.409, Commeatair
du Séminaire], the procesa (t) + B(t)Z_ )0 is equal almost everywhere (with
respect to the product of Lebesgue measur®orandP) to some deterministic
process. From this, it is a straightforward exercise to shivat 3 = 0 almost
everywhere o, .

Example 11If o =aandp =bthenZ is an Azéma martingale of the type studied
by Emery [8, Section (e)]; existence and uniqueness in lawshfuidall a, b € R,

and ifb € [-2,0] thenZ has the CRP. There are two important examples (as well
as those given above) with explicit descriptions # 0 andb = —2 thenZ is the
parabolic martingalgesuch thaz? =t for allt > 0; if a= 0 ando = —1 thenZ is
thefirst AZma martingalewhich may be realised by taking a standard Brownian
motionW and setting

Z =signW)/2(t—G)  Vt>0,
where sigiix) := 10— 1< for all x e R andG; := sup{s € [0,t] : Bs = 0}.

Example 12If a(t) =1—t forallt > 0 and8 = —1 thenZ is the classical mar-
tingale associated to the monotone Poisson process [g]isthinique in law and
has the CRP. The proce¥s= (Y; := Z +t)i>0 has many similarities to the first
Azéma martingale: it is determined by the level get= {t > 0:Y; = 1} (which
is almost surely non-empty, compact, without isolated {miof zero Lebesgue
measure and of Hausdorff dimension no more thaR) Together with choices
either to increase or to decrease after each tim# inThe sample paths of this
process have the explicit form

Yo=-W,(—exp(—1-t+G))  Vt=0,

where G; ;= sup{s € [0,t] : Ys = 1} € {—»} U]0,t] andW, is one of the two
branches of the Lambew function which take real values. (Recall that is

the many-valued inverse to the complex function z€.) More information on
this process may be found in [3].

Example 13If a =0 andf: R, — [—2,0] is Borel measurable and such that
fé |B(s)|"1ds < o for all t > 0 thenZ has locally bounded trajectories and so has
the CRP; this is a result of Russo and Vallois [20, Propasiia].

Example 14Taviot has proved [21, Théoréme 4.0.2] an existence #marhich
gives a solution to (4) itr and 3 arecaglad, i.e., left continuous and with right
limits everywhere.
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4 Results

When.%y is trivial, the following result may be derived from the chiadabanov
formula of Privault, Solé and Vives [15, Theorem 1].

Lemma 15 Let Z be an AZma martingale such thapZ L™ (.%o) which satisfies
(3) and suppose ¥ Ois such that A and B araniformly bounded ono,t], i.e.,

|Allot :=ess sup|A(s,w)| :s€ [0,t], € Q} <o and |[|Bflet < o

(where the essential supremum is with respect to the prarfuabesgue measure
on[0,t] andP). If n € Nand fe L2(A"L?(%)) then

(Z = Zo)In(f) = In-1(f") +In(f0) + Insa(f") € =, (5)
where  := 0, A(s) 1= A(S) + ZoB(S), By (S) 1= 1501 B(S),
fi (ta,...,tho1) 1=

n—-1 yat n—1
/ rL l+Bt] t| tl,...,tk,l,S,tk,...,tn_l)dS
1/\t|

tk—

+ f(tl,...,tnfl,S)dS,
th—1 At
n
f(ty, ...t zltkem (t) (1+By(t)) f(ts, ..., t),
|=k+ 1
n+1 n+1 N
fi (e, .. thy1) zltke[Ot] |_| (1+By(t)) fte,. -t thya)

and(ty,...,&,...,thr1) is the n-tuple obtained by removingfitom the n+ 1-tuple
(t17 s 7tn+l)-

Proof First, observe thaf,” € L2(A"%;L2(%)), f € L2(A™;L3(Fo)) andfi™ €
L2(A™LL%(%)), with

I < N2+ [Bllog)™ 2] £, (6)
HE 1< A oo (14 [1Bles)™ I 1] ()
and ||| < (n+1)(L+ Bllot)™ 2| . ®)

Next, letly(f) = [5° GsdZs, i.e.,Gis a predictable version of

th 10}
th ’_)/ / (tr; ot -z, =Ino 1(f("t”)tn])’
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wheregy (ta, ..., t) '= 1y cjoy9(ta, . ... ) forallg e L?(A%),orG= fif n=1.By
the mtegratlon by-parts #ormula for semimartingales,

(2t — Zo)In(
t
_/ / Gr er dZs+/ S/\t Gsts+/(J Gsd[z]s
_/ / G,erdZs+/ Gsdzs+/ Geds

+ [0 By(9) Zioy — 2065

since(Z - )r>ois predictable, the process- (1+ By (s))Zsut)— Gsis a predictable
version ofsi— (14 By (s))ZsntGs. Thus, ifn=1 then

1 ~
@~ 2oh(h) = [ 1©8s+ [ 1c00Aty) f(t) a2,
+ /A , (Lo f (1) + Ly cog (14 By (t2)) f(t2)) dZ, dZs,,

as required. Now suppose that (5) holds as claimed for somel; from the
above,

(Z — Zo)Insa(f) = vt L. .eon f(ty,. o tap1) dZy -+ dZy, Oltnia
i J-tn+1e[0t]A(tn+l) f(ta,... thy1) 02, -+ dZ
t e L, e f(ty, s thpa)dZy - dZ
+ /0°°(1+ By (S)) (Z(snt)y- — Zo)In(f (-, 5)g) dZs

and this final term is the sum of three integrals:
| @+ By(@)nallz 95 &2
5 n-1 tk A(SAL) N— 1
=/0 /An y / 1+BsAt](t|))(1+Bt](5))

tk_1A S/\t)|

X ].tn71€ 0. f(ty, . tke1, Mtk oo, the1,5) dr dZ(l e dZtrF1 dzs

+ /0oo /Anfl /:A:A(sm) (1+ Bt] (S)>

x 1,6[05] f(ty,... to1,1,S)drdz;, - 0z, dZs

At N
_/ I_L(l+ B[] (t|)) f(tl, PN PN A »tn) dr dztl tee dZ(n,
Ank 1/t

K— 1/\t|
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/000(1+ By(9))In(fer (- 5)g) dZs

_/Om/Ankilltke[o,sm]A(tk)l [ (1+ By (tr)) (1+By(9))

=k+1
X 1tne[0.s] f (t17 ce »tms) dztl e dZ(n dZS

n - n+1
- /A LY TcogAt) [ (1+By(t) F(th, o taa) 02, - 0,
k=1 I=k+1

and

/om(l+ By () In+1(fehi (- 9)g) dZs

00 n+1 n+1
h /Anﬂkzlltke[ow [1 (2+Bs(t)) (1+By(s)

I=k+1

X 1tn+16[0,s] f (tl, ce ,'[T(, ce ,tn+1,S) dZtl s dZth dZs
n+1 n+2

- /AM 3 Scoq [] (B0 1 tosz) B o

The result follows by induction. a

Definition 16 A function f: P — C is atest vectoiif it is measurable and there
exist constantd, C, M > 0 such thatf(0)| < 15co)CM/°! for all o € P. The
collection of all such functions forms a vector space, dedof, which contains
&oo and is dense .

A generalised test vectds a measurable functioh: P — L?(.%g) for which
there exists constants C, M > 0 such thaf| f (0) || L=(z,) < Lgcjo1)CMI°! for all
o € P. The set7 of all generalised test vectors is a vector space which agunta
{m® fo: M € &oo, To € L*(F0)}, where(r, ® fo)(0) := w— my(0) fo(w) for
all o € P, and is dense ixp.

Theorem 17 Suppose Z is an &ma martingale with < L (.%p) which satisfies
(3) and t> 0 is such that A and B are uniformly bounded @t]. If U is the

isomorphism (2) and; is as in Definition 3 then U'f € D(Z) for all f € 7
and, ifo € P,

(UZU~f)(0)

:/Ot [1 (1+BM)f(ousids+ 5 [ (1+B(r)f(o\s)
regsy

SGU{] I'EO'(SI]

+ Y A [ (1+B()f(o).

S€O’t] I'€O'(S>t]

Proof If there exists € Z.,. such thatf (o) =0 for all o € P\ P, then this claim is
simply a translation of Lemma 15 (or is immediately verifitat,the caser = 0).
Furthermore, the estimates (6-8) imply thaf it 7 andU~1f = 5% ;In(fn)
thenyi_y || fitl|2+ || fel|2+ || fat ]| is convergent, which gives the result. O
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Lemma 18 For ¢ > 0 let N = (Ni)t=0 be a compensated Poisson process with
jump size ¢ and intensityé, defined on the probability spad&p,.Zp,Pp),
and suppose tha#p is generated by N. There exists an isometric isomorphism
Up: L?(.#p) — @ such that the operator of multiplication by M L?(.%p) equals

Up INtUp on U5 1(.7), where the operatol acts in® so that
_ t
(N F)(0) ::/ fousids+ 3 f(o\s)+clogf(0) VoeP.

If uec L?(R,) then Lglm equals the stochastic exponent#&lu) and
EWE (V) = exp(/oo u(s)v(s) ds)g(u+v+ cuv) 9)
0

forallu, ve L2(R,)NL4(R,).
Proof It is well known (cf. Example 8) thaltl satisfies the structure equation

d[N]; = cdN, -+ dt

and has the CRP; the claims abblgtand (N; )~ thus follow immediately from
Theorem 17. Yor’s formula [16, Theorem 11.37] implies thenark about the
product of stochastic exponentials. |

Remark 19The operatof; of Lemma 18 extends to a self-adjoint operatorfin
b~y ampliation with the identity; this operator (denotedhe same manner) acts in

@ so that, ifo e Pandw € Q,

N)(0)(@) = [ Hous@dst 3 1090 +cla|f(0) )

Definition 20 For processeé, B: R, — L%(.%;R) and a random variablg, ¢
L*(Zo:R), let

A: R, — L2(FZo;R); t — A(t) + ZoB(t).
For allt > 0, define linear operatod§, Y; andZ; in @ by setting, for allo € P,

t

(zf)(a)::/ [T @+BM)f(ousidst S [] (1+B1)f(0\9),

0 reogsy €0y re0(sy
Gf)o) = 3 AS) [] (1+B1)f(o),
S€O’t] l’GU(St]

and(Z f)(o) := (X f)(0) + (% f)(0), with maximal domains
D(W) := {f €D: /PIE[\(V\H)(U)\Z] do < oo} YW e {X.Y,Z};

note thatk +Y; C Z.
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Notation 21 The expressioA= o means thatr: R, — Ris such thaf(t, w) =
a(t) forallt > 0 andw € Q, i.e., for allt > 0 the functionA(t) is constant and
equalsa (t); the same appliesputatis mutandisto B.

Remark 22The decomposition oZ; as the sum of the operato¥s andY; is a
generalisation of Hudson and Parthasarathy’s method afiibhy the Poisson
process [10, Section 6] (as the perturbation of quantum BiamvmotionQ =
A+ AT by addition of the gauge procedy. (Here,A represents the annihilation
process of quantum stochastic calculus and has nothing twatdiahe structure
equation (3).)

Proposition 23 Ift > Ois such that B is uniformly bounded ¢t then.7 is an
invariant subspacter X, i.e.,.7 C D(X) andX(.7) C .7; if Ais also uniformly
bounded ori0,t] then.7 is an invariant subspace for both andZ; as well.

Proof For f € 7 let T, C, M > 0 satisfy|| f (0) =5 < Locjor/CM°! for all
0 €P.If ¢:=||A]|w; andd := ||B||w then

(X F)(0)lLe(7)
<t(1+d)9CMIT Lo 1) + 0] (14 d)TICMITT 1 o mawge )

and
I F)(0)l|Le(z) < lOlc(1+d)9CM 15 i07) VO EP,
which gives the result as claimed. a

The proof of the following theorem is a generalisation of éhteque used by
Parthasarathy [13, Section 2].

Theorem 24 Suppose t= 0 is such that A is uniformly bounded df,t] and
B(s,w) € [-2,0] for all s € [0,t] and w € Q. Every vector of the formm, @ fo,

whererg, € &yp and § € L*(F), is an analytic vector foz;.
Proof Lettingc:= ||A||wy, if 0 € P andw € Q then

Zf(@)@) < [ IfeUs(@]ds+ ¥ [1(0\9(@)]+clay|f(0)(w)

S€O’t]
= (NJf[)(0)(w),
whereN, is defined in Remark 19. If > 0 (i.e., f(0)(w) > 0 for allo € P and

we Q) thenN f > 0, so if|Z"1f| < N'|f| then

Zf] = 1Z(Z I < NZ | < NN ) = N

hence induction yields the inequalif f| < N"'| f| for alln € Z . It follows that if
T, € &po and fg € L*(Fp) then, by the Cauchy-Schwarz-Bunyakovskii inequality
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and Lemma 18,

120 (e )3 <INy @ fol 12
= [[(Up ReUp)"Up 10 o 5 I ol 2
— Ep[IN'& (|u)) P E[ fol?)
< Ep[N"] e [& (|u)*] "/ *E[|fo[2].

Thus T, ® fo is an analytic vector foZ; if &(|u|) € L*(Pp) and the power series
Si_oEp[N/42"/n! has strictly positive radius of convergence. The firstdot
from (9):

& (|u))? = exp(|Jul[®)& (2ul + cluf?) € L*(Fp),
since 2u| +c|u|2 € L?(R,) if u is bounded and has compact support. For the
second, as~ (N, + ¢~ 1t) has a Poisson distribution with mear?t,

o0 e—cfzt c2t)kkén
Eel(e N+ o)) - 5 —(k. )
k=0 '

- t“(k+1)--- (k+4n) e 2 N 2 thetan
= k;) 2Kkl dt4 (:2kk|

k
d* o2

4 k
_ e—c*2t g <t4nec*2t) _ e—cfzt A dn- Y B PR
- dt4n - kZ dt4n-k" gtk

an

an\ ook —2:74n
<(4n)!kz)<k)(c )= (4n)!(1+c )

Since

Ep[NYY% = N Pangppy < (INA+ €t [Lanp) + 6t Lanp))"
<2 (INe ¢t gy + (€710
< (414 (2c+ 27 )" 4 (2¢71t)"

and $%_(4n)!1Y/4(2c + 2c~1)"2"/n! has radius of convergend@c + 8¢ )1
the result follows. a

Theorem 25 Let Z be an Agma martingale with g€ L*(.%p) which satisfies
(3), where A islocally uniformly boundedi.e., ||Al|ot < c for all t > 0, and
B(t,w) € [-2,0] for all t > 0 and w € Q. Conditional on.%y, the process Z is
unique in law and has the CRP.

Proof Theorem 24 implies that ~1(1, ® fo) is an analytic vector foZ; whenever
t > 0, wherert, € &y and fp € L*(Fp), sinceZ; andU~1ZU agree on?, by
Theorem 17, which is invariant under their action, by Pragpms 23. Hencez;
is self adjoint, by Nelson’s theorem on analytic vectors [LBeorem X.39], and
Theorem 5 gives the CRP conditional 6. FurthermoreZ; is determined byA
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andB, since it equal®) ~1ZU onU~1.7, which is a core foZ;: by the analytic-
vector theorem,

Zlyr7) =Zlya7 CZ=2=%

N
U
)
<
S
|
N
<
S
U
I
N

Hence the characteristic function

(A1, An) —E[exp(i(A1Zy + -+ AnZs,)) ]
=exp(i(A1+ -+ An)Zo) (1, expiAaZy,) - - expliAnZ, ) 1)
is determined by, A andB; thusZ is unique in law conditional o¥. a

Corollary 26 An AZma martingale Z which satisfies (4) is unique in law and has
the CRP if 4 is sure,a is locally bounded ang(t) € [—-2,0] for allt > 0.

Proof This follows from Theorem 25 by taking to be trivial. O

Example 27Parthasarathy demonstrated [14, Section 2] thatdf[—2,0[ and
x # 0 then there exists an Azéma martingdR such that

XP*—x and  dXP¥ = bx>*dX>* +

and proved thax®X and(x)ﬂ?jz)@o are identical in law; fob = 0 this is just the

scaling property of Brownian motion [19, 1.3.4mery noted [8, Section (e)] that
this identity is a consequence of uniqueness in law for gmigtof such a structure
equation with the prescribed initial condition, which hefdr allb € R. The result
established above implies thatX¥f is an Azéma martingale such that

XF=x#0 and  dX¥; = B(t)X* dX*+dt,

whereB: R, — [—2,0] is Borel measurable and satisfig&) = B(t/x?) for al-
most everyt > 0, then, given thak* also existsX* and (x)@xz)@o are identical
in law. (Non-trivial examples of sucfl are readily found.)

Conjecture 28If B= 0 andA = a then the operator@t)Do correspond (at least
formally) to the process with independent increments diesdrin Example 9,
which has the CRP. As this holds whether or aas locally bounded, it is conjec-

tured thatZ; is self adjoint for alk > 0 and any processés B: R, — L?(.Zo;R)
with B(t,w) € [-2,0] forallt > 0 andw € Q.

Proposition 29 Ift > Ois such that Bs, w) = B(s) € [-2,0] for all s € [0,t] and
w e Q, where/}|B(s)|"1ds < =, thenX is bounded.

Proof (Sketch)his is in imitation of a similar result given by Russo and v
[20, Proposition 4.4] (which itself follows an idea Bfmery); however, their proof
relies upon the existence of an Azéma martingéte (Xs)o<s<t such that

d[X]s = B(9)Xs- dXs+ds
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whereas the following demonstration uses only the opeséajo<s<.

These operators may be shown to satisfy the quantum stach#trential
equation

dXs = B(S)Xs s+ dAs+ dA]

on 7, taking % to be trivial. (Here, similarly to Remark 22 Ad relates to the
guantum-stochastic annihilation process and has notbidg with the coefficient
functionA.) It follows that &X2 = 2XsdXs+ d[X]s on .7 as well, by the quantum
Itd product formula, where[]s = B(s)XsdXs+ ds. Thus

dX2 = (B(S) +2)Ks(B(9)Ks s + dAs+ dAT) + ds

and
%2 = (,%71)
_ [*B(s)+2 N > 2 2
= [ P Bt + 2 5o 10

t 9 )
<—/0 59 I

for all f € &0, Where the definition of the gradient operatdgyg, := u(s) 7y, is
extended by linearity; the result follows. O

Proposition 30 If A is uniformly bounded of0,t] and ||1+ B||et < 1 for some
t > O0thenY; is bounded.

Proof If ¢:=||A]lw andq:= ||1+ B|jwt < 1 then

V(o) (@< Y cd%sil[f(o)(w)|<cl-a)f(o)(w) VoeP,

whence|[Y;|| < c(1—q)~ % O

Corollary 31 If Z is an AZma martingale such thapZ L*(.%p) which satisfies
(3), where A is locally uniformly bounded,Bf3 and

sup{|1+B(s)|:se€[0t]} <1  Vt>=0,
then Z has locally bounded trajectories.

Proof This follows by combining the two previous propositions. a

Conjecture 32SinceX; is bounded under weaker conditions than those required
in Corollary 31, it is tempting to conjecture thétis also, i.e., that iB(s, w) =

B(s) € [-2,0] for all s€ [0,t] andw € Q then uniform boundedness Afon [0, t]

and the existence df, |B(s)| ~* dsare sufficient folY; (and saZ) to be bounded. It

is possible that an ‘intrinsic’ proof of Proposition 29 (j.ene that relies directly
upon the definition ofX;, rather than its interpretation as part of a hypothetical
Azéma martingale) would point the way to establishing saicksult.
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5 The strong Markov property

Definition 33 Let X = (X)=0 be anR%valued process with cadlag trajectories
which is adapted to the filtratiofZ )i>o. If

E[f (X7)lo(6r)] = E[f (X47)|Z1] V>0 (10)

for any bounded, Borel-measurable functibnR? — R and any finite stopping
time T thenX has thestrong Markov property

Proposition 34 If X satisfies (10) for any bounded, Borel-measurable famcfi
and anyboundedstopping time T then X has the strong Markov property.

Proof LetT be a finite stopping time and I& :=T Anfor all n> 1. Lévy's up-
ward convergence theorem [19, Theorem 11.50.3] and the dated-convergence
theorem, together with (10), imply (after some working)ttiiaf is a bounded,
Borel-measurable function ang> O then

E[f (Xey7)|Fr] = lim B[f (Xei7)|o (X))

For alln > 1 there exists a bounded, Borel-measurable fungjorR? — R such

that |gn|le := sup{|gn(x)| : x € R} < || f[leo @andE[f (X17)[0(XT,)] = Gn(X,);
since

E[lgn(Xr) = gn(%r,)[} < 2P(T > n)|gn[leo < 2P(T > n)] f[|c — O

asn — oo, E[f(X41)|-%7| = limp—e On(X7) is measurable with respect & Xr).
Furthermore, it is now simple to check that

E[E[f(Xe+7)[F7]h(%r)] = E[f (Xer1)h(X7)]
for any bounded, Borel-measurable functonRY — R; the result follows. O

Proposition 35 If X is anRY-valued process as in Definition 33 then fRét1-
valued proces$X;,t)i~o has the strong Markov property if and only if

E[f (%.7)|o(%r )] = E[f(X;7)|F7]  Vt>0 (11)

for any bounded, continuous function RY — R and any bounded stopping time
T.

Proof One direction is clear; the converse follows from an apfilicaof the
monotone-class theorem [16, Theorem 1.8] and Proposition 3 a

Lemma 36 If X is a normal martingale for the filtratiof.%;)i~0 and T is a
bounded stopping time then=¥ (Y; := X.;1)t>0 IS @ normal martingale for the
filtration (%41 )t>0, and if t > O then

t t+T
/ Forrd¥s = / FodXs (12)
0 T

for any (.%s)s=o-predictable process F such thaf [t F2ds] < .
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Proof The optional-sampling theorem [16, Theorem 1.17] showsYha normal;
the rest may be obtained from results in [12, 11.2]. a

Theorem 37 If Z is an AZma martingale which satisfies (4), witly 8ure, o
locally bounded ang3(t) € [—2,0] for all t > 0, then(Z;,t)i>o has the strong
Markov property. In the special case where a(0) and8 = 3(0) then Z has the
strong Markov property.

Proof Let T be a bounded stopping time and let
Ta:=TAINf{t >0:|Z —Zp| > n} vneN,

so thatT, is a bounded stopping withr, € L*(%#t,) andT, 1 T asn — o; to see
the first claim, note thaZr, | < n+|Zp| and
|AZz,| < |a(Tn)|+|B(Tn)[ |27, | < sup{la(s)| : s€ [0,r]} +2n,

wherer > 0 is such thafl < r surely, sinceAZ? = (a(t) + B(t)Z_)AZ for all
t>0.

If W= (W = Z1,)t>0 then, by Lemma 36V is a normal martingale with
respect to the filtratiof. %1, )i>0 and

t t+Tn
[\N]t:\MZ_WOZ_Z/OW%d\Ns:Zt%#Tn_z%n_z/T Zs dZg
t+Th

= [Eon—En=t+ [ @9+ (92 dzs

t
=t [ (A5 +BOWe ) W,

whereA(t) := a(t+Ty) andB(t) := B(t + T,) for all t > O; note that
Ry xQ>3(t,w)— Al)(w) and Ry xQ > (t,w)— B(t)(w)

are measurable with respect#®(R ) ® o(Ty) (and soZ(R;) ® F1,). Ift >0
then||Aljet < ||d]|et+r < o, wherer > 0 is as above, anB(t)(w) € [—2,0] for
allt >0andwe Q.
FurthermoreW is also a normal martingale with respect(t4 );>o, where
% = 0Ws:se[0,t])va(Ty) forallt >0, since4 C %1, forallt >0 and
therefore
M%) = E[EM| Fs;,)|%] = EM&I%] = W

and
EW — |95 = E[EW? —t|.Z57,]|%] = EWE — sl =W —s

if 0 <s<t. AsA(t), B(t) € L*(%) for all t > 0, the uniqueness-in-law result
contained in Theorem 25 implies that, for alk R,

E[e"%T || = B[] 7] = B[ %] = E[e"*+™ |0 (Zr,, To)l;
lettingn — oo, the result follows:
E[[E["%+™| ] — B[4 |7 || < B[|4%+ — 4%4T|] — 0,
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by the dominated-convergence theorem, and

E[|E[e"4+T| Fr,] — E[€44+T| ] — O,

by Lévy’s upward convergence theorem; the same workindshibl%t, and.Z
are replaced by (Tn, Z1,) ando (T, Z7), respectively.

As for the final claim, in this cas& andB do not depend oil,, so it suffices

to take% := o(Ws:se [0,t]) forallt > 0. O

Acknowledgements The authors would like to thank the referee, whose thougbtimments
allowed several infelicities to be corrected, and ProfeE&abarr Holland, for a helpful remark
concerning Example 27.
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