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Abstract. This article presents several results establishing connections be-

tween Markov chains and dynamical systems, from the point of view of open

systems in physics. We show how all Markov chains can be understood as
the information on one component that we get from a dynamical system on a

product system, when losing information on the other component. We show

that passing from the deterministic dynamics to the random one is character-
ized by the loss of algebra morphism property; it is also characterized by the

loss of reversibility. In the continuous time framework, we show that the solu-
tions of stochastic differential equations are actually deterministic dynamical

systems on a particular product space. When losing the information on one

component, we recover the usual associated Markov semigroup.

1. Introduction

This article aims at exploring the theory of Markov chains and Markov processes
from a particular point of view. This point of view is very physical and commonly
used in the theory of open systems. Open systems are physical systems, in classical
or in quantum mechanics, which are not closed, that is, which are interacting with
another system. In general the system we are interested in is “small” (for example,
it has only a finite number of degrees of freedom), whereas the outside system is
very large (often called the“environment”, it may be a heat bath typically).

This is now a very active branch of research to study such systems coupled to an
environment. In classical mechanics they are used to study conduction problems
(Fourier’s law for example, see [3], [5]) but more generally out of equilibrium dy-
namics (see [14], [4]). In quantum mechanics, open systems appear fundamentally
for the study of decoherence phenomena (see [8]), but also it is the basis of quan-
tum communication (see [11]). Problems of dissipation, heat conduction, out of
equilibrium dynamics in quantum mechanics (see [9], [10]) lead to very important
problems which are mostly not understood at the time we write this article.

The aim of this article is to make clear several ideas and connections between
deterministic dynamics of closed systems, effective dynamics of open systems and
Markov processes.
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Surprisingly enough these ideas are made rather clear in the literature when
dealing with the quantum systems, but not that much with classical ones! Indeed,
it is common in quantum mechanics to consider a bipartite system on which one
component is not accessible (it might be an environment which is too complicated
to be described, or it might be Bob who is sharing the photons of a correlated
pair with Alice, in Quantum Information Theory). It is well-known that, tracing
out over one component of the system, the unitary Schrödinger dynamics becomes
described by completely positive maps, in discrete time, or completely positive
semigroups, in continuous time.

In [2], for example, the authors show how every discrete time semigroup of
completely positive maps can be described by a realistic physical system, called
“Repeated Quantum Interactions”. They show that in the continuous time limit
these Hamiltonian dynamics spontaneously converge to a dynamics described by
a quantum Langevin equation.

In this article we establish many similar results in the context of classical dy-
namical systems and Markov chains. The article is structured as follows. In
Section 2, we show that Markov chains appear from any dynamical system on a
product space, when averaging out one of the two components. This way, Markov
chains are interpreted as what remains on one system when it interacts with some
environment but we do not have access to that environment. The randomness
appears directly for the determinism, solely by the fact that we have lost some
information. We show that any Markov chain can be obtained this way. We also
show two results which characterize what properties are lost when going from a
deterministic dynamical system to a Markov chain: typically the loss of algebra
morphism property and the loss of reversibility.

In Section 3 we explore the context of classical Markov process in the continuous
time setup. We actually concentrate on stochastic differential equations. Despite
of their “random character”, we show that stochastic differential equations are ac-
tually deterministic dynamical systems. They correspond to a natural dynamical
system which is used to dilate some Markov processes into a deterministic dy-
namics. The role of the environment is played by the canonical probability space
(here the Wiener space), the action of the environment is the noise term in the
stochastic differential equation.

2. Markov Chains and Dynamical Systems

2.1. Basic Definitions. Let us recall some basic definitions concerning dynam-
ical systems and Markov chains.

Let (E, E) be a measurable space. Let T̃ be a measurable function from E to
E. We then say that T̃ is a dynamical system on E. Such a mapping T̃ induces a
natural mapping T on L∞(E) defined by

Tf(x) = f(T̃ x) .

Note that this mapping clearly satisfies the following properties (proof left to the
reader).
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Proposition 2.1.
i) T is a ∗-homomorphism of the ∗-algebra L∞(E),
ii) T (1lE) = 1lE,
iii) ‖T‖ = 1.

What is called dynamical system is actually the associated discrete-time semi-
group (T̃n)n∈N, when acting on points, or (Tn)n∈N, when acting on functions.

When the mapping T̃ is invertible, then so is the associated operator T . The
semigroups (T̃n)n∈N and (Tn)n∈N can then be easily extended into one-parameter
groups (T̃n)n∈Z and (Tn)n∈Z, respectively.

Let us now recall basic definitions concerning Markov chains. Let (E, E) be a
measurable space. A mapping ν from E × E to [0, 1] is a Markov kernel if
i) x 7→ ν(x,A) is a measurable function, for all A ∈ E ,
ii) A 7→ ν(x,A) is a probability measure, for all x ∈ E.

When E is a finite set, then ν is determined by the quantities

P (i, j) = ν(i, {j})
which form a stochastic matrix, i.e. a square matrix with positive entries and sum
of each row being equal to 1.

In any case, such a Markov kernel ν acts on L∞(E) as follows:

ν ◦ f(x) =
∫
E

f(y) ν(x, dy) .

A linear operator T on L∞(E, E) which is of the form

Tf(x) =
∫
E

f(y) ν(x, dy) ,

for some Markov kernel ν, is called a Markov operator.
In a dual way, a Markov kernel ν acts on probability measures on (E, E). Indeed,

if P is a probability measure on (E, E) then so is the measure P ◦ ν defined by

P ◦ ν(A) =
∫
E

ν(x,A) P(dx) .

Finally, Markov kernels can be composed. If ν1 and ν2 are two Markov kernels
on (E, E) then so is

ν1 ◦ ν2(x,A) =
∫
E

ν2(y,A) ν1(x, dy) .

This kernel represents the Markov kernel resulting from making a first step fol-
lowing ν1 and then another step following ν2.

A Markov chain with state space (E, E) is a discrete-time stochastic process
(Xn)n∈N defined on a probability space (Ω,F ,P) such that each Xn : Ω → E is
measurable and

E [f(Xn+1) |X0, X1, . . . , Xn] = E [f(Xn+1) |Xn]
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for all bounded function f : E → R and all n ∈ N. In particular, if Fn denotes
the σ-algebra generated by X0, X1, . . . , Xn, then the above implies

E [f(Xn+1) | Fn] = Lnf(Xn)

for some function Lnf . The Markov chain is homogeneous if furthermore Ln does
not depend on n. We shall be interested only in this case and we denote by L this
unique value of Ln:

E [f(Xn+1) | Fn] = Lf(Xn) . (2.1)
Applying successive conditional expectations, one gets

E [f(Xn) | F0] = Lnf(X0) .

If ν(x, dy) denotes the conditional law ofXn+1 knowingXn = x, which coincides
with the conditional law of X1 knowing X0 = x, then ν is a Markov kernel and
one can easily see that

Lf(x) =
∫
E

f(y) ν(x, dy) = ν ◦ f(x) .

Hence L is the Markov operator associated to ν.
With our probabilistic interpretation we get easily that ν ◦ f(x) is the expecta-

tion of f(X1) when X0 = x almost surely. The measure P ◦ ν is the distribution
of X1 if the distribution of X0 is P.

We end up this section with the following last definition. A Markov kernel ν is
said to be deterministic if for all x ∈ E the measure ν(x, · ) is a Dirac mass. This
is to say that there exists a measurable mapping T̃ : E → E such that

ν(x, dy) = δeT (x)(dy) .

In other words, the Markov chain associated to ν is not random at all, it maps
with probability 1, each point x to T̃ (x): it is a dynamical system.

2.2. Reduction of Dynamical Systems. Now consider two measurable spaces
(E, E) and (F,F), together with a dynamical system T̃ on E × F , equipped with
the product σ-field. As above, consider the lifted mapping T acting on L∞(E×F ).

For any bounded measurable function f on E, we consider the bounded (mea-
surable) function f ⊗ 1l on E × F defined by

(f ⊗ 1l)(x, y) = f(x) ,

for all x ∈ E, y ∈ F .
Assume that (F,F) is equipped with a probability measure µ. We shall be

interested in the mapping L of L∞(E) defined by

Lf(x) =
∫
F

T (f ⊗ 1l)(x, y) dµ(y) =
∫
F

(f ⊗ 1l)T̃ (x, y) dµ(y) . (2.2)

In other words, we have a deterministic dynamical system on a product space.
We place ourselves from one component point of view only (we have access to E
only). Starting from a point x ∈ E and a function f on E we want to see how
they evolve according to T , but seen from the E point of view. The function f on
E is naturally lifted into a function f ⊗ 1l on E×F , that is, it still acts on E only,
but it is now part of a “larger world”. We make f ⊗ 1l evolve according to the
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deterministic dynamical system T . Finally, in order to come back to E we project
the result onto E, by taking the average on F according to a fixed measure µ on F .
This is to say that, from the set E, what we see of the action of the “environment”
F is just an average with respect to some measure µ.

Theorem 2.2. The mapping L is a Markov operator on E.

Proof. As T̃ is a mapping from E × F to E × F , there exist two measurable
mappings:

X : E × F −→ E and Y : E × F −→ F ,

such that
T̃ (x, y) = (X(x, y), Y (x, y))

for all (x, y) ∈ E × F .
Let us compute the quantity Lf(x), with these notations. We have

Lf(x) =
∫
F

T (f ⊗ 1l)(x, y) dµ(y)

=
∫
F

(f ⊗ 1l)(X(x, y), Y (x, y)) dµ(y)

=
∫
F

f(X(x, y)) dµ(y) .

Denote by ν(x, dz) the probability measure on E, which is the image of µ by the
function X(x, · ) (which goes from F to E, for each fixed x). By a standard result
from Measure Theory, the Transfer Theorem, we get

Lf(x) =
∫
E

f(z) ν(x, dz) .

Hence L acts on L∞(E) as the Markov transition kernel ν(x, dz). �

Note the following important fact: the mapping Y played no role at all in the
proof above.

Note that the Markov kernel ν associated to T̃ restricted to E is given by

ν(x,A) = µ ({y ∈ F ; X(x, y) ∈ A}) . (2.3)

In particular, when E is finite (or even countable), the transition kernel ν is
associated to a Markovian matrix P whose coefficients are given by

P (i, j) = ν(i, {j}) = µ({k;X(i, k) = j}) .

What we have obtained here is important and deserves more explanation. Math-
ematically, we have obtained a commuting diagram:

T
L∞(E × F ) −→ L∞(E × F )

⊗1l
x yµ

L∞(E) −→ L∞(E) .
L
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In more physical language, what we have obtained here can be interpreted in two
different ways. If we think of the dynamical system T̃ first, we have emphasized
the fact that losing the information of a deterministic dynamics on one of the
components creates a random behavior on the other component. The randomness
here appears only as a lack of knowledge of deterministic behavior on a larger
world. A part of the universe interacting with our system E is inaccessible to us
(or at least we see a very small part of it: an average) which results in random
behavior on E.

In the converse direction, that is, seen from the Markov kernel point of view,
what we have obtained is a dilation of a Markov transition kernel into a dynamical
system. Consider the kernel L on the state space E. It does not represent the
dynamics of a closed system, it is not a dynamical system. In order to see L as
coming from a true dynamical system, we have enlarged the state space E with
an additional state space F , which represents the environment. The dynamical
system T̃ represents the true dynamics of the closed system “E+environment”.
Equation (2.2) says exactly that the effective pseudo-dynamics L that we have
observed on E is simply due to the fact that we are looking only at a subpart of
a true dynamical system and an average of the F part of the dynamics.

These observations would be even more interesting if one could prove the con-
verse: every Markov transition kernel can be obtained this way. This is what we
prove now, with only a very small restriction on E.

Recall that a Lusin space is a measurable space which is homeomorphic (as a
measurable space) to a Borel subset of a compact metrisable space. This condition
is satisfied for example by all the spaces Rn.

Theorem 2.3. Let (E, E) be a Lusin space and ν a Markov kernel on E. Then
there exists a measurable space (F,F), a probability measure µ on (F,F) and a
dynamical system T̃ on E × F such that the Markov kernel L associated to the
restriction of T̃ to E is equal to ν.

Proof. Let ν(x, dz) be a Markov kernel on (E, E). Let F be the set of functions
from E to E. For every finite subset σ = {x1, . . . , xn} ⊂ E and every A1, . . . , An ∈
E consider the set

F (x1, . . . , xn ; A1, . . . , An) = {y ∈ F ; y(x1) ∈ A1, . . . , y(xn) ∈ An} .
By the Kolmogorov Consistency Theorem (which applies for E is is a Lusin space!)
there exists a unique probability measure µ on F such that

µ (F (x1, . . . , xn;A1, . . . , An)) =
n∏
i=1

ν(xi, Ai) .

Indeed, it is easy to check that the above formula defines a consistent family of
probability measures on the finitely-based cylinders of F , then apply Kolmogorov’s
Theorem.

Now define the dynamical system

T̃ : E × F −→ E × F
(x, y) 7−→ (y(x), y) .
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With the same notations as in the proof of Theorem 2.2, we have X(x, y) = y(x)
in this particular case and hence

µ({y ∈ F ; X(x, y) ∈ A}) = µ({y ∈ F ; y(x) ∈ A}) = ν(x,A) .

This proves our claim by (2.3). �

Note that in this dilation of L, the dynamical system T has no reason to be
invertible in general. It is worth noticing that one can construct a dilation where
T is invertible.

Proposition 2.4. Every Markov kernel ν, on a Lusin space E, admits a dilation
T̃ which is an invertible dynamical system.

Proof. Consider the construction and notations of Theorem 2.3. Consider the
space F ′ = E × F . Let x0 be a fixed element of E and define the mapping T̃ ′ on
E × F ′ by 

T̃ ′(x, (x0, y)) = (y(x), (x, y)),
T̃ ′(x, (y(x), y)) = (x0, (x, y)),
T̃ ′(x, (z, y)) = (z, (x, y)), if z 6= x0 and z 6= y(x) .

It is easy to check that T̃ ′ is a bijection of E × F ′. Now extend the measure µ on
F to the measure δx0 ⊗ µ on F ′. Then the dynamical system T̃ ′ is invertible and
dilates the same Markov kernel as T̃ . �

2.3. Iterating the Dynamical System. We have shown that every dynamical
system on a product set gives rise to a Markov kernel when restricted to one of the
sets. We have seen that every Markov kernel can be obtained this way. But one
has to notice that our construction allows the dynamical system T̃ to dilate the
Markov kernel L as a single mapping only. That is, iterations of the dynamical
system Tn do not in general dilate the semigroup Ln associated to the Markov
process. Let us check this with a simple counter-example.

Put E = F = {1, 2}. On F define the probability measure µ(1) = 1/4 and
µ(2) = 3/4. Define the dynamical system T̃ on E × F which is the “anticlockwise
rotation”:

T̃ (1, 1) = (2, 1), T̃ (2, 1) = (2, 2), T̃ (2, 2) = (1, 2), T̃ (1, 2) = (1, 1) .

With the same notations as in previous section, we have

X(1, 1) = 2, X(2, 1) = 2, X(2, 2) = 1, X(1, 2) = 1 .

Hence, we get

µ(X(1, · ) = 1) =
3
4
, µ(X(1, · ) = 2) =

1
4
,

µ(X(2, · ) = 1) =
3
4
, µ(X(2, · ) = 2) =

1
4
.

Hence the Markovian matrix associated to the restriction of T̃ to E is

L =

(
3
4

1
4

3
4

1
4

)
.
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In particular
L2 = L .

Let us compute T̃ 2. We get

T̃ 2(1, 1) = (2, 2), T̃ 2(2, 1) = (1, 2), T̃ 2(2, 2) = (1, 1), T̃ 2(1, 2) = (2, 1) .

Hence the associated X-mapping, which we shall denote by X2, is given by

X2(1, 1) = 2, X2(2, 1) = 1, X2(2, 2) = 1, X2(1, 2) = 2 .

This gives the Markovian matrix

L2 =

(
0 1

1 0

)
,

which is clearly not equal to L2.

It would be very interesting if one could find a dilation of the Markov kernel L
by a dynamical system T̃ such that any power Tn would also dilate Ln. We would
have realized the whole Markov chain as the restriction of iterations of a single
dynamical system on a larger space.

This can be performed in the following way (note that this is not the only way,
nor the more economical). Let L be a Markov operator on a Lusin space E with
kernel ν and let T be a dynamical system on E × F which dilates L. Consider
the set F̂ = FN∗ equipped with the usual cylinder σ-field F⊗N∗ and the product
measure µ̂ = µ⊗N∗ . The elements of F̂ are sequences (yn)n∈N∗ in F . Put

S̃ : E × F̂ −→ E × F̂
(x, y) 7−→ (X(x, y1),Θ(y))

where X is as in the the proof of Theorem 2.2 and Θ is the usual shift on F̂ :
Θ(y) = (yn+1)n∈N∗ .

Then S̃ can be lifted into a morphism S of L∞(E × F̂ ), as previously. Fur-
thermore, any function f in L∞(E) can be lifted into f ⊗ 1l on L∞(E × F̂ ), with
(f ⊗ 1l)(x, y) = f(x).

Theorem 2.5. For all n ∈ N∗, all x ∈ E and all f ∈ L∞(E) we have∫
bF S

n(f ⊗ 1l)(x, y) dµ̂(y) = (Lnf)(x) .

Proof. Recall that we noticed in the proof of Theorem 2.2, that the mapping Y

associated to T̃ played no role in the proof of this theorem, only the mapping X
was of importance. In particular this implies that Theorem 2.5 is true for n = 1,
for the dynamical systems T̃ and S̃ share the same X-mapping.

By induction, let us assume that the relation∫
bF S

k(f ⊗ 1l)(x, y) dµ̂(y) = (Lkf)(x)
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holds true for all f ∈ L∞(E), all x ∈ E and all k ≤ n. Set F̂[2 to be the set of
sequences (yn)n≥2 with values in F̂ and µ̂[2 the restriction of µ̂ to F̂[2. We have∫

bFS
n+1(f ⊗ 1l)(x, y) dµ̂(y) =

=
∫

bF S
n(f ⊗ 1l) (X(x, y1),Θ(y)) dµ̂(y)

=
∫
F

∫
bF[2

Sn(f ⊗ 1l) (X(x, y1), y) dµ̂[2(y) dµ(y1) .

Put x̃ = X(x, y1), the above is equal to∫
F

∫
bF[2

Sn(f ⊗ 1l) (x̃, y) dµ̂[2(y) dµ(y1)

=
∫
F

Ln(f)(x̃) dµ(y1) (by induction hypothesis)

=
∫
F

Ln(f)(X(x, y1)) dµ(y1)

= Ln+1(f)(x) .

�

With this theorem and with Theorem 2.3, we see that every Markov chain on E
can realized as the restriction on E of the iterations of a deterministic dynamical
system T̃ acting on a larger set.

The physical interpretation of the construction above is very interesting. It
represents a scheme of “repeated interactions”. That is, we know that the result
of the deterministic dynamics associated to T̃ on E × F gives rises to the Markov
operator L on E. The idea of the construction above is that the environment is
now made of a chain of copies of F , each of which is going to interact, one after the
other, with E. After, the first interaction between E and the first copy of F has
happened, following the dynamical system T̃ , the first copy of F stops interacting
with E and is replaced by the second copy of F . This copy now interacts with
E following T̃ . And so on, we repeat these interactions. The space E keeps the
memory of the different interactions, while each copy of F arrives independently
in front of E and induces one more step of evolution following T̃ .

As a result of this procedure, successive evolutions restricted to E correspond
to iterations of the Markov operator L. This gives rise to behavior as claimed: an
entire path of the homogeneous Markov chain with generator L.

2.4. Defect of Determinism and Loss of Invertibility. We end up this sec-
tion with some algebraic characterizations of determinism for Markov chains. The
point is to characterize what exactly is lost when going from the deterministic
dynamics T on E × F to the Markov operator L on E.

Theorem 2.6. Let (E, E) be a Lusin space. Let (Xn) be a Markov chain with
state space (E, E) and with transition kernel ν. Let L be the Markov operator on
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L∞(E) associated to ν:

Lf(x) =
∫
E

f(y) ν(x, dy) .

Then the Markov chain (Xn) is deterministic if and only if L is a ∗-homomorphism
of the algebra L∞(E).

Proof. If the Markov chain is deterministic, then L is associated to a dynamical
system and hence it is a ∗-homomorphism (Proposition 2.1).

Conversely, suppose that L is a ∗-homomorphism. We shall first consider the
case where (E, E) is a Borel subset of a compact metric space.

Take any A ∈ E , any x ∈ E and recall that we always have

ν(x,A) = L(1lA)(x) .

The homomorphism property gives

L(1lA)(x) = L(1l2A)(x) = L(1lA)2(x) = ν(x,A)2 .

Hence ν(x,A) satisfies ν(x,A)2 = ν(x,A). This means that ν(x,A) is equal to 0
or 1, for all x ∈ E and all A ∈ E .

Consider a covering of E with a countable family of balls (Bi)i∈N, each of
which with diameter smaller than 2−n (this is always possible as E is separable).
From this covering one can easily extract a partition (Si)i∈N of E by measurable
sets, each of which with diameter smaller than 2−n. We shall denote by Sn this
partition.

Let x ∈ E be fixed. As we have
∑
E∈Sn ν(x,E) = 1 we must have ν(x,E) = 1

for one and only one E ∈ Sn. Let us denote by E(n)(x) this unique set. Clearly,
the sequence (E(n)(x))n∈N is decreasing (for otherwise there will be more than
one set E ∈ Sn such that ν(x,E) = 1). Let A = ∩nE(n)(x). The set A satisfies
ν(x,A) = 1, hence A is non-empty. But also, the diameter of A has to be 0, for it
is smaller than 2−n for all n. As a consequence A has to be a singleton {y(x)}, for
some y(x) ∈ E. Hence we have proved that for each x ∈ E there exists a y(x) ∈ E
such that n(x, {y(x)}) = 1. This proves the deterministic character of our chain.

The case where E is only homeomorphic to a Borel subset E′ of a compact met-
ric space is obtained by using the homeomorphism to transfer suitable partitions
Sn of E′ to E. �

The result above is quite amazing. It gives such a clear and neat characterization
of the difference between a true Markov operator and a deterministic one! One can
even think of several applications of this characterization, for example one may be
able to measure the “level of randomness” of some Markov operator by evaluating
for example

sup{
∥∥T (f2)− T (f)2

∥∥ ; f ∈ L∞(E, E), ‖f‖ = 1} .

I do not know if such things have already been studied or not. It is not my purpose
here to develop this idea, I just mention it.



MARKOV CHAINS AND DYNAMICAL SYSTEMS 11

Another strong result on determinism of Markov chains is the way it is related
to non-invertibility.

Theorem 2.7. Let (E, E) be a Lusin space. Let L be a Markov operator on L∞(E)
associated to a Markov chain (Xn). If L is invertible in the category of Markov
operators then (Xn) is deterministic.

Proof. Recall that a Markov operator L maps positive functions to positive func-
tions. Hence, in the same way as one proves Cauchy-Schwarz inequality, we always
have

L(f) = L(f)
and

L(|f |2) ≥ L(f̄)L(f)

(hint: write the positivity of T ((f + λg)(f + λg)) for all λ ∈ C).
Let M be a Markov operator such that ML = LM = I. We have

|f |2 = f̄f = M ◦ L(f̄f) ≥M(L(f̄)L(f)) ≥M ◦ L(f̄)M ◦ L(f) = f̄f = |f |2 .
Hence we have equalities everywhere above. In particular

M ◦ L(f̄f) = M(L(f̄)L(f)) .

Applying L to this equality, gives

L(f̄f) = L(f̄)L(f) ,

for all f ∈ L∞(E).
By polarization it is easy to prove now that L is a homomorphism. By Theorem

2.6 it is the Markov operator associated to a deterministic chain. �

The result above is more intuitive than the one of Theorem 2.6, from the point
of view of open systems. If the dynamical system T̃ on the large space E × F is
invertible, this invertibility is always lost when projecting on E. The fact we do
not have access to one component of the coupled system makes that we lose all
chance of invertibility.

3. Continuous Time

We now leave the discrete-time setup to concentrate on continuous-time dynam-
ical systems. We aim to show that stochastic differential equations are actually
a particular kind of continuous-time dynamical systems. In particular they are
“deterministic”. The type of dynamical system we shall obtain this way is a
continuous-time version of the construction of Theorem 2.5.

3.1. Preliminaries. Let us consider the d-dimensional Brownian motion W on
its canonical space (Ω,F ,P). This is to say that Ω = C0(R+; Rd) is the space
of continuous functions on R+ with values in Rd and which vanish at 0, equiped
with the topology of uniform convergence on compact sets, the σ-field F is Borel
σ-field of Ω and the measure P is the Wiener measure, that is, the law of a d-
dimensional Brownian motion on Ω. The canonical Brownian motion (Wt) is
defined by Wt(ω) = ω(t), for all ω ∈ Ω and all t ∈ R+. This is to say, coordinate-
wise: W i

t (ω) = ωi(t), for i = 1, . . . , d.
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We define for all s ∈ R+ the shift θs as a function from Ω to Ω by

θs(ω)(t) = ω(t+ s)− ω(s) .

We define the shift operator Θs as follows. If X is any random variable on Ω we
denote by Θs(X) the random variable X ◦ θs, whatever is the state space of X.
In particular we have Θs(Wt) = Wt+s −Ws .

As the process Yt = Wt+s−Ws, t ∈ R+, is again a d-dimensional Brownian mo-
tion, this implies that the mapping θs preserves the measure P. As a consequence
Θs is an isometry of L2((Ω,F ,P); Rd).

Lemma 3.1. If H is a predictable process in Rd, then, for all fixed s ∈ R+, the
process Kt = Θs(Ht−s), t ≥ s is also predictable.

Proof. The process K as a mapping from Ω× [s,+∞[ to Rd is the composition of
H with the mapping φ(ω, t) = (θs(ω), t− s) from Ω× [s,+∞[ to Ω×R+. We just
need to check that φ is measurable for the predictable σ-algebra P.

Consider a basic predictable set A×]u, v], with u < v and A ∈ Fu, then

φ−1(A×]u, v]) = θ−1
s (A)×]u+ s, v + s] .

We just need to check that θ−1
s (Fu) ⊂ Fu+s. The σ-algebra Fu is generated by

events of the form (W i
t ∈ [a, b]), for t ≤ u and i = 1, . . . , d. The set θ−1

s (W i
t ∈ [a, b])

is equal to (W i
t+s −W i

s ∈ [a, b]), hence it belongs to Fu+s.
One needs also to note that

φ−1(A× {0}) = θ−1
s (A)× {s} ∈ Fs × {s}

for all A ∈ F0. We have proved the predictable character of K. �

In the following, the norm ‖·‖2 is the L2((Ω,F ,P); Rd)-norm. For a Rd-valued
predictable process H we put∫ t

0

Hs · dWs =
d∑
i=1

∫ t

0

Hi
s dW

i
s .

Lemma 3.2. Let H be a predictable process in Rd such that
∫ t+s

0
‖Hu‖22 du <∞.

Then we have

Θs

(∫ t

0

Hu · dWu

)
=
∫ t+s

s

Θs(Hu−s) · dWu . (3.1)

Proof. If H is an elementary predictable process then the identity (3.1) is obvious
from the fact that Θs(FG) = Θs(F ) Θs(G) for any scalar-valued F and G. A
general stochastic integral

∫ t
0
Hs · dWs is obtained as a limit in the norm∥∥∥∥∫ t

0

Hs · dWs

∥∥∥∥2

2

=
∫ t

0

‖Hs‖22 ds ,

of stochastic integrals of elementary predictable processes. As Θs is an isometry,
it is clear that Equation (3.1) holds true for any stochastic integral. �
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Here comes now the main result of this section. Before hands recall the following
result on stochastic differential equations (cf [13], Chapter V). Let f be a locally
bounded Lipschitz function from Rn to Rn and g a locally bounded Lipschitz
function from Rn to Mn×d(R). Consider the stochastic differential equation

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu ,

which is a shorthand for

(Xx
t )i = xi +

∫ t

0

f(Xx
u)i du+

d∑
j=1

∫ t

0

g(Xx
u)ij · dW j

u ,

for all i = 1, . . . , n. Then this equation admits a solution Xx and this solution
is unique, in the sense that any other process on (Ω,F ,P) satisfying the same
equation is almost surely identical to Xx.

Theorem 3.3. Let W be a d-dimensional Brownian motion on its canonical space
(Ω,F ,P). Let f be a locally bounded Lipschitz function from Rn to Rn and g a
locally bounded Lipschitz function from Rn to Mn×d(R). Denote by Xx the unique
stochastic process (in Rn) which is a solution of the stochastic differential equation

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu .

Then, for all s ∈ R+, for almost all ω ∈ Ω, we have, for all t ∈ R+,

X
Xx

s (ω)
t (θs(ω)) = Xx

s+t(ω) .

Remark: Let us be clear about the sentence “for all s ∈ R+, for almost all ω ∈ Ω,
we have, for all t ∈ R+” above. It means that for all s ∈ R+, there exists a null-set
Ns ⊂ Ω such that for all w ∈ Ω \ Ns we have, for all t ∈ R+ ...

Proof. Let s be fixed. Define, for all ω ∈ Ω

Y xu (ω) =


Xx
u(ω) if u ≤ s ,

X
Xx

s (ω)
u−s (θs(ω)) if u > s .

Then Y xs+t satisfies

Y xs+t(ω) = X
Xx

s (ω)
t (θs(ω))

= Xx
s (ω) +

[∫ t

0

f(XXx
s

u ) du
]

(θs(ω)) +
[∫ t

0

g(XXx
s

u ) · dWu

]
(θs(ω))

= x+
[∫ s

0

f(Xx
u) du

]
(ω) +

[∫ s

0

g(Xx
u) · dWu

]
(ω)+

+
∫ t

0

f(XXx
s

u )(θs(ω)) du+
[∫ s+t

s

Θs

(
g(XXx

s
u−s)

)
· dWu

]
(ω)

by Lemma 3.2.
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Now, coming back to the definition of Y we get

Y xs+t(ω) = x+
∫ s

0

f(Y xu )(ω) du+
[∫ s

0

g(Y xu ) · dWu

]
(ω) +

∫ t

0

f(Y xu+s)(ω) du+

+
[∫ s+t

s

g(Y xu ) · dWu

]
(ω)

= x+
[∫ s

0

f(Y xu ) du+
∫ s

0

g(Y xu ) · dWu +
∫ s+t

s

f(Y xu ) du+

+
∫ s+t

s

g(Y xu ) · dWu

]
(ω)

= x+
[∫ s+t

0

f(Y xu ) du+
∫ s+t

0

g(Y xu ) · dWu

]
(ω) .

This shows that Y x is solution of the same stochastic differential equation as Xx.
We conclude easily by uniqueness of the solution. �

3.2. Stochastic Differential Equations and Dynamical Systems. We are
now ready to establish a parallel between stochastic differential equations and
dynamical systems. Recall how we defined discrete time dynamical systems T̃ in
Section 2 and their associated semigroups (T̃n). In continuous time the definition
extends in the following way.

A continuous-time dynamical system on a measurable space (E, E) is a one-
parameter family of measurable functions (T̃t)t∈R+ on E such that T̃s ◦ T̃t = T̃s+t
for all s, t. That is, T̃ is a semigroup of functions on E.

Each of the mappings T̃t can be lifted into an operator on L∞(E), denoted by
Tt and defined by

Ttf(x) = f(T̃t x) .

The following result is now a direct application of Theorem 3.3.

Corollary 3.4. Let W be a d-dimensional Brownian motion on its canonical space
(Ω,F ,P). Let f be a locally bounded Lipschitz function from Rn to Rn and let g be
a locally bounded Lipschitz function from Rn to Mn×d(R). Consider the stochastic
differential equation (on Rn)

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu .

Then the mappings T̃t on Rn × Ω defined by

T̃t(x, ω) = (Xx
t (ω), θt(ω))

define a continuous time dynamical system on Rn × Ω, in the sense that there
exists a null set N ⊂ Ω such that for all ω ∈ Ω \ N , for all x ∈ Rn and for all
s, t ∈ R+ we have

Tt ◦ Ts(x, ω) = Ts ◦ Tt(x, ω) = Ts+t(x, ω) .
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Proof. The null set Ns appearing in Theorem 3.3 also depends on the initial point
x ∈ Rn. Let us denote by Nx,s this set, instead. Let Nx,s,t be the null set
Nx,s ∪Nx,t. Finally put

N =
⋃
x∈Qn

⋃
s,t∈Q+

Nx,s,t .

Then N is a null set and for all ω ∈ Ω \ N the relations

Tt ◦ Ts(x, ω) = Ts ◦ Tt(x, ω) = Ts+t(x, ω)

hold true for all x ∈ Qn and all s, t ∈ Q+, by Theorem 3.3.
The solution Xx

t (ω) is continuous in t, except for a null set N ′ of ω’s. Hence,
by continuity, the relations above remain true for all s, t ∈ R+, if ω ∈ Ω\ (N ∪N ′).

In the same way, as the solution Xx
t depends continuously in x, we conclude

easily. �

This is to say that, apart from this minor restriction to the complementary of a
null set in Ω, a stochastic differential equation is nothing more than a deterministic
dynamical system on a product set Rn × Ω, that is, it is a semigroup of point
transformations of this product set.

We now have a result analogous to the one of Theorem 2.5 when this dynamical
system is restricted to the Rn-component. But before establishing this result, we
need few technical lemmas. In the following Ωt] denotes the space of continuous
functions from [0, t] to Rd. For all ω ∈ Ω we denote by ωt] the restriction of ω to
[0, t]. Finally Pt] denotes the restriction of the measure P to (Ωt] ,Ft).

Lemma 3.5. The image of the measure P under the mapping

Ω → Ωt] × Ω
ω 7→ (ωt] , θt(ω))

is the measure Pt] ⊗ P.

Proof. Recall that ω(s) = Ws(ω) and θt(ω)(s) = Wt+s(ω)−Wt(ω). If A is a finite
cylinder of Ωt] and B a finite cylinder of Ω, then the set

{ω ∈ Ω ; (ωt] , θt(ω)) ∈ A×B}
is of the form

{ω ∈ Ω ; Wt1(ω) ∈ A1, . . . ,Wtn(ω) ∈ An, (Ws1 −Wt)(ω) ∈ B1, . . .

. . . , (Wsk
−Wt)(ω) ∈ Bk}

for some t1, . . . , tn ≤ t and some s1, . . . , sk > t. By the independence of the
Brownian motion increments, the probability of the above event is equal to

Pt]({ω ∈ Ωt] ; Wt1(ω) ∈ A1, . . . ,Wtn(ω) ∈ An})×
× P({ω ∈ Ω ; (Ws1 −Wt)(ω) ∈ B1, . . . , (Wsk

−Wt)(ω) ∈ Bk}) .
This is to say,

P({ω ∈ Ω ; (ωt] , θt(ω)) ∈ A×B}) =

= Pt]({ωt] ∈ Ωt] ; ωt] ∈ A}) P({ω ∈ Ω ; θt(ω) ∈ B}) .
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This is exactly the claim of the lemma for the cylinder sets. As the measures P and
Pt]⊗P are determined by their values on the cylinder sets, we conclude easily. �

Lemma 3.6. Let g be a bounded measurable function on Ωt] × Ω. Then we have∫
Ω

∫
Ωt]

g(ω, ω′) dPt](ω) dP (ω′) =
∫

Ω

g(ωt], θt(ω)) dP (ω) .

Proof. This is just the Transfer Theorem for the mapping of Lemma 3.5. �

Theorem 3.7. Let (Ω,F ,P) be the canonical space of a d-dimensional Brownian
motion W . Let f be a locally bounded Lipschitz function from Rn to Rn and let g be
a locally bounded Lipschitz function from Rn to Mn×d(R). Consider the stochastic
differential equation (on Rn)

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu

and the associated dynamical system

T̃t(x, ω) = (Xx
t (ω), θt(ω)) .

For any bounded function h on Rn consider the mapping

Pt h(x) = E [Tt(h⊗ 1l)(x, · )] =
∫

Ω

h(Xx
t (ω)) dP(ω) .

Then (Pt)t∈R+ is a Markov semigroup on Rn with generator

A =
n∑
i=1

fi(x)
∂

∂xi
+

1
2

n∑
i,j=1

d∑
α=1

giα(x)gjα(x)
∂2

∂xi ∂xj
.

Proof. The fact that each Pt is a Markov operator is a consequence of Theorem
2.2. Let us check that they form a semigroup.

First of all note that, since Xx is a predictable process, the quantity Xx
t (ω)

depends only on ωt] and not on the whole of ω. We shall denote by Xx
t (ωt]) the

associated function of ωt].
By definition of Pt we have

Pt(Ps h)(x) = E [Tt(Psh⊗ 1l)(x, · )]

=
∫

Ω

Psh(Xx
t (ω)) dP(ω)

=
∫

Ω

∫
Ω

h
(
X
Xx

t (ω)
s (ω′)

)
dP(ω′) dP(ω)

=
∫

Ωt]

∫
Ω

h
(
X
Xx

t (ω)
s (ω′)

)
dP(ω′) dPt](ω)

=
∫

Ω

h
(
X
Xx

t (ωt])
s (θt(ω))

)
dP(ω) (by Lemma 3.6)

=
∫

Ω

h
(
Xx
s+t(ω)

)
dP(ω) (by Theorem 3.3)

= Ps+th(x) .
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We have proved the semigroup property.
The rest of the proof comes from the usual theory of Markov semigroups and

their associated generators (see for example [12], Chapter VII). �

We have proved the continuous time analog of Theorem 2.5. Every Markov
semigroup, with a generator of the form above, can be dilated on a larger set (a
product set) into a deterministic dynamical system. What is maybe more surpris-
ing is that the deterministic dynamical system in question is a stochastic differen-
tial equation. Theorem 3.7 and Corollary 3.4 show that a stochastic differential
equation can actually be seen as a particular deterministic dynamical system.

Theorem 3.7 above again gives an open system point of view on Markov pro-
cesses: Markov processes are obtained by the restriction of certain types of dy-
namical systems on a product space, when one is averaging over one inaccessible
component. The role of the environment is now played by the Wiener space and
the role of the global dynamics on the product space is played by the stochastic
differential equation.

In this section we have developed the Brownian case only. But it is clear that all
this discussion extends exactly in the same way to the case of the Poisson process.
Indeed, the arguments developed above are mostly only based on the independent
increment property.

We have said that stochastic differential equations are particular dynamical sys-
tems which are continuous analogues of those of Section 2.3: repeated interactions.
In the article [7], the convergence of discrete-time repeated interactions models to
stochastic differential equations is proved.

Comment. We do not pretend that all the results presented in this article are
new. Let us be clear about that. The fact that restrictions of dynamical systems
can give rise to Markov chains is rather well-known among specialists of dynamical
systems. The results of Subsection 2.4 are adaptations to the classical context of
similar results on completely positive maps for quantum systems. The fact that
stochastic differential equations give rise to deterministic dynamical systems is also
not new and can be found for example in [6] (see also [1] for more general noises).

The originality of our article lies more in its survey character, in the way we
put all these results together, in the connection we make with repeated interaction
systems and in the physical point of view we adopt.

Acknowledgment. The author is very grateful to the referee of this article for
his very carefull reading, his remarks and suggestions.
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