EXTENSIONS OF QUANTUM STOCHASTIC CALCULUS

by Stéphane ATTAL (*)

|. ABSTRACT ITO CALCULUS ON FOCK SPACE

I.1. Short notations

1.1.1. The symmetric spaces.

Let P denote the set of finite subsets of R*. That is, P = W P,, where
n

Po = {0} and P, is the set of n elements subsets of R*, n > 1. By ordering
elements of a o0 = {t1,t2,...,t,} € P, we identify P, with X, = {0 < t; <ty <
.-+ < tp} C (RT)™. This way P, inherits the measured space structure of (R*)".
By putting the Dirac measure dg on Py, we have defined a o-finite measured space
structure on P (which, I insist, is the n-dimensional Lebesgue measure on each P,,)
whose only atom is {#}. The elements of P are denoted with small Greek letters
O,W,T,, ..., the associated measure is denoted do, dw, dr, ..., (with, in mind, that
o={t1 <ty <--<t,}and do = dtidts---dt,). It is now clear that L?(P)
is isomorphic to the Fock space ®. Indeed, L%(P) = @ L?(P,) is isomorphic to
n

@ L3(%,) (with X = {@}) that is ®. In order to be really clear, the isomorphism
bnetween ® and L2(P) can be explicitly written as:
V:® — L*(P)
f—Vf

where f = zn:fn and [Vf](O') = {;:(tl;;tn) ggz?tl < i < tn}
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For example, a coherent vector £(u), seen in L?(P), satisfies

[e(w)](o) = H u(s) (where the empty product equals 1) .

s€a
Let us fix some notations on P.

If 0 # 0 we put vo = maxo, o— =0 \ {vo}.

If t € o then o \ t denotes o \ {t}.

If {¢t ¢ o} then o Ut denotes o U {t}.

If0<s<tthen o, =0n]0,s

O(s,) = 0N]s, t[
o = oN|t, 400 .

if o C[0,1]
otherwise.

IfO0<s<tthen P ={oeP;ocC]|0s[}
PEY = {5 € P;o Cls,t[}
P = {0 € P;o CJt,+o0[} .

#o0 is the cardinal of o.

1,<¢ means { 1

It is clear, with the notations of R. L. Hudson’s course, that
&, ~ L*(P?)
B[, = LX(PEY)
o, ~ LX(PU) .
In the following we make several identifications:

+ & is not distinguished from L*(P) (and the same holds for & and L*(P?),
etc...)

o L2(P?), L2(PY) and L*(P(®) are seen as subspaces of L?(P): the sub-
space of f € L%*(P) such that f(o) = 0 for all o such that o ¢ [0,s]
(resp.o ¢ [s,t], Tesp.o ¢ [t, +00[).

1.1.2. Integral-sum lemma.

The following lemma is a very important and useful combinatoric result
that we will use quite often in the sequel. What this lemma says is mainly the
following: consider the Wick product on ®:

[/ 9)(0) S fla)g(o N o)

aCo
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then this product behaves like a convolution; in particular it maps isometrically
LY (P) x L*(P) to L*(P).

¥-LEMMA. — Let f be a measurable positive (resp. integrable) function
on P x P. Define a function g on P by

90) =Y fla,0na).

aCo

Then g is measurable positive (resp. integrable) and
[ o do= [ j@.p dads.
P PxP

Proof. — By density arguments one can restrict ourselves to the case where
f(a,B) = h(a)k(B) and where h = £(u) and k = £(v) are coherent vectors. In this
case one has

/P fe) dacdp = /P e(w)(a) do /7> e(w)(8) dB

= eJo ule) ds [ v(s) ds (take u,v € L' N L2(R))

and
/pz.f(a,a\a)daz/PZHu(s) H v(s) do

aCo aCo s€a s€oNa
- / H(“(s) +v(s)) do = efo u(s)+v(s) ds [ |
P seo

As we have seen in R. L. Hudson’s course we have, for all ¢, an isomorphism
between ® and ®;; ® ®[;. In terms of this short notation, and with the help of the
¥-Lemma, the isomorphism describes nicely.

THEOREM 1.1.1. — The mapping:
0P, — @
f®gr—h
with h(o) = f(oy))g(o() defines an isomorphism between ®; ® ®f; and .

Proof.

/P (o) ? do = /p £ (o) Plg(oq)? do

= [ 3 taconlomactrwl @ lglo ) do
P

aCo
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= [ [ Bacoatact sl f(@FIg()P dadB (b the ¥-Lemma)
pJp

= [ 1P da [ o) ag

=feql* n

[.2. Ito calculus on Fock space

We are now ready to define the main ingredients for developing our quantum
stochastic calculus: several differential and integral operators on the Fock space.

I.2.1. Conditional expectations.

For all t > 0 define the operator P; from ® to ® by

[P f](o) = f(U)loc[o,t] -

It is very easy to check that P; is actually the orthogonal projector from & onto
®y.

For t = 0 we define Py by

[Pofl(0) = F(0)T,—g

which is the orthogonal projection onto L?*(Pg) = CL where 1 is the vacuum
(1(o) = T5—p)-

1.2.2. Adapted gradient.

For all t € RT and all f in ® define the following function on P:

[Dif](0) = flo Ut)Loco,g-

The first natural question is: for which f does D;f lie in ® that is, L2(P).

PROPOSITION 1.2.1. — For all f € ®, we have
/0 /p D)) do dt = |2 - | F@)].
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Proof. — This is again an easy application of the ¥-Lemma:

/ / 1£(0 U8 Ly o do dt = / / 1£(@U B)PLgpmi Laciovg da dB
o Jp

/ z |f aUo N a)' ]]‘#(0'\(1) 1]]-aC[0 V(o~a)] do

aCo

/ Z |f(0)]? 1,¢clo,g do (this forces ¢ to be vo)
P

~Po teo

- / F0) do = |12 - |F@)[2. .
P~Po

This proposition implies the following: for all f in ®, for almost all ¢ € Rt (the
negligeable set depends on f), the function D, f belongs to L%(P). So for all f in
®, almost all t, D, f is an element of ®. Thought, D, is not a well-defined operator
from ® to ®. The only operators which can be well defined are either
D:L*P) — L*(P x R")
f = ((o,t) = Def(0))

which is a partial isometry; or the regularised operators Dy, for h € L?(R*):

Duf](o / h(HIDf)(0) dt.

But, anyway, in this course we will treat the D;’s as linear operators defined on
the whole of ®. This, in general, poses no problem; one just has to be careful in
some particular situations.

Note that D; is the adapted version of the well known Malliavin’s gradient:

[Vifl(o) = floUt).

The very important difference comes from the fact that D;f is defined for all f
(in the sense that for all f, D;f stays in ®), which is not the case for V.

1.2.3. Ito integral.

A family (g¢)¢>0 of elements of ® is said to be an Ito integrable process if
the following holds:

i) [+ ||g:]| is measurable
i) gt € &, for all ¢
i) [3° llgell* dt < oo.

If g. = (9¢)¢>0 is an Ito integrable process, define

2N = {0 ey o zh
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ProPOSITION 1.2.2. — For all Ito integrable process g. = (g:)¢>0 one has

/P Z(9))(0)]? do = / lgell? dt < oo.

Proof. — Another application of the ¥-Lemma (Exercise). |

So, for all Ito integrable process g. = (g¢)¢>0, Z(g.) defines an element of @,
the Ito integral of the process g..

One can notice that the Ito integral is just the restriction to Ito integrable
processes of the well-known Skorohod integral:

[S(g))(@) =D gs(o N ).

s€o

Recall the operator D : L2(P) — L?(P x RY) from last section.

PRroPOSITION 1.2.3.

Proof.
(. Z(g)) = /P  F@)ualo-) do
= /°°/ floUt)gi(o)Lycpo, do dt ( ¥-Lemma)
0o Jp
- [ [ D) do
o Jp
=/0 (D¢ f, g¢) dt. n

1.2.4. The Ito integral is really an integral.

We are going to see that the Ito integral defined above can be interpreted
as a true integral fooo g¢ dx; with respect to some particular process (x¢):>o0-

For all t € RT, define the element x; of ® by

{Xt(U):O if #0 #1
xt(8) = Ljo,¢(s).

This family of elements of & has some very particular properties. The main one
is the following: not only x; € ®; for all £ € R*, but also

Xt — Xs € Py forall s <t

6



which is very easy to check from the definition.

We will see later that, in some sense, (x¢)¢>0 is the only process to satisfy
this property.

For the moment, let us take an Ito integrable process (g¢):>0 which is simple
that is, constant on intervals:

g9t = Z 9t; ]]-[ti,ti+1[(t)'
i

Define fooo gtht to be thi ® (Xti+1 _Xti) (recall that gi; € (}tl] and Xtiz1 — Xts €
i
@4 t:01] C P(r;)- We have

[/ooo g dXt] (o) = i[gti ® (Xtiyr — Xt:)](0)

= Z 9t (94)) (Xteyn = Xt:) (0(2,)

n=1

00
= Z gt; (a-ti))]]‘#a(tizl ]]-Va(ti €]t tita]

n=1
oo

= thi (Uti)IU—C[O,ti]:“'VG'E]t,',t,'+1] -
n=1

If the partition (¢;);cn of R is fine enough to separate o— from vo (this can always
been done by refining the partition and declaring the associated g¢,’s to have the
correct value), then the sum above contains one and only one non-vanishing term:
the one for the only i = ig such that vo €]t;,, ti;+1] and o— C [0, t;,]. We have

[/000 gt dXt] (0) = 9t:y (01:,)) = 9ty (0—) = guo(0—).

Thus for simple Ito-integrable processes we have proved that

T(g.) = / " gt dxe. (1.1)

But because of the isometry formula of Proposition 1.2.2 we have

IZ(@)? = | / ge dxall? = / lge|? dt.

So one can pass to the limit from simple Ito integrable processes to Ito integrable
processes in general and extend the definition of this integral fooo gt dxt- As a
result, (I.1) holds for every Ito integrable process (g¢)¢>0. So from now on we will
denote the Ito integral by [° g dxe-



1.2.5. Fock space predictable representation property.

If f belongs to ®, Proposition I.2.1 shows that (D f);>o is an Ito integrable
process. So let us compute fooo Dy f dx;.

< _J0 ifo=0
[/0 Dij dXt] (o) = { [Dy, f](c—) otherwise
_]0 ifo=10
| flo—= UVU)ﬂgfc[o,v,,] otherwise
0 ifo=10
| f(o) otherwise

= f(o) — [P f](0).
This computation together with Propositions 1.2.1 and 1.2.2 give the following
fundamental result.

THEOREM 1.2.4 (Fock space predictable representation property). — For

all f € ® one has the representation
f=Rf+ [ Dif v (1.2)

0
and
oo
171 = 1Rf P+ [ UD P . (1.3)
0

The representation (1.2) is unique; that is, Py f and (Dyf)¢>o0 are respectively the
unique constant, Ito integrable process, such that (1.2) holds.

The norm identity (I.3) polarises as follows

0
for all f,g € ®.
Proof. — The only thing that remains to prove is the uniqueness property.
If f=c+ fooo g: dx: then Pof = Pyc + B f0°° gi dx; = c¢. So fooo g dxs =

J5° Dif dxq that is, [°(g¢ — Dif) dxe = 0. This implies [, [lg: — D¢ f||* dt = 0
thus the result. [ |

1.2.6. Fock space chaotic expansion property.

Let h; be an element of L2(Rt) = L2(P;), we can define

/ ha (1) dxe
0
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in the sense [h1(t)1 dx;. For ho€L?*(P;) we want to define

/ h2(51732) dXS1 dXS2 .
0<S1<82

This can be done in two ways:

o either by starting with simple hs’s and defining the iterated integral above
as being

Z Z h2(ti78j)(xti+1 - Xti)(xsj+1 - X-S‘j)'

sj t;<s;

One proves easily (exercise) that the norm? of the expression above is exactly
/ |h2(81, 82)|2 d31 d82;
0<s51<s9

0 one can pass to the limit in order to define f0<81<82 ha(s1, 82) dxs, dxs,
for any ho € L2(Py).

e cither one says that g = f0<s1<52 ha(s1, 82) dxs, dxs, is the only g € ® such
that the continuous linear form
A:p—C

f '—>/ f({s1,52})ha(s1,82) dsy ds»
<s51<s89

is of the form A(f) = (f, 9).
The two definitions coincide (exercise).

In the same way, for h,, € L?(P,,) one defines
/ hn(s1,--y8n) dxs, -+ dXs,, -
0<s51<-<sn
We get
</ hn(s1,---,8n) dxsl---dxsn,/ km(81,---,8m) dxsl---dxsm>
0 0

So15Son <s1 < <sm
:(Sn’m/\ hn(Sl,...,Sn)kn(81,...,sn) dSl"'dSn
0<51 << 5y
For f € L?(P) we define

L@ de=s@1e X [ pnsnd) o d

THEOREM 1.2.5 (Fock space chaotic representation property). — For all

f € ® we have
= o) dx,-



Proof. — For g € & we have by definition
dxo
(9, /ﬁ £(0) dxo)
=90f@)+3 / G{nms-- s 50 f U5ms - 50}) dsy -+ -dsy

<51<<sp
= (g, f)-

(Details are left to the motivated reader). ]

I.2.7. (x¢)t>0 is the only independent increment process on ¢.
We have seen that (x¢)¢>0 is a process in ® satisfying
i) Xt € ¥y for all t € RY;
i) Xt — Xs € Ppsq forall 0 < s < t.
Are there any other processes (Y;);>0 in ® satisfying these two properties?

If one takes a(-) to be a function on R*, and h € L?(R") then Y; = a(t)1 +
f(f h(s) dxs clearly satisfies 1) and ;). This is the only possibility.

THEOREM 1.2.6. — If (Y;)s>0 is a vector process on ® satisfying i) and
i) then there exists a : R¥ — C and h € L*>(R") such that

Y: =a(t)l +/0 h(s) dxs.

Proof. — Let a(t) = PyY;. ThenY; = Y;—a(t)1, t € RF, satisfies i) and ii)
with Yo = 0 (for Yo = ByYp = Po(Y; —Yo) + BoYo = PyY;). We can now drop the ~
symbol and assume Yy = 0. Now note that P;Y; = PY;+ P;(YV;—Ys) = P,Y, =Y.
This implies easily (exercise) that the chaotic expansion of Y; is of the form:

Y, = /P 1po (0)y(0) dxo -

If #0 > 2, for example 0 = {t; < t2 < --- < t,}, let s < ¢ be such that
t1 < s8<t,<t. Then

(Y; =Y,)(0) =0 for V; =Y, € ;4 and o ¢ [s,1] .
Furthermore

Ys(0) = PsYs(0) = :I]-UC[O,S]YS(U) =0.

Thus Y;(o) = 0, for any 0 € P with #0 > 2, any t € Rt. This means that
Y't = f(fy(s) dXs . u
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|.3. Probabilistic interpretations of Fock space

In this chapter we present the general theory of probabilistic interpretations
of Fock space. This chapter is not necessary for the understanding of this series
of lectures, but the ideas coming from these notions underly the whole work.

1.3.1. Chaotic expansions.

Let us recall some of the definitions and properties we have seen in M. Eme-
ry’s course. We consider a martingale (z¢);>0 on a probability space (2, F, P). We
take (F¢)¢>o0 to be the natural filtration of (2;)¢>0 (the filtration is made complete

and right continuous) and we suppose that F = F, def \V Fi. Such a martingale

£>0
is called normal if (7 — t);>¢ is still a martingale for (F;);>0. This is equivalent
to saying that (z,z); =t for all ¢ > 0, where (-,-) denotes the probabilistic angle
bracket.

A normal martingale is said to satisfy the Predictable Representation Prop-
erty (P.R.P.) if all f € L?(Q, F, P) can be written as

f=Bif)+ [ b da,
for a (F;)¢>o-predictable process (h¢)¢>0. Recall that
AP = AP + [ B ds
that is, in the L?(£2)-norm notation:

2 2 & 2
17112 = [ELA + / 1|2 ds .

Recall that if f, is a function in L?(¥,), where ¥, = {0 < t; <ty < -+ <
t, € R"} C (R")™ is equipped with the restriction of the n-dimensional Lebesgue
measure, one can define an element I,,(f,) € L?(Q2) by

In(fn) = / fn(tI; . ,tn) d.fL'tl R d.fL'tn
0<t1 <+ <tn

which is defined, with the help of the Ito isometry formula, as an iterated stochastic
integral and which satisfies

(£ =/ Fultrse ot dty - dty -

0<t1 <+ <tn

It is also important to recall that
(In(fn)alm(fm)) =0if n 75 m .
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The chaotic space of (x;);>0, denoted CS(z), is the sub-Hilbert space of
L?(Q)) made of the random variables f € L?(2) which can be written as

f =E[f] +Z/ ate, ..o tn) doy, - - day, (1.4)
0<t1<- <t,.
for some f,, € L*(3,), n € N*, such that
112 = [BLf)? +Z/ faltss o ) P dt - -dty < 00 .
0<t1 <<ty

When CS(z) is the whole of L?(Q) one says that z satisfies the Chaotic Represen-
tation Property (C.R.P.). The decomposition of f as in (I.4) is called the chaotic
expansion of f.

Note that the C.R.P. implies the P.R.P. for if f can be written as in (1)
then, by putting h; to be

htzfl(t)+z‘/0< fn+1(t17"'7tn7t) dwtl"'d'rtn
n <t1<-+<tn

we have

In the cases where (z¢)¢>0 is the Brownian motion, the compensated Poisson
process or the Azéma martingale with coefficient 8 € [—2, 0], we have examples of
normal martingales which possess the C.R.P.

1.3.2. Isomorphism with Fock space.

Let us consider a normal martingale (2;)¢>o with the P.R.P. and its chaotic
space CS(z) C L*(Q, F, P).

By identifying a function f, € L?(Z,) with a symmetric function f, on

(RT)™, one can identify L%(%,,) with Lgym((R’L)”) = L?(RT)®" (with the correct

symmetric norm: ||fn||2L2(R+)0n = n.||fn||L2(R+)®n if one puts f, to be 1 times

the symmetric expansion of f,). It is now clear that C'S(z) is isomorphic to the
symmetric Fock space

& = T(L*(R1)) @L2 (RT)®

The isomorphism can be explicitly written as follows
Uy, :® — CS(x)
f—Uf
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where f =Y f, with f, € L2(RY)®" n € N, and
n

Uwf:fo-i—zn'/ fn(tla---atn) dmtl"'dflft"
n=1 0

<ty <<ty

o0

If f=E[f]+ > f0<t1<---<t falti, ... tn) doy, - - dzy, is an element of C'S(x),
n=1 - "

then Uy f =3 gn with go = E[f] and g, = % f, symmetrised.
n

1.3.3. Structure equations, multiplications.

Let us recall M. Emery’s course. If (x¢);>0 is a normal martingale, with
the P.R.P. and if z; belongs to L*(Q), for all ¢, then ([z,z]; — (z,Z)¢)i>0 is a
L*(Q)-martingale; so by the P.R.P. there exists a predictable process (¢;);>0 such
that

t
[z, 2]y — {z,z) = / s dxs
0
that is,

t
[z,2]; = t+/ Vs dg
0

or else
d[{E,(E]t = dt—|—’¢t d(Et . (I 5)

This equation is called a structure eguation for (z;);>0. One has to be
careful that, in general, there can be many structure equations describing the
same solution (2 )¢>0; there also can be several solutions (in law) to some structure
equations.

What can be proved is the following:

* when 1)y = 0 for all ¢ then the only solution (in law) of (1.5) is the Brownian
motion;

* when 1, = ¢ for all ¢ then the only solution (in law) of (I.5) is the compen-
sated Poisson process with intensity 1/c?%;

* when ¢, = Bz for all ¢, then the only solution (in law) of (I.5) is the
Azéma martingale with parameter 3.

The importance of structure equations appears when one considers prod-
ucts. Indeed, we have seen in Section 1.2 that many operations in probabilistic
interpretations of Fock space are independent of the choice of the interpretation
and depends only on the Fock space structure: Ito integrals, Malliavin gradients,
Skorohod integrals,...
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The operation that differentiates two different probabilistic interpretations
is the product of random variables. Let us be clearer. Let f, g be two elements of
®. Let Uy f and U, g be their interpretation in the Brownian motion interpretation
(w¢)¢>0. Make the product of the two random variables: U, f-Uy,g. If the result
is still in L?(2) (for example if f and g are coherent vectors) then take it back to
®: U, Y (Uyf-Uyg)- This operation defines an associative product on &:

f*w9=Uy Unf-Uug)
called the Wiener product.
We could have done the same operations with the Poisson interpretation:
frpg= Up_l(Upf'Upg);
this gives the Poisson product on ®.
You can also define an Azéma product,...

What I claim is that you are going to obtain two different products on
®. The point is that all probabilistic interpretations of ® have the same angle
bracket (z,z); = t but not the same square bracket: [z,z]; = t + fg Vs dxs.
But the product of two random variables makes the square bracket appearing: if
F=Ef] + [ hy do, and g = Blg) + [{° k, da,, if f, = E[f|F,] and g, = Elg|7,]
for all s > 0 then one has

fg = ]E[f]E[g] +/ fsks dxs +/ gshs dxs +/ hsksds
0 0 0

= ]E[f]E[g] +/ fsks dzs +/ gshs dz +/ hsksds +/ hsks'lps dz, .
0 0 0 0
For example if one takes x; = Y. fL € ® with fi = 0 for n # 1 and f}(s) =
10,14(s), we have
Uwxe = / 19,4 (8) dws = wy the Brownian motion itself
0

and

oo
Upxt = / Ljo,4(s) dzs = x; the compensated Poisson process itself.
0

So, as w} :2f0tws dw, +t and xf:2f(fxs dxs +t + x¢, we have

Xt *w Xt =t + fi with f3(u,v) = 2Lo<u<o<t
and

Xt *p Xt =t + f{ + f5 with f} the same as above and ff(u) = Ljg 4(u) .

So we get two different element of ®.
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1.3.4. Probabilistic interpretations of the Fock space calculus.

Let (92, F, (F)t>0, P, (z¢)¢>0) be a probabilistic interpretation of the Fock
space ®. Via the isomorphism described in chapter I, the space ®; interprets
as the space of f € C'S(x.) whose chaotic expansion contains only functions with
support included in [0, t]; that is, the space CS(z)NL?(F;). Soin case of C.R.P. we
have &, ~ L*(F;) and thus P, is noting but E[- | ] (the conditional expectation)
when interpreted in L?(12).

The process (x:):>o interprets as a process of random variables whose
chaotic expansion is given by

Xt = / 1jo,5(8) dzs = 4.
0

So, in any probabilistic interpretation (x:):>0 becomes the noise (x;);>¢ itself
(Brownian motion, compensated Poisson process, Azéma martingale,...). (x¢)¢>0
is the “universal” noise, seen in the Fock space ®.

Thus, as we have proved that the Ito integral Z(g.) on @ is the L2-limit of
the Riemann sums Y g, (xt,., — Xt;), it is clear that in L?(€), the Ito integral

1
interprets as the usual Ito integral with respect to (z;)¢>o.

One remark is necessary here. When one writes the approximation of the
Tto integral fooo gs dxg as ) gs, (%4,,, — 4;) there are products (g¢;- (w¢,,, — 2;))

appearing, so this notion szeems to depend on the probabilistic interpretation of
®; it seems not being intrinsic to ®. But we have seen it is! The point in that
the product gy, - (%¢,,, — S¢;) is not really a product. By this I mean that the Ito
formula for this product does not involve any bracket term:
tit1
9t; (xti+1 - wti) = /t gt; dzs

so it gives rise to the same formula whatever is the probabilistic interpretation
(w¢)¢>0. Actually this fact comes from the tensor product structure: ® ~ &;; ®
®(,; the product g, (z¢,,, — x¢,) is actually a tensor product g;; ® (z¢,,, — 2;) in
this structure. But this tensor product structure is common to all the probabilistic
interpretations.

So we have seen that [ g; dx: interprets as the usual Ito integral [~ g; dx:
in any probabilistic interpretation (z;);>0. Thus the representation

f= Pof+/0 D.f dx.

of Theorem 1.2.4 is just a Fock space intrinsic expression of the P.R.P. The process
(D¢ f)¢>0 is then interpreted as the predictable process that represents f in his

15



P.R.P. If you look at the formula (I.4) that gives this predictable representant
(ht)¢>0 in terms of the chaotic expansion of f, it is not surprising that it should

be intrinsic. A careful look at this formula shown clearly that h; has to be D, f
(exercise).
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Il. EXTENSION OF QUANTUM STOCHASTIC CALCULUS
[I.1. An heuristic approach to noise

I1.1.1. Adaptedness.

As we have seen in R. L. Hudson’s course, the correct notion of time-
adaptedness for operators on Fock space is the following: an operator H on &
is adapted at time ¢ if

i) Dom H D & (the space of coherent vectors);
i) He(ug) € By for all w € L*(RT) (where uy = ullp ).
i) He(u) = [He(uy)] ® e(uy) (where upy = ully o).
That is, roughly speaking H = k® I in the tensor product structure ® ~ &, ® ®;.

Why do we choose such a definition for adaptedness? This is motivated by
several points:

i) this definition coincides with the usual definition of adaptedness in proba-
bilistic interpretations of ®;

it) just like in classical stochastic calculus, it is a definition that will allow to
produce an integration theory.

Now the question is: what kind of process of operators (X¢)¢>o can we use
to integrate adapted processes of operators (Hy)¢>0? We want to form fooo H, dX,
as a limit of Riemann sums:

Z Hti (Xti+1 - Xti )
i

If the process (H;);>o is adapted then Hy, is of the form k£ ® I in the tensor
product @, ® ®p;,. Or else, it is of the form k ® I ® I in the tensor product
By ® Ppy; 441] ® Py, - If the process (X;);>0 is also adapted we have that Xy, is
of the form k' ® I ® I and Xy, , is of the form k" ® k"' ® I, so the only thing one
can say about X, ,, — Xy, is that it is of the form k®*) ® k® ® I. When one tries
to compose Hy, with Xy, , — X;, we will have to compose k with k@ on ®;,), thus,
except if we deal only with bounded operators, there is a big domain problem.
Dealing with bounded operators only cannot be satisfactory as observables like

17



energy (which are self-adjoint operators with unbounded spectrum) cannot be
bounded operators. But, if by chance we have a process of integrators (X;)¢>o
which has the same independent increments property as (x:)¢>o0, that is

X4y, — Xp; of the form T@k® @1

i

we avoid the composition problem and we can consider the Riemann sums

ZHti (Xti+1 - Xti) = ZHti ® (Xti+1 - Xti) .
i i

I1.1.2.There are only three noises.

We will call “noise” (or better “quantum noise”) adapted processes of oper-
ators on @, say (X;)i>o, such that, for all ¢; < t;11, the operator X;,, , — X, acts
as I ® k ® I on (bti] %) Q[ti,ti+1] %) q’[ti+1 .

Let us consider the operator dX; = Xy1q4; — X;. It acts only on @ ;4 44
The chaotic representation property of Fock space (Theorem I1.2.5) shows that this
part of the Fock space is generated by the vacuum 1 and by dx;: = Xttat — X¢- S0
dX; is determined by its value on 1 and on dy;. These values have to remain in
®(;,1+4) and to be integrators also, that is dx; or dt1 (denoted dt). So the only
irreductible noises are:

dxt 1
da? dx: 0
da; dt 0
dajf 0 dxt
da; 0 dt

There are four noises and not three as announced, but we will see later that
da;* is just the usual dt.

[I.2. Extension of quantum stochastic integrals

11.2.1. Heuristic approach.

Let us now consider a quantum stochastic integral

t
Tt:/ Hsdai
0
18



with respect to one of the four noises. Let it act on a vector process
t
fi=Pf= / D,f dxs (we omit the expectation Py f for the moment).
0

The result is a process of vectors (T} f¢)¢>0 in ®. What can we expect from this
process? R. L. Hudson showed you that when T; = A} + A; it is the operator of
multiplication by the Brownian motion w;. In the same way, “any” multiplication
operator by a classical martingale in a probabilistic interpretation of ® can be
represented as a quantum stochastic integral (in the sense of H.P.); so, at least,
we should have (T f;)¢>0 satisfying the usual Ito integration by part formula:

d(Tifr) = Tedfe + (dT3) fi + (dT)(dfe)
=Ty(D¢f dxi) + (Hydag) fr + (Hydag) (Di f dxe)-
In the tensor product structure ® = &, ® @[, this writes
d(Tift) = (T I)(Def ® dxe) + (Hy @ dag)(fr ® 1) + (Hy ® da7) (D f @ dxt)
=T,D;f; @ dx; + Hifs @ dai 1 + HyD; f ® da$ dx. (IL.1)
In the right hand side one sees three terms; the first one always remains and

is always the same. The other two depend on the table shown above. Integrating
(IT.1) and using the table one gets

[y HD,sf dxs if =0
t [y HyP,f dxs if €=+
Tify = | TuD,f dy,+{ Jo 15t @Xs IL.2
tft /0 s sf Xs f(stDgf dS if e — — ( )
[YH,P,fds if e=x.

I1.2.2. A correct definition.
We want to exploit formula (I1.2) as a definition of the quantum stochastic
integrals Ty = f(f Hdat.
Let (Hy);>0 be a given adapted process of operators on ®. Let (T}):>0 be
another one. One says that (I1.2) is meaningful for a given f € & if
. Ptf € Dom Tt;
e D,f € DomTy, s <tand [ |[T,D,f||? ds < oo;
if e =0, D,f € Dom Hy, s < t and [} |H,D; f||? ds < oo
if e =0, P,f € DomH,, s <tand [ |[HP,f|]? ds < co
if ¢ = —, Dyf € Dom Hy, s <t and [ |H,D,f| ds < o0
if ¢ = x, P,f € Dom Hy, s < t and [y ||HsP, f|| ds < co.
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One says that (I1.2) is true if the equality holds.

DEFINITIONS. — A subspace D C @ is called an adapted domain if for all
f € D and all (almost all) t € R, one has

P.f and D:f €D.

There are many examples of adapted domains. All the domains you will meet
during this course are:

e D = ® is adapted;

o D = ¢ is adapted. And even D = £(M) is adapted once 1oy M C M for
all t.

o The space of finite particles &y = {f € L*(P); f(o) = 0 for #0 > N, for
some N € N} is adapted.

o All the Fock scales ®() = {f € L2(P); [, a*?|f(0)|* do < oo}, for a > 1,
are adapted.

« Maassen’s space of test vectors: {f € L*(P); f(o) = 0 for #0o ¢ [0,T],for
some T € Rt and |f(0)| < CM# for some C,M} is adapted.

(Exercises).

Let (H¢)¢>0 be an adapted process of operators defined on an adapted do-
main D. One says that a process (T;);>o is the stochastic integral T; = fcf H dat
on D, if (I1.2) is meaningfull and true for all f € D.

THEOREM 11.2.1. — On the stable domains £(M) this definition is equiv-
alent to Hudson-Parthasarathy’s one.

Proof. — We will first show that if (Hy)s>0 is an adapted process defined
on £(M) such that, for all t > 0

t
[ A ds < oo it 2 =0
t
/ ||H38('U,s])||2 ds< oo if e= —+
0
t
| il ds < oo if = -
0
t
/ | Hse(ug)l| ds < oo if &= x
0
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then the equation (I1.2) admits a unique solution on £(M). We will prove it by

the usual Picard method. Let us do it for the case € = 0 and leave the three other

cases to the reader. We want to solve
t

t
Tye(ug) = / u()Tse(uy) dxs + / u(s) Hae () dxa.

Let 2; = Tie(uy), t > 0. We have to solve
Ty = /Otu(s)xs dxs + /Otu(s)Hss(us]) dyxs-
Put 2 = fot u(s)H,e(ug)) dx,s and
apt! = /Otu(s)m? dyxs + /Ot u(s)Hye(uy)) dxs-
Let y? = 20 and yPt! = 27t — o2 = f(f u(s)y" dxs. We have

t
I+ = / ()Pl ds

t t1
:/0 ‘/0 |u(t1)|2|u(t2)|2||y?2—1”2 dty dt,

- / u(t0)|? - () Pl dty -
0<t1 <<t <t

-/ u(t)
0<t1 < <tn <t
t I2 [u(s)|? ds "
< [ Pl ds Uator )
0 !

From this estimate one easily, sees that the sequences

n
:c?zz;yf, neN, teR"
k=0

are Cauchy sequences in ®. Let us call z; = i
n—-+4oo

the same estimate, that
t

/ lu(s)[2||zs |2 ds < oo for all t€ R,
0

Passing to the limit on equality (I.4), one gets

t t
Tt :/ u(s)z,s dxs +/ U(S)Hss(us]) dxs-
0 0

t1
2 fu(ty)? / ()2 | Hae g2 ds dit -

(II. 3)

(I1. 4)

dty,

m z;. One also easily sees, from

Define operators T; on @, (more precisely on € N @) by putting Tye(uy)) = 2. 1

leave to the reader to check that this defines (by linear extension) an operator on
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£ N ®y (use the fact that any finit family of coherent vectors is free). Extend the
operator T; to € by adaptedness:

Tie(u) = Tie(ug) ® e(up).
We thus get a solution to (IL.3).

Let us now prove that this solution satisfies Hudson-Parthasarathy’s iden-
tity.

We have
(e(vy), Tre(ugy)) =/0 v(s)u(s){e(vy), Tse(uy)) ds

+/0 3(s)u(s)(e(vy)), Hse(uy)) ds.
Put a; = (e(vy), Tre(uy)), t € RT. We have

a =/ v(s)u(s)ay d8+/ o(s)u(s)(e(vy)), Hse(ug))) ds
0 0

that is,
%at = 0(t)u(t)oy + 0(t)u(t)(e(vy), Hie(uyg))-
Or else
oy = ed PE)u(s) ds /Ot@(s)u(sxe(vs])’Hsg(us]))e— S o) ak

= [ a(e)uts)eton), Huc(uae 10 % g,
0
t
= /0 0(s)u(s)(e(vs)), Hoe (us))) (e (vis,), € (uls, 1])) ds

= /tU(s)u(s)(a(vt]),Hse(ut]))( ds (by adaptedness).
0

We have proved that our equation admits a solution on &£, that this solution
coincides with Hudson-Parthasarathy’s one on £.

The converse is immediate from what we have already obtained. |

The advantage of equation (I1.2) on Hudson-Parthasarathy’s setting is that
we may have solutions of this equations on domains that are larger than &, or
even completely different. Let us see for example how equation (II.2) can provide a
solution on @, the space of finite particles. I still take the example T} = fot H, daj
(the reader may check the other three cases). I make the computation algebraically,
without caring about integrability or domain problems. We have the equation

t t
T,f, = / T,D,f dx, + / H,D,f dys.
0 0
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Let f = 1. This implies (as D;1 = 0 for all )
Tt]]- == 0 .
Let f = [;° fi(s) dxs for fi € L*(Z1). We have

7.5 = [ TAGLdx + / CH (o)1 dx,
=0+ /0lt f1(8)H,1 dyx,.
Let f = f0§t1§tz fa(t1,t2) dxe, dxu, for fo € L2(E2). We have
Tife = /Ot Ts /Os fa(ts,8) dxe, dxs +/0t H; /Os fa(t1, ) dxe, dxs
= /Ot /0 fo(u, s)Hy1 dxy, dxs+/0tHs /Osfa(u,S) dxu dXs-

You see that, by induction on the chaoses, we can derive the action of T; on ®;.

By the way, notice that Theorem II.2.1 shows that the noises we have heuris-
tically derived correspond to the ones introduced by R. L. Hudson:

at = A}
Ay :At
(lg:At
a; =tI

So we have a definition of quantum stochastic integrals which coincides with
Hudson-Parthasarathy’s one on &, but which extends it to many other domains.
Let us see a very useful result that says under which conditions a quantum stochas-
tic integral, which is defined on &, can be extended (in our sense) to larger domains.

EXTENSION THEOREM. — If (T});>0 is an adapted process of operators
on & which admits an integral representation on £(M) and such that the adjoint
process (T})i>0 admits an integral representation on £(M'). Then the integral
representations of (I;);>o and (T}");>0 can be extended everywhere equation (I1.2)
is meaningful.

Before proving this theorem, we shall maybe be clear about what it means.
The hypothesis are that:

o« Ty = [y H? dad+ [y H} daf+ [} H, da, + [y HY da} on E(M), where M
is a dense subspace of L?(R*), stable under 1o 4 for all ¢. This in particular
means that

t
/0 u(s) |\ HZe (us))II* + [ H e (ug)II* + |u(s)| 1 HZ e(ug)| + 1 H e (ug)]| ds
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is finite for all t € RT, all u € M.

e The assumption on the adjoint simply means that

t
/0 lu(s) 1 H e (ug) I + I1H; e (ug)|I” + [u(s)] [1HFe(ug)l

+[|Hy "e(ug)|| ds < oo
for all t € R* and all u in a M’ dense in L?(RY).

The conclusion is that for all f € &, such that equation (II.2) is meaningful
(for (T})¢>o0 or for (T} )¢>0), the equality (IL.2) will be valid.

Let us take an example:

Let Jie(u) = e(—uy) ® e(u). It is an adapted process of operators on @
which is made of unitary operators, and J? = I.

Exercises.

o Check that B; = fot Js day is well defined on £ and that Bf = fg Jsdat is
well defined on £ and is the adjoint of B; (on £);

« Show that J, = I —2 [} J, dag;
¢ Show that if X; = —2 f(f X5 da then X; =0 for all ¢.

e Use this to show that
BiJi + 1By =0

« Conclude that B;B} + B} B, = t1I.

The last identity shows that B; is a bounded operator with norm smaller
that v/t.

Now, we know that, for all f € £ we have

t t
By fi :/ BsDsf dxs +/ JsDsf ds ; (I11.5)
0 0

we know that the adjoint of B; can be represented as a Quantum stochastic integral
on £. So we are in the hypothesis of the Extension Theorem.

For which f € & do we have all the terms of equation (I1.5) being well de-
fined? The results above easily show that for all f € ® we have By f, fot B;D,f dxs,
f(f JsDs f ds to be well defined. So the extension theorem says that equation (IL.5)
is valid for all f € ®! The same holds for Bf. The integral representation of
(Bt)e>o (and (Bj)i>0) is valid on all ®, in the extended sense.
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Proof of the Extension Theorem. — Let f € ® be such that all the terms of

equation (II.5) are meaningful. Let (f,)n be a sequence in £(M) which converges
to f. Let g € E(M'). We have

t t
(0.Tifi~ | T.D.f dx.~ [ H:D.f dx,
0 0

t t t
—/ HIPf dxs—/ H D,f ds—/ HYP;f ds)
0 0 0

t
< [0 TP = f) + (0. [ 7D = £ axe)
t t
. s —Jn s ) HSXPS — Jn d
+ta [ 2Dt = £ axa| + [t [ HEPUT = 1) )
t t
+|<g,/ HyDo(f — fn) ds)| + |<g,/ HXPy(f - f) ds)|
0 0
t
< ITrgll If = faull + / (T2 Dag, Du(f — fu))| ds
t t
+ [ KHZD.g. DA = fu) ds+ [ KH*Dug Pt = 1)) ds
0 0
t t
+ [ KH; 0, D(f = fl ds+ | KH 0, Pu(f = F)] ds
0 0
t t t
< [||T:g||+ [ WDl ds+ [ 18Dl ds+ [ 1Dl d

t t
s [l s+ [ gl as] 1 - 5. .
0 0

11.3. Back to probabilistic interpretations

I1.3.1. Multiplication operators.

Let us take a probabilistic interpretation (2, F, P, (2¢)¢>0) of the Fock space,
which is described by the structure equation

d[z,z]; = dt + ¢ dz;.

The operator M,, on ® of multiplication by x; (for this interpretation) is a partic-
ular operator on ®. It is adapted at time ¢. The process (M,,):>o is an adapted
process of operators on ®. Can we represent this process as quantum stochastic
integrals?

If one denotes by My, the operator of multiplication by v (for the (z¢)¢>0-
product again) we have the following;:
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THEOREM I1.3.1.

¢
M,, :azr+at_+/ My, dag.
0

Proof. — Let us be clear about domains: the domain of M,, is exactly the
space of f € ® such that z; - U, f belongs to L?(Q), where you recall that U, is
the isomorphism U, : ® — L*(Q).

Let us go to the proof of the result:

o0 t t t
zof = / 2D, f do, + / P,f da, + / D.f ds + / 6D, f de,
0 0 0 0

by the usual Ito formula. That is, on ®

Mef = [ M.D.f d, +/0t P.J dy. + /Ot D.f ds + /Ot My, D, f dxs
which is exactly equation (I1.2) for the quantum stochastic process X; = a} +
ai + [y My, daj. .

We recover that:
« Multiplication by Brownian motion is a; + a; ;
 Multiplication by compensated Poisson process is aj” + a; + a;

¢ Multiplication by the S-Azéma martingale is the unique solution of
X; =af +a; +f(;5 BX, dal.

11.3.2. Extension of some classical operators.

There are plenty other operators coming from classical calculus that give
rise to operators on the Fock space. Let us take, for example, the Brownian
interpretation of & (we could have taken any other). We don’t look closely to
domain problems in the following (though this could be done easily). Let (h¢)i>o0
be a predictable process, let m; = f(f ms dws be a martingale, and n; = f(f e dws
be another one, let v, = fot ks ds. Define the following operators on L2(f):

t
I,i:f.—>/ hs dfs where fs=P,f
0

t
JE s dmg
Wi [ foam
Kﬁb : f — (f.,n.)t

t
Tlf:fn—>/fsdvs.
0
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These are operators from L2(Q2) into itself. That is they are operators on Fock
space. Do they have an integral representation?

THEOREM 11.3.2. — Let T; = I} + J!, + K}, + T}, made t-adapted. Then

¢ t t t
T, :/ (M, —Ts) da? +/ M, daf +/ M, da +/ My, dal.
0 0 0 0

Proof.
t t t t
T,f, = / heDsf duw, + / 1ty Py f duw, + / faDaf ds + / koPyf ds
0 0 0 0

t t t t
= / Mhstf dw, +/ Mmspsf dw, +/ MhsDSf ds +/ MksPsf ds.
0 0 0 0

So on ®:

t t t
T.f - / T,D,f dys + / (M, —To)Dsf dys + / My, Pof dxs
0 0 0
t t
—I—/ Mhs-Dsf ds +/ Mk:sPsf ds. ]
0 0

There result, if you forget the fg’ —Ts daj term, shows a bijection between
the four basic operators I, J, K, T and the four types of quantum stochastic
integrals. A general process of the form

t
T, = Z / H da
e=0,+,—,X 0
acts on @ in the same way as I + J + K + T but where multiplication operators

are replaced by general operators. The quantum stochastic integrals are the non
commutative analogue of these four classical operators.
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lll. THE ALGEBRA OF REGULAR QUANTUM
SEMIMARTINGALES

l1l.1. Everywhere defined quantum stochastic integrals

I11.1.1. A true Ito formula.

With our definition of quantum stochastic integrals defined on any stable
domain, we may meet quantum stochastic integrals that are defined on the whole
of ®. Let us recall it, An adapted process of bounded operators (T¢)¢>o on @ is
said to have the integral representation

¢
T,= > / H¢ da®
5:{07+a_ax} 0
on the whole of ® if, for all f € ® one has
¢
/ IT:Ds fII? + | H: Ds f1I? + |1 HF PofI1? + |1 Hy D fl| + 1 H Py || ds < o0
0
for all t € Rt (the Hf are bounded operators) and

t t t i
TtPtf = / Tstf dXs +/ HsODsf dXs +/ H:_Psf dXs +/ Hs_Dsf ds
0 0 0 0

¢
+/ HYP,f ds.
0

If one has two such processes (S;)¢>0 and (T;);>0 one can compose them, and
wonder if the result (S;T})¢>0 is also representable on the whole of ®. The answer
is yes. And you will not be surprised to recover the quantum Ito formula presented
by R. L. Hudson; but this time for true compositions of operators.

TueOREM IIL1.1. — KT, = Y [ HS daS and S; = Y [y K¢ dag are

everywhere defined quantum stochastic integrals, then (SiT})¢>o is everywhere
representable as quantum stochastic integrals:

t t
ST} :/ (SsH? + KTs + KHY) dal + / (SsHY + KITs; + K HY) daf
0 0
t t
+/ (SsHy + K; Ts + K HY) da, +/ (SsH + K}Ts+ K, HY) da}.
0 0
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Before proving this theorem we will need the following;:

LEmMA I11.1.2. — Let g, = f(f vs ds be an adapted process of vectors of
®, with f(f ||vs|| ds < oo for all t. Let (S;)¢>0 be as in Theorem III.1.1. Then

t t t
Sig¢ =/ Ssv, ds +/ K}gs dxs +/ K)gs ds.
0 0 0

Proof of Lemma III 1.2. — As S; is bounded we have
t
Sigr = St / v ds = Stvs ds (Exercise)

/ St PO’US / Duvs qu
:/ S Pyvs ds+/ / SuDyvs qu+/ K;Dyvs dxy
0 o LJo 0
s t s
+/ K, Dyvs ds+/ Kf[Pu/ Dy, dx, dxu
0 0 0
t s
+/ KJPu/ Dyvs dx, du] ds
0 0
t t s t s
- / S, Povs ds + / [ss / Dyvs dxa + / K7 / Dyvydye dxa
0 0 0 s 0
t s
+/ qu/ Dyvs dxy du] ds
s 0
t t pt t ot
:/ S,v, ds+/ / K, dxuds+/ / K} vs du ds
0 0 s 0 s
t t u t u
:/ Svsds+/ / K+vsdsdxu+/ / K)vs ds du

(kind of Fubini; exercise)

/Svsd8+/K+/ vs ds dxu + /Kx/ vs ds du
=/ S,Us ds+/ Klg, qu+/ K} g, du.
0 0 0

This proves the Lemma.

Proof of Theorem III.1.1. — Let us just compute the composition, using
Lemma ITI.1.2:

t t t
tht:/ Tstf dXs+/ H:Dsf dXs+/ H:_Psf dXs
0 0 0
t t
+/ H-D,f ds+/ HXP,f ds
0 0
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SO

SiTuf = /0 CS[TuD.f + HID,f + HFP.f] d,
+ /0 KTy, fHE D, f+H Pyf] dys + /0 Ko [T,Dyf+HED, f+HF P, f] ds
w [ K[ Tuput avas [0 dt [ HEP d] i,
+/0tK;<[/OSTuDuf dxu+/osH;Duf dxu+/osH;Puf dxu] du
+/0tSS[HS‘Dsf+HSXPsf] ds—i—/OtKj[/OsH;Duf-i-/osH,fPuf du] dxs

t s s
+/ Kx[/ H;Duf+/ ijufdu] ds
0 0 0

t t
_ / S,T, D, f dxs + / [S.H + KT, + KSH?] D, f dy
0 0

t t
+/ [S:H + KTy + K{HF|Ps f dxs +/ [S:H, + K, Ts+ K, H|Df ds
0 0

t
+/ [S:H) + K}T; + K; Hf | P, f ds . [
0

II1.1.2. A family of examples.

We have seen B, = fg Js da; as an example of everywhere defined quantum
stochastic integrals. This example belongs to a larger family of examples which is
going to be fundamental in the sequel.

Let S be the set of bounded adapted processes of operators (7;);>0 on ®
such that

t
Tt:Z/ H; da on &E(M)
— Jo

with all the operators H: being bounded and
t— ||H7| € L2

loc

te ||H || € L?

loc

te ||H | € L

loc
t e |Hf| € Lt

loc

With these conditions, we are going to see that ¢ — ||T|| has to be in Lf?,. Indeed,
the operator f(f HY daX satisfies f(f HX dalf = f(f HX f ds (exercise), so it is a
bounded operator, with norm less than f(f [|[HX|| ds, which is locally bounded in ¢.

The difference My = T; — fot H da is thus a martingale of bounded operators.
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But as M is a martingale we have | M,fs|| = ||PsMfs|| < ||Mefs|| for s < . So
t + || M| is locally bounded. Thus, so is ¢ — ||T}|.

With all these informations, it is easy to check (exercise) that the integral
representation of (T3)¢>0, as well as the one of (T}")¢>0, can be extended on the
whole of ® by the extension theorem.

[11.2. The algebra of regular quantum semimartingales

I11.2.1. It is an algebra.

As all elements of S are everywhere defined quantum stochastic integrals,
one can compose them and use the extended quantum Ito formula.

THEOREM II1.2.1. — § is a x-algebra for the adjoint and composition
operations

Proof. — The adjoint process (T;)¢>o is given by

t t t t
Tt*=/ H da;+/ H;* daj+/ H}* da;+/ H)* daj .
0 0 0 0

It is straightforward to check that it belongs to §. The Ito formula for the com-
position of two elements of S gives

t t
STy = / [SsHY + KT, + KJHY dal + / [SsH + KT, + K{H| daf
0 0

t t
+/ [S:H; + K, Ts + K; HJ] da;-i—/ [SsH) + K}Ts + K, H | da.
0 0

From the conditions on the maps ¢t — ||S¢|, ¢ — ||T¢]|, ¢ — ||KE|| and t —
|Hz|], it is easy to check that the coefficients in the representation of (S;T})>0 are
bounded operators that satisfy the norm conditions for being in S. For example,
the coefficients of da;* satisfy

t
/ ISoHX + KXT, + K= H*| ds
0
t t
< suplIS,| / || ds + sup | T / K| ds
s<t 0 s<t 0

e (e as) ([ e as) "

so it is locally integrable. |
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Thus we have a nice space of quantum semimartingales that we can compose
without bothering about any domain problem, we can pass to the adjoint, we can
use formula (I1.2) on the whole of ®.

As a consequence we can immediately think of looking at polynomial func-
tions of elements of S and compute a Ito formula for it. We’ll see that later.

I11.2.2. A characterization.

The problem with S is its definition! It is in general difficult to know if
a process of operators is representable as quantum stochastic integrals; it is even
more difficult to know the regularity of its coefficients. We know that S is not
empty, as it contains B; = f(f Js da,; that we have met above. But how big is it?
Can we have a characterization of S that depends only on the process (T3)¢>0?

One says that a process (T});>0 of bounded adapted operators is a regular
quantum semimartingale is there exists a locally integrable function A on R such
that for all r < s <, all f € £ one has (where f, = P.f)

i) |1 Tefr — Tofoll? < 1£:11% [ h(w) du;
ii) || T7 fr — T2 fo |12 < e lI2 fY h(w) du;
iii) |PTofr = Tofrll < 1211 f Bw) du.

THEOREM III1.2.4. — A process (T;):>o0 of bounded adapted operators is
a regular quantum semimartingale if and only if it belongs to S.

Proof. — Showing that elements of S satisfy the three estimates that define
regular quantum semimartingales is straightforward. We leave it as an exercise.

The interesting part is to show that a regular quantum semimartingale is
representable as quantum stochastic integrals and belongs to §. We will only
sketch it, as the details are rather long and difficult.

Let zx = Tif, for t > r (r is fixed, ¢ varies). It is an adapted process of
vectors on ®. It satisfies

t
1Pze — ] < IIfe / h(u) du.

This condition is a Hilbert space analogue of a condition in classical probability
that defines particular semimartingales: the quasimartingales. O. Enchev has
provided a Hilbert space extension of this result and we can deduce from his result
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that (z¢)¢>, can be written

¢
Ty = my + / ks ds
0
where m is a martingale in ® (P;m; = m;) and h is an adapted process in ® such
that [} |[ks|| ds < oo.
Thus P,z — x5 = f: P.k, du and we have

H /t Pk, duH < || frll /th(u) du, forall r<s<t.
0 0

Actually k, depend linearly on f,.. The inequality above implies (difficult exercise)
that

Iku (o)l < I frlln(u) -

So ky is a bounded operator on ®,], we extend it as a bounded adapted operator
Hr.

Let My =T, — fot HY daX,t € Rt. It is easy to check, from what we have
already done, that (M;);>o is a martingale of bounded operator (Hint: compute
P M, f, — M,f,). It is easy to check that (My)¢>o also satisfies the conditions i)
and 71) of the definition of regular quantum semimartingales, with another function
h, say h'.

Now, let (y¢)¢>r be (M;fr)i>r. It is a martingale of vectors in ®. Thus it
can be represented as

t
Yt — Ys =/ &u dxu.
s

&, depends linearly on f, and we have

t t
/ lea I du < 117,11 / W (u) du (by ).
0 s

Thus &, extends to a unique adapted operator H;} on ®. Doing the same with

(M fr)e>r gives an adapted process of operators (bounded): (H )y>0.
Let f € @, let f; = P, f and define

t t t t
tht = tht - / Tstf dxs _/ H;_Psf dxs — / H;Dsf ds — / HsXPsf ds.
0 0 0 0

One easily check that each X; commutes with all the P,’s, v € RT. Let us consider
a bounded operator H on ® such that P,H = HP, for all u € Rt. Notice that
for (almost all ¢, all a <t < b, all f one has

DH(Pyf — Pof) = DyPyHf — DyP,Hf = D H f
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0 ift>s.

Define P~It° by

for Dy P, = {

B b
Hfft=Dt/ Puf dyu— Hf; forany a<t<bh.
a

By computing f: |H? f||> dt one easily check that H? is bounded with locally
bounded norm. And we have

oo oo -~
Ho= [ HD.fav+ [ HD.fdv..
0 0
That is exactly H = [° H? dal.

We have actually (almost) proved the following nice characterization:

THEOREM I11.2.4. — Let T be a bounded operator on ®. The following
are equivalent:

i) TP, = BT for all t € RF;
ii) T =X + [;° H, dag on the whole of ®. "
Applying this to X, we finally get, putting HY = H o+ X5

t t t
tht = / Tstf dXs +/ HsODsf dXs +/ H:_Psf dXs
0 0 0

t t
+/ H_D,f ds+/ H)P;f ds.
0 0

This is equation (II.2). ]

[11.3. Quantum brackets

II1.3.1. Definitions.

We are going to define the quantum analogue of the probabilistic angle and
square brackets (cf. M. Emery’s lectures).

Let T; = Ef(f H: daS and Sy = Zf(f K dag be elements of S. Define
g g

¢ t t ¢

[S,T]t=/ K°H? da§+/ K H} daj+/ K; H? da; +/ K; H} da) |
0 0 0 0
¢

(S,T)t:/ K, H}f da} ,
0
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the square bracket (resp. angle bracket) of S and T.
For the same S. and 7' in S define

i t
/ S dT, =) / S H¢ da
0 z Jo
t t
/ dss T, = Z/ K:T, dat .
0 = Jo

The quantum Ito formula on S just writes:

THEOREM I11.3.1. — For all S,T € S one has

¢ ¢
STy = / Ss dT +/ dSs; Ts + [S, T - ]
0 0

An important point has to be noticed. If S, T € S then none of the processes
Jo Ss dYs, [,dS,Ts, [S,T]. lie in S in general. Indeed, for example in the case
of [S,T], all the coefficients of the integral representation of [S,T] satisfy the
conditions that define S, but the operators [S, T]; themselves have no reasons to
be bounded!

We need to define a larger space. Let S’ be the set of adapted processes
of operators (T})¢>0 on &£ such that T} = Zf(f H: dag on &, with the HS being

bounded and ¢ — ||H?|| € LS, t — ||H|| € L., t — ||H|| € L

loc» loc» loc-

That is, S’ has the same definition as S except that we do not ask the whole
operators T; to be bounded. The integral representation of an element (7});>o of
S' is a priori the exponential domain, but by the extension theorem we can extend

this integral representation to any f € (| Dom T} such that Dsf € Dom T} for all
£>0

s and fg |TsDs f||? ds < oo for all t.

Anyway, there is no reason for being anymore able to compose elements of
S'. But one easily check the following.

THEOREM I11.3.2. — &' is a x-algebra for the adjoint operation and for
the square bracket as a product. ]

What about the other operations: (S,T) — [dS T, [S dT, (S,T)? One
easily checks that (S,T) — [dS T or [T dS is well defined from &' x S to S'.
Whereas (S,T) — (S,T) goes from &' x §' to S.

So, in the quantum Ito formula (Theorem III.3.1):

t t
ST :/ S, dT, +/ dS:Ts + [S,T):
0 0
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we have that ST belongs to S, so does the sum of the three terms on the right
hand side; but each of the terms can only be said to be in §’. As an example let
us consider the process (J;);>0 we have already met before:

Jie(u) = e(—uy) ® e(up)-
One checks easily that
¢
Jt:I—2/ Js da.
0

As all the J;’s are unitaries we have: (J;)i>0 € S. Let us compute J7.

t t
J3=I+/ Ty dJs+/ dJ, Js + [J, J)e
0 0

¢ t ¢
=1—2/ deag—z/ dea§+4/ J? dal.
0 0 0
As J? =1 for all t we have
I=J}=1-2a} - 2aj + 4a;.

It is clear that J} is bounded, but none of the three terms [ J dJ, [dJ J, [J,J]
is.

I11.3.2. Properties.

Let us have a look to the main properties of these quantum brackets.

ProrosiTioN III1.3.3.

i) If S, T are martingales in S then ST — [S,T] is a martingale and
ST — (S,T) is a martingale,

ii) [S,[T,U]] = [[S,T,U] for all S,T,U € S';

S, [dU T] = [d[S, U] T

[T du,S) = [Td[U,S] for all S,U € S', T € S;
iv) [S,T]* = [T*,8*] for all S,T € S'.

[
iii) |
[
[
All the proof are straightforward from the definitions. We leave them as

exercises. n

Because of the associativity property i) we now write [S, T, U] instead of
[S, [T, U]l-

You can also easily check the following identity:
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ProrosiTION 111.3.4. — If S is a martingale in S’ then
S =[S,a°] +[a°,S] — [a°, S,a"]. ]

The main consequence of this identity is that the quantum square brackets
of two quantum semimartingales can be as complicated as the semimartingale
itself. Notice the difference with the classical case: in classical stochastic calculus
the brackets of two semimartingales is always a finite variation process.

By the way, as we are speaking of classical probability, one can wonder what
happens to these brackets when one considers a probabilistic interpretation of the
Fock space.

THEOREM IIL.3.5. — Let (x¢);>0 be a probabilistic interpretation of ®.
Let (s¢)¢>0 and (ut)i>0 be two semimartingales such that their multiplication

operators (M, )i>0 and (My, )i>o lie in S'. Then we have
[Ms. ; Mu]t = M[s.,u.]t

<Ms. ; Mu)t = M(s.,u.)g .

Proof. — Let d[z, z]; = dt + ¢ dz; be a structure equation that represents

xz. Let . .
stz/ &s dms—}—/ hs ds

0 0

t t

ut:/ Ns d:cs-i-/ ks ds.
0 0
We have
t t t t
Mst :/ ./\/lgs daj +/ Mgs da; +/ MgsM% daz +/ Mhs ds
0 0 0 0

t t t t
MUt :/ M"Is da;’_ +/ M"'ls da; +/ MnsMws d(lz +/ Mks dS
0 0 0 0
Thus . ;
[Ms,Mu]t = / MgSM¢SMnSM¢S daz +/ MgsM%M"S daj
0 0

t t
+ / MgsMnsMws das_ + / MESMT}S dS
0 0

t t

:/ Me,n,p.(My, dag + dag + day) +/ Me,n, ds
0 0

- Mfo‘ €ansths doot [ €ama ds

- Mfot (€. dz,+ds)

=M deal,
= M[s,u]t. | |
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That is, the quantum brackets of multiplication operators are the multipli-
cation operators by the classical brackets.

One very important point remains to be studied. It is well known that the
square bracket of two classical semimartingale is a limit of quadratic variations:

[z,yl: = limZ(thl - :I’.ti)(yti+1 — Yt:)

where the limit is taken over a refining sequence of partitions of [0,¢], and is
understood to be a limit in probability. For the angle bracket one gets:

<$u y>t = limz E[(xti+1 - xti)(yti+1 - yti)/]:ti] .

One can naturally wonder what happens in the case of the quantum brackets.
Obtaining similar results for the quantum brackets is interesting for two reasons:

x it is the quantum analogue of the classical result;

* we have done quite a good job by trying to get a characterisation of S which
depends only on the process (T})¢>0; it is thus rather disappointing to get
a definition of the quantum brackets which again depends on the integral
representation. Obtaining the brackets as limits of quadratic variations will
provide a definition of the brackets which depends only on the processes
(Tt)¢>0, (St)e>o0 involved, and not the integral representation.

THEOREM II1.3.6. — Let (S¢)¢>0, (T3)e>0 be elements of S. Then [S,T);
is the weak limit, on exponential vectors with locally bounded coefficients, of the
expression

Z(Sti+1 - Sti)(Tti+1 - Tti);

K3

the angle bracket (S,T); is the weak limit, on all ®, of
Z Pti (Sti+1 - Sti)(Tti+1 - Tti)Pti -
i

The proof of this theorem is very long, it takes 10 pages of various norm
estimates. We don’t give it here. The interested reader will find it in [At2]. n
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IV. SOME RECENT DEVELOPMENTS

IV.1. Functional quantum Ito formulae

IV.1.1. Polynomial, analytic functions.

With this algebra S we can immediately think of computing a quantum Ito
formula for polynomial functions of an element of S. This can be easily obtained
simply by iterating the quantum Ito integration by part formula:

t t
STy = / Ss dT +/ dSTs + [S, T
0 0

I won’t write the corresponding formula for f(S;) when f is a polynomial function,
as it is included in a more general work performed by G. Vincent-Smith. Indeed,
he showed that S is much more than an algebra: it is stable under two types of
functionals: analytic ones and C?* ones. We first have a look to the first type.

Let us recall a few notations. Let T be a bounded operator on a Hilbert
space H. Let X belong to the resolvant set of T (the complementary set of the
spectrum of T'), let Rx(T) be the resolvant of T at A (that is, (T — AI)~!). Let f
be an analytic function on the disc D(0, R) where R > ||T'||. Then the operator
f(T) is defined by

£(T) = f FOVRAT) dA

where + is the circle C'(0,r) with R > r > ||T|| and f,y is 5 times the contour

271
integral along ~.

THEOREM IV.1.1. — Let (T})i>0 be an element of S. Let T € Rt be
fixed. Let p = max {||T3||, |T; + Hy|l;t < T} where Ty = " [y HE dag. Let f be

>

an analytic function on D(0, R) for a R > p. Then (f(T}))¢>o is still an element
of § and one has

@) =10+ / H3(s) das
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with
H; = f(Ts +H§) _f(Ts)
HJ(s) = § FOVRA(T)HY Ba(T, + H) )
Y

H7(5) = § JORAT, + H)H, Ba(T,) d)
HY(s) = }{ FOVRA(T)HXRA(T,) dX
+ § SOVRAT)H; RA(T, + HIHS RA(T,) dA

We don’t give the proof, see G. Vincent-Smith : “The Ito formula for quan-
tum semimartingales”, Proceedings of London Math. Soc. (1998).

As a corollary one recovers our formula for polynomials.

THEOREM IV.1.2. — Let (T})i>0 € S. Let n € N, then

¢
T = Z/o H; (s) da®

where
Hy(s) = (Ts + HY)" =T
Hf(s)= Y. TPH}T,+ Hp)"
ptHg=n—1

Hy(s)= ) (Ts+H))PH;T{

ptg=n—1
HY(s)= Y, TPHXT!+ >  TPH; (T, +H;)"H}T;.
p+g=n—1 p+qg+r=n—2

IV.1.2. C?* functionals.

What is even more remarkable in Vincent-Smith’s work is that & is much
more than stable under analytic functions. You remember from M. Emery’s course
that classical semimartingales are stable under C? functions. We are almost going
to get the same for elements of S. This shows that S really plays the role of a

quantum semimartingale space.
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Let f be an integrable function from R to R. Let f be its Fourier transform.
For a self-adjoint operator T one can define

s = [ " F AT .

—0o0

Let C2t = {f € LY(R);p — p*f(p) € L*(R)}.

THEOREM IV.1.3. — Let (T}); € S with Ty = Zfo H: da and T; being
self-adjoint (in particular H? and H) are se]f—adjomt and Hf = H;*). Let
f € C**. Then (f(T}))i>o still belongs to S and

t
=> /0 H5(s) daS with Hf = H,*

and
H;(s)

H,) — f(T)

zp {/ p(1— u)TsH—ezpu(TﬁH ) du} dp
lp {/ p(1— u)Tst ipuTy du} dp

pr(p {//uezp(l u)TsH ezpu(l v)(Ts+H? )H—* ipuvTs du d’l)} d p.

||
w\z\z\}

+

IV.2. A remarkable transform of quantum processes

I want to show you the first properties of a very remarkable transform of
processes of operators. We will see that it has some very nice properties and that
it relates S to S’. T am sure that this transform will play an important role in
quantum stochastic calculus.

IV.2.1. Definitions.

The idea is the following. When one compute formula (I1.2) of a quantum
semimartingale T; = > fot H¢ dag one gets
>

¢ t
Tife = / TsDsf dxs +/ H{D,f dxs + - - -etc.
0 0
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there is always this annoying term appearing : f(f T;D,f dxs. Let us remove it.

Let (T3)¢>0 be an adapted process of operators on ®. Define (D;(T.))>o to
be another adapted process of operators on ¢ defined by

t
Di(T.)P,f = Ty P,f — / T,D,f dy, .
0

For the moment I don’t care about domain problems (you can easily work out the
correct conditions on the exponential domain); for the use we will make from this
D, there won’t be any problem. I will compute everything algebraically, I leave to
the very motivated reader to formulate everything in a good setting (!).

ProposITION IV.2.1. — X, = D(T) is the only solution to the equation

t
Xt:Tt—/ Xsda:, tER+.
0

Proof. — Let X; = Dy(T), t € RT. Let V; = Xy — T, t € RT. We have
¢
XiPuf =TiPif = [ 1.D.1 dx,
0
t ¢
Y;fptf:/ _Tstf dXs :/ (YS_Y; _Ts)Dsf dXs
0 0

t t
- / YaDuf dys — / X,D,f dxs.
0 0

That is, exactly equation (IL.2) for saying that

t
Ytz—/Xsda;?. n
0

IV.2.2. The inverse transform.
The first surprising result is that the mapping D. is invertible.

For an adapted process of operators (T;):>o define

t
D;l(T.)=Tt+/ T, dal.
0

PROPOSITION IV.2.2. — X; = D;'(T) is the only adapted process of
operators on ¢ such that

t
X,P,f = T,P.f + / X,D.f dys, t€R" .
0
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Proof. — If X; = D;'(T.) then
xinf=trg + ([ Toaa)pg
Let Y; = [y Ty da = X; — Ty. Then
X,P.f = TuP.f + /0 YaD.f dya + /0 "1,0.1 dy,

=1+ [ XD dxe
To prove uniqueness, consider another such process (X;)¢>0. We have
(- xpps = [ Xy — XD, f (1v.2.1)
If this equality holds on £(M) we hauve0

(X, — XD)e(ur) = / u(8) (X — X1)e () dxs

that is,
X = X)) / ) Pl — Xe(uag)|? dis
thus, by Gronwall lemma (X; — X/)e(uy) = 0. (If identity (IV.2.1) occurs on a
space which has noting to do with the exponential vectors one can also show that
Xy — Xé = 0) ]
PropoSITION 1V.2.3. — For any adapted process (T;);>o one has

D, Y (D.(T))) = Dy(DNT.)) =Ty, forall te€RF.
Proof. — Let X; = D;Y(D.(T)), t € R*. We have

/D

By Proposition IV.2.1 this implies Dy(T.) = Dy(X.) or else D¢(T. — X.) =0
for all ¢t > 0.

that is Dy(T. — [ Dy

But if a process (Y;)¢>o is such that Dy(Y.) = 0 for all ¢ > 0, this means
Y,Pf = f(f YsDsf dxs, so Yy = 0 by the same argument as in Proposition IV.2.2.

Let Z; = Dy(D;(T)), then Z; = D;NT) — [i Z, dag thus D;Y(T) =
Zy +f(;5 Zs daS = D;(Z.). Or else fot (Ts — Zs) da? = 0. By uniqueness of integral
representations for closable operators we get T. = Z. (we assume all the operators
to be closable).
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IV.2.3. The bijection.

The main property with D and D! is the way they apply to the spaces S
and S'.

THEOREM IV.2.4. — The transform D is well defined on S’, the transform
D~ is well defined on S.

The transforms D and D~ realise a bijection between S and S':

p-1
- '
S (D S'.

Proof. — Let Ty =), fot H; daf be an element of S. Then
>

t
Ke=Ho+T
Dt_l(T.)=§:/0 K? daS with {Kg=H§+ P
B E 8 ? 7 -

loc

Ast e ||Ti|| € LS, we clearly have (D, (T'));>0 € S'. Now let T, = 3 [ HZ da
g
be an element of . We put X; = D;(T') and we have

t
Xufi =Ty~ [ T.D.f dx.
0
t t t t
=/ H°D,f dxs+/ HYP,f dxs+/ H.D,f ds+/ HXP,f ds
0 0 0 0

t t t 2
||tht||2s4[/ DI s+ [P ds+[ JRL:¥i ds]
0 0 0

- B dH

t t
<4 [sup||H:||2 / DL I ds + | P.fI? / |2 ds
s<t 0 0

t t t 2
+ [N ds 1D ds + R AR [/ Al dH
0 0 0

t t
<4 [sup||H;||2 aot [N as+ [ 1 as
s<t 0 0

t 2
n [ [z ds] ] 1.

Thus X; is a bounded operator, with locally bounded norm. Furthermore

t t
Xt:/ler;—xsda;Jr > /Hgdag
0 0

e=+,—,X
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that is (Xt)tZO €S. |

This theorem has many consequences. The first one is that S is a large
space: if you are given any quadruple (H?, ¢ = 0,+,—, X) of adapted processes of
bounded operators with the norm conditions: ¢ + ||H7|| € LS., t = ||H|| € L.,

t +— ||H;|| then you produce an element of S by putting ¥; = fot H¢ daS (on &)
1>
and Tt = Dt(Y)

Furthermore, two different quadruples (H®, & = 0,+,—, X) gives two dif-
ferent elements of S.

As an example, let us consider some simple quadruples:

1) HA =1, H; =0, = +,—,x then ¥; = ZfOtHg' daj = af € S’ and
13

T, = Dy(a°) acts as follows: Ty f; = [, D, f dxs = f—Pof. Thus Ty = I-F.

2) Hf = I, HS = 0 otherwise, ¥; = af and T; = Dy(at) acts as Ty f; =

f(f P, f dxs. So T is the operator of Ito integration with respect to dy

(recall Theorem I1.3.2).

3) Hy = I, HE = 0 otherwise, Y; = a; and T} = D(a) acts as T;f; =

J3 Dsf dxs = {f.,x.)¢ the angle bracket of (f¢)i>o With (x¢)i>o-

4) HY =1, HS = 0otherwise, Y; =t and Ty = Dy(Y") acts as T fy = fot P,fds
the adapted time-integration.

The operations D and D~! have also many nice algebraic properties (at least
formally). T won’t develop them here. Another point to be noticed after Theorem
1V.2.4; the operation D has the property of bounding operators which were not,
at least all those of S’. What are all the processes (T}):>0 that get bounded by D?

We don’t know the full answer. Many other problems remain open about these
transforms.

About references

CHAPTER I. — The short notations (symmetric measures) are due to
Guichardet [Gui]. The Ito calculus on Fock space is developed in [A-L]|. Struc-
ture equations have been defined and studied by Emery [Eme].

CHAPTER II. — A rigorous proof for the existence of only 3 quantum
noises is in [Coq]. Hudson-Parthasarathy’s approach of quantum stochastic cal-
culus is developed in [H-P]. The approach of section II.2 comes from [A-M]. The
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correspondence between quantum stochastic calculus and probabilistic interpreta-
tions is developed in [At1].

CHAPTER III. — All the theory of quantum semimartingale algebras and
quantum brackets comes from [At2].

CHAPTER IV. — The functional quantum Ito formula for polynomials is to
be found in [At2]. The formulae for analytic or C?* functions are due to Vincent-
Smith [ViS]. The theory of the remarkable transform of quantum processes is
developed in [At3].
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