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QUANTUM MECHANICS

This appendix provides a brief introduction to the axioms and language of
quantum mechanics. We have no real physical pretention in this chapter; our
aim is only to present the basic tools and vocabulary of quantum mechanics.
We assume that the reader is familiar with the general elements of Operator
Theory.

1.1 The axioms of quantum mechanics

The theory of quantum mechanics differs a lot from the classical theory of
mechanics that we learned at school.

We are used to a theory where systems have a definite position, velocity
or energy ... These different characteristics of the system (also called observ-

ables) can be precisely measured. The result of the measure does not affect
the system in general. If the experiment is repeated with exactly the same
conditions it gives exactly the same results.

In the quantum theory of mechanics facts are totally different. It is im-
possible to assign a fixed value for the position, the velocity or the energy of
a particle. The state of the particle is a kind of mixture of several possible
values (sometimes a continuum of possible values) which can occur with some
probability. More precisely, the measurement of some physical quantity con-
cerning a quantum system does not lead to a deterministic value, the result of
the measurement is random. Even if the measurement is repeated with exactly
the same conditions, the result appears unpredictable. The only thing that is
deterministic, and known by the physicist before the measurement process, is
the probability distribution of these results. Another fundamental fact is that
the effect of measuring the value of a physical parameter (such as position,
energy...) of a quantum system, affects the system in an irreversible way.

An adequate mathematical language for describing the rules of quantum
mechanics has been developed about 80 years ago and has shown an incredi-
ble efficiency with regards to experiments. This axiomatic language, that we
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develop below, is the accepted theory nowadays by at least 99 % of the physi-
cists. There are still researchers who work on the so-called Bohmian formalism
of quantum mechanics or on the validity of the “hidden variables hypothesis”,
but it is not our task to compare the arguments of one or the other here.
Here we place ourselves in the framework in which almost all the physicists,
chemists, ... are working today and on the base of which theory the computer
on which I am now typing is working.

It is not our purpose here to discuss why such incredible axioms represent
the reality of the world. Besides, nobody can answer such a question today. We
shall take a certain description of the world for granted and we are rassured by
80 years of experiments agreeing with its predictions to incredible accuracy.

Let us now come to the mathematical axioms and the language of quantum
mechanics.

1st axiom: States
The space of all possible states of a quantum system is represented by a

Hilbert space H. More precisely the states of a quantum system are rays in
a Hilbert space. By “rays” we mean equivalence classes of vectors that differ
by a non zero scalar multiplication. We can choose a representative vector of
that class to have unit norm. These are the so-called wave functions, that is,
norm 1 elements of H. Note that Ψ ∈ H and eiθΨ describe the same state.

A wave function ϕ contains all the possible information about the system;
one should be able to compute any parameter of the system from ϕ.

2nd axiom: Observables
Any physical quantity, attached to the quantum system, which can be

measured, such as position, velocity, energy, spin, ... is represented by a self-
adjoint operator X on H. These are called observables of the system.

The set of different possible values for the measurement of an observable
X is the spectrum σ(X) of X . In particular, for some quantum systems,
the energy of the system can take values only in a discrete set. This is the
origin of the name “Quantum Mechanics”: the energy is made of quanta, small
incompressible values.

Recall that, in the finite dimensional case, every observable X can diago-
nalized in some orthonormal basis. This means that X can be written as

X =

n
∑

i=1

λiPi

where the λi are the eigenvalues of X and the Pi are the orthogonal projectors
onto the eigenspaces. Note that, for all function f on R we have

f(X) =
n

∑

i=1

f(λi)Pi.
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Recall that, in a the infinite dimensional, an observable X is described by its
spectral measure ξX(·) and by the spectral theorem:

X =

∫

σ(X)

λ dξX(λ).

For every bounded measurable function f on R we have

f(X) =

∫

σ(X)

f(λ) dξX(λ).

3rd axiom: Measurement
The only possible numerical outcome for the measurement of the an ob-

servable X is an element of its spectrum σ(X). The result of the measurement
is in the set σ(X) but is completely random. The only possible information one
can be sure of is the probability distribution of the measurement numerical
outcome. This is described as follows.

Let ξX be the spectral measure associated to an observable X .If the state
of the system is Ψ then the probability of measuring, for the observable X , a
value which lies in the Borel set A ⊂ R is

‖ξX(A)Ψ‖2 = 〈Ψ, ξX(A)Ψ〉.

In particular, the average observed value is

〈Ψ,XΨ〉.

Furthermore, immediately after the measurement the state of the system
changes to

ξX(A)Ψ

‖ξX(A)Ψ‖ .

This is the so-called reduction of the wave packet.

4th axiom: Dynamics
One observable of the system H has a particular status, the energy ob-

servable, called the Hamiltonian of the system. Let us denote it by H . This
observable controls the way the system will evolve with time. Indeed, if one
puts

Ut = e−itH

for all t ∈ R, then the state of the system at time t will be

Ψt = UtΨ0

if it were Ψ0 at time 0. This is the so-called Schrödinger equation .
Note that the probability of measuring an observable X to be in A at time

t is
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‖ξX(A)Ψt‖2 = 〈Ψt, ξX(A)Ψt〉 = 〈Ut Ψ0, ξX(A)Ut Ψ0〉 = 〈Ψ0, U
∗
t ξX(A)Ut Ψ0〉.

But the mapping A 7→ U∗
t ξX(A)Ut is the spectral measure A 7→ ξXt

(A) where
Xt is the observable

Xt = U∗
t XUt.

This equivalent point of view is the so-called Heisenberg picture, as opposed
to the first one which is called the Schrödinger picture. That is, instead of
considering states as evolving with time and that we always measure the
same observable, one can think of the observables evolving with time and the
state being fixed.

The Schödinger picture is that most commonly used by physicists. It is
more natural to think the time evolution as modifying the state of the system,
the observables being fixed functionals which respect to which we make mea-
sures (with a designed apparatus for example) on the system as time evolves.

But when having a probabilistic point of view on this theory, as we develop
all along this book, one may find the Heisenberg picture more natural. The
state is interpreted as a fixed underlying probability measure, the observables
are kind of random variables from which we extract a probability distribution.
As time goes the random variables evolve (they are “processes”) and their
distribution also evolve with time.

1.2 The Stern-Gerlach experiment

In order to illustrate the above postulates we will describe a well-known ex-
periment, due to Stern and Gerlach.

A source emits a linear horizontal beam of particles (electrons in our ex-
ample). This beam goes through an intense vertical magnetic field. One then
observes that the beam splits into several beams corresponding to fixed de-
viations. The number of such beams is finite, fixed, and depends only on the
nature of the particles (2 beams for electrons, for example). We call each of
the possible deviations of the particles the spin (in the direction Oz). In the
case of the electron one talks for example of spin +1 or −1, depending on
which of the two deviations occurs. If one makes the particles go through the
field one by one we see them “choosing” a spin at random. The value of the
spin measured for each particle cannot be predicted. The only predictable fact
is that after a large number of particles have gone through the experiment,
there will be fixed and predictable proportions of particles in each direction.

These different deviations actually correspond to a kind of magnetic mo-
ment of the particle. The fact that each particle has only a discrete spectrum
of spin values is fundamental in quantum mechanics.

Suppose that we isolate a beam of electrons which all have spin +1 in
the vertical direction. If one makes this beam go through the same vertical
field again, one observes that they all deviate corresponding to the spin +1
direction. These particles seem to “have kept in mind” that they are spin +1.
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Now, suppose this selected beam goes through a magnetic field whose
direction makes an angle α with the vertical axis. One then observes another
splitting into two directions (for the electrons) with the proportions cos2(α/2)
and sin2(α/2) respectively.

Finally, one selects the spin +1 beam after this experiment (with the field
in the direction α) and makes it go through the initial vertical field again.
One observes a splitting into two directions, with proportions cos2(α/2) and
sin2(α/2) respectively. Recall that this beam was selected with spin +1 in the
vertical direction; it appeared to have memory of this fact. We see that after
the passage through the direction α field, the beam has lost the memory of
its spin in the vertical direction.

Trying to model such an experiment and such complicated behaviour may
seem very difficult. One might be tempted to attach a random variable to the
spin in each direction and to find rules explaining how these random variables
are modified after each experiment. This modeling is clearly, at the least,
very complicated, and, in fact, impossible (see next section). However, the
formalism of quantum mechanics has a very simple answer.

Let us see how the axioms of quantum mechanics describe in a very simple
and nice way the Stern-Gerlach experiment. In order to model the spin ob-
servables it is enough to consider the state space H = C2. A state is then an
element ψ = (u, v) ∈ C2 with norm 1. The spin observable in the normalized
direction (x, y, z) is physically represented by the observable

S(x,y,z) =

(

z x− iy
x+ iy −z

)

.

This operator has eigenvalues +1 and −1 with unit eigenvectors α+ and α−

respectively. In the vertical direction the spin observable is

S(0,0,1) =

(

1 0
0 −1

)

and α+ = e1, α− = e2 (the canonical basis vectors). Thus the spin of the
particle is +1 with probability p = |〈ψ , α+〉|2 and −1 with probability q =
|〈ψ , α−〉|2 = 1 − p. After going through the vertical field, those particles,
which have been observed with spin +1, are in the state

ψ′ =
〈ψ , e1〉 e1

‖〈ψ , e1〉 e1‖
,

that is, ψ′ = e1 (recall that wave functions which differ by a modulus one
complex factor represent the same state).

If one measures these particle’s spin in the vertical direction again, we get
probability p = |〈e1 , α+〉|2 = |〈e1 , e1〉|2 = 1 to measure it with spin +1; and
thus probability 0 to measure it with spin -1. The beam has “remembered”
that it has spin +1 in the vertical direction.
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If we now measure the spin in the direction (0, sin θ, cos θ) the spin observ-
able is

S(0,sin θ,cos θ) =

(

cos θ −i sin θ
i sin θ − cos θ

)

.

The associated eigenvectors are

α+ = (−i cos θ/2, sin θ/2) and α− = (sin θ/2, i cos θ/2).

In particular, the respective probabilities are

p = |〈e1 , α+〉|2 = cos2 θ/2 and q = |〈e1 , α−〉|2 = sin2 θ/2.

We recover the observed proportions. Those particles which have spin +1 in
this direction θ are now in the state ψ′′ = α+.

Finally, if one makes the spin +1 particles (measured in the direction θ)
go through the vertical field again, we get the proportions p = |〈α+ , e1〉|2 =
cos2 θ/2 and q = |〈α− , e1〉|2 = sin2 θ/2.

This is exactly what was observed. One can only be impressed by the
efficiency of this formalism!

1.3 Quantum mechanics of open systems

The formalism developed in Section 1.1 needs to be extended. This formal-
ism describes isolated quantum systems. But in many situations one has to
consider quantum systems which interact with another one (or other ones).
Even if one is not willing to, it is very difficult to prevent a quantum system
to interact with an exterior system, with the environment, with photons ...
Trying to describe the effect of such an interaction leads to a considerable
extension of the axioms.

First of all, let us focus on states. A coupled system in quantum mechanics
is represented by the tensor product of the corresponding Hilbert spaces H⊗K.
For the simplicity of the discussion, we suppose that H and K are both finite
dimensional. A state on that system is then represented by a unit vector
Ψ ∈ H ⊗K. This state can be decomposed as

Ψ =

n
∑

i=1

m
∑

j=1

ai,j ei ⊗ fj

in a typical orthonormal basis of H⊗K.
Imagine that we are dealing with the coupled system H⊗K, but we per-

sonally have access to H only. If we want to measure an observable M of H,
we have to consider the observable M ⊗ I on H⊗K. The spectral measure of
M⊗I is ξM (·)⊗I and the probability for finding the value of the measurement
lying in the Borel set A is equal to
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〈Ψ , (ξM (A) ⊗ I)Ψ〉 =
n

∑

i,k=1

m
∑

j=1

ai,j ak,j 〈ei , ξM (A) ek〉.

But, computing the partial trace ρH of the operator |Ψ〉〈Ψ | on H gives

ρH = trK ( |Ψ〉〈Ψ | ) =
n

∑

i,k=1

m
∑

j=1

ai,j ak,j |ei〉〈ek|. (1.1)

This means that

〈Ψ , (ξM (A) ⊗ I)Ψ〉 = tr (ρH ξM (A)). (1.2)

One can clearly see that any physical measurement that can be performed on
H will be obtained by the same formula (1.2). One recovers the special case
of an isolated system (Section 1.1) with ρH = |Φ〉〈Φ|:

tr (|Φ〉〈Φ|P ) = 〈Φ , PΦ〉.

It is easy to check on the form (1.1) that ρH is always self-adjoint, positive
and tr ρH = 1.

This means that considering open quantum systems leads to generalization
of the notion of state: from now on a state on a general Hilbert space H
is a trace-class, positive operator ρ such that tr ρ = 1. The probability of
measuring a numerical outcome for observable X in the set A is now given by
the formula

tr (ρ ξX(A)) .

Such operators ρ are often called density matrices. They can always be de-
composed as

ρ =
∑

n∈N

λn |en〉〈en| (1.3)

for some orthonormal basis (en) of eigenvectors and some positive eigenvalues
λn satisfying

∑

n∈N

λn = 1.

These operators represent the generalization of the notion of wave function
which is necessary to handle open quantum systems. Their decomposition un-
der the form (1.3) can be understood as a mixture of wave functions. It can
be understood as a state with a certain uncertainty: it is the wave function
|e1〉〈e1| with probability λ1,. . . , it is the wave function |en〉〈en| with proba-
bility λn,. . . .

Let us see how such a generalized state should evolve with time. On the
coupled system H⊗K we consider an Hamiltonian of the formH = HH⊗I+I⊗
HK, resulting from the parallel evolution of the two systems, each one having
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its own Hamiltonian: they do not interact with each other! The associated
unitary group is then U(t) = UH(t)⊗UK(t) where UH(t) = exp(−itHH) (and
in the same way for UK(t)). Consider an initial state Ψ on H⊗K. It gives rise
to a density matrix

ρH = trK ( |Ψ〉〈Ψ | )
on H. The state Ψ evolves into the state Ψ(t) = U(t)Ψ at time t. A simple
computation shows that the density matrix corresponding to the state on H
at time t is given by

ρH(t) = trK ( |Ψ(t)〉〈Ψ(t)| ) = UH(t) ρH UH(t)∗.

This is how the evolution of states as described in Section 1.1 should be
generalized when dealing with density matrices.

Even more general is the evolution of the states of H, when the coupled
system H ⊗ K undergoes a general unitary evolution. Once again we only
develop the finite dimensional case here, in order to simplify the discussion.

Consider the system H, with density matrix ρ, being coupled to the system
K with state Ψ . Together they evolve following some unitary operator U on
H⊗K (we forget about the time parameter t in this discussion, it may as well
be supposed to be fixed):

ρ⊗ |Ψ〉〈Ψ | 7−→ U(ρ⊗ |Ψ〉〈Ψ |)U∗.

Let us compute the partial trace of that operator on H. If ρH denotes the
operator trK (U(ρ⊗ |Ψ〉〈Ψ |)U∗), then it is characterized by

〈a , ρHb〉 =
∑

n∈N

〈a⊗ en , U(ρ⊗ |Ψ〉〈Ψ |)U∗b⊗ en〉,

for all a, b ∈ H and for all orthonormal basis (en) of K. For all n ∈ N, consider
the operator Mn on H defined by

〈a , Mnb〉 = 〈a⊗ en , Ub⊗ Ψ〉

for all a, b ∈ H. Then, decomposing U as a sum of tensor products

U =
∑

i,j

U i
j ⊗ V i

j ,

it is easy to check that

ρH =
∑

n

Mn ρM
∗
n, (1.4)

which we also denote by L(ρ).
The operators Mn involved in (1.4) can be any kind of operators on H, the

only constraint that the unitarity of U imposes is the (easy to check) relation
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∑

n

M∗
nMn = I. (1.5)

Equation (1.4), together with the constraint (1.5), describe the most gen-
eral transformation that can occur to a state of a quantum system. There
are called completely positive maps in this book, there are often known as
superoperator in the litterature.

We stop here that discussion on completely positive maps, which is is much
enough for this Appendix; it is much more developped in Chapter ??.

1.4 Faster than light?

In this section and the next one we develop two celebrated “paradoxes” at-
tached to the axioms of quantum mechanics.

The first one is an imaginary experience which seems to show that the
axioms of quantum mechanics are violating the locality axiom of relativity
theory: “No information can be trasmitted faster than light”. Here is the idea
of the experience.

Consider two coupled system A and B being both represented by a state
space C2. Let {e0, e1} be an orthonormal basis of C2. We prepare the coupled
system in the state

Ψ =
1√
2

(e0 ⊗ e0 + e1 ⊗ e1) .

Imagine that a person, Bob, is having control on the system B and acts on
it by performing a measurement along some orthonormal basis {f0, f1}. We
have

(I ⊗ |f0〉〈f0|) Ψ =
1√
2

(〈e0 , f0〉 e0 ⊗ f0 + 〈e1 , f0〉 e1 ⊗ f0) =
1√
2
f0 ⊗ f0

and in the same way

(I ⊗ |f1〉〈f1|) Ψ =
1√
2
f1 ⊗ f1.

This means that, with probability 1/2 Bob will obtain the state f0 ⊗ f0 and
with probability 1/2 the state f1 ⊗ f1.

By performing this measurement it seems that Bob has modified the A-
part of the state by forcing it to be in the f basis also. This is the starting
point for imagining the faster-than-light transmition. A gret number of copies
of the coupled system A ⊗ B is prepared, all in the same state Ψ as above.
Alice goes to Andromeda with all the systems A, Bob stays on earth with
all the systems B. They agreed that at 20:00 Bob will send a faster-than
light information to Alice in the following way. Bob will choose between two
basis f or g. He will perform measurements along the choosen basis on all
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its B systems. This will have as effect to put the coupled systems in the
corresponding state as described above. At 20:01, that is outside the light
cone, Alice performs measurements on the systems A in order to know if they
are in the states f or g. This way she will know the information from Bob
(e.g. “f” or “g”) faster than light!

Where is the paradox? Actually there is no paradox at all. Alice cannot
figure out what Bob did choose, in any way she may try. Imagine Bob has
choosen the basis f . The collection of state are then half in the state f0 ⊗ f0
and half in the state f1 ⊗ f1. If Alice measure then along the f basis she
will obtain f0 with probability 1/2 and f1 with probability 1/2. But if she
measures with respect to any other basis h (which may be g or any other) she
will then obtain h0 with probability

1

2
|〈h0 , f0〉|2 +

1

2
|〈h0 , f1〉|2 =

1

2

and h1 with probability 1/2. She gets no information at all from what has
done Bob, by acting on A only.

Another way to understand the above experiment and conclusion is by
means of density matrices. The effect of Bob’s measurement transforms the
(pure) state Ψ into the density matrix

ρ =
1

2
(|f0 ⊗ f0〉〈f0 ⊗ f0| + |f1 ⊗ f1〉〈f1 ⊗ f1|)

which is nothing but the operator 1/2 I. Whatever was the choice of the bases
made by Bob, Alice could see no difference afterwise. Even if Bob had not
changed anything to the initial state, the resulting state on A for Alice is the
partial trace

ρA = trA ( |Ψ〉〈Ψ | ) =
1

2
(|f0〉〈f0| + |f1〉〈f1|) =

1

2
I.

There is no way a local action by Bob may change the local state of Alice.

1.5 Hidden variables, Bell’s inequalities

The second experiment that we describe is a very famous one which shows
that the probabilistic behaviour of quantum mechanics cannot be modeled by
classical probability theory.

Consider a system made of two particles of the same nature going in two
different directions (right and left, say). Assume that their spin can take only
two values: +1 and −1. They have been prepared in such a way that their
spins, in a fixed direction, are anticorrelated. This means the following. The
state space of the two particles (just for the study of their respective spin) is
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H = C2 ⊗ C2. If (e1, e2) is an orthonormal basis of C2 made of spin +1 and
spin −1 eigenvectors (in the chosen direction) respectively, then the initial
state of our system is

ϕ =
1√
2
(e1 ⊗ e2 − e2 ⊗ e1).

Actually, the above state does not depend on the choice of direction: as a state
(that is, up to a phase factor) it is the same if one changes the choice of the
orthonormal basis. The above state is called the singlet state in physics: it
is the state in which the spins of the two particles are anticorrelated in any
direction of the space. Such a state is physically realisable.

In front of each particle (right and left) is placed an apparatus which mea-
sures their spin in directions (0, cosα, sinα) and (0, cosβ, sinβ) respectively
(denoted directions α and β in the following). Let us denote by Pα the observ-
able “spin of the left particle in the direction α”, and by Qβ the observable
“spin of the right particle in the direction β”. We denote by

α+ = (−i cosα/2, sinα/2)

β+ = (−i cosβ/2, sinβ/2)

α− = (sinα/2, i cosα/2)

β− = (sinβ/2, i cosβ/2)

the corresponding eigenvectors. The probability that the spin is measured to
be +1 on the left and +1 on the right is denoted by P (Pα = +1, Qβ = +1)
and is equal to

|〈α+ ⊗ β+ , ϕ 〉|2 .
A straightforward computation then gives

P (Pα = +1, Qβ = +1) =
1

2
cos2

(

α+ β

2

)

.

In the same way we find

P (Pα = +1, Qβ = −1) =
1

2
sin2

(

α+ β

2

)

P (Pα = −1, Qβ = +1) =
1

2
sin2

(

α+ β

2

)

P (Pα = −1, Qβ = −1) =
1

2
cos2

(

α+ β

2

)

.

We wonder if such correlations, such probabilities, can be obtained with
the help of a classical probability model. That is, we wonder if it is possible
to define a probability space (Ω,F , P ) and ±1-valued random variables Pα,
Qβ on (Ω,F , P ), for each angle α and β, such that the above is satisfied.
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This assumption would mean physically that there is some uncertainty in the
knowledge of the initial state of the system; everything is determined from
the begining (the spin in each direction, etc...) but we have only a lack of
knowledge of some of the variables of the system (this is the so-called hidden

variable hypothesis) which leads to a random result about the quantities Pα,
Qβ.

But in fact we have the following easy result.

Theorem 1.1. [Bell’s 3 variable inequality] For any three ±1-valued random

variables P1, P2, P3 on a probability space (Ω,F , P ) we have

P (P1 = 1, P3 = −1) ≤ P (P1 = 1, P2 = −1) + P (P2 = 1, P3 = −1).

Proof. Simply write

P (P1 = 1,P3 = −1) =

= P (P1 = 1, P2 = −1, P3 = −1) + P (P1 = 1, P2 = 1, P3 = −1)

≤ P (P1 = 1, P2 = −1) + P (P2 = 1, P3 = −1) . ut

With the probalities we found, Bell’s inequality are violated: For example
take α1 = π/2, α2 = 7π/6 and α3 = 5π/6. It is impossible to attach clas-
sical random variables behind each spin of the particle. The theory and the
experiment (which was perfomed in Orsay by A. Aspect’s team) show the
correlations we obtain cannot come from classical random variables.

A possible criticism of the above conclusion is to say that the measure-
ment on the left polariser influences the measurement on the right one. The
Orsay experiment, directed by A. Aspect in 1982, was actually a little more
sophisticated. A random choice of two different angles α1, α2 was made on the
left, and the same with β1, β2 on the right.

Theorem 1.2 (Bell’s 4 variable inequality). For any quadruple P1, P2, Q1,

Q2 of random variables on (Ω,F , P ), taking the only values −1 and 1, we

have

P (P1 = Q1) ≤ P (P1 = Q2) + P (P2 = Q1) + P (P2 = Q2) .

Proof. Note that

‖P1 +Q1‖L1(Ω) = E [|P1 +Q1|] = E [|P1 +Q1|1lP1=Q1
] + E [|P1 +Q1|1lP1 6=Q1

]

= 2E [1lP1=Q1
]

= 2P (P1 = Q1) .

Thus the inequality of the theorem is just the quadrangle inequality:

‖P1 +Q1‖L1(Ω) ≤ ‖P1 +Q2‖L1(Ω) + ‖P2 +Q2‖L1(Ω) + ‖P2 +Q1‖L1(Ω) .ut
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In our case, we have

P (Pαi
= Qβj

) = cos2
(

αi + βj

2

)

.

Thus the Bell inequality is violated by the choice α1 = π/2, α2 = 7π/6,
β1 = 3π/2 and β2 = π/6.

These results go against the hidden variable hypothesis and the attempt
to model quantum mechanics with classical probability theory. A classical
probabilistic model of the phenomena of quantum mechanics is not possible.

One comment must be added here. The above argument works if one can
be sure that the measurement of the left particle in the direction α cannot
influence the measurement of the right particle, a little later, in the direction
β. This assumption is called locality in physics. In the Orsay experiment, this
assumption was fulfilled. Indeed, they performed the measurements on the left
and then on the right in an interval of time which is smaller than the flight
timeof a photon between the two pieces of apparatus. Thus, by the causality
principle of Relativity Theory, the first measurement cannot have influenced
the second one.

If one admits the causality principle to be valid in quantum mechanics,
then the hidden variable hypothesis must be rejected, as well as any attempt
to model quantum mechanics with classical probability.

If the causality principle in quantum mechanics is abandoned then there
is still some room for modeling the Orsay experiment in classical probabilist
terms. This is, for example, the case of so-called Bohmian quantum mechan-
ics. But a very large majority of physicists nowadays considers the causality
principle to be valid in quantum mechanics.




