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1 Introduction

A local martingaleZ has thepredictable representation property(henceforthPRP)
if for any local martingaleM there exists a predictable,Z-integrable processH
such that

Mt = M0 +

∫ t

0
HsdZs ∀t > 0.

This concept is of considerable intrinsic interest; as is well known, it is equivalent
(when the initial filtration is trivial) to the law ofZ being extremal [23]. The PRP
is also important for many applications, in areas such as filtering, control theory
and mathematical finance; the ideas in [4] (which concerns the former topics) and
[1,7] (which concern the latter) may all be applied to the martingales discussed
below, for example.

A strictly stronger notion [9] than this is thechaotic-representation property
(henceforthCRP). SupposeZ is a normal martingale, i.e.,Z andt 7→ Z2

t − t are
both martingales, and recall that the iterated stochastic integrals

∫

{06t1<···<tn}
f (t1, . . . , tn)dZt1 · · ·dZtn

are well defined for alln > 1 and deterministic, square-integrable functionsf .
If these integrals, together with the constant functions, are dense inL2(Ω ,F ,P)
(where(Ω ,F ,P) is the underlying probability space andF is generated byZ)
thenZ has the CRP. It is simple to verify that this implies the PRP and so, if the
CRP holds, there exists a predictable processΦ such that

d[Z]t = Φt dZt +dt. (1)

This is known as thestructure equationfor Z. The following question now presents
itself: given a normal martingaleZ which satisfies (1), does it have the CRP?

If Φ is deterministic then Dermoune [6] andÉmery [8] have shown that the
CRP holds andZ has independent increments; conversely ifZ is a martingale with
independent increments which satisfies (1) then the processΦ may be taken to be
deterministic [22].

The next simplest case is whenΦ is affine: Φt = α(t)+β(t)Zt− for all t > 0,
whereα andβ are real valued.́Emery proved [8] that ifα ≡ a andβ ≡ b for
constantsa andb then any martingaleZ which satisfies (1) is unique in law and, if
b∈ [−2,0], has the CRP. Russo and Vallois [20] considered the case where α and
β are locally bounded and they established boundedness (which implies the CRP)
if α ≡ 0, β(t) ∈ [−2,0] and

∫ t
0 |β(s)|−1ds< ∞ for all t > 0.

In this article, it is demonstrated that uniqueness in law and the CRP hold
wheneverα is locally bounded andβ(t) ∈ [−2,0] for all t > 0. This is established
by extending a comparison argument of Parthasarathy [13], to show that certain
vectors are analytic for certain associated multiplication operators, and then by
using an idea of Kurtz [11], which allows the CRP to be deducedfrom the self-
adjointness of these operators.

In fact, a stronger result is established, by lettingF0, the initial σ -algebra
for Z, be non-trivial and working with structure equations whereα and β are
L∞(F0) valued. This allows proof of (an appropriate version of) thestrong Markov
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property for these martingales (calledAźema martingales, extending terminology
due toÉmery).

A variant of the Russo-Vallois result [20, Proposition 4.4]is also obtained;
the requirement thatα ≡ 0 is removed but a stronger condition is imposed onβ ,
namely that

sup{|1+β(s)| : s∈ [0, t]} < 1 ∀t > 0,

i.e., β is strictly bounded away from the endpoints of the interval[−2,0] on any
compact subinterval of[0,∞[.

The working below takes place in the Guichardet interpretation of Boson Fock
space which, as Meyer observed, serves as a universal space for the investigation
of normal martingales and is therefore a completely classical object. Although
many of the ideas leading to the results herein came from quantum stochastic
calculus, this article makes (almost) no explicit use of these techniques and may
be read by any probabilist. (The sole exception is the proof of Proposition 29, for
which a purely classical demonstration seems to be lacking.)

Section 2 describes Guichardet space and the chaotic-representation theorem
of Kurtz; some examples of Azéma martingales are given in Section 3. The main
results are in Section 4, together with two conjectures, andSection 5 is concerned
with the strong Markov property.

1.1 Notation and Conventions

The expression1P has the value 1 if the propositionP is true and 0 if it is false. The
symbol := is read as ‘is defined to equal’; the setR+ := [0,∞[, Z+ := {0,1,2, . . .},
N := {1,2,3, . . .},

P := {σ ⊆ R+ : |σ | < ∞} and Pn := {σ ⊆ R+ : |σ | = n} ∀n∈ Z+,

where|A| denotes the cardinality of the setA. Singleton sets are identified with
their elements, sos ∈ P1 for all s ∈ R+. If s, t ∈ R+ then s∧ t := min{s, t},
σ(s,t] := σ ∩ ]s, t] andσt] := σ ∩ [0, t]. The quantity 00 has the value 1, as has any
empty product; an empty sum has the value 0. TheLp spaces considered herein
are complex in general, with the notationLp(·;R) distinguishing the real versions.

2 Preliminaries

Definition 1 Let Z = (Zt)t>0 be anormal martingaledefined on the probability
space(Ω ,F ,P), i.e., a martingale with càdlàg paths such that(Z2

t − t)t>0 is also a
martingale, both with respect to a filtration(Ft)t>0 which is right continuous and
such thatF0 contains allP-null sets; it is assumed throughout that theσ -algebra
F is generated byZ. For alln∈ N the linear map

In : L2(∆ n;L2(F0)
)
→ L2(F ); f 7→

∫

∆ n
f (t1, . . . , tn)dZt1 · · · dZtn

is a well-defined isometry, where∆ n := {(t1, . . . , tn)∈R
n
+ : t1 < · · ·< tn} andIn( f )

is obtained by extending the obvious definition when

f (t1, . . . , tn)(ω) = 1t1∈[a1,b1] · · ·1tn∈[an,bn] f0(ω) ∀t1, . . . , tn ∈ ∆ n, ω ∈ Ω ,
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wherea1 6 b1 6 · · ·6 an 6 bn and f0∈ L2(F0) (cf. [5, XXI.1]). Let Ξ0 := L2(F0),
let I0 : Ξ0 → L2(F ) be the inclusion map and let

Ξn :=
{

In( f ) : f ∈ L2(∆ n;L2(F0)
)}

∀n∈ N and Ξ :=
∞⊕

n=0

Ξn;

thechaos spaceΞ is a closed subspace (indeed, anL∞(F0) submodule) ofL2(F )
(sinceΞm is orthogonal toΞn if m 6= n). If Ξ = L2(F ) thenZ has thechaotic-
representation property(henceforth, CRP)conditional onF0 (or theCRP at time
0, in Émery’s terminology [9]). IfF0 is trivial thenZ has the CRP in the usual
sense.

Notation 2 Recall Guichardet’s interpretation ofΦ , the Boson Fock space over
L2(R+): Φ = L2(P), whereP is the class of all finite subsets ofR+ and

‖ f‖2 =

∫

P

| f (σ)|2dσ = | f ( /0)|2+
∞

∑
n=1

∫

∆ n
| f (t1, . . . , tn)|

2dt1 · · · dtn

for all f ∈Φ . (Each element ofPn may be regarded as a point inRn with increasing
coordinates, andPn inherits its measurable structure from this; a setA ⊆ P is
measurable if and only ifιn(A∩Pn) is measurable for alln> 1, where the mapping
ιn : Pn → R

n; {t1 < · · · < tn} 7→ (t1, . . . , tn).)
Let Φ̃ := L2

(
P;L2(F0)

)
and note that

U : Ξ → Φ̃ ; (UF)( /0) = f0, (UF)(σ) = ( f|σ | ◦ ι|σ |)(σ) ∀σ ∈ P\P0, (2)

whereF = ∑∞
n=0 In( fn), is an isometric isomorphism.

The exponential vectorin Φ corresponding tou ∈ L2(R+) is the function
πu : P → C; πu(σ) = ∏s∈σ u(s) andU−1πu = E (u), theDoléans exponential:

E (u) = 1+
∫ ∞

0
u(t)E[E (u)|Ft ]dZt = 1+

∞

∑
n=1

In(u
⊗n),

where a predictable version is taken oft 7→ E[E (u)|Ft ] and the function

u⊗n : (t1, . . . , tn) 7→ u(t1) · · ·u(tn) ∈ L2(∆ n)

for all u ∈ L2(R+). The linear span of the exponential vectors corresponding to
bounded functions with compact support is denotedE00 and is dense inΦ .

Definition 3 Let Z be a normal martingale and, for allt > 0, let

Ẑt : D(Ẑt) := {F ∈ Ξ : (Zt −Z0)F ∈ Ξ} ⊆ Ξ → Ξ ; F 7→ (Zt −Z0)F.

Note thatẐt is symmetric and closed. (If(Fn)n>1 ⊆ D(Ẑt) is such thatFn → F and
ẐtFn → G then, passing to a subsequence,Fnk → F and(Zt −Z0)Fnk → G almost
everywhere, so(Zt −Z0)F = G. HenceF ∈ D(Ẑt) andẐtFn → ẐtF , as required.)
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Lemma 4 If (M,M ,µ) is a finite measure space and F: M → R is M measur-
able then the operator

{G∈ L2(M ) : FG∈ L2(M )} ⊆ L2(M ) → L2(M ); G 7→ FG

is self adjoint, and is bounded if and only ifess sup{|F(m)| : m∈ M} < ∞.

Proof This follows from [17, Proposition VIII.3.1] and, for the final statement,
the spectral-radius formula [17, Theorem VI.6]. ut

The following theorem is due to Kurtz [11, Théorème 8.1] (for trivial F0 and
Z0 = 0; the extension is straightforward).

Theorem 5 (Kurtz) The martingale Z has the CRP conditional onF0 if and only
if Ẑt , as given in Definition 3, is self adjoint for all t> 0.

Definition 6 The notationF : R+ → L2(G ) (whereG is a sub-σ -algebra ofF )
means that the processF : R+×Ω → C is measurable with respect to the product
σ -algebraB(R+)⊗G , whereB(R+) denotes the Borelσ -algebra onR+, and
F(t) : Ω → C; ω 7→ F(t,ω) is such thatE[|F(t)|2] < ∞ for all t > 0.

Definition 7 The normal martingaleZ is anAźema martingaleif there exist pro-
cessesA, B: R+ → L2(F0;R) such that the followingstructure equationis satis-
fied:

[Z]t =
∫ t

0
(A(s)+B(s)Zs−)dZs+ t ∀t > 0, (3)

where[Z] = ([Z]t)t>0 is the quadratic variation ofZ; the shorthand notation

d[Z]t = (A(t)+B(t)Zt−)dZt +dt

is also used. Of most interest are structure equations of theform

d[Z]t = (α(t)+β(t)Zt−)dZt +dt, (4)

whereα, β : R+ → R are Borel measurable.

3 Examples

Let Z be an Azéma martingale withZ0 = 0 which satisfies (4).

Example 8If β ≡ 0 andα is constant then eitherα ≡ 0, in which caseZ is
Brownian motion (a theorem due to Lévy [16, Theorem II.38]), or α ≡ a 6= 0,
soZ is a compensated Poisson process of the form

Zt = a(Nt/a2 − t/a2) ∀t > 0,

whereN is a Poisson process with intensity 1 and unit jumps [8, p.69]. These
processes are well known to have the CRP.
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Example 9If β ≡ 0 andα is any Borel-measurable function thenZ has independ-
ent increments and may be realised as follows: ifW is a standard Brownian motion
andP an independent Poisson point process onR+ with intensity1α(t)6=0 dt/α(t)2

then

Zt =

∫ t

0
1α(s)=0 dWs+Mt ∀t > 0,

whereM is a purely discontinuous martingale with jumps at the points of P such
that∆Mt ∈ {0,α(t)} for all t > 0. This explicit construction is due tóEmery [8,
Proposition 4], who has demonstrated that uniqueness in lawand the CRP hold in
this case. (See also work of Dermoune [6] and Utzet [22].)

Remark 10If Z has independent increments then, by [22, p.409, Commentaires
du Séminaire], the process(α(t)+β(t)Zt−)t>0 is equal almost everywhere (with
respect to the product of Lebesgue measure onR+ andP) to some deterministic
process. From this, it is a straightforward exercise to showthat β = 0 almost
everywhere onR+.

Example 11If α ≡ a andβ ≡ b thenZ is an Azéma martingale of the type studied
by Émery [8, Section (e)]; existence and uniqueness in law holds for all a, b∈ R,
and if b∈ [−2,0] thenZ has the CRP. There are two important examples (as well
as those given above) with explicit descriptions: ifa = 0 andb = −2 thenZ is the
parabolic martingale, such thatZ2

t = t for all t > 0; if a= 0 andb= −1 thenZ is
thefirst Aźema martingale, which may be realised by taking a standard Brownian
motionW and setting

Zt = sign(Wt)
√

2(t −Gt) ∀t > 0,

where sign(x) := 1x>0−1x<0 for all x∈ R andGt := sup{s∈ [0, t] : Bs = 0}.

Example 12If α(t) = 1− t for all t > 0 andβ ≡ −1 thenZ is the classical mar-
tingale associated to the monotone Poisson process [2]; this is unique in law and
has the CRP. The processY = (Yt := Zt + t)t>0 has many similarities to the first
Azéma martingale: it is determined by the level setU := {t > 0 :Yt = 1} (which
is almost surely non-empty, compact, without isolated points, of zero Lebesgue
measure and of Hausdorff dimension no more than 1/2) together with choices
either to increase or to decrease after each time inU . The sample paths of this
process have the explicit form

Yt = −W•

(
−exp(−1− t +Gt)

)
∀t > 0,

whereGt := sup{s ∈ [0, t] : Ys = 1} ∈ {−∞} ∪ ]0, t] andW• is one of the two
branches of the LambertW function which take real values. (Recall thatW is
the many-valued inverse to the complex functionz 7→ zez.) More information on
this process may be found in [3].

Example 13If α ≡ 0 andβ : R+ → [−2,0] is Borel measurable and such that∫ t
0 |β(s)|−1ds< ∞ for all t > 0 thenZ has locally bounded trajectories and so has

the CRP; this is a result of Russo and Vallois [20, Proposition 4.4].

Example 14Taviot has proved [21, Théorème 4.0.2] an existence theorem which
gives a solution to (4) ifα andβ arecàglàd, i.e., left continuous and with right
limits everywhere.
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4 Results

WhenF0 is trivial, the following result may be derived from the chaotic Kabanov
formula of Privault, Solé and Vives [15, Theorem 1].

Lemma 15 Let Z be an Aźema martingale such that Z0 ∈ L∞(F0) which satisfies
(3) and suppose t> 0 is such that A and B areuniformly bounded on[0, t], i.e.,

‖A‖∞,t := ess sup{|A(s,ω)| : s∈ [0, t], ω ∈ Ω} < ∞ and ‖B‖∞,t < ∞

(where the essential supremum is with respect to the productof Lebesgue measure
on [0, t] andP). If n∈ N and f∈ L2

(
∆ n;L2(F0)

)
then

(Zt −Z0)In( f ) = In−1( f−t )+ In( f ◦t )+ In+1( f +
t ) ∈ Ξ , (5)

where t0 := 0, Ã(s) := A(s)+Z0B(s), Bt](s) := 1s∈[0,t]B(s),

f−t (t1, . . . , tn−1) :=
n−1

∑
k=1

∫ tk∧t

tk−1∧t

n−1

∏
l=k

(
1+Bt](tl )

)
f (t1, . . . , tk−1,s, tk, . . . , tn−1)ds

+

∫ t

tn−1∧t
f (t1, . . . , tn−1,s)ds,

f ◦t (t1, . . . , tn) :=
n

∑
k=1

1tk∈[0,t]Ã(tk)
n

∏
l=k+1

(
1+Bt](tl )

)
f (t1, . . . , tn),

f +
t (t1, . . . , tn+1) :=

n+1

∑
k=1

1tk∈[0,t]

n+1

∏
l=k+1

(
1+Bt](tl )

)
f (t1, . . . , t̂k, . . . , tn+1)

and(t1, . . . , t̂k, . . . , tn+1) is the n-tuple obtained by removing tk from the n+1-tuple
(t1, . . . , tn+1).

Proof First, observe thatf−t ∈ L2
(
∆ n−1;L2(F0)

)
, f ◦t ∈ L2

(
∆ n;L2(F0)

)
and f +

t ∈

L2
(
∆ n+1;L2(F0)

)
, with

‖ f−t ‖ 6 n(1+‖B‖∞,t)
n−1t1/2‖ f‖, (6)

‖ f ◦t ‖ 6 n‖Ã‖∞,t(1+‖B‖∞,t)
n−1‖ f‖ (7)

and ‖ f +
t ‖ 6 (n+1)(1+‖B‖∞,t)

n−1t1/2‖ f‖. (8)

Next, letIn( f ) =
∫ ∞

0 GsdZs, i.e.,G is a predictable version of

tn 7→
∫ tn

0
· · ·

∫ t2

0
f (t1, . . . , tn)dZt1 · · · dZtn−1 = In−1( f (·, tn)tn]),
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wheregt](t1, . . . , tk) := 1tk∈[0,t]g(t1, . . . , tk) for all g∈ L2(∆ k), orG= f if n= 1. By
the integration-by-parts formula for semimartingales,

(Zt −Z0)In( f )

=

∫ t

0

∫ s

0
Gr dZr dZs+

∫ ∞

0
(Z(s∧t)−−Z0)GsdZs+

∫ t

0
Gsd[Z]s

=

∫ t

0

∫ s

0
Gr dZr dZs+

∫ t

0
Ã(s)GsdZs+

∫ t

0
Gsds

+

∫ ∞

0

(
1+Bt](s)

)
(Z(s∧t)−−Z0)GsdZs;

since(Zr−)r>0 is predictable, the processs 7→ (1+Bt](s))Z(s∧t)−Gs is a predictable
version ofs 7→ (1+Bt](s))Zs∧tGs. Thus, ifn = 1 then

(Zt −Z0)I1( f ) =

∫ t

0
f (s)ds+

∫

∆ 1
1t1∈[0,t]Ã(t1) f (t1)dZt1

+

∫

∆ 2

(
1t2∈[0,t] f (t1)+1t1∈[0,t]

(
1+Bt](t2)

)
f (t2)

)
dZt1 dZt2,

as required. Now suppose that (5) holds as claimed for somen > 1; from the
above,

(Zt −Z0)In+1( f ) =

∫

∆ n+1
1tn+1∈[0,t] f (t1, . . . , tn+1)dZt1 · · · dZtn dtn+1

+

∫

∆ n+1
1tn+1∈[0,t]Ã(tn+1) f (t1, . . . , tn+1)dZt1 · · · dZtn+1

+
∫

∆ n+2
1tn+2∈[0,t] f (t1, . . . , tn+1)dZt1 · · · dZtn+2

+

∫ ∞

0

(
1+Bt](s)

)
(Z(s∧t)−−Z0)In( f (·,s)s])dZs

and this final term is the sum of three integrals:

∫ ∞

0

(
1+Bt](s)

)
In−1( f−s∧t(·,s)s])dZs

=

∫ ∞

0

∫

∆ n−1

n−1

∑
k=1

∫ tk∧(s∧t)

tk−1∧(s∧t)

n−1

∏
l=k

(
1+Bs∧t](tl )

)(
1+Bt](s)

)

×1tn−1∈[0,s] f (t1, . . . , tk−1, r, tk, . . . , tn−1,s)dr dZt1 · · · dZtn−1 dZs

+

∫ ∞

0

∫

∆ n−1

∫ s∧t

tn−1∧(s∧t)

(
1+Bt](s)

)

×1r∈[0,s] f (t1, . . . , tn−1, r,s)dr dZt1 · · · dZtn−1 dZs

=
∫

∆ n

n

∑
k=1

∫ tk∧t

tk−1∧t

n

∏
l=k

(
1+Bt](tl )

)
f (t1, . . . , tk−1, r, tk, . . . , tn)dr dZt1 · · · dZtn,
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∫ ∞

0

(
1+Bt](s)

)
In( f ◦s∧t(·,s)s])dZs

=

∫ ∞

0

∫

∆ n

n

∑
k=1

1tk∈[0,s∧t]Ã(tk)
n

∏
l=k+1

(
1+Bs∧t](tl )

)(
1+Bt](s)

)

×1tn∈[0,s] f (t1, . . . , tn,s)dZt1 · · · dZtn dZs

=

∫

∆ n+1

n

∑
k=1

1tk∈[0,t]Ã(tk)
n+1

∏
l=k+1

(
1+Bt](tl )

)
f (t1, . . . , tn+1)dZt1 · · · dZtn+1

and
∫ ∞

0

(
1+Bt](s)

)
In+1( f +

s∧t(·,s)s])dZs

=

∫ ∞

0

∫

∆ n+1

n+1

∑
k=1

1tk∈[0,s∧t]

n+1

∏
l=k+1

(
1+Bs∧t](tl )

)(
1+Bt](s)

)

×1tn+1∈[0,s] f (t1, . . . , t̂k, . . . , tn+1,s)dZt1 · · · dZtn+1 dZs

=

∫

∆ n+2

n+1

∑
k=1

1tk∈[0,t]

n+2

∏
l=k+1

(
1+Bt](tl )

)
f (t1, . . . , t̂k, . . . , tn+2)dZt1 · · · dZtn+2.

The result follows by induction. ut

Definition 16 A function f : P → C is a test vectorif it is measurable and there
exist constantsT, C, M > 0 such that| f (σ)| 6 1σ⊆[0,T]CM|σ | for all σ ∈ P. The
collection of all such functions forms a vector space, denotedT , which contains
E00 and is dense inΦ .

A generalised test vectoris a measurable functionf : P → L2(F0) for which
there exists constantsT, C, M > 0 such that‖ f (σ)‖L∞(F0) 6 1σ⊆[0,T]CM|σ | for all

σ ∈ P. The setT̃ of all generalised test vectors is a vector space which contains
{πu⊗ f0 : πu ∈ E00, f0 ∈ L∞(F0)}, where(πu⊗ f0)(σ) := ω 7→ πu(σ) f0(ω) for
all σ ∈ P, and is dense iñΦ .

Theorem 17 Suppose Z is an Azéma martingale with Z0 ∈ L∞(F0) which satisfies
(3) and t> 0 is such that A and B are uniformly bounded on[0, t]. If U is the
isomorphism (2) and̂Zt is as in Definition 3 then U−1 f ∈ D(Ẑt) for all f ∈ T̃

and, ifσ ∈ P,

(UẐtU
−1 f )(σ)

=

∫ t

0
∏

r∈σ(s,t]

(
1+B(r)

)
f (σ ∪s)ds+ ∑

s∈σt]

∏
r∈σ(s,t]

(
1+B(r)

)
f (σ \s)

+ ∑
s∈σt]

Ã(s) ∏
r∈σ(s,t]

(
1+B(r)

)
f (σ).

Proof If there existsn∈Z+ such thatf (σ)≡ 0 for all σ ∈P\Pn then this claim is
simply a translation of Lemma 15 (or is immediately verified,for the casen = 0).
Furthermore, the estimates (6–8) imply that iff ∈ T̃ andU−1 f = ∑∞

n=0 In( fn)
then∑∞

n=1‖ f +
n,t‖

2 +‖ f ◦n,t‖
2 +‖ f−n,t‖

2 is convergent, which gives the result. ut
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Lemma 18 For c > 0 let N = (Nt)t>0 be a compensated Poisson process with
jump size c and intensity c−2, defined on the probability space(ΩP,FP,PP),
and suppose thatFP is generated by N. There exists an isometric isomorphism
UP: L2(FP)→ Φ such that the operator of multiplication by Nt in L2(FP) equals
U−1

P ÑtUP on U−1
P (T ), where the operator̃Nt acts inΦ so that

(Ñt f )(σ) :=
∫ t

0
f (σ ∪s)ds+ ∑

s∈σt]

f (σ \s)+c|σt]| f (σ) ∀σ ∈ P.

If u ∈ L2(R+) then U−1
P πu equals the stochastic exponentialE (u) and

E (u)E (v) = exp
(∫ ∞

0
u(s)v(s)ds

)
E (u+v+cuv) (9)

for all u, v∈ L2(R+)∩L4(R+).

Proof It is well known (cf. Example 8) thatN satisfies the structure equation

d[N]t = cdNt +dt

and has the CRP; the claims aboutUP and(Ñt)t>0 thus follow immediately from
Theorem 17. Yor’s formula [16, Theorem II.37] implies the remark about the
product of stochastic exponentials. ut

Remark 19The operator̃Nt of Lemma 18 extends to a self-adjoint operator inΦ̃
by ampliation with the identity; this operator (denoted in the same manner) acts in
Φ̃ so that, ifσ ∈ P andω ∈ Ω ,

(Ñt f )(σ)(ω) =

∫ t

0
f (σ ∪s)(ω)ds+ ∑

s∈σt]

f (σ \s)(ω)+c|σt]| f (σ)(ω).

Definition 20 For processesA, B: R+ → L2(F0;R) and a random variableZ0 ∈
L∞(F0;R), let

Ã: R+ → L2(F0;R); t 7→ A(t)+Z0B(t).

For all t > 0, define linear operators̃Xt , Ỹt andZ̃t in Φ̃ by setting, for allσ ∈ P,

(X̃t f )(σ) :=
∫ t

0
∏

r∈σ(s,t]

(
1+B(r)

)
f (σ ∪s)ds+ ∑

s∈σt]

∏
r∈σ(s,t]

(
1+B(r)

)
f (σ \s),

(Ỹt f )(σ) := ∑
s∈σt]

Ã(s) ∏
r∈σ(s,t]

(
1+B(r)

)
f (σ),

and(Z̃t f )(σ) := (X̃t f )(σ)+(Ỹt f )(σ), with maximal domains

D(W̃t) :=
{

f ∈ Φ̃ :
∫

P

E
[
|(W̃t f )(σ)|2

]
dσ < ∞

}
∀W ∈ {X,Y,Z};

note thatX̃t +Ỹt ⊆ Z̃t .
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Notation 21 The expressionA≡ α means thatα : R+ → R is such thatA(t,ω) =
α(t) for all t > 0 andω ∈ Ω , i.e., for all t > 0 the functionA(t) is constant and
equalsα(t); the same applies,mutatis mutandis, to B.

Remark 22The decomposition of̃Zt as the sum of the operators̃Xt andỸt is a
generalisation of Hudson and Parthasarathy’s method of obtaining the Poisson
process [10, Section 6] (as the perturbation of quantum Brownian motionQ =
A+ A† by addition of the gauge processΛ ). (Here,A represents the annihilation
process of quantum stochastic calculus and has nothing to dowith the structure
equation (3).)

Proposition 23 If t > 0 is such that B is uniformly bounded on[0, t] thenT̃ is an
invariant subspacefor X̃t , i.e.,T̃ ⊆ D(X̃t) andX̃t(T̃ ) ⊆ T̃ ; if A is also uniformly
bounded on[0, t] thenT̃ is an invariant subspace for both̃Yt andZ̃t as well.

Proof For f ∈ T̃ let T, C, M > 0 satisfy‖ f (σ)‖L∞(F0) 6 1σ⊆[0,T]CM|σ | for all
σ ∈ P. If c := ‖Ã‖∞,t andd := ‖B‖∞,t then

‖(X̃t f )(σ)‖L∞(F0)

6 t(1+d)|σ |CM|σ |+11σ⊆[0,T] + |σ |(1+d)|σ |CM|σ |−11σ⊆[0,max{t,T}]

and
‖(Ỹt f )(σ)‖L∞(F0) 6 |σ |c(1+d)|σ |CM|σ |1σ⊆[0,T ] ∀σ ∈ P,

which gives the result as claimed. ut

The proof of the following theorem is a generalisation of a technique used by
Parthasarathy [13, Section 2].

Theorem 24 Suppose t> 0 is such that A is uniformly bounded on[0, t] and
B(s,ω) ∈ [−2,0] for all s ∈ [0, t] and ω ∈ Ω . Every vector of the formπu ⊗ f0,
whereπu ∈ E00 and f0 ∈ L∞(F0), is an analytic vector for̃Zt .

Proof Lettingc := ‖Ã‖∞,t , if σ ∈ P andω ∈ Ω then

|Z̃t f (σ)(ω)| 6

∫ t

0
| f (σ ∪s)(ω)|ds+ ∑

s∈σt]

| f (σ \s)(ω)|+c|σt]| | f (σ)(ω)|

= (Ñt | f |)(σ)(ω),

whereÑt is defined in Remark 19. Iff > 0 (i.e., f (σ)(ω) > 0 for all σ ∈ P and
ω ∈ Ω ) thenÑt f > 0, so if |Z̃n−1

t f | 6 Ñn−1
t | f | then

|Z̃n
t f | = |Z̃t(Z̃

n−1
t f )|6 Ñt |Z̃

n−1
t f | 6 Ñt(Ñ

n−1
t | f |) = Ñn

t | f |,

hence induction yields the inequality|Z̃n
t f |6 Ñn

t | f | for all n∈Z+. It follows that if
πu ∈ E00 and f0 ∈ L∞(F0) then, by the Cauchy-Schwarz-Bunyakovskii inequality
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and Lemma 18,

‖Z̃n
t (πu⊗ f0)‖

2
Φ̃ 6 ‖Ñn

t π|u|⊗| f0|‖
2
Φ̃

= ‖(U−1
P ÑtUP)

nU−1
P π|u|‖

2
L2(FP)‖| f0|‖

2
L2(F0)

= EP
[
|Nn

t E (|u|)|2
]
E[| f0|

2]

6 EP
[
N4n

t

]1/2
EP

[
E (|u|)4]1/2

E
[
| f0|

2].

Thusπu⊗ f0 is an analytic vector for̃Zt if E (|u|) ∈ L4(PP) and the power series
∑∞

n=0EP
[
N4n

t ]1/4zn/n! has strictly positive radius of convergence. The first follows
from (9):

E (|u|)2 = exp(‖u‖2)E (2|u|+c|u|2) ∈ L2(FP),

since 2|u|+ c|u|2 ∈ L2(R+) if u is bounded and has compact support. For the
second, asc−1(Nt +c−1t) has a Poisson distribution with meanc−2t,

EP
[(

c−1(Nt +c−1t)
)4n]

=
∞

∑
k=0

e−c−2t(c−2t)kk4n

k!

6 e−c−2t
∞

∑
k=0

tk(k+1) · · ·(k+4n)

c2kk!
= e−c−2t d4n

dt4n

∞

∑
k=0

tk+4n

c2kk!

= e−c−2t d4n

dt4n

(
t4nec−2t) = e−c−2t

4n

∑
k=0

(
4n
k

)
d4n−k

dt4n−k t4n dk

dtk ec−2t

6 (4n)!
4n

∑
k=0

(
4n
k

)
(c−2t)k = (4n)!(1+c−2t)4n.

Since

EP[N
4n
t ]1/4 = ‖Nt‖

n
L4n(PP)

6 (‖Nt +c−1t‖L4n(PP) +‖c−1t‖L4n(PP))
n

6 2n(‖Nt +c−1t‖n
L4n(PP)

+(c−1t)n)

6 (4n)!1/4(2c+2c−1t)n+(2c−1t)n

and∑∞
n=0(4n)!1/4(2c+ 2c−1t)nzn/n! has radius of convergence(8c+ 8c−1t)−1,

the result follows. ut

Theorem 25 Let Z be an Aźema martingale with Z0 ∈ L∞(F0) which satisfies
(3), where A islocally uniformly bounded, i.e., ‖A‖∞,t < ∞ for all t > 0, and
B(t,ω) ∈ [−2,0] for all t > 0 and ω ∈ Ω . Conditional onF0, the process Z is
unique in law and has the CRP.

Proof Theorem 24 implies thatU−1(πu⊗ f0) is an analytic vector for̂Zt whenever
t > 0, whereπu ∈ E00 and f0 ∈ L∞(F0), sinceZ̃t andU−1ẐtU agree onT̃ , by
Theorem 17, which is invariant under their action, by Proposition 23. HenceẐt
is self adjoint, by Nelson’s theorem on analytic vectors [18, Theorem X.39], and
Theorem 5 gives the CRP conditional onF0. Furthermore,̂Zt is determined bỹA
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andB, since it equalsU−1Z̃tU onU−1T̃ , which is a core for̂Zt : by the analytic-
vector theorem,

(Ẑt |U−1T̃
)∗ = Ẑt |U−1T̃

⊆ Ẑt = Ẑt = Ẑ∗
t

=⇒ Ẑt ⊇ Ẑt |U−1T̃
= (Ẑt |U−1T̃

)∗∗ ⊇ Ẑ∗∗
t = Ẑt .

Hence the characteristic function

(λ1, . . . ,λn) 7→E
[
exp

(
i(λ1Zt1 + · · ·+λnZtn)

)]

=exp
(
i(λ1 + · · ·+λn)Z0

)
〈1,exp(iλ1Ẑt1) · · ·exp(iλnẐtn)1〉

is determined byZ0, A andB; thusZ is unique in law conditional onF0. ut

Corollary 26 An Aźema martingale Z which satisfies (4) is unique in law and has
the CRP if Z0 is sure,α is locally bounded andβ(t) ∈ [−2,0] for all t > 0.

Proof This follows from Theorem 25 by takingF0 to be trivial. ut

Example 27Parthasarathy demonstrated [14, Section 2] that ifb ∈ [−2,0[ and
x 6= 0 then there exists an Azéma martingaleXb,x such that

Xb,x
0 = x and d[Xb,x]t = bXb,x

t− dXb,x
t +dt

and proved thatXb,x and(xXb,1
t/x2)t>0 are identical in law; forb = 0 this is just the

scaling property of Brownian motion [19, I.3.4].Émery noted [8, Section (e)] that
this identity is a consequence of uniqueness in law for solutions of such a structure
equation with the prescribed initial condition, which holds for allb∈R. The result
established above implies that ifXx is an Azéma martingale such that

Xx
0 = x 6= 0 and d[Xx]t = β(t)Xx

t− dXx
t +dt,

whereβ : R+ → [−2,0] is Borel measurable and satisfiesβ(t) = β(t/x2) for al-
most everyt > 0, then, given thatX1 also exists,Xx and(xX1

t/x2)t>0 are identical
in law. (Non-trivial examples of suchβ are readily found.)

Conjecture 28If B≡ 0 andA≡ α then the operators(Z̃t)t>0 correspond (at least
formally) to the process with independent increments described in Example 9,
which has the CRP. As this holds whether or notα is locally bounded, it is conjec-
tured that̃Zt is self adjoint for allt > 0 and any processesA, B: R+ → L2(F0;R)
with B(t,ω) ∈ [−2,0] for all t > 0 andω ∈ Ω .

Proposition 29 If t > 0 is such that B(s,ω) = β(s) ∈ [−2,0] for all s∈ [0, t] and
ω ∈ Ω , where

∫ t
0 |β(s)|−1ds< ∞, thenX̃t is bounded.

Proof (Sketch)This is in imitation of a similar result given by Russo and Vallois
[20, Proposition 4.4] (which itself follows an idea ofÉmery); however, their proof
relies upon the existence of an Azéma martingaleX = (Xs)06s6t such that

d[X]s = β(s)Xs− dXs+ds,
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whereas the following demonstration uses only the operators (X̃s)06s6t .
These operators may be shown to satisfy the quantum stochastic differential

equation
dX̃s = β(s)X̃sdΛs+dAs+dA†

s

on T , takingF0 to be trivial. (Here, similarly to Remark 22, dAs relates to the
quantum-stochastic annihilation process and has nothing to do with the coefficient
functionA.) It follows that d̃X2

s = 2X̃sdX̃s+ d[X̃]s on T as well, by the quantum
Itô product formula, where d[X̃]s = β(s)X̃sdX̃s+ds. Thus

dX̃2
s = (β(s)+2)X̃s(β(s)X̃sdΛs+dAs+dA†

s)+ds

and

‖X̃t f‖2 = 〈 f , X̃2
t f 〉

=

∫ t

0

β(s)+2
β(s)

‖β(s)X̃s∇s f + f‖2−
2

β(s)
‖ f‖2ds

6 −

∫ t

0

2
β(s)

ds‖ f‖2

for all f ∈ E00, where the definition of the gradient operator,∇sπu := u(s)πu, is
extended by linearity; the result follows. ut

Proposition 30 If A is uniformly bounded on[0, t] and ‖1+ B‖∞,t < 1 for some
t > 0 thenỸt is bounded.

Proof If c := ‖Ã‖∞,t andq := ‖1+B‖∞,t < 1 then

|Ỹt f (σ)(ω)| 6 ∑
s∈σt]

cq|σ(s,t]|| f (σ)(ω)|6 c(1−q)−1| f (σ)(ω)| ∀σ ∈ P,

whence‖Ỹt‖ 6 c(1−q)−1. ut

Corollary 31 If Z is an Aźema martingale such that Z0 ∈ L∞(F0) which satisfies
(3), where A is locally uniformly bounded, B≡ β and

sup{|1+β(s)| : s∈ [0, t]} < 1 ∀t > 0,

then Z has locally bounded trajectories.

Proof This follows by combining the two previous propositions. ut

Conjecture 32SinceX̃t is bounded under weaker conditions than those required
in Corollary 31, it is tempting to conjecture thatỸt is also, i.e., that ifB(s,ω) =
β(s) ∈ [−2,0] for all s∈ [0, t] andω ∈ Ω then uniform boundedness ofA on [0, t]
and the existence of

∫ t
0 |β(s)|−1dsare sufficient for̃Yt (and sõZt ) to be bounded. It

is possible that an ‘intrinsic’ proof of Proposition 29 (i.e., one that relies directly
upon the definition of̃Xt , rather than its interpretation as part of a hypothetical
Azéma martingale) would point the way to establishing sucha result.
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5 The strong Markov property

Definition 33 Let X = (Xt)t>0 be anR
d-valued process with càdlàg trajectories

which is adapted to the filtration(Ft)t>0. If

E[ f (Xt+T)|σ(XT)] = E[ f (Xt+T)|FT ] ∀t > 0 (10)

for any bounded, Borel-measurable functionf : R
d → R and any finite stopping

timeT thenX has thestrong Markov property.

Proposition 34 If X satisfies (10) for any bounded, Borel-measurable function f
and anyboundedstopping time T then X has the strong Markov property.

Proof Let T be a finite stopping time and letTn := T ∧n for all n > 1. Lévy’s up-
ward convergence theorem [19, Theorem II.50.3] and the dominated-convergence
theorem, together with (10), imply (after some working) that if f is a bounded,
Borel-measurable function andt > 0 then

E[ f (Xt+T)|FT ] = lim
n→∞

E[ f (Xt+T)|σ(XTn)].

For alln> 1 there exists a bounded, Borel-measurable functiongn : R
d → R such

that ‖gn‖∞ := sup{|gn(x)| : x ∈ R
d} 6 ‖ f‖∞ andE[ f (Xt+T)|σ(XTn)] = gn(XTn);

since

E[|gn(XT)−gn(XTn)|] 6 2P(T > n)‖gn‖∞ 6 2P(T > n)‖ f‖∞ → 0

asn→ ∞, E[ f (Xt+T)|FT ] = limn→∞ gn(XT) is measurable with respect toσ(XT).
Furthermore, it is now simple to check that

E[E[ f (Xt+T)|FT ]h(XT)] = E[ f (Xt+T)h(XT)]

for any bounded, Borel-measurable functionh: Rd → R; the result follows. ut

Proposition 35 If X is anRd-valued process as in Definition 33 then theRd+1-
valued process(Xt , t)t>0 has the strong Markov property if and only if

E[ f (Xt+T)|σ(XT ,T)] = E[ f (Xt+T)|FT ] ∀t > 0 (11)

for any bounded, continuous function f: R
d → R and any bounded stopping time

T.

Proof One direction is clear; the converse follows from an application of the
monotone-class theorem [16, Theorem I.8] and Proposition 34. ut

Lemma 36 If X is a normal martingale for the filtration(Ft)t>0 and T is a
bounded stopping time then Y= (Yt := Xt+T)t>0 is a normal martingale for the
filtration (Ft+T)t>0, and if t> 0 then

∫ t

0
Fs+T dYs =

∫ t+T

T
FsdXs (12)

for any(Fs)s>0-predictable process F such thatE[
∫ t+T

T F2
s ds] < ∞.
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Proof The optional-sampling theorem [16, Theorem I.17] shows that Y is normal;
the rest may be obtained from results in [12, II.2]. ut

Theorem 37 If Z is an Aźema martingale which satisfies (4), with Z0 sure, α
locally bounded andβ(t) ∈ [−2,0] for all t > 0, then (Zt , t)t>0 has the strong
Markov property. In the special case whenα ≡ α(0) andβ ≡ β(0) then Z has the
strong Markov property.

Proof Let T be a bounded stopping time and let

Tn := T ∧ inf{t > 0 : |Zt −Z0| > n} ∀n∈ N,

so thatTn is a bounded stopping withZTn ∈ L∞(FTn) andTn ↑ T asn→ ∞; to see
the first claim, note that|ZTn−| 6 n+ |Z0| and

|∆ZTn| 6 |α(Tn)|+ |β(Tn)| |ZTn−| 6 sup{|α(s)| : s∈ [0, r]}+2n,

wherer > 0 is such thatT 6 r surely, since∆Z2
t = (α(t)+ β(t)Zt−)∆Zt for all

t > 0.
If W = (Wt := Zt+Tn)t>0 then, by Lemma 36,W is a normal martingale with

respect to the filtration(Ft+Tn)t>0 and

[W]t = W2
t −W2

0 −2
∫ t

0
Ws−dWs = Z2

t+Tn
−Z2

Tn
−2

∫ t+Tn

Tn

Zs− dZs

= [Z]t+Tn − [Z]Tn = t +
∫ t+Tn

Tn

(α(s)+β(s)Zs−)dZs

= t +
∫ t

0
(A(s)+B(s)Ws−)dWs,

whereA(t) := α(t +Tn) andB(t) := β(t +Tn) for all t > 0; note that

R+×Ω 3 (t,ω) 7→ A(t)(ω) and R+ ×Ω 3 (t,ω) 7→ B(t)(ω)

are measurable with respect toB(R+)⊗σ(Tn) (and soB(R+)⊗FTn). If t > 0
then‖A‖∞,t 6 ‖α‖∞,t+r < ∞, wherer > 0 is as above, andB(t)(ω) ∈ [−2,0] for
all t > 0 andω ∈ Ω .

Furthermore,W is also a normal martingale with respect to(Gt)t>0, where
Gt := σ(Ws : s∈ [0, t])∨σ(Tn) for all t > 0, sinceGt ⊆ Ft+Tn for all t > 0 and
therefore

E[Wt |Gs] = E[E[Wt |Fs+Tn]|Gs] = E[Ws|Gs] = Ws

and

E[W2
t − t|Gs] = E[E[W2

t − t|Fs+Tn]|Gs] = E[W2
s −s|Gs] = W2

s −s

if 0 6 s 6 t. As A(t), B(t) ∈ L∞(G0) for all t > 0, the uniqueness-in-law result
contained in Theorem 25 implies that, for allu∈ R,

E[eiuZt+Tn |FTn] = E[eiuWt |FTn] = E[eiuWt |G0] = E[eiuZt+Tn |σ(ZTn,Tn)];

lettingn→ ∞, the result follows:

E[|E[eiuZt+Tn |FTn]−E[eiuZt+T |FTn]|] 6 E[|eiuZt+Tn −eiuZt+T |] → 0,
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by the dominated-convergence theorem, and

E[|E[eiuZt+T |FTn]−E[eiuZt+T |FT ]|]→ 0,

by Lévy’s upward convergence theorem; the same working holds if FTn andFT
are replaced byσ(Tn,ZTn) andσ(T,ZT), respectively.

As for the final claim, in this caseA andB do not depend onTn, so it suffices
to takeGt := σ(Ws : s∈ [0, t]) for all t > 0. ut

Acknowledgements The authors would like to thank the referee, whose thoughtful comments
allowed several infelicities to be corrected, and Professor Finbarr Holland, for a helpful remark
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14. Parthasarathy, K.R.: Azéma martingales with drift. Probab. Math. Stat.15, 461–468 (1995)
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