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Abstract

Among the discrete evolution equations describing a quantum sys-
tem HS undergoing repeated quantum interactions with a chain of
exterior systems, we study and characterize those which are directed
by classical random variables in RN . The characterization we obtain
is entirely algebraical in terms of the unitary operator driving the el-
ementary interaction. We show that the solutions of these equations
are then random walks on the group U(H0) of unitary operators on
H0.

1 Introduction

In the article [AP], Attal and Pautrat have explored the Hamiltonian de-
scription of a quantum system undergoing repeated interactions with a chain
of quantum systems. They have shown that these “deterministic” dynamics
give rise to quantum stochastic differential equations in the continuous limit.
Since that result, some interest has been found in the repeated quantum in-
teraction model in itself (cf [AJ1], [AJ2], [BJM1], [BJM2], [BP]) and several
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physical works are in progress on that subject (for example [KP]). These
repeated interaction models are interesting for several reasons:

– they provide a quantum dynamic which is at the same time Hamiltonian
and Markovian,

– they allow to implement easily the dissipation for a quantum system, in
particular they are practical models for simulation,

– they exactly correspond to actual physical situations, in which a particle,
or a field, is undergoing repeated interactions with another system (see e.g.
[Har]),

– they are exactly the physical situations in which are performed indirect
measurements of a quantum system and give rise to the so-called “quantum
trajectories” (see e.g. [Pel]).

The probabilistic nature of the continuous limit found by Attal and Pautrat
is not due to the passage to the limit, it is already built-in the Hamiltonian
dynamics of repeated quantum interactions (it is actually built-in the axioms
of quantum mechanics).

The evolution equations describing the repeated quantum interactions are
purely deterministic but they already show up terms which can be interpreted
as “discrete-time quantum noises”. The point with these discrete quantum
noises is that sometimes they may give rise to classical noises. That is, some
linear combinations of these quantum noises happen to be mutually commut-
ing families of Hermitian operators, hence they simultaneously diagonalize
and they can be represented as classical stochastic processes.

In the other cases, that is, with different combinations of the quantum
noises, no classical process emerges and the dynamics of repeated quantum
interactions are purely quantum.

The aim of the article is to characterise algebraically, on the Hamiltonian,
the case when the dynamics are classically driven.

The article is organised as follows. We first (Section 2) present the phys-
ical and mathematical setups for the repeated quantum interactions. In
Section 3 we introduce the basic algebraic tool: the obtuse random walks
which are an appropriate “basis” of random walks adapted to this language.
We then explore and characterise the unitary random walks which emerge
classically from the repeated quantum interactions (Section 4). We special-
ize in Section 5 our result to the one dimensional case which already shows
up a non-trivial structure. Finally, the last section is devoted to physical
examples; we exhibit explicit Hamiltonians giving rise to classical dynamics.
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2 Repeated Quantum Interactions

2.1 The Physical Model

Repeated quantum interaction models are physical models developed by At-
tal and Pautrat in [AP] which consist in describing the Hamiltonian dynamics
of a quantum system undergoing a sequence of interactions with an environ-
ment made of a chain of identical systems. These models were developed
for they furnish a toy model for a quantum dissipative system, they are at
the same time Hamiltonian and Markovian, they spontaneously give rise to
quantum stochastic differential equations in the continuous time limit. Let us
describe precisely the physical and the mathematical setup of these models.

We consider a reference quantum system with state space H0, which we
shall call the small system (even if it is not that small!). Another system
HE, called the environment is made up of a chain of identical copies of a
quantum system H, that is,

HE =
⊗
n∈N∗

H

where the countable tensor product is understood in a sense that we shall
make precise later.

The dynamics in between H0 and HE is driven as follows. The small
system H0 interacts with the first copy H of the chain during an interval
[0, h] of time and following an Hamiltonian H on H0 ⊗H. That is, the two
systems evolve together following the unitary operator

U = e−ihH .

After this first interaction, the small system H0 stops interacting with the
first copy and starts an interaction with the second copy which was left un-
changed until then. This second interaction follows the same unitary operator
U . And so on, the small system H0 interacts repeatedly with the elements
of the chain one after the other, following the same unitary evolution U .

Let us give a mathematical setup to this repeated quantum interaction
model.

2.2 The Mathematical Setup

Let H0 and H be two separable Hilbert spaces (in the following, for our prob-
abilistic interpretations, the space H will be chosen to be finite dimensional).
We choose a fixed orthonormal basis {Xn;n ∈ N ∪ {0}} where N = N∗ or
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{1, . . . , N} depending on wether H is infinite dimensional or not (note the
particular role played by the vector X0 in our notation). We consider the
Hilbert space

TΦ =
⊗
n∈N∗

H

where this countable tensor product is understood with respect to the stabi-
lizing sequence (X0)n∈N∗ . This is to say that an orthonormal basis of TΦ is
made of the vectors

Xσ =
⊗
n∈N∗

X in
n

where σ = (in)n∈N∗ runs over the set P of all sequences in N ∩{0} with only
a finite number of terms different from 0.

Let U be a fixed unitary operator onH0⊗H. We denote by Un the natural
ampliation of U to H0⊗TΦ where Un acts as U on the tensor product of H0

and the n-th copy of H and U act as the identity of the other copies of H. In
our physical model, the operator Un is the unitary operator expressing the
result of the n-th interaction. We also define

Vn = Un Un−1 . . . U1,

with the convention V0 = I. Physically, Vn is clearly the unitary operator
expressing the transformation of the whole system after the n first interac-
tions.

Define the elementary operators aij, i, j ∈ N ∩ {0} on H by

aijX
k = δi,kX

j .

We denote by aij(n) their natural ampliation to TΦ acting on the n-th copy
of H only. That is, if σ = (in)n∈N∗

aij(n)Xσ = δi,in Xσ\{in}∪{j} .

One can easily prove (in the finite dimensional case this is obvious, in the
infinite dimensional case it is an exercise) that U can always be written as

U =
∑

i,j∈N∪{0}

U i
j ⊗ aij

for some bounded operators U i
j on H0 such that:

– the series above is strongly convergent,

–
∑

k∈N∪{0}(U
k
i )∗ Uk

j =
∑

k∈N∪{0} U
k
j (Uk

i )∗ = δi,j I.
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With this representation for U , it is clear that the operator Un, repre-
senting the n-th interaction, is given by

Un =
∑

i,j∈N∪{0}

U i
j ⊗ aij(n) .

With these notations, the sequence (Vn) of unitary operators describing the
n first repeated interactions can be represented as follows:

Vn+1 = Un+1 Vn

=
∑

i,j∈N∪{0}

U i
j ⊗ aij(n+ 1)Vn .

But, inductively, the operator Vn acts only on the n first sites of the chain
TΦ, whereas the operators aij(n + 1) act on the (n + 1)-th site only. Hence
they commute. In the following, we shall drop the ⊗ symbols, identifying
operators like aij(n+ 1) with IH0 ⊗ aij(n+ 1). This gives finally

Vn+1 =
∑

i,j∈N∪{0}

U i
j Vn a

i
j(n+ 1) . (1)

In Quantum Probability Theory, the operators aij(n) have a particular
interpretation, they are discrete-time quantum noises, they describe the dif-
ferent types of basic innovations that can be brought by the environment
when interacting with the small system. See [At] for complete details on
that theory, the understanding of which is not necessary here.

The only important point to understand at that stage is the following.
In some cases the above equation (1) corresponds to an equation driven by a
classical noise, i.e. driven by a random walk. This is what we shall describe
in the next section.

3 Classical Random Walks

In order to understand the link that may exist between the discrete-time
quantum noises aij and classical random walks, one needs to pass through
a particular family of random walks, the obtuse random walks. Defined by
Attal and Emery in [A-E], these random walks constitute a kind of basis of
all the random walks in RN . Let us describe them.

3.1 Obtuse Random Walks in RN

Let X be a random variable in RN taking N +1 values v0, ..., vN with respec-
tive probabilities p0, ..., pN such that pi > 0, ∀i ∈ {0, 1, ..., N}. The canonical
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space of X is the triple (A, A, P ), where A = {0, 1, ..., N}, A is the σ−field
of subsets of A and P is the probability measure given by P ({i}) = pi. Hence
for all i ∈ {0, 1, ..., N} we have X(i) = vi and P (X = vi) = P ({i}) = pi.

We say that such a random variable X is centered if E(X) = 0 (as a vector
of RN). We say that X is normalized if Cov(X) = I (as a N ×N -matrix).

Let us denote by X1, ..., XN the coordinates of X in the canonical basis
of RN and define the random variable X0 on (A, A, P ) given by X0(i) =

1, ∀i ∈ A. Let us introduce the random variables X̃ i defined by

X̃ i(j) =
√
pj X

i(j) ,

for all i, j ∈ {0, 1, ..., N}. We then have the following easy characterization
(cf [A-E]).

Proposition 3.1 The following assertions are equivalent:

1) The random variable X is centered and normalized,

2) The family v0, ..., vN of values of X satisfies < vi , vj >= −1, for all
i 6= j and the probabilities pi’s are given by

pi =
1

1 + ||vi||2
, for all i ∈ {0, 1, ..., N} ,

3) The matrix (X̃0, X̃1, ..., X̃N) is unitary.

A family of N + 1 vectors in RN satisfying the above condition

< vi, vj >= −1 ,

for all i 6= j, is called an obtuse system in [A-E]. Hence, a random variable
X satisfying one of the above condition is called an obtuse random variable.

Note that, as a corollary of the above proposition, the random variables
X0, X1, ..., XN are linearly independent and hence they form an orthonormal
basis of L2(A, A, P ). In particular, for every i, j ∈ {1, . . . , N} the random
variable X iXj can be decomposed into

X iXj =
N∑
k=0

T ijk X
k (2)

for some real coefficients T ijk . The familly of such coefficients forms a so-
called 3-tensor, that is they are the coordinates of a linear mapping T from
RN to MN(R).

We say that a 3-tensor T is sesqui-symmetric if the two following assump-
tions are satisfied:
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i) (i, j, k) 7−→ T ijk is symmetric,

ii) (i, j, l, m) 7−→
∑N

k=1 T
ij
k T

lm
k + δijδlm is symmetric.

Using the commutativity and the associativity of the product X iXj it is
easy to prove the following (cf [A-E]).

Theorem 3.2 If X is a centered and normalized random variable in RN ,
taking exactly N + 1 values, then there exists a sesqui-symmetric 3-tensor T
such that

X ⊗X = I + T (X) .

In the following, by an obtuse random walk we mean a sequence (Xp)p∈N
of independent copies of a given obtuse random variable X. Actually, the
random walk is the sequence made of the partial sums

∑
p≤nXp, but we shall

not make any distinction between the two processes in the terminology.

3.2 More General Random Variables

We claimed above that obtuse random variables are a kind of basis for the
random variables in RN in general. Let us make precise here what we mean
by that.

First of all, a remark on the number N + 1 of values attached to X in
RN . If one had asked that X takes less than N + 1 values in RN (k, say)
and be centered and normalized too, it is not difficult to show that X is
actually taking values on a proper subspace of RN , with dimension k − 1.
For example, a centered, normalized random variable in R2 which takes only
two different values, is living on a line.

Now, if Y is a random variable in RN taking k different possible values
w1, . . . , wk, with probability p1, . . . , pk and k > n+1. Consider an obtuse ran-
dom variable X in Rk−1 taking values v1, . . . , vk with the same probabilities
p1, . . . , pk as those of Y . We have seen that the coordinate random variables
X1, . . . , Xk−1, together with the deterministic random variable X0, form an
orthonormal basis of L2(A,A, P ). As a consequence, we can represent each
of the coordinates of Y as

Y i =
k−1∑
j=0

αij X
j .

Hence we have a simple representation of Y in terms of a given obtuse random
variable X.

7



3.3 Connecting With the Discrete Quantum Noises

The obtuse random walks admit a very simple and natural representation in
terms of the operators aij(n) defined in Section 2.2.

Let X be an obtuse random variable in RN . On the product space
(AN, A⊗N, P⊗N) we define a sequence (Xp)p∈N of independent, identically
distributed, random variables, each with the same law as X.

Consider the space TΦ(X) = L2(AN, A⊗N, P⊗N) and the random vari-
ables

XA =
∏

(p,i)∈A

X i(p) ,

where A is any sequence in {0, 1, ..., N} with only finitely many terms differ-
ent from 0.

The following result is also easy to prove (cf [At]).

Proposition 3.3 The random variables XA, where A runs over the sequences
in {0, 1, ..., N} with only finitely many terms different from 0, form an or-
thonormal basis of TΦ(X).

In particular we see that there exists a very natural Hilbert space isomor-
phism between the space TΦ(X) and the chain TΦ constructed in Section
2.2, over the space H = CN+1.

At this point we need to stop for a discussion. Consider the situa-
tion where we have a probability space (Ω,F , P ) and some random vari-
ables X, Y, ... ∈ L2(Ω,F , P ), together with a unitary isomorphism U from
L2(Ω,F , P ) to some abstract Hilbert space H. One can wonder, when carry-
ing L2(Ω,F , P ) to H through U , where the probabilistic informations about
the random variables (such as laws, independance, ...) appear in H.

Certainly not through the images UX, UY , ... of the random variables
X, Y, ..., because, via a unitary isomorphism, they can be sent on any vector of
H (with same norm). Hence UX, as an element ofH contains no information
at all about the probabilistic properties of X.

Consider now the operator MX of multiplication by X on L2(Ω,F , P ):

MX : DomMX ⊂ L2(Ω,F , P ) → L2(Ω,F , P )
F 7→ XF .

This operator contains all the information about X. From it one can compute
easily all the probabilistic properties of X, for example the law:

E[f(X)] = 〈 1l , f(MX)1l 〉 ,

8



the independance:

E[f(X)g(Y )] = E[f(X)] E[g(Y )]

⇔〈 1l , f(MX)g(MY )1l 〉 = 〈 1l , f(MX)1l 〉 〈 1l , g(MY )1l 〉 .

and so on ... Now, when transporting these operators through the iso-
morphism U , we lose no information about X, Y, .... For example, put
X = UMXU

∗ and Ψ = U1l, then X is a self-adjoint operator on H, hence it
admits a bounded functional calculus and we have, for example

〈Ψ , f(X)Ψ 〉H = E[f(X)] .

In the same way, we can translate all the probabilistic properties of X on
H. Actually, there is no way to differentiate the operator X from the actual
random variable X.

Regarding this discussion back to our setup, one can consider the operator
MXi(p) of multiplication by the random variable X i

p on TΦ(X). This self-
adjoint operator contains all the probabilistic information associated to the
random variable X i

p, it admits the same functional calculus, etc ... it is the
actual representative of the random variable X i

p in this Hilbert space setup.
As each of the probabilistic space TΦ(X) is made isomorphic to TΦ we

can naturally wonder what happens to the operators MXi(p) through this
identification. The answer is surprisingly simple (cf [At]).

Theorem 3.4 Let X be an obtuse random variable in RN and let (Xp)p∈N
be the associated random walk on the canonical space TΦ(X). Let T be the
sesqui-symmetric 3-tensor associated to X. If we denote by U the natural
unitary isomorphism from TΦ(X) to TΦ , then for all p ∈ N, i ∈ {1, ..., N}
we have

UMXi
p
U∗ = a0

i (p) + ai0(p) +
N∑

j,l=1

T jli a
j
l (p) .

Here we are! By a simple linear combination of the basic matrices aij(p)
one can reproduce any random variable on RN .

Coming back to the evolution equation (1), we see basically that two
different cases may appear.

First case: the coefficients U i
j of the basic unitary matrix U are such that

Equation 1 reduces to something like

Vn+1 = AVn +
N∑
i=1

BiVnMXi
p
.
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This means that this operator-valued evolution equation, when transported
back to TΦ(X) is an operator-valued (actually unitary operator-valued)
equation driven by a random walk (Xp)p∈N. It is a random walk on U(N).

Second case: there is no such arrangement in Equation 1, this means it
is purely quantum, it cannot be expressed via classical noises, only quantum
noises.

Our aim, in the rest of the article is to characterize completely those
unitary operators U which give rise to a classically driven evolution (first
case).

4 Random Walks on U(H0)

In this section we work on the state space

TΦ =
⊗
n∈N∗

CN+1 .

We consider a fixed obtuse random variable X, with values v1, . . . , vN and
with associated 3-tensor T . We identify the operator

a0
i (p) + ai0(p) +

N∑
j,l=1

T jli a
j
l (p)

with the random variable X i
p and we denote it by X i

p, instead ofMXi
p
. Recall

that X0
p is the constant random variable equal to 1, hence as a multiplication

operator on TΦ it coincides with the identity operator I.
In the following we extend the coefficients of the 3-tensor T to the set

{0, 1, . . . , N}. This extension is achieved by assigning the following values:

T ij0 = T i0j = T 0i
j = δi,j .

With that extension, the second sesqui-symmetric relation for T is written
simply

ii) (i, j, l, m) 7−→
N∑
k=0

T ijk T
lm
k is symmetric.

Recall the discrete time evolution equation (1) associated to the repeated
quantum interactions:

Vn+1 =
N∑

i, j=0

U i
j Vn a

i
j(n+ 1) ,

with the convention V0 = I.
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Proposition 4.1 The discrete-time evolution equation (1) can be written as

Vn+1 =
N∑
i=0

Bi VnX
i
n+1 ,

for some operators Bk on H0, if and only if the coefficients U i
j are of the

form

U i
j =

N∑
k=0

T ijk Bk . (3)

Proof Let us prove first the sufficient direction. If U is of the form (3) then

Vn+1 =
N∑

i,j=0

U i
jVn a

i
j(n+ 1)

= U0
0Vn a

0
0(n+ 1) +

N∑
i=1

U i
0Vn a

i
0(n+ 1) +

N∑
i=1

U0
i Vn a

0
i (n+ 1) +

+
N∑

i,j=1

U i
jVn a

i
j(n+ 1) .

The relation (3) implies in particular U0
0 = B0 and U0

i = U i
0 = Bi. This gives

Vn+1 = B0Vn a
0
0(n+ 1) +

N∑
i=1

BiVn (ai0(n+ 1) + a0
i (n+ 1)) +

+
N∑
k=1

N∑
i,j=1

T ijk BkVn a
i
j(n+ 1) +

N∑
i=0

B0Vn a
i
i(n+ 1)

= B0Vn +
N∑
k=1

BkVn
[
ak0(n+ 1) + a0

k(n+ 1) +
N∑

i,j=1

T ijk a
i
j(n+ 1)

]
= B0Vn +

N∑
k=1

BkVnX
k
n+1

=
N∑
k=0

BkVnX
k
n+1 .

This gives the requiered result in one direction. The converse is easy to prove
by reversing all the arguments above. �

11



Now, consider the operators

Wl =
N∑
i=0

vilBi ,

with the convention v0
k = 1, for all k ∈ {0, 1, ..., N}. Our purpose in the

sequel is to prove that these operators are unitary if and only if the evolution
operator U is unitary. Here is the first step.

Proposition 4.2 If U is a unitary operator, then for all l ∈ {0, 1, ..., N} the
operator Wl is unitary.

Proof We have

WlW
∗
l =

N∑
i,j=0

vilv
j
lBiB

∗
j .

But the relation (2) implies immediately

vilv
j
l =

N∑
m=0

T ijmv
m
l .

Hence, we get

WlW
∗
l =

N∑
i,j,m=0

T ijmv
m
l BiB

∗
j

=
N∑

j,m=0

vml
( N∑
i=0

T ijmBi

)
B∗j

=
N∑

j,m=0

vml U
j
mU

0∗
j

=
N∑
m=0

vml
( N∑
j=0

U j
mU

0∗
j

)
=

N∑
m=0

vml
( N∑
j=0

δm0I
)

= v0
l I = I .

This completes the proof. �

Now, our aim is to prove the converse of Proposition 4.2. In order to
achieve this, we need to express the coefficients U i

j of U in terms of the
operators Wl. This is the aim of the following two lemmas.
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Lemma 4.3 For all i ∈ {0, 1, ..., N} we have

Bi =
N∑
l=0

pl v
i
lWl .

Proof We have
N∑
l=0

pl v
i
lWl =

N∑
l=0

pl v
i
l

( N∑
j=0

vjl Bj

)
=

N∑
j=0

Bj

( N∑
l=0

pl v
i
lv
j
l

)
=

N∑
j=0

Bj E(X iXj)

=
N∑
j=0

Bjδij = Bi .

This ends the proof. �

Lemma 4.4 For all l, k ∈ {0, 1, ..., N} we have

Uk
l =

N∑
i=0

pi v
k
i v

l
iWi .

Proof Recall that we have

Uk
l =

N∑
j=0

T klj Bj

and

vliv
k
i =

N∑
j=0

T klj v
j
i . (4)

By using Lemma 4.3 and relation (4), we get

Uk
l =

N∑
i,j=0

pi T
kl
j vji Wi

=
N∑
i=0

piWi

( N∑
j=0

T klj vji
)

=
N∑
i=0

pi v
k
i v

l
iWi.
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�
As a corollary of the two above lemmas, we prove the following.

Proposition 4.5 If all the operators Wi, for i ∈ {0, 1, ..., N}, are unitary
then the operator U is unitary.

Proof We have

N∑
k=0

(U l
k)(U

k
m)∗ =

∑
i,j,k=0

pipj v
k
i v

k
j v

l
iv
m
j WiW

∗
j

=
N∑

i,k=0

p2
i (vki )2vliv

m
i I +

N∑
i,j,k=0, i 6=j

pipj v
k
i v

k
j v

l
iv
m
j WiW

∗
j

=
N∑
i=0

pi
(
pi(||vi||2 + 1)

)
vliv

m
i I +

+
N∑

i,j=0, i 6=j

pipj
( N∑
k=0

vki v
k
j

)
vliv

m
j WiW

∗
j

=
N∑
i=0

pi
(
pi(||vi||2 + 1)

)
vliv

m
i I +

+
N∑

i,j=0,i 6=j

pipj(< vi, vj > +1)vliv
m
j WiW

∗
j .

But recall that, by Proposition 3.1, we have pi(||vi||2+1) = 1 and < vi, vj >=
−1 for all i 6= j. Therefore we get

N∑
k=0

(U l
k)(U

k
m)∗ = E(X lXm)I = δmlI .

We have proved the unitary character of U . �

Altogether we have proved the following result, which resumes all the
results obtained above.

Theorem 4.6 Let X be an obtuse random walk in RN , with values v0, . . . , vN ,
with probabilities p0, . . . , pN and with associated 3-tensor T . Let (Xp)p∈N be
its associated obtuse random walk. Then the repeated quantum interaction
evolution equation

Vn+1 =
N∑

i,j=0

U i
jVn a

i
j(n+ 1)
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takes the form

Vn+1 =
N∑
k=0

BkVnX
k
n+1

if and only if there exists unitary operators Wi, i ∈ {0, . . . , N}, on H0 such
that the coefficients U i

j of U are of the form

Uk
l =

N∑
i=0

pi v
k
i v

l
iWi .

In that case, the coefficients Bk above are given by

Bk =
N∑
l=0

pl v
k
l Wl .

When the conditions above are satisfied, the evolution equation

Vn+1 =
N∑
k=0

BkVnX
k
n+1

is, when seen in the space TΦ(X), an operator-valued evolution equation,
driven by a random walk. It is natural to wonder what kind of stochastic
process it gives rise to.

Theorem 4.7 As a random sequence in U(H0), the solution of the equation

Vn+1 =
N∑
k=0

BkVnX
k
n+1

is an homogeneous Markov chain on U(N) (actually a standard random
walk), described as follows: V0 = I almost surely and Vn+1 takes one of the
values WiVn, i ∈ {0, 1, ..., N}, with respective probability pi, independently of
Vn.

Proof Assume Vn is given, depending on the random variablesX1, . . . , Xn

only. Then the random variable Xn+1 is independent and X i
n+1 = vil , with

probability pl. Therefore, with probability pl we get

Vn+1 =
N∑
i=0

Biv
i
l Vn = WlVn .

This proves the result. �
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5 The Case N = 1

In order to illustrate the results of the previous section, we detail here the
situation in the case N = 1.

Consider the set Ω = {0, 1}N, equipped with the σ-field F generated by
finite cylinders. We denote by νn the coordinate mappings, for all n ∈ N,
that is νn(ω) = ω(n).

For p ∈]0, 1[ and q = 1 − p, we define the probability measure µp on
(Ω, F) which makes (νn)n∈N to be a sequence of independent, identically
distributed, Bernoulli random variables with law pδ1 + qδ0. We denote by Ep

the expectation with respect to µp.
Define the random variables

Xn =
νn − p√
pq

.

They satisfy Ep[Xn] = 0 and Ep[X
2
n] = 1, hence they are obtuse random

variables in R. They take the two values v0 =
√
q/p and v1 = −

√
p/q with

respective probabilities p and q.
The 3-tensor T associated to X is easy to determine. Indeed, one can

easily check the following multiplication formula.

Proposition 5.1 We have

X2
n = 1 + cpXn,

where cp = q−p√
pq
.

This means that the 3-tensor in this context, which is a constant, is T = cp.

In this context also, note that the space TΦ(X) is the space L2(Ω, F , µp),
whereas the space TΦ is ⊗i∈N C2. As an application of Theorem 3.4, the
operator of multiplication by Xn on TΦ(X) is represented on TΦ as

Mp
Xn

= a0
1(n) + a1

0(n) + cpa
1
1(n) .

Here we are, we have put all the corresponding notations. We can apply
Theorem 4.6 to this particular case.

Theorem 5.2 Consider the obtuse random walk (Xn)n∈N on R, as described
above. Then the repeated quantum interaction evolution equation

Vn+1 =
N∑

i,j=0

U i
jVn a

i
j(n+ 1)
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takes the form
Vn+1 = B0Vn +B1VnXn+1

if and only if there exist 2 unitary operators W0 and W1 on H0 such that

U =

(
pW0 + qW1

√
pq (W0 −W1)√

pq (W0 −W1) qW0 + pW1

)
. (5)

In that case, the coefficients Bi above are given by

B0 = U0
0 , B1 = U0

1 = U1
0 .

The random sequence (Vn)n∈N is defined by V0 = I and

Vn+1 =

{
W0 Vn with probability p

W1 Vn with probability q .

6 Some Physical Examples

We end up this article with a few physical examples in order to illustrate our
results. For simplicity we stick to the case N = 1, that is, we are dealing
with two-dimensional pieces of environment.

For a total Hamiltonian between the small system HS and one piece H
of the environment, we are considering typical Hamiltonians of the form

Htot = HS ⊗ I + I ⊗H +
∑
i

(Vi ⊗ a0
i + V ∗i ⊗ ai0) +

∑
i,j

Di,j ⊗ aij

where D∗i,j = Dj,i.
In our two-dimensional setup we consider an Hamiltonian of the form

Htot = HS ⊗ I + V ⊗ a0
1 + V ∗ ⊗ a1

0 +D ⊗ a1
1 .

Let p ∈ (0, 1) and put cp = (q − p)/√pq, then in the case

V = V ∗, D = cpV,

the Hamiltonian is the block-matrix(
HS V
V HS + cpV

)
.

If furthermore we assume that HS and V commute then, by an easy compu-
tation, we get

U = e−ihHtot =

(
pW0 + qW1

√
pq(W0 −W1)√

pq(W0 −W1) qW0 + pW1

)
,
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with
W0 = e−ih(HS+

√
q
p
V ) and W1 = e−ih(HS−

√
p
q
V ) .

That is to say U is of the form (5). The repeated interaction dynamics
associated to this Hamiltonian are driven by a classical sequence of Bernoulli
random variables with parameter p. In particular the repeated interaction
unitary operators Vn follow a Bernoulli random walk on U(2) with jumps W0

and W1 as described above.
In other words, let (εn)n∈N∗ be a sequence of identically distributed, inde-

pendant Bernoulli random variables, taking the values
√
q/p with probability

p and −
√
p/q with probability q = 1−p. Let Xn =

∑n
k=1 εk be the associated

random walk. Then
Vn = e−ih(nHS+XnV ) .

In more general situations, for example when HS does not commute with
V the computations are in general very difficult to handle, at least explicitely.
One case can be computed with great generality, it is the case of small time
interactions, that is, for h very small. Assume, for example that we have a
total Hamiltonian of the form

Htot = HS ⊗ I +
1√
h

(
V ⊗ a0

1 + V ⊗ a1
0

)
with V = V ∗.

Note that Htot depends on h too. Indeed, when considering the limit
h→ 0, that is, passing from repeated interactions to continuous interactions,
we have to reinforce the strength of the interactions between the two systems.
This is achieved by renormalizing the field operators a1

0 and a0
1 by a factor

1/
√
h. For a complete discussion on this limit and renormalization, see [AP].

The following discussion is written in a“non-rigorous” style, but all the
arguments below can be easily justified (same reference).

Up to terms which are all o(h) we then have

U = e−ihHtot =

(
I − ihHS − 1

2
hV 2 −i

√
hV

−i
√
hV I − ihHS − 1

2
hV 2

)
.

Putting

W0 = I− ihHS−
1

2
hV 2− i

√
hV and W1 = I− ihHS−

1

2
hV 2 + i

√
hV ,

we see that U is under the form (5) for a symmetric Bernoulli random walk
(i.e. p = 1/2). Note that W0 and W1 here are unitary up to o(h) again, that
is, W ∗

i Wi = I + o(h).
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Let (εn) be a sequence of independent symmetric Bernoulli random vari-
ables, then the sequence (Vn) of unitary operators implementing the repeated
interactions associated to the above Hamiltonian is given by

Vn =
n∏
k=1

(
I − ihHS −

1

2
hV 2 + i

√
h εk V

)
or else, by the evolution equation

Vn+1 − Vn = (−iHS −
1

2
V 2)hVn + i

√
hV Vn εn+1

which, in the continuous limit h → 0 converges to a Schrödinger equation
perturbed by a Brownian motion term

dVt = (−iHS −
1

2
V 2)Vt dt+ iV Vt dWt .
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