ELEMENTS OF OPERATOR ALGEBRAS AND MODULAR THEORY

Stéphane ATTAL
Institut Camille Jordan
Université Claude Bernard Lyon 1
21 av Claude Bernard 69622 Villeurbanne Cedex, France
E-mail: stephane.attal@igd.univ-lyon1.fr
Home page: http://igd.univ-lyon1.fr/ attal
1 Introduction 2
1.1 Discussion 2
1.2 Notations 3
$2 \quad C^{*}$-algebras 3
2.1 First definitions 3
2.2 Spectral analysis 5
2.3 Representations and states 12
2.4 Commutative C^{*}-algebras 15
2.5 Appendix 16
3 von Neumann algebras 18
3.1 Topologies on $\mathcal{B}(\mathcal{H})$ 18
3.2 Commutant 21
3.3 Predual, normal states 23
4 Modular theory 25
4.1 The modular operators 25
4.2 The modular group 29
4.3 Self-dual cone and standard form 32
References 38

1 Introduction

1.1 Discussion

Technics and tools coming from operator algebras, that is, C^{*}-algebras or von Neumann algebras, are central in all the approaches of open quantum system theory. They are intensively used in most of the courses of these three volumes.

They are essential in the Hamiltonian approach for they provide the setup for describing equilibrium states in quantum statistical mechanics, the socalled K.M.S. states (see C.-A. Pillet's course in this volume), for describing the observable algebras of free Bose and Fermi gas (see M. Merkli's course in this volume), for computing the standard Liouvillian of quantum dynamical systems (see C.-A. Pillet's course in this volume) which is the starting point of ergodic theory on these systems.

In the Markovian approach, they are essential tools for proving the Stinespring and the Lindblad theorems, which are the mathematical foundation of the so-called quantum master equations (see R. Rebolledo's course in the second volume), for developing the theory of quantum Markov processes, their dilations and their qualitative behaviour (see F. Fagnola's course in the second volume and Fagnola-Rebolledo's course in the third volume).

In the third volume of this series ("Recent developments"), there is no course which does not make a heavy use of all the technics of von Neumann algebras, states, representations, modular theory.

The aim of this course is to give a basic introduction to this theory. Writting such a course is a challenge, for these theories are difficult, deep and subtle. It suffices to have a look to the most well-known references ([1], [2], [3], [4], [5], [6], [7], [8],) to understand that we here enter into a heavy theory.

Hundreds of volumes have been written on operator algebras, it has been a life work of numerous famous mathematicians to try to understand them, to classify them. It is not our task here to enter into all these details, we just want to browse the most basic elements, the tools that appear everywhere. We try to give as many proof as possible, we only skip the very long and difficult ones (at least, we give the ideas). This course has to be considered as a very first step in the theory, a tool box for the other courses. Readers who are interested in more details or more developments are encouraged to enter into the classical litterature that we quoted above.

Among the huge litterature on the subject, we have selected few references at the end of this course.

The two volumes by Bratteli and Robinson, [1] and [2], are fundamental references for these three volumes, for they really develop the theory of operator algebras in perspective with applications in quantum statistical mechanics. They are the only references in our list which connect operator algebras with physics. Furthermore, their exposition is concise and pedagogical.

The series of volumes by Kadison and Ringrose, [4], [5] and [6], are sorts of bibles on operator algebras. They provide a very complete exposition on all the old and modern theory of operator algebras. For example they completely treat the classification theory of von Neumann algebra, which we do not treat here.

Sakai's book [8] is a well-known reference on the basic elements of C^{*} and von neumann algebras. It is a concise and dense book, it should maybe not considered as a beginer reference. It does not treat modular theory.

Pedersen's book [7] is very complete and more pedagogical. Dixmier's book [3] is an older reference, far from the modern pedagogical and notational standards, but it has influenced a whole generation of mathematicians.

1.2 Notations

All the vector spaces, Hilbert spaces, algebras, are here supposed to be defined on the field of complex numbers \mathbb{C}.

On a Hilbert space the scalar product $<\cdot, \cdot>$ is linear in the right variable and antilinear in the left one. The notation for the scalar product does not refer to the underlying space, there should not be any possible confusion.

In the same way, the norme of any normed space is denoted by $\|\cdot\|$, unless it is necessary for the comprehension to specify the underlying space.

On any Hilbert space, the identity operator is denoted by I, without precising the associated space. The algebra of bounded operators on a Hilbert space \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$.

In any normed space, $B(x, r)$ denotes the closed ball with center x and radius r.

$2 C^{*}$-algebras

The two main operator algebras are C^{*}-algebras and von Neumann algebras. They can be represented as sub-algebras of bounded operator algebras $\mathcal{B}(\mathcal{H})$, with different topologies. But they also admit abstract definitions, without reference to any particular representation. This is with the abstract theory we start with, representation theorems come later.

2.1 First definitions

A C^{*}-algebra is an algebra \mathcal{A} equipped with an involution $A \mapsto A^{*}$ and a norm $\|\cdot\|$ satisfying, for all $A, B \in \mathcal{A}$, all $\lambda, \mu \in \mathbb{C}$:
i) $A^{* *}=A$
ii) $(\lambda A+\mu B)^{*}=\bar{\lambda} A^{*}+\bar{\mu} B^{*}$
iii) $(A B)^{*}=B^{*} A^{*}$
${ }^{\prime}$ ') $\|A\|$ is always positive and $\|A\|=0$ if and only if $A=0$
ii') $\|\lambda A\|=|\lambda|\|A\|$
iii') $\|A+B\| \leq\|A\|+\|B\|$
iv') $\|A B\| \leq\|A\|\|B\|$
i") \mathcal{A} is complete for $\|\cdot\|$
ii") $\left\|A A^{*}\right\|=\|A\|^{2}$.
An algebra with an involution as above satisfying i), ii) and iii) is called a *-algebra. An algebra satisfying all the conditions above but where ii") is replaced by
ii") $\left\|A^{*}\right\|=\|A\|$
is called a Banach algebra.
The basic examples of C^{*}-algebras are:

1) $\mathcal{A}=\mathcal{B}(\mathcal{H})$, the algebra of bounded operators on a Hilbert space \mathcal{H}. The involution is the usual adjoint mapping and the norm is the usual operator norm:

$$
\|A\|=\sup _{\|f\|=1}\|A f\|
$$

2) $\mathcal{A}=\mathcal{K}(\mathcal{H})$, the algebra of compact operators on \mathcal{H}. It is a sub- $C^{*}-$ algebra of $\mathcal{B}(\mathcal{H})$.
3) $\mathcal{A}=C_{0}(X)$, the space of continuous functions vanishing at infinity on a locally compact space X. Recall that a function f is vanishing at infinity if for every $\varepsilon>0$ there exists a compact $K \subset X$ such that $|f|<\varepsilon$ outside of K. The involution on \mathcal{A} is the complex conjugation \bar{f} and the norm is

$$
\|f\|=\sup _{x \in X}|f(x)|
$$

We will see later that these examples are more than basic : every commutative C^{*}-algebra is of the form 3), and every C^{*}-algebra is a sub-algebra of a type 1) example.

Proposition 2.1. On a C^{*}-algebra \mathcal{A} we have $\left\|A^{*}\right\|=\|A\|$ for all $A \in \mathcal{A}$.
Proof. We have $\|A\|^{2}=\left\|A^{*} A\right\| \leq\left\|A^{*}\right\|\|A\|$ and thus $\|A\| \leq\left\|A^{*}\right\|$. Inverting the role of A and A^{*} gives the result.

An element I of a C^{*}-algebra \mathcal{A} is a unit if

$$
I A=A I=A
$$

for all $A \in \mathcal{A}$.
If a unit exists it is unique and norm 1 (unless $\mathcal{A}=\{0\}$). But it may not always exists. Indeed, in the example $\mathcal{K}(\mathcal{H})$ there exists a unit if and only if \mathcal{H} is finite dimensional. In the example $C_{0}(X)$ there exists a unit if and only if X is compact.

But if a C^{*}-algebra does not contain a unit one can easily add one as follows. Consider the vector space $\mathcal{A}^{\prime}=\mathcal{A} \oplus \mathbb{C}$ and provide it with the product

$$
(A, \lambda)(B, \mu)=(A B+\lambda B+\mu A, \lambda \mu)
$$

with the involution

$$
(A, \lambda)^{*}=\left(A^{*}, \bar{\lambda}\right)
$$

and with the norm

$$
\|(A, \lambda)\|=\sup _{\|B\|=1}\|A B+\lambda B\|
$$

Equipped this way \mathcal{A}^{\prime} is a C^{*}-algebra. It admits a unit $(0,1)$. The algebra \mathcal{A} identifies to the subset of elements of the form $(A, 0)$. The only delicate point is to check that $\|(A, \lambda)\|=0$ if and only if $A=0$ and $\lambda=0$. One can assume that $\lambda \neq 0$ for if not we are in \mathcal{A}. Hence one can assume that $\lambda=1$. We have

$$
\|B-A B\| \leq\|B\|\|(-A, 1)\|
$$

Thus if $\|(-A, 1)\|=0$ then $B=A B$ for all $B \in \mathcal{A}$. Applying the involution gives $B=B A^{*}$ for all $B \in \mathcal{A}$. In particular $A^{*}=A A^{*}=A$ and thus $B=A B=B A$. This means A is a unit and contradicts the assumption.

Note that the above definition of the norm in \mathcal{A}^{\prime} comes from the fact that in any C^{*}-algebra we have

$$
\|A\|=\sup _{\|B\|=1}\|A B\|
$$

Indeed, there is obviously an inequality \geq between the two terms above. The equality is obtained by considering $B=A^{*} /\|A\|$.

2.2 Spectral analysis

Let \mathcal{A} be a C^{*}-algebra with unit I. An element A of \mathcal{A} is invertible if there exists an element A^{-1} of \mathcal{A} such that

$$
A^{-1} A=A A^{-1}=I
$$

One calls resolvant set of A the set

$$
\rho(A)=\{\lambda \in \mathbb{C} ; \lambda I-A \text { is invertible }\} .
$$

We put

$$
\sigma(A)=\mathbb{C} \backslash \rho(A)
$$

and call it the spectrum of A.
If $|\lambda|>\|A\|$ then the series

$$
\frac{1}{\lambda} \sum_{n}\left(\frac{A}{\lambda}\right)^{n}
$$

is normally convergent and its sum is equal to $(\lambda I-A)^{-1}$. This implies that $\sigma(A)$ is included in $B(0,\|A\|)$.

Furthermore, if λ_{0} belongs to $\rho(A)$ and if $\lambda \in \mathbb{C}$ is such that $\left|\lambda-\lambda_{0}\right|<$ $\left\|\lambda_{0} I-A\right\|$, then the series

$$
\left(\lambda_{0} I-A\right)^{-1} \sum_{n}\left(\frac{\lambda_{0}-\lambda}{\lambda_{0} I-A}\right)^{n}
$$

normally converges to $(\lambda I-A)^{-1}$. In particular we have proved that:

1) the set $\rho(A)$ is open
2) the mapping $\lambda \mapsto(\lambda I-A)^{-1}$ is analytic on $\rho(A)$
$3)$ the set $\sigma(A)$ is compact.
We define

$$
r(A)=\sup \{|\lambda| ; \lambda \in \sigma(A)\}
$$

the spectral radius of A.
Theorem 2.2. We have for all $A \in \mathcal{A}$

$$
r(A)=\lim _{n}\left\|A^{n}\right\|^{1 / n}=\inf _{n}\left\|A^{n}\right\|^{1 / n} \leq\|A\| .
$$

In particular the above limit always exists and $\sigma(A)$ is never empty.
Proof. Let n be fixed and let $|\lambda|>\left\|A^{n}\right\|^{1 / n}$. Every integer m can be written $m=p n+q$ with p, q integers and $q<n$. Thus we have

$$
\begin{aligned}
\sum_{m}\left\|\left(\frac{A}{\lambda}\right)^{m}\right\| & =\sum_{m}\left\|\left(\frac{A}{\lambda}\right)^{p n+q}\right\| \leq \sum_{m}\left(\frac{\left\|A^{n}\right\|}{|\lambda|^{n}}\right)^{p}\left(\frac{\|A\|}{|\lambda|}\right)^{q} \\
& \leq\left(1+\frac{\|A\|}{|\lambda|}+\ldots+\left(\frac{\|A\|}{|\lambda|}\right)^{n-1}\right) \sum_{p}\left(\frac{\left\|A^{n}\right\|}{|\lambda|^{n}}\right)^{p}<\infty
\end{aligned}
$$

Thus the series

$$
\frac{1}{\lambda} \sum_{m}\left(\frac{A}{\lambda}\right)^{m}
$$

converges and its sum is equal to $(\lambda I-A)^{-1}$. This proves that $r(A) \leq$ $\left\|A^{n}\right\|^{1 / n}$ and thus $r(A) \leq \liminf \left\|_{n}\right\| A^{n} \|^{1 / n}$.

Let us now prove that $r(A) \geq \lim \sup _{n}\left\|A^{n}\right\|^{1 / n}$. If we have

$$
r(A)<\limsup _{n}\left\|A^{n}\right\|^{1 / n}
$$

then consider the open set

$$
\mathcal{O}=\left\{\lambda \in \mathbb{C} ; r(A)<|\lambda|<\limsup _{n}\left\|A^{n}\right\|^{1 / n}\right\}
$$

On \mathcal{O} all the operators $\lambda I-A$ are invertible, thus so are the operators $I-\frac{1}{\lambda} A$. The mapping $\lambda \mapsto\left(I-\frac{1}{\lambda} A\right)^{-1}$ is analytic on \mathcal{O} and its Taylor series $\sum_{n}\left(\frac{A}{\lambda}\right)^{n}$ converges. But the convergence radius of the series $\sum_{n} z^{n} A^{n}$ is exactly $\left(\lim \sup _{n}\left\|A^{n}\right\|^{1 / n}\right)^{-1}$. This would mean

$$
\frac{1}{|\lambda|}<\left(\limsup _{n}\left\|A^{n}\right\|^{1 / n}\right)^{-1}
$$

which contradicts the fact that $\lambda \in \mathcal{O}$. We have proved the first part of the theorem.

If $r(A)>0$ then it is clear that $\sigma(A)$ is not empty. It remains to consider the case $r(A)=0$. But note that if 0 belongs to $\rho(A)$ this means that A is invertible and $1=\left\|A^{n} A^{-n}\right\| \leq\left\|A^{n}\right\|\left\|A^{-n}\right\|$. In particular, $1 \leq\left\|A^{n}\right\|^{1 / n}\left\|A^{-n}\right\|^{1 / n}$. Passing to the limit, we get $r(A)>0$. Thus if $r(A)=0$ we must have $0 \in \sigma(A)$. In any case $\sigma(A)$ is non empty.

Corollary 2.3. A C^{*}-algebra \mathcal{A} with unit and all of which elements, except 0 , are invertible is isomorphic to \mathbb{C}.

Proof. If $A \in \mathcal{A}$ its spectrum $\sigma(A)$ is non empty. Thus there exists a $\lambda \in \mathbb{C}$ such that $\lambda I-A$ is not invertible. This means $\lambda I-A=0$ and $A=\lambda I$.

All the above results made use of the fact that we considered a C^{*}-algebra with unit. If \mathcal{A} is a C^{*}-algebra without unit and if $\widetilde{\mathcal{A}}$ is its natural exetension with unit, then the notion of spectrum and resolvent set are extended as follows. The spectrum of $A \in \mathcal{A}$ is its spectrum as an element of $\widetilde{\mathcal{A}}$. We extend the notion of resolvent set in the same way.

An element A of a C^{*}-algebra \mathcal{A} is
normal if $A^{*} A=A A^{*}$,
self-adjoint if $A=A^{*}$.
If \mathcal{A} contains a unit, then an element $A \in \mathcal{A}$ is
isometric if $A^{*} A=I$,
unitary if $A^{*} A=A A^{*}=I$.
Theorem 2.4. Let \mathcal{A} be a C^{*}-algebra with unit.
a) If A is normal then $r(A)=\|A\|$.
b) If A is self-adjoint then $\sigma(A) \subset[-\|A\|,\|A\|]$.
c) If A is isometric then $r(A)=1$.
d) If A is unitary then $\sigma(A) \subset\{\lambda \in \mathbb{C} ;|\lambda|=1\}$.
e) For all $A \in \mathcal{A}$ we have $\sigma\left(A^{*}\right)=\overline{\sigma(A)}$ and $\sigma\left(A^{-1}\right)=\sigma(A)^{-1}$.
f) For every polynomial function P we have

$$
\sigma(P(A))=P(\sigma(A))
$$

g) For any two $A, B \in \mathcal{A}$ we have

$$
\sigma(A B) \cup\{0\}=\sigma(B A) \cup\{0\}
$$

Proof. a) If A is normal then

$$
\begin{aligned}
\left\|A^{2^{n}}\right\|^{2} & =\left\|A^{2^{n}} A^{* 2^{n}}\right\|=\left\|\left(A A^{*}\right)^{2^{n}}\right\|=\left\|\left(A A^{*}\right)^{2^{n-1}}\left(A A^{*}\right)^{2^{n-1}}\right\| \\
& =\left\|\left(A A^{*}\right)^{2^{n-1}}\right\|^{2}=\ldots=\left\|A A^{*}\right\|^{2^{n}}=\|A\|^{2^{n+1}}
\end{aligned}
$$

It is now easy to conclude with Theorem 2.2
b) We only have to prove that the spectrum of any self-adjoint element of \mathcal{A} is a subset of \mathbb{R}. Let $\lambda=x+i y$ be an element of $\sigma(A)$, with x, y real. We have $x+i(y+t) \in \sigma(A+i t I)$. But

$$
\|A+i t I\|^{2}=\|(A+i t I)(A-i t I)\|=\left\|A^{2}+t^{2} I\right\| \leq\|A\|^{2}+t^{2}
$$

This implies

$$
|x+i(y+t)|^{2}=x^{2}+(y+t)^{2} \leq\|A\|^{2}+t^{2}
$$

or else

$$
2 y t \leq\|A\|^{2}-x^{2}-y^{2}
$$

for all t. This means $y=0$.
c) If A is isometric then

$$
\left\|A^{n}\right\|^{2}=\left\|A^{* n} A^{n}\right\|=\left\|A^{* n-1} A^{n-1}\right\|=\ldots=\left\|A^{*} A\right\|=\|I\|=1
$$

d) Assume e) is proved. Then if A is unitary we have

$$
\sigma(A)=\overline{\sigma\left(A^{*}\right)}=\overline{\sigma\left(A^{-1}\right)}=\overline{\sigma(A)}^{-1}
$$

This and c) imply that $\sigma(A)$ is included in the unit circle.
e) The property $\sigma\left(A^{*}\right)=\overline{\sigma(A)}$ is obvious. For the other identity we write $\lambda I-A=\lambda A\left(A^{-1}-\lambda^{-1} I\right)$ and $\lambda^{-1} I-A^{-1}=\lambda^{-1} A^{-1}(A-\lambda I)$.
f) Note that if $B=A_{1} \ldots A_{n}$ in \mathcal{A}, where all the A_{i} are two by two commuting, we have that B is invertible if and only if each A_{i} is invertible. Now choose α and $\alpha_{1}, \ldots \alpha_{n}$ in \mathbb{C} such that

$$
P(x)-\lambda=\alpha \prod_{i}\left(x-\alpha_{i}\right)
$$

In particular we have

$$
P(A)-\lambda I=\alpha \prod_{i}\left(A-\alpha_{i} I\right)
$$

As a consequence $\lambda \in \sigma(P(A))$ if and only if $\alpha_{i} \in \sigma(A)$ for a i. But as $P\left(\alpha_{i}\right)=\lambda$ this exactly means that λ belongs to $\sigma(P(A))$ if and only if λ belongs to $P(\sigma(A))$.
g) If λ belong to $\rho(B A)$ then

$$
(\lambda I-A B)\left(I+A(\lambda I-B A)^{-1} B\right)=\lambda I
$$

This proves that $\lambda I-A B$ is invertible on the right, with possible exception of $\lambda=0$. The invertibility on the left is obtained in a similar way. This proves one inclusion. The converse inclusion is obtained exchanging the role of A and B.

Theorem 2.5. The norm which makes a*-algebra being a C^{*}-algebra, when it exists, is unique.
Proof. By the above results we have

$$
\|A\|^{2}=\left\|A A^{*}\right\|=r\left(A A^{*}\right)
$$

for $A A^{*}$ is always normal. But $r\left(A A^{*}\right)$ depends only on the algebraic structure of \mathcal{A}.

Proposition 2.6. The set of invertible elements of a C^{*}-algebra \mathcal{A} with unit is open and the mapping $A \mapsto A^{-1}$ is continuous on this set.
Proof. If A is invertible and if B is such that $\|B-A\|<\left\|A^{-1}\right\|^{-1}$ then $B=A\left(I-A^{-1}(A-B)\right)$ is invertible for

$$
r\left(A^{-1}(A-B)\right) \leq\left\|A^{-1}(A-B)\right\|<1
$$

and thus $I-A^{-1}(A-B)$ is invertible. The open character is proved. Let us now show the continuity. If $\|B-A\|<1 / 2\left\|A^{-1}\right\|^{-1}$ then

$$
\begin{aligned}
\left\|B^{-1}-A^{-1}\right\| & =\left\|\sum_{n=0}^{\infty}\left(A^{-1}(A-B)\right)^{n} A^{-1}-A^{-1}\right\| \\
& \leq \sum_{n=1}^{\infty}\left\|A^{-1}(A-B)\right\|^{n}\left\|A^{-1}\right\| \\
& \leq \frac{\left\|A^{-1}\right\|^{2}\|A-B\|}{1-\left\|A^{-1}(A-B)\right\|} \\
& \leq 2\left\|A^{-1}\right\|^{2}\|A-B\|
\end{aligned}
$$

This proves the continuity.

In the following, we denote by $\mathbb{1}$ the constant function equal to 1 on \mathbb{C} and by id_{E} the function $\lambda \mapsto \lambda$ on $E \subset \mathbb{C}$.

A $*$-algebra morphism is a linear mapping $\Pi: \mathcal{A} \rightarrow \mathcal{B}$, between two $*-$ algebras \mathcal{A} and \mathcal{B}, such that $\Pi\left(A^{*} B\right)=\Pi(A)^{*} \Pi(B)$ for all $A, B \in \mathcal{A}$. A C^{*}-algebra morphism is $*$-algebra morphism Π between two C^{*}-algebras \mathcal{A} and \mathcal{B}, such that $\|\Pi(A)\|_{\mathcal{B}}=\|A\|_{\mathcal{A}}$, for all $A \in \mathcal{A}$.

Theorem 2.7 (Functional calculus). Let \mathcal{A} be a C^{*}-algebra with unit. Let A be a self-adjoint element in \mathcal{A}. Let $C(\sigma(A))$ be the C^{*}-algebra of continuous functions on $\sigma(A)$. Then there is a unique morphism of C^{*}-algebra

$$
\begin{aligned}
C(\sigma(A)) & \longrightarrow \mathcal{A} \\
f & \longmapsto f(A)
\end{aligned}
$$

which sends the function $\mathbb{1}$ on I and the function $i d_{\sigma(A)}$ on A.
Furthermore we have

$$
\begin{equation*}
\sigma(f(A))=f(\sigma(A)) \tag{1}
\end{equation*}
$$

for all $f \in C(\sigma(A))$.
Proof. When f is a polynomial function the application $f \mapsto f(A)$ is welldefined and isometric for

$$
\|f(A)\|=\sup \{|\lambda| ; \lambda \in \sigma(f(A))\}=\sup \{|\lambda| ; \lambda \in f(\sigma(A))\}=\|f\|
$$

Thus it extends to an isometry on $C(\sigma(A))$ by Weierstrass theorem. The extension is easily seen to be a morphism also. The only delicate point to check is the identity (1). Let $\mu \in f(\sigma(A))$, with $\mu=f(\lambda)$. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of polynomial functions converging to f. The sequence $\left(f_{n}(\lambda) I-f_{n}(A)\right)_{n \in \mathbb{N}}$ converges to $\mu I-f(A)$. As none of the $f_{n}(\lambda) I-f_{n}(A)$ is invertible then $\mu I-f(A)$ is not either (Proposition 1.6). Thus $f(\sigma(A)) \subset \sigma(f(A))$. Finally, if $\mu \in \mathbb{C} \backslash f(\sigma(A))$ then let $g(t)=(\mu-f(t))^{-1}$. Then g belongs to $C(\sigma(A))$ and $g(A)=(\mu I-f(A))^{-1}$. Thus μ belongs to $\mathbb{C} \backslash \sigma(f(A))$.

An element A of a C^{*}-algebra \mathcal{A} is positive if it is self-adjoint and its spectrum is included in \mathbb{R}^{+}.

Theorem 2.8. Let A be an element of \mathcal{A}. The following assertions are equivalent.
i) A is positive.
ii) (if \mathcal{A} contains a unit) A is self-adjoint and $\|t I-A\| \leq t$ for some $t \geq\|A\|$.
iii) (if \mathcal{A} contains a unit) A is self-adjoint and $\|t I-A\| \leq t$ for all $t \geq$ $\|A\|$.
iv) $A=B^{*} B$ for a $B \in \mathcal{A}$.
v) $A=C^{2}$ for a self-adjoint $C \in \mathcal{A}$.

Proof. Let us first prove that i) implies iii). If i) is satisfied then $t I-A$ is a normal operator and

$$
\|t I-A\|=\sup \{|\lambda| ; \lambda \in \sigma(t I-A)\}=\sup \{|\lambda-t| ; \lambda \in \sigma(A)\} \leq t
$$

This gives iii).
Obviously iii) implies ii). Let us prove that ii) implies i). If ii) is satisfied and if $\lambda \in \sigma(A)$ then $t-\lambda \in \sigma(t I-A)$ and with the same computation as above $|t-\lambda| \leq\|t I-A\| \leq t$. But as $\lambda \leq t$ we must have $\lambda \geq 0$. This proves i). We have proved that the first 3 assertions are equivalent.

We have that v) implies iv) obviously. In order to show that i) implies v) it suffices to consider $C=\sqrt{A}$ (using the functional calculus of Theorem 2.7 and identity (1)). It remains to prove that iv) implies i). Let $f_{+}(t)=t \vee 0$ and $f_{-}(t)=(-t) \vee 0$. Let $A_{+}=f_{+}(A)$ and $A_{-}=f_{-}(A)$ (note that when iv) holds true then A is automatically self-adjoint and thus accepts the functional calculus of Theorem 2.7). We have $A=A_{+}-A_{-}$and the elements A_{+}and A_{-} are positive by (1). Furthermore the identity $f_{+} f_{-}=0$ implies $A_{+} A_{-}=0$. We have

$$
\left(B A_{-}\right)^{*}\left(B A_{-}\right)=A_{-}\left(A_{+}-A_{-}\right) A_{-}=-A_{-}^{3}
$$

In particular $-\left(B A_{-}\right)^{*}\left(B A_{-}\right)$is positive.
Writing $B A_{-}=S+i T$ with S and T self-adjoint gives

$$
\left(B A_{-}\right)\left(B A_{-}\right)^{*}=-\left(B A_{-}\right)^{*}\left(B A_{-}\right)+2\left(S^{2}+T^{2}\right)
$$

In particular, as the equivalence established between i), ii) and iii) proves it easily, the set of positive elements of \mathcal{A} is a cone, thus the element $\left(B A_{-}\right)\left(B A_{-}\right)^{*}$ is positive. As a consequence $\sigma\left(\left(B A_{-}\right)\left(B A_{-}\right)^{*}\right) \subset\left[0,\|B\|\left\|A_{-}\right\|\right]$. But by Theorem 1.4 g$)$ we must also have $\sigma\left(\left(B A_{-}\right)^{*}\left(B A_{-}\right)\right) \subset\left[0,\|B\|\left\|A_{-}\right\|\right]$. In particular $\sigma\left(-A_{-}^{3}\right) \subset\left[0,\|B\|^{2}\left\|A_{-}\right\|^{2}\right]$. This implies $\sigma\left(A_{-}^{3}\right)=\{0\}$ and $\left\|A_{-}^{3}\right\|=0=\left\|A_{-}\right\|^{3}$. That is $A_{-}=0$.

This notion of positivity defines an order on elements of \mathcal{A}, by saying that $U \geq V$ in \mathcal{A} if $U-V$ is a positive element of \mathcal{A}.

Proposition 2.9. Let U, V be self-adjoint elements of \mathcal{A} such that $U \geq V \geq$ 0. Then
i) $W^{*} U W \geq W^{*} V W \geq 0$ for all $W \in \mathcal{A}$;
ii) $(V+\lambda I)^{-1} \geq(U+\lambda I)^{-1}$ for all $\lambda \geq 0$.

Proof. i) is obvious from Theorem 2.8.
ii) As we have $U+\lambda I \geq V+\lambda I$, then by i) we have

$$
\left.(V+\lambda I)^{-1 / 2}(U+\lambda I) V+\lambda I\right)^{-1 / 2} \geq I
$$

Now, note that if W is self-adjoint and $W \geq I$ then $\sigma(W) \subset[1,+\infty[$ and $\sigma\left(W^{-1}\right) \subset[0,1]$. In particular $W^{-1} \leq I$. This argument applied to the above inequality shows that

$$
\left.(V+\lambda I)^{1 / 2}(U+\lambda I)^{-1} V+\lambda I\right)^{1 / 2} \leq I
$$

Multiplying both sides by $(V+\lambda I)^{-1 / 2}$ gives the result.

2.3 Representations and states

Note that a $*$-algebra morphism is always positive, that is, it maps positive elements to positive elements. Indeed we have $\Pi\left(A^{*} A\right)=\Pi(A)^{*} \Pi(A)$.

Theorem 2.10. If Π is a morphism between two C^{*}-algebras \mathcal{A} and \mathcal{B} then Π is continuous, with norm smaller than 1. Furthermore the range of Π is a sub- C^{*}-algebra of \mathcal{B}.

Proof. If A is self-adjoint then so is $\Pi(A)$ and thus

$$
\|\Pi(A)\|=\sup \{|\lambda| ; \lambda \in \sigma(\Pi(A))\}
$$

But it is easy to see that $\sigma(\Pi(A))$ is included in $\sigma(A)$ and consequently

$$
\|\Pi(A)\| \leq \sup \{|\lambda| ; \lambda \in \sigma(A)\}=\|A\| .
$$

For a general A we have

$$
\|\Pi(A)\|^{2}=\left\|\Pi\left(A^{*} A\right)\right\| \leq\left\|A^{*} A\right\|=\|A\|^{2}
$$

We have proved the first part of the theorem.
For proving the second part we reduce the problem to the case where ker $\Pi=\{0\}$. If this is not the case, following the Appendix subsection 2.5, we consider the quotient of \mathcal{A} by the two-sided closed ideal ker $\Pi: \mathcal{A}_{\Pi}=\mathcal{A} /$ ker Π which is a C^{*}-algebra. We can thus assume ker $\Pi=\{0\}$. Let \mathcal{B}_{Π} be the image of Π, it is sufficient to prove that it is closed. Consider the inverse morphism Π^{-1} from \mathcal{B}_{Π} onto \mathcal{A}. As previously, for A self-adjoint in \mathcal{A} we have

$$
\|A\|=\left\|\Pi^{-1}(\Pi(A))\right\| \leq\|\Pi(A)\| \leq\|A\| .
$$

Thus Π^{-1} and Π are isometric and one concludes easily.
A representation of a C^{*}-algebra \mathcal{A} is a pair (\mathcal{H}, Π) made of a Hilbert space \mathcal{H} and a morphism Π from \mathcal{A} to $\mathcal{B}(\mathcal{H})$. The representation is faithful if ker $\Pi=\{0\}$.
Proposition 2.11. Let (\mathcal{H}, Π) be a representation of a C^{*}-algebra \mathcal{A}. Then the following assertions are equivalent.
i) Π is faithful.
ii) $\|\Pi(A)\|=\|A\|$ for all $A \in \mathcal{A}$.
iii) $\Pi(A)>0$ if $A>0$.

Proof. We have already seen that i) implies ii), in the proof above. Let us prove that ii) implies iii). If $A>0$ then $\|A\|>0$ and thus $\|\Pi(A)\|>0$ and $\Pi(A) \neq$ 0 . As we already know that $\Pi(A) \geq 0$, we conclude that $\Pi(A)>0$. Finally, assume iii) is satisfied. If B belongs to ker Π and $B \neq 0$ then $\Pi\left(B^{*} B\right)=0$. But $\left\|B^{*} B\right\|=\|B\|^{2}>0$ and thus $B^{*} B>0$. Which is contradictory and ends the proof.

Clearly we have not yet discussed the existence of representations for C^{*} algebras. The key tool for this existence theorem is the notion of state.

A linear form ω on \mathcal{A} is positive if $\omega\left(A^{*} A\right) \geq 0$ for all $A \in \mathcal{A}$. Note that for such positive linear form one can easily prove a Cauchy-Schwarz inequality:

$$
\left|\omega\left(B^{*} A\right)\right|^{2} \leq \omega\left(B^{*} B\right) \omega\left(A^{*} A\right)
$$

with the same proof as for the usual Cauchy-Schwarz inequality.
Proposition 2.12. Let ω be a linear form on \mathcal{A}, a C^{*}-algebra with unit. Then the following assertions are equivalent.
i) ω is positive.
ii) ω is continuous with $\|\omega\|=\omega(I)$.

Proof. By Theorem 2.8 ii), recall that a self-adjoint element A of \mathcal{A}, with $\|A\|=1$, is positive if and only if $\|(I-A)\| \leq 1$. In particular, for any $A \in \mathcal{A}$, we have that $\left\|A^{*} A\right\| I-A^{*} A$ is positive.

If i) is satisfied then $\omega\left(A^{*} A\right) \leq\left\|A^{*} A\right\| \omega(I)$. By Cauchy-Schwarz we have

$$
\begin{equation*}
|\omega(A)| \leq \omega(I)^{1 / 2}\left|\omega\left(A^{*} A\right)\right|^{1 / 2} \leq\left\|A^{*} A\right\|^{1 / 2} \omega(I)=\|A\| \omega(I) \tag{2}
\end{equation*}
$$

This proves ii).
Conversely, if ii) is satisfied. One can assume $\omega(I)=1$. Let A be a selfadjoint element of \mathcal{A}. Write $\omega(A)=\alpha+i \beta$ for some α, β real. For every $\lambda \in \mathbb{R}$ we have

$$
\|A+i \lambda I\|^{2}=\left\|A^{2}+\lambda^{2} I\right\|=\|A\|^{2}+\lambda^{2}
$$

Thus we have

$$
\beta^{2}+2 \lambda \beta+\lambda^{2} \leq\left|\alpha^{2}+i(\beta+\lambda)\right|^{2}=|\omega(A+i \lambda I)|^{2} \leq\|A\|^{2}+\lambda^{2}
$$

This implies that $\beta=0$ and $\omega(A)$ is real. Consider now A positive, with $\|A\|=1$. We have

$$
|1-\omega(A)|=|\omega(I-A)| \leq\|I-A\| \leq I
$$

Thus $\omega(A)$ is positive.
When the C^{*}-algebra \mathcal{A} does not contain a unit, the norme property $\|\omega\|=$ $\omega(I)$ above has to be replaced by

$$
\|\omega\|=\lim _{\alpha} \omega\left(E_{\alpha}^{2}\right)
$$

for an approximate unit $\left(E_{\alpha}\right)$ in \mathcal{A} (cf subsection 2.5), we do not develop the proof in this case.

We call state any positive linear form on \mathcal{A} such that $\|\omega\|=1$. We need an existence theorem for states.

Theorem 2.13. Let A be any element of \mathcal{A}. Then there exists a state ω on \mathcal{A} such that $\omega\left(A^{*} A\right)=\|A\|^{2}$.

Proof. On the space $\mathcal{B}=\left\{\alpha I+\beta A^{*} A ; \alpha, \beta \in \mathbb{C}\right\}$ we define the linear form

$$
f\left(\alpha I+\beta A^{*} A\right)=\alpha+\beta\|A\|^{2}
$$

One easily checks that $\|f\|=1$. By Hahn-Banach we extend f to the whole of \mathcal{A} into a norm 1 continuous linear form ω. By the previous proposition ω is a state.

We now turn to the construction of a representation which is going to be fundamental for us, the so called Gelfand-Naimark-Segal construction (G.N.S. construction). Indeed, note that if (\mathcal{H}, Π) is a representation of a C^{*}-algebra \mathcal{A} and if Ω is any norm 1 vector of \mathcal{H}, then the mapping

$$
\omega(A)=<\Omega, \Pi(A) \Omega>
$$

clearly defines a state on \mathcal{A}. The G.N.S. construction proves that any C^{*} algebra with a state can be represented this way.

Theorem 2.14 (G.N.S. representation). Let \mathcal{A} be a C^{*}-algebra with unit and ω be a state on \mathcal{A}. Then there exists a Hilbert space \mathcal{H}_{ω}, a representation Π_{ω} of \mathcal{A} in $\mathcal{B}\left(\mathcal{H}_{\omega}\right)$ and a unit vector Ω_{ω} of \mathcal{H}_{ω} such that

$$
\omega(A)=<\Omega_{\omega}, \Pi_{\omega}(A) \Omega_{\omega}>
$$

for all A and such that the space $\left\{\Pi_{\omega}(A) \Omega_{\omega} ; A \in \mathcal{A}\right\}$ is dense in \mathcal{H}_{ω}. Such a representation is unique up to unitary isomorphism.

Proof. Let $V_{\omega}=\left\{A \in \mathcal{A} ; \omega\left(A^{*} A\right)=0\right\}$. The set V_{ω} is a left ideal for if $A \in V_{\omega}$ and $B \in \mathcal{A}$ then

$$
0 \leq \omega\left((A B)^{*} A B\right) \leq\|B\|^{2} \omega\left(A^{*} A\right)=0
$$

We consider the quotient C^{*}-algebra \mathcal{A} / V_{ω}. On \mathcal{A} / V_{ω} we define

$$
<[A],[B]>=\omega\left(B^{*} A\right)
$$

(We leave to the reader to check that this definition is consistent, in the sense that $\omega\left(B^{*} A\right)$ only depends on the equivalence classes of A and $\left.B\right)$. It is a
positive sesquilinear form which makes \mathcal{A} / V_{ω} a pre-Hilbert space. Let \mathcal{H}_{ω} be the its closure. We put

$$
\begin{aligned}
L_{A}: \mathcal{A} / V_{\omega} & \rightarrow \mathcal{A} / V_{\omega} \\
{[B] } & \mapsto[A B] .
\end{aligned}
$$

We have

$$
<L_{A}[B], L_{A}[B]>=\omega\left(B^{*} A^{*} A B\right) \leq\|A\|^{2} \omega\left(B^{*} B\right)
$$

for $C \mapsto \omega\left(B^{*} C B\right)$ is a positive linear form equal to $\omega\left(B^{*} B\right)$ on $C=I$. In particular $<L_{A}[B], L_{A}[B]>\leq\|A\|^{2}<[B],[B]>$. One can extend L_{A} into a bounded operator $\Pi_{\omega}(A)$ on \mathcal{H}_{ω}. If we put $\Omega_{\omega}=[I]$ then the construction is finished.

Let us check uniqueness. If $\left(\mathcal{H}^{\prime}, \Pi^{\prime}, \Omega^{\prime}\right)$ is another such triple, we have

$$
\begin{aligned}
<\Pi_{\omega}(B) \Omega_{\omega}, \Pi_{\omega}(A) \Omega_{\omega}> & =<\Omega_{\omega}, \Pi_{\omega}\left(B^{*} A\right) \Omega_{\omega}>=\omega\left(B^{*} A\right) \\
& =<\Omega^{\prime}, \Pi^{\prime}\left(B^{*} A\right) \Omega^{\prime}>=<\Pi^{\prime}(B) \Omega^{\prime}, \Pi^{\prime}(A) \Omega^{\prime}>
\end{aligned}
$$

The unitary isomorphism is thus defined by $U: \Pi_{\omega}(A) \Omega_{\omega} \mapsto \Pi^{\prime}(A) \Omega^{\prime}$.
This G.N.S. representation theorem gives the fundamental representation theorem for C^{*}-algebras.

Theorem 2.15. Let \mathcal{A} be a C^{*}-algebra. Then \mathcal{A} is isomorphic to a sub- C^{*} algebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H}.

Proof. For every state ω we have the G.N.S. representation $\left(\mathcal{H}_{\omega}, \Pi_{\omega}, \Omega_{\omega}\right)$. Put $\mathcal{H}=\oplus_{\omega} \mathcal{H}_{\omega}$ and $\Pi=\oplus_{\omega} \Pi_{\omega}$ where the direct sums run over the set of all states on \mathcal{A}.

For every $A \in \mathcal{A}$ there exists a state ω_{A} such that $\left\|\Pi_{\omega_{A}}(A)\right\|=\|A\|$ (Theorem 2.13). But we have $\|\Pi(A)\| \geq\left\|\Pi_{\omega_{A}}(A)\right\|=\|A\|$. Thus we get $\|\Pi(A)\|=\|A\|$ by Theorem 2.10 . This means that Π is faithfull by Proposition 2.11. In particular \mathcal{A} is isomorphic to $\Pi(\mathcal{A})$ which is, by Theorem 2.10 a sub- C^{*}-algebra of $\mathcal{B}(\mathcal{H})$.

2.4 Commutative C^{*}-algebras

We have shown the very important characterization of C^{*}-algebras, namely they are exactly the closed $*$-sub-algebras of bounded operators on Hilbert space. We dedicate this last section to prove the (not very useful for us but) interesting characterization of commutative C^{*}-algebras .

Let \mathcal{A} be a commutative C^{*}-algebra. A character on \mathcal{A} is a linear form χ on \mathcal{A} satisfying

$$
\chi(A B)=\chi(A) \chi(B)
$$

for all $A, B \in \mathcal{A}$. On then calls spectrum of \mathcal{A} the set $\sigma(\mathcal{A})$ of all characters on \mathcal{A}.

Proposition 2.16. Every character is positive.

Proof. If necessary, we extend the C^{*}-algebra \mathcal{A} to $\widetilde{\mathcal{A}}$ so that it contains a unit I. A character χ on \mathcal{A} then extends to a character on $\widetilde{\mathcal{A}}$ by $\chi(\lambda I+A)=$ $\lambda+\chi(A)$. Thus we may assume that \mathcal{A} contains a unit I.

Let $A \in \mathcal{A}$ and $\lambda \notin \sigma(A)$. Then there exists $B \in \mathcal{A}$ such that $(\lambda I-A) B=$ I. Thus $\chi(\lambda I-A) \chi(B)=(\lambda \chi(I)-\chi(A)) \chi(B)=\chi(I)=1$. This implies in particular that $\lambda \neq \chi(A)$. We have proved that $\chi(A)$ always belong to $\sigma(A)$. In particular $\chi\left(A^{*} A\right)$ is always positive.

As a corollary every character is a state and thus is continuous. The set $\sigma(\mathcal{A})$ is a subset of \mathcal{A}^{*}, the dual of \mathcal{A}.

Theorem 2.17. Let \mathcal{A} be a commutative C^{*}-algebra and X be the spectrum of \mathcal{A} endowed with the $*$-weak topology of \mathcal{A}^{*}. Then X is a Haussdorf locally compact set; it is compact if and only if \mathcal{A} admits a unit.

Furthermore \mathcal{A} is isomorphic to the C^{*}-algebra $C_{0}(X)$ of continuous functions on X which vanish at infinity.

Proof. Let $\omega_{0} \in X$. Let A positive be such that $\omega_{0}(A)>0$. One can assume $\omega_{0}(A)>1$. Let $K=\{\omega \in X ; \omega(A)>1\}$. It is an open neighborhood of ω_{0}. Its closure \bar{K} is included into $\{\omega \in X ; \omega(A) \geq 1\}$. The latest set is closed and included in the unit ball of \mathcal{A}^{*} which is compact. Thus X is locally compact.

If \mathcal{A} contains a unit I, then the same argument applied to $A=2 I$ shows that X is compact.

Now, for all $A \in \mathcal{A}$ we put $\widehat{A}(\omega)=\omega(A)$. Then \widehat{A} is a continuous complex function and $A \mapsto \widehat{A}$ is a morphism. Furthermore

$$
\|\widehat{A}\|^{2}=\sup _{\omega \in X}|\widehat{A}(\omega)|^{2}=\sup _{\omega \in X}\left|\widehat{A^{*} A}(\omega)\right|=\|A\|^{2}
$$

for it exists an ω such that $\left|\omega\left(A^{*} A\right)\right|=\|A\|$. Thus $A \mapsto \widehat{A}$ is an isomorphism.
The set $K_{\varepsilon}=\{\omega \in X ; \omega(A)>\varepsilon\}$ is $*$-weakly compact and thus \widehat{A} belong to $C_{0}(X)$. Finally \widehat{A} separates the points of X, thus by Stone-Weierstrass theorem, the mapping \widehat{A} gives the whole of $C_{0}(X)$.

2.5 Appendix

This is an appendix of the C^{*}-algebra section, on Quotient algebras and approximate identities. It is not necessary at first reading.

A subspace \mathcal{J} of a C^{*}-algebra \mathcal{A} is a left ideal if for all $J \in \mathcal{J}$ and all $A \in \mathcal{A}$ then $J A$ belongs to \mathcal{J}. In the same way one obviously defines right ideals and two-sided ideals.

If \mathcal{J} is a two-sided, self-adjoint ideal of \mathcal{A}, one can easily define the quotient algebra $\mathcal{A} / \mathcal{J}$ by the usual rules:

$$
\begin{aligned}
& \text { i) } \lambda[X]+\mu[Y]=[\lambda X+\mu Y], \\
& \text { ii) }[X][Y]=[X Y] \\
& \text { iii) }[X]^{*}=\left[X^{*}\right]
\end{aligned}
$$

where $[X]=\{X+J ; J \in \mathcal{J}\}$ is the equivalence class of $X \in \mathcal{A}$ modulo \mathcal{J}. We leave to the reader to check the consistency of the above definitions.

We now define a norm on $\mathcal{A} / \mathcal{J}$ by

$$
\|[X]\|=\inf \{\|X+J\| ; J \in \mathcal{J}\}
$$

The true difficulty is to check that the above norm is a C^{*}-algebra norm. For this aim we need the notion of approximate identity.

If \mathcal{J} is a left ideal of \mathcal{A} then an approximate identity or approximate unit in \mathcal{J} is a generalized sequence $\left(e_{\alpha}\right)_{a}$ of positive elements of \mathcal{J} satisfying i) $\left\|e_{\alpha}\right\| \leq 1$, ii) $\alpha \leq \beta$ implies $e_{\alpha} \leq e_{\beta}$, iii) $\lim _{\alpha}\left\|X e_{\alpha}-X\right\|=0$ for all $X \in \mathcal{J}$.

Proposition 2.18. Every left ideal \mathcal{J} of a C^{*}-algebra \mathcal{A} possesses an approximate unit.

Proof. Let \mathcal{J}_{+}be the set of positive elements of \mathcal{J}. For each $J \in \mathcal{J}_{+}$put

$$
e_{J}=J(I+J)^{-1}=I-(I+J)^{-1}
$$

It is a generalized sequence, it is increasing by Proposition 1.9 and $\left\|e_{J}\right\| \leq 1$. Let us now fix $X \in \mathcal{J}$. For every $n \in \mathbb{N}$ there exists a $J \in \mathcal{J}_{+}$such that $J \geq n X^{*} X$. Thus

$$
\left(X-X e_{J}\right)^{*}\left(X-X e_{J}\right)=\left(I-e_{J}\right) X^{*} X\left(I-e_{J}\right) \leq \frac{1}{n}\left(I-e_{J}\right) J\left(I-e_{J}\right)
$$

by Proposition 1.9. It suffices to prove that

$$
\sup _{J \in \mathcal{J}_{+}}\left\|J\left(I-e_{J}\right)^{2}\right\|<\infty
$$

But note that $J\left(I-e_{J}\right)^{2}=J(I+J)^{-2}$ and using the functional calculus this reduces to the obvious remark that $\lambda /\left(1+\lambda^{2}\right)$ is bounded on \mathbb{R}^{+}.

We can now prove the main result of the appendix.
Theorem 2.19. If \mathcal{J} is a closed, self-adjoint, two-sided ideal of a C^{*}-algebra \mathcal{A}, then the quotient algebra $\mathcal{A} / \mathcal{J}$, equiped with the quotient norm, is a C^{*} algebra.

Proof. Let us first show that

$$
\|[X]\|=\lim _{\alpha}\left\|e_{\alpha} X-X\right\|
$$

for all $X \in \mathcal{J}$. By definition of the quotient we obviously have

$$
\|[X]\| \leq \lim _{\alpha}\left\|e_{\alpha} X-X\right\|
$$

As $\sigma\left(e_{\alpha}\right) \subset[0,1]$ we have $\sigma\left(I-e_{\alpha}\right) \subset[0,1]$ and $\left\|I-e_{\alpha}\right\| \leq 1$. This implies

$$
\left\|\left(X+e_{\alpha} X\right)+\left(Y+e_{\alpha} Y\right)\right\|=\left\|\left(I-e_{\alpha}\right)(X+Y)\right\| \leq\|X+Y\|
$$

In particular $\lim \sup _{\alpha}\left\|\left(X+e_{\alpha} X\right)\right\| \leq\|X+Y\|$ for every $Y \in \mathcal{J}$. This proves our claim.

Now we have

$$
\begin{aligned}
\|[X]\|^{2} & =\lim _{\alpha}\left\|X-e_{\alpha} X\right\|^{2}=\lim _{\alpha}\left\|\left(X^{*}-X^{*} e_{\alpha}\right)\left(X-e_{\alpha} X\right)\right\| \\
& =\lim _{\alpha}\left\|\left(I-e_{\alpha}\right)\left(X^{*} X+Y^{*}\right)\left(I-e_{\alpha}\right)\right\| \\
& \leq\left\|X^{*} X+Y\right\|
\end{aligned}
$$

for every $Y \in \mathcal{J}$. This implies

$$
\|[X]\|^{2} \leq\left\|[X]^{*}[X]\right\|
$$

and thus the result.

3 von Neumann algebras

3.1 Topologies on $\mathcal{B}(\mathcal{H})$

As every C^{*}-algebra is a sub-*-algebra of some $\mathcal{B}(\mathcal{H})$, closed for the operator norm topology (or uniform topology), then it inherits new topologies, which are weaker.

On $\mathcal{B}(\mathcal{H})$ we define the strong topology to be the locally convex topology defined by the semi-norms $P_{x}(A)=\|A x\|, x \in \mathcal{H}, A \in \mathcal{B}(\mathcal{H})$. This is to say that a base of neighborhood is formed by the sets

$$
V\left(A ; x_{1}, \ldots, x_{n} ; \varepsilon\right)=\left\{B \in \mathcal{B}(\mathcal{H}) ;\left\|(B-A) x_{i}\right\|<\varepsilon, i=1, \ldots, n\right\}
$$

On $\mathcal{B}(\mathcal{H})$ we define the weak topology to be the locally convex topology defined by the semi-norms $P_{x, y}(A)=|<x, A y>|, x, y \in \mathcal{H}, A \in \mathcal{B}(\mathcal{H})$. This is to say that a base of neighborhood is formed by the sets

$$
\begin{array}{r}
V\left(A ; x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; \varepsilon\right)=\left\{B \in \mathcal{B}(\mathcal{H}) ;\left|<x_{i},(B-A) y_{j}>\right|<\varepsilon\right. \\
i, j=1, \ldots, n\}
\end{array}
$$

Proposition 3.1.

i) The weak topology is weaker than the strong topology which is itself weaker than the uniform topology. Once \mathcal{H} is infinite dimensional then these comparisons are strict.
ii) A linear form on $\mathcal{B}(\mathcal{H})$ is strongly continuous if and only if it is weakly continuous.
iii) The strong and the weak closure of any convex subset of $\mathcal{B}(\mathcal{H})$ coincide.

Proof. i) All the comparisons are obvious in the large sense. To make the difference in infinite dimension assume that \mathcal{H} is separable with orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$. Let P_{n} be the orthogonal projection onto the space generated by e_{1}, \ldots, e_{n}. The sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ converges strongly to I but not uniformly. Furthermore, consider the unilateral shift $S: e_{i} \mapsto e_{i+1}$. Then S^{k} converges weakly to 0 when k tends to $+\infty$ but not strongly.
ii) Let $\Psi: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$ be a strongly continuous linear form. Then there exists $x_{1}, \ldots, x_{n} \in \mathcal{H}$ such that

$$
|\Psi(B)| \leq \sum_{i=1}^{n}\left\|B x_{i}\right\|
$$

for all $B \in \mathcal{B}(\mathcal{H})$ (classical result on locally convex topologies, not proved here). On $\mathcal{B}(\mathcal{H})^{n}$ let P be the semi-norm defined by

$$
P\left(A_{1}, \ldots, A_{n}\right)=\sum_{i=1}^{n}\left\|A_{i} x_{i}\right\|
$$

On the diagonal of $\mathcal{B}(\mathcal{H})^{n}$ we define the linear form $\widetilde{\Psi}$ by $\widetilde{\Psi}(A, \ldots, A)=\Psi(A)$. We then have $|\widetilde{\Psi}(A, \ldots, A)| \leq P(A, \ldots, A)$. By Hahn-Banach, there exists a linear form Ψ on $\mathcal{B}(\mathcal{H})^{n}$ which extends $\widetilde{\Psi}$ and such that

$$
\left|\Psi\left(A_{1}, \ldots, A_{n}\right)\right| \leq P\left(A_{1}, \ldots, A_{n}\right)
$$

Let Ψ_{k} be the linear form on $\mathcal{B}(\mathcal{H})$ defined by

$$
\Psi_{k}(A)=\Psi(0, \ldots, 0, A, 0, \ldots, 0) . \quad(A \text { is at the } k \text {-th place })
$$

Then $\left|\Psi_{k}(A)\right| \leq\left\|A x_{k}\right\|$ for every A. Every vector $y \in \mathcal{H}$ can be written as $A x_{k}$ for some $A \in \mathcal{B}(\mathcal{H})$. The linear form $A x_{k} \mapsto \Psi_{k}(A)$ is thus well-defined and continuous on \mathcal{H}. By Riesz theorem there exists a $y_{k} \in \mathcal{H}$ such that $\Psi_{k}(A)=<y_{k}, A x_{k}>$. We have proved that

$$
\Psi(A)=\sum_{i=1}^{n}<y_{k}, A x_{k}>
$$

Thus Ψ is weakly continuous.
iii) is an easy consequence of ii) and of the geometric form of Hahn-Banach theorem.

Another topology is of importance for us, the σ-weak topology. It is the one determined by the semi-norms

$$
p_{\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}}(A)=\sum_{n=0}^{\infty}\left|<x_{n}, A y_{n}>\right|
$$

where $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ run over all sequences in \mathcal{H} such that $\sum_{n}\left\|x_{n}\right\|^{2}<$ ∞ and $\sum_{n}\left\|y_{n}\right\|^{2}<\infty$.

Let $\mathcal{T}(\mathcal{H})$ denote the Banach space of trace class operators on \mathcal{H}, equiped with the trace norme $\|H\|_{1}=\operatorname{tr}|H|$, where $|H|=\sqrt{H^{*} H}$.

Theorem 3.2. The Banach space $\mathcal{B}(\mathcal{H})$ is the topological dual of $\mathcal{T}(\mathcal{H})$ thanks to the duality

$$
(A, T) \mapsto \operatorname{tr}(A T)
$$

$A \in \mathcal{B}(\mathcal{H}), T \in \mathcal{T}(\mathcal{H})$. Furthermore the $*$-weak topology on $\mathcal{B}(\mathcal{H})$ associated to this duality is the σ-weak topology.
Proof. The inequality $|\operatorname{tr}(A T)| \leq\|A\|\|T\|_{1}$ proves that $\mathcal{B}(\mathcal{H})$ is included in the topological dual of $\mathcal{T}(\mathcal{H})$. Conversely, let ω be an element of the dual of $\mathcal{T}(\mathcal{H})$. Consider the rank one operators $E_{\xi, \nu}=|\xi><\nu|$. One easily checks that $\left\|E_{\xi, \nu}\right\|_{1}=\|\xi\|\|\nu\|$. Thus $\left|\omega\left(E_{\xi, \nu}\right)\right| \leq\|\omega\|\|\xi\|\|\nu\|$. By Riesz theorem there exists an operator $A \in \mathcal{B}(\mathcal{H})$ such that $\omega\left(E_{\xi, \nu}\right)=<\nu, A \xi>$. The linear form $\operatorname{tr}(A \cdot)$ then coincides with ω on rank one projectors. One concludes that they coincide on $\mathcal{T}(\mathcal{H})$ by density of finite rank operators. This proves the announced duality.

The *-weak topology associated to this duality is defined by the seminorms

$$
P_{T}(A)=|\operatorname{tr}(A T)|
$$

where T runs over $\mathcal{T}(\mathcal{H})$. But every trace class operator T writes

$$
T=\sum_{n=0}^{\infty} \lambda_{n}\left|\xi_{n}><\nu_{n}\right|
$$

for some orthonormed systems $\left(\nu_{n}\right)_{n \in \mathbb{N}},\left(\xi_{n}\right)_{n \in \mathbb{N}}$ and some absolutely summable sequence of complex numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$. Thus

$$
\operatorname{tr}(A T)=\sum_{n=0}^{\infty} \lambda_{n}<\nu_{n}, A \xi_{n}>
$$

and the seminorms P_{T} are equivalent to those defining the σ-weak topology.

Corollary 3.3. Every σ-weakly continuous linear form on $\mathcal{B}(\mathcal{H})$ is of the form

$$
A \mapsto \operatorname{tr}(A T)
$$

for some $T \in \mathcal{T}(\mathcal{H})$.

We can now give the first definition of a von Neumann algebra.
A von Neumann algebra is a C^{*}-algebra acting on \mathcal{H} which contains the unit I of $\mathcal{B}(\mathcal{H})$ and which is weakly (strongly) closed.

Of course the whole of $\mathcal{B}(\mathcal{H})$ is the first example of a von Neumann algebra.
Another example, which is actually the archetype of commutative von Neumann algebra, is obtained when considering a locally compact measured space (X, μ), with a σ-finite measure μ. The $*$-algebra $L^{\infty}(X, \mu)$ acts on $\mathcal{H}=$ $L^{2}(X, \mu)$ by multiplication. The C^{*}-algebra $C_{0}(X)$ also acts on \mathcal{H}. But every function $f \in L^{\infty}(X, \mu)$ is almost sure limit of a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $C_{0}(X)$. By dominated convergence, the space $L^{\infty}(X, \mu)$ is included in the weak closure of $C_{0}(X)$. But as $L^{\infty}(X, \mu)$ is also equal to its weak closure, we have that $L^{\infty}(X, \mu)$ is the weak closure of $C_{0}(X)$. We have proved that $L^{\infty}(X, \mu)$ is a von Neumann algebra and we have obtained it as the weak closure of some C^{*}-algebra.

3.2 Commutant

Let \mathcal{M} be a subset of $\mathcal{B}(\mathcal{H})$. We put

$$
\mathcal{M}^{\prime}=\{B \in \mathcal{B}(\mathcal{H}) ; B M=M B \text { for all } M \in \mathcal{M}\}
$$

The space \mathcal{M}^{\prime} is called the commutant of \mathcal{M}. We also define

$$
\mathcal{M}^{\prime \prime}=\left(\mathcal{M}^{\prime}\right)^{\prime}, \ldots, \mathcal{M}^{(n)}=\left(\mathcal{M}^{(n-1)}\right)^{\prime}, \ldots
$$

Proposition 3.4. For every subset \mathcal{M} of $\mathcal{B}(\mathcal{H})$ we have
i) \mathcal{M}^{\prime} is weakly closed;
ii) $\mathcal{M}^{\prime}=\mathcal{M}^{\prime \prime \prime}=\mathcal{M}^{(5)}=\ldots$
and $\mathcal{M} \subset \mathcal{M}^{\prime \prime}=\mathcal{M}^{(4)}=\ldots$
Proof. i) If $\left(A_{n}\right)_{n \in N}$ is a sequence in \mathcal{M}^{\prime} which converges weakly to A in $\mathcal{B}(\mathcal{H})$ then for all $B \in \mathcal{M}$ and all $x, y \in \mathcal{H}$ we have
$\left|<x,(A B-B A) y>\left|\leq\left|<x,\left(A-A_{n}\right) B y>\left|+\left|<x, B\left(A-A_{n}\right) y>\right| \rightarrow_{n \rightarrow \infty} 0\right.\right.\right.\right.$.
Thus A belongs to \mathcal{M}^{\prime}.
ii) If B belongs to \mathcal{M}^{\prime} and A belongs to \mathcal{M} then $A B=B A$, thus A belongs to $\left(\mathcal{M}^{\prime}\right)^{\prime}=\mathcal{M}^{\prime \prime}$. This proves the inclusion $\mathcal{M} \subset \mathcal{M}^{\prime \prime}$. But note that if $\mathcal{M}_{1} \subset \mathcal{M}_{2}$ then clearly $\mathcal{M}_{2}^{\prime} \subset \mathcal{M}_{1}^{\prime}$. Applying this to the previous inclusion gives $\mathcal{M}^{\prime \prime \prime} \subset \mathcal{M}^{\prime}$. But as $\mathcal{M}^{\prime \prime \prime}$ is also equal to $\left(\mathcal{M}^{\prime}\right)^{\prime \prime}$ we should also have the converse inclusion to hold true. This means $\mathcal{M}^{\prime}=\mathcal{M}^{\prime \prime \prime}$. We now conclude easily.

Proposition 3.5. Let \mathcal{M} be a self-adjoint subset of $\mathcal{B}(\mathcal{H})$. Let \mathcal{E} be a closed subspace of \mathcal{H} and P be the orthogonal projector onto \mathcal{E}. Then \mathcal{E} is invariant under \mathcal{M} (in the sense $M \mathcal{E} \subset \mathcal{E}$ for all $M \in \mathcal{M}$) if and only if $P \in \mathcal{M}^{\prime}$.

Proof. The space \mathcal{E} is invariant under $M \in \mathcal{M}$ if and only $M P=P M P$. Thus if \mathcal{E} is invariant under \mathcal{M} we have $M P=P M P$ for all $M \in \mathcal{M}$. Applying the involution on this equality and using the fact that \mathcal{M} is self-adjoint, gives $P M=P M P$ for all $M \in \mathcal{M}$. Finally $P M=M P$ for all $M \in \mathcal{M}$ and P belongs to \mathcal{M}^{\prime}. The converse is obvious.

Theorem 3.6 (Von Neumann density theorem). Let \mathcal{M} be a sub-*algebra of $\mathcal{B}(\mathcal{H})$ which contains the identity I. Then \mathcal{M} is weakly (strongly) dense in $\mathcal{M}^{\prime \prime}$.

Proof. f Let $B \in \mathcal{M}^{\prime \prime}$. Let $x_{1}, \ldots, x_{n} \in \mathcal{H}$. Let

$$
V=\left\{A \in \mathcal{B}(\mathcal{H}) ;\left\|(A-B) x_{i}\right\|<\varepsilon, i=1, \ldots, n\right\}
$$

be a strong neighborhood of B. It is sufficient to show that V intersects \mathcal{M}. One can assume B to be self-adjoint as it can always be decomposed as a linear combination of two self-adjoint operators which also belong to $\mathcal{M}^{\prime \prime}$.

Let $\widetilde{\mathcal{H}}=\oplus_{i=1}^{n} \mathcal{H}$ and $\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\widetilde{\mathcal{H}})$ be given by $\pi(A)={\underset{\sim}{\mathcal{H}}}_{n=1}^{n} A$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \widetilde{\mathcal{H}}$. Let P be the orthogonal projection from $\widetilde{\mathcal{H}}$ onto the closure of $\pi(\mathcal{M}) x=\{\pi(A) x ; A \in \mathcal{M}\} \subset \widetilde{\mathcal{H}}$. By Proposition 2.5 we have that P belongs to $\pi(\mathcal{M})^{\prime}$.

If one identifies $\mathcal{B}(\widetilde{\mathcal{H}})$ to $M_{n}(\mathcal{B}(\mathcal{H}))$ it is easy to see that $\pi(\mathcal{M})^{\prime}=M_{n}\left(\mathcal{M}^{\prime}\right)$ and $\pi\left(\mathcal{M}^{\prime \prime}\right) \subset M_{n}\left(\mathcal{M}^{\prime}\right)^{\prime}$ (be aware that the prime symbols above are relative to different operator spaces!).

This means that $\pi(B)$ belong to $\pi\left(\mathcal{M}^{\prime \prime}\right) \subset M_{n}\left(\mathcal{M}^{\prime}\right)^{\prime}=\pi(\mathcal{M})^{\prime \prime}$. In particular B commutes with $P \in \pi(\mathcal{M})^{\prime}$. This means that the space $\overline{\pi(\mathcal{M}) x}$ is invariant under $\pi(B)$. In particular

$$
\pi(B)(\pi(I) x)=\left(\begin{array}{c}
B x_{1} \\
\vdots \\
B x_{n}
\end{array}\right)
$$

belongs to $\overline{\pi(\mathcal{M}) x}$. This means that there exists a $A \in \mathcal{M}$ such that $\left\|(B-A) x_{i}\right\|$ is small for all $i=1, \ldots n$. Thus A belongs to $\mathcal{M} \cap V$.

As immediate corollary we have a characterization of von Neumann algebras.

Corollary 3.7 (Bicommutant theorem). Let \mathcal{M} be a sub-*-algebra of $\mathcal{B}(\mathcal{H})$ which contains I. Then the following assertions are equivalent.
i) \mathcal{M} is weakly (strongly) closed.
ii) $\mathcal{M}=\mathcal{M}^{\prime \prime}$.

As I always belong to $\mathcal{M}^{\prime \prime}$, we have that a C^{*}-algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is a von Neumann algebra if and only if $\mathcal{M}=\mathcal{M}^{\prime \prime}$.

3.3 Predual, normal states

Let \mathcal{M} be a von Neumann algebra. Put $\mathcal{M}_{1}=\{M \in \mathcal{M} ;\|M\| \leq 1\}$. Note that the weak topology and the σ-weak topology coincide on \mathcal{M}_{1}. Hence \mathcal{M}_{1} is a weakly closed subset of the unit ball of $\mathcal{B}(\mathcal{H})$ which is weakly compact. Thus \mathcal{M}_{1} is weakly compact.

We denote by \mathcal{M}_{*} the space of weakly (σ-weakly) linear forms on \mathcal{M} which are continuous on \mathcal{M}_{1}. The space \mathcal{M}_{*} is called the predual of \mathcal{M}, for a reason that will appear clear in next proposition. If Ψ belongs to \mathcal{M}_{*} then $\Psi\left(\mathcal{M}_{1}\right)$ is compact in \mathbb{C}, thus Ψ is norm continuous. Thus \mathcal{M}_{*} is a subspace of \mathcal{M}^{*} the topological dual of \mathcal{M}.

Proposition 3.8.

i) \mathcal{M}_{*} is closed in \mathcal{M}^{*}, it is thus a Banach space.
ii) \mathcal{M} is the dual of \mathcal{M}_{*}.

Proof. i) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{M}_{*} which converges to a f in \mathcal{M}^{*}, that is

$$
\sup _{\|A\|=1}\left|f_{n}(A)-f(A)\right| \longrightarrow_{n \rightarrow \infty} 0
$$

We want to show that f belongs to \mathcal{M}_{*}, that is f is weakly continuous on \mathcal{M}_{1}. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{M}_{1} which converges weakly to $A \in \mathcal{M}_{1}$. Then

$$
\begin{aligned}
\left|f\left(A_{n}\right)-f(A)\right| & \leq\left|f\left(A_{n}\right)-f_{m}\left(A_{n}\right)\right|+\left|f_{m}(A)-f(A)\right|+\left|f_{m}\left(A_{n}\right)-f_{m}(A)\right| \\
& \leq 2 \sup _{\|B\|=1}\left|f_{m}(B)-f(B)\right|+\left|f_{m}\left(A_{n}\right)-f_{m}(A)\right| \\
& \rightarrow_{n \rightarrow \infty} 2 \sup _{\|B\|=1}\left|f_{m}(B)-f(B)\right| \\
& \rightarrow_{m \rightarrow \infty} 0 .
\end{aligned}
$$

This proves i).
ii) For a $A \in \mathcal{M}$ we put

$$
\|A\|_{d u}=\sup _{\omega \in \mathcal{M}_{*} ;\|\omega\|=1}|\omega(A)|
$$

the norm of A for the duality announced in the statement of ii). Clearly we have $\|A\|_{d u} \leq\|A\|$.

For $x, y \in \mathcal{H}$ we denote by $\omega_{x, y}$ the linear form $A \mapsto<y, A x>$ on $\mathcal{B}(\mathcal{H})$ and $\omega_{x, y \mid \mathcal{M}}$ the restriction of $\omega_{x, y}$ to \mathcal{M}. We have

$$
\|A\|=\sup _{\|x\|=\|y\|=1}\left|<y, A x>\left|\leq \sup _{\omega=\omega_{x, y} ;\|\omega\|=1}\right| \omega(A)\right| \leq\|A\|_{d u}
$$

Thus \mathcal{M} is indeed identified linearly and isometrically to a subspace of $\left(\mathcal{M}_{*}\right)^{*}$. We just have to prove that this identification is onto.

Let ϕ be a continuous linear form on \mathcal{M}_{*}. Let $\phi^{\prime}(x, y)=\phi\left(\omega_{x, y \mid \mathcal{M}}\right)$. Then ϕ^{\prime} is a continuous sesquilinear form on \mathcal{H}, it is thus of the form $\phi^{\prime}(x, y)=$ $<y, A x>$ for some $A \in \mathcal{B}(\mathcal{H})$.

If T^{\prime} is a self-adjoint element of \mathcal{M}^{\prime} then $\omega_{T^{\prime} x, y \mid \mathcal{M}}=\omega_{x, T^{\prime} y \mid \mathcal{M}}$ and

$$
<A T^{\prime} x, y>=<T^{\prime} A x, y>
$$

for all $x, y \in \mathcal{H}$. Thus A belong to $\mathcal{M}^{\prime \prime}=\mathcal{M}$.
As $\omega_{x, y}(A)=<y, A x>=\phi^{\prime}(x, y)=\phi\left(\omega_{x, y \mid \mathcal{M}}\right)$ then the image of A in $\left(\mathcal{M}_{*}\right)^{*}$ coincides with ϕ at least on the $\omega_{x, y}$. Now, it remains to show that this is sufficient for A and ϕ to coincide everywhere. That is, we have to prove that an element a of $\left(\mathcal{M}_{*}\right)^{*}$ which vanishes on all the $\omega_{x, y}$ is null. But all the elements of \mathcal{M}_{*} are linear forms ω of the form $\omega(A)=\operatorname{tr}(\rho A)$ for some trace class operator ρ. As every trace class operator ρ writes as

$$
\rho=\sum_{n} \lambda_{n}\left|x_{n}\right\rangle\left\langle y_{n}\right|
$$

for some orthonormal basis $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ and some summable sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$, we have that

$$
\omega=\sum_{n} \lambda_{n} \omega_{x_{n}, y_{n}}
$$

where the series above is convergent in \mathcal{M}_{*}. One concludes easily.
The two main examples of von Neumann algebra have well-known preduals. Indeed, if $\mathcal{M}=\mathcal{B}(\mathcal{H})$ then $\mathcal{M}_{*}=\mathcal{T}(\mathcal{H})$ the space of trace class operators.

If $\mathcal{M}=L^{\infty}(X, \mu)$ then $\mathcal{M}_{*}=L^{1}(X, \mu)$.
Theorem 3.9 (Sakai theorem). A C^{*}-algebra is a von Neumann algebra if and only if it is the dual of some Banach space.

Admitted.
A state on a von Neumann algebra \mathcal{M} is called normal if it is σ-weakly continuous. The following characterization is now straightforward.

Theorem 3.10. On a von Neumann algebra \mathcal{M}, for a state ω on \mathcal{M}, the following assertions are equivalent.
i) The state ω is normal
ii) There exists a positive, trace class operator ρ on \mathcal{H} such that $\operatorname{tr} \rho=1$ and

$$
\omega(A)=\operatorname{tr}(\rho A)
$$

for all $A \in \mathcal{M}$.

4 Modular theory

4.1 The modular operators

The starting point here is a pair (\mathcal{M}, ω), where \mathcal{M} is a von Neumann algebra acting on some Hilbert space, ω is a normal faithful state on \mathcal{M}. Recall that ω is then of the form

$$
\omega(A)=\operatorname{tr}(\rho A)
$$

for a positive nonsingular ρ, with $\operatorname{tr} \rho=1$.
Let us consider the G.N.S. representation of (\mathcal{M}, ω). That is, a triple $(\mathcal{H}, \Pi, \Omega)$ such that
i) Π is a morphism from \mathcal{M} to $\mathcal{B}(\mathcal{H})$.
ii) $\omega(A)=<\Omega, \Pi(A) \Omega>$
iii) $\Pi(\mathcal{M}) \Omega$ is dense in \mathcal{H}.

From now on, we omit to mention the representation Π and identify \mathcal{M} and \mathcal{M}^{\prime} with $\Pi(\mathcal{M})$ and $\Pi\left(\mathcal{M}^{\prime}\right)$. We thus write $\omega(A)=<\Omega, A \Omega>$.

Proposition 4.1. The vector Ω is cyclic and separating for \mathcal{M} and \mathcal{M}^{\prime}.
Proof. Ω is cyclic for \mathcal{M} by iii) above. Let us see that it is separating for \mathcal{M}. If $A \in \mathcal{M}$ is such that $A \Omega=0$ then $\omega\left(A^{*} A\right)=0$, but as ω is faithful this implies $A=0$.

Let us now see that these properties of Ω on \mathcal{M} imply the same ones on \mathcal{M}^{\prime}. If A^{\prime} belongs to \mathcal{M}^{\prime} and $A^{\prime} \Omega=0$ then $A^{\prime} B \Omega=B A^{\prime} \Omega=0$ for all $B \in \mathcal{M}$. Thus A^{\prime} vanishes on a dense subspace of \mathcal{H}, it is thus the null operator. This proves that Ω is separating for \mathcal{M}^{\prime}.

Finally, let P^{\prime} be the orthogonal projector onto the space $\mathcal{M}^{\prime} \Omega$. As it is the projection onto a \mathcal{M}^{\prime}-invariant space, it belongs to $\left(\mathcal{M}^{\prime}\right)^{\prime}=\mathcal{M}$. But $P \Omega=\Omega$ and thus $(I-P) \Omega=0$. As Ω is separating for \mathcal{M} this implies $I-P=0$ and Ω is cyclic for \mathcal{M}^{\prime}.

As a consequence the (anti-linear) operators

$$
\begin{aligned}
S_{0}: \mathcal{M} \Omega & \longrightarrow \mathcal{M} \Omega \\
A \Omega & \longmapsto A^{*} \Omega \\
F_{0}: \mathcal{M}^{\prime} \Omega & \longrightarrow \mathcal{M}^{\prime} \Omega \\
B \Omega & \longmapsto B^{*} \Omega
\end{aligned}
$$

are well-defined (by the separability of Ω) on dense domains.
Proposition 4.2. The operators S_{0} and F_{0} are closable and $\bar{F}_{0}=S_{0}^{*}, \bar{S}_{0}=$ F_{0}^{*}.

Proof. For all $A \in \mathcal{M}, B \in \mathcal{M}^{\prime}$ we have

$$
<B \Omega, S_{0} A \Omega>=<B \Omega, A^{*} \Omega>=<A \Omega, B^{*} \Omega>=<A \Omega, F_{0} B \Omega>
$$

This proves that $F_{0} \subset S_{0}^{*}$ and $S_{0} \subset F_{0}^{*}$. The operators S_{0} and F_{0} are thus closable.

Let us show that $\bar{F}_{0}=S_{0}^{*}$. Actually it is sufficient to show that $S_{0}^{*} \subset \bar{F}_{0}$. Let $x \in \operatorname{Dom} S_{0}^{*}$ and $y=S_{0}^{*} x$. For any $A \in \mathcal{M}$ we have

$$
<A \Omega, y>=<A \Omega, S_{0}^{*} x>=<x, S_{0} A \Omega>=<x, A^{*} \Omega>
$$

If we define the operators Q_{0} and Q_{0}^{+}by

$$
\begin{aligned}
& Q_{0}: A \Omega \longmapsto A x \\
& Q_{0}^{+}: A \Omega \longmapsto A y
\end{aligned}
$$

we then have

$$
\begin{aligned}
<B \Omega, Q_{0} A \Omega> & =<B \Omega, A x>=<A^{*} B \Omega, x> \\
& =<y, B^{*} A \Omega>=<B y, A \Omega> \\
& =<Q_{0}^{+} B \Omega, A \Omega>
\end{aligned}
$$

This proves that $Q_{0}^{+} \subset Q_{0}^{*}$ and Q_{0} is closable. Let $Q=\bar{Q}_{0}$. Note that we have

$$
Q_{0} A B \Omega=A B x=A Q_{0} B \Omega
$$

This proves that $Q_{0} A=A Q_{0}$ on $\operatorname{Dom} Q_{0}$ and thus $A Q \subset Q A$ for all $A \in \mathcal{M}$. This means that Q is affiliated to \mathcal{M}^{\prime}, that is, it fails from belonging to \mathcal{M}^{\prime} only by the fact it is an unbounded operator; but every bounded function of Q is thus in \mathcal{M}^{\prime}. In particular, if $Q=U|Q|$ is the polar decomposition of Q then U belongs to \mathcal{M}^{\prime} and the spectral projections of $|Q|$ also belong to \mathcal{M}^{\prime}.

Let $E_{n}=\mathbb{1}_{[0, n]}(|Q|)$. The operator $Q_{n}=U E_{n}|Q|$ thus belongs to \mathcal{M}^{\prime} and

$$
\begin{aligned}
Q_{n} \Omega & =U E_{n}|Q| \Omega=U E_{n} U^{*} U|Q| \Omega \\
& =U E_{n} U^{*} Q_{0} \Omega=U E_{n} U^{*} x
\end{aligned}
$$

Furthermore we have

$$
Q_{n}^{*} \Omega=E_{n}|Q| U^{*} \Omega=E_{n} Q_{0}^{+} \Omega=E_{n} y
$$

This way $U E_{n} U^{*} x$ belongs to $\operatorname{Dom} F_{0}$ and $F_{0}\left(U E_{n} U^{*} x\right)=E_{n} y$. But E_{n} tends to I and $U U^{*}$ is the orthogonal projector onto $\operatorname{Ran} Q$, which contains x.

Finally, we have proved that $x \in \operatorname{Dom} \bar{F}_{0}$ and $\bar{F}_{0} x=y=S_{0}^{*} x$. That is, $S_{0}^{*} \subset \bar{F}_{0}$.

The other case is treated similarly.
We now put $S=\bar{S}_{0}$ anf $F=\bar{F}_{0}$.

Lemma 4.3. We have

$$
S=S^{-1}
$$

Proof. Let $z \in \operatorname{Dom} S^{*}$. We have

$$
<S_{0} A \Omega, S^{*} z>=<A^{*} \Omega, S_{0}^{*} z>=<z, S_{0} A^{*} \Omega>=<z, A \Omega>
$$

Thus $S^{*} z$ belongs to Dom $S_{0}^{*}=S^{*}$ and $\left(S^{*}\right)^{2} z=z$.
Let $y \in \operatorname{Dom} S$ and $z \in \operatorname{Dom} S^{*}$, we have $S^{*} z \in \operatorname{Dom} S^{*}$ and

$$
<S^{*} z, S y>=<y,\left(S^{*}\right)^{2} z>=<y, z>
$$

This means that $S y$ belongs to $\operatorname{Dom} S^{* *}=\operatorname{Dom} S$ and $S^{2} y=S^{* *} S y=y$.
We have proved that $\operatorname{Dom} S^{2}=\operatorname{Dom} S$ and $S^{2}=I$ on $\operatorname{Dom} S$.
We had proved in Proposition 3.2 that $F=S^{*}$. Thus the operators $F S$ and $S F$ are (self-adjoint) positive. The operators F and S have their range equal to their domain, they are invertible and equal to their inverse.

Let $\Delta=F S=S^{*} S$. Then Δ is invertible, with inverse $\Delta^{-1}=S F=S S^{*}$.
As S, Δ and thus $\Delta^{1 / 2}$ have a dense range then the partial anti-isometry J such that

$$
S=J\left(S^{*} S\right)^{1 / 2}
$$

(modular decomposition of S) is an anti-isometry from \mathcal{H} to \mathcal{H}.
Furthermore

$$
S=J \Delta^{1 / 2}=\left(S S^{*}\right)^{1 / 2} J=\Delta^{-1 / 2} J
$$

Let x belong to $\operatorname{Dom} S$. Then

$$
x=S^{2} x=J \Delta^{1 / 2} \Delta^{-1 / 2} J x=J^{2} x
$$

and thus $J^{2}=I$. Note the following relations

$$
\begin{aligned}
S & =J \Delta^{1 / 2} \\
F=S^{*} & =\Delta^{1 / 2} J \\
\Delta^{-1} & =J \Delta J
\end{aligned}
$$

The operator Δ has a spectral measure $\left(E_{\lambda}\right)$. Thus the operator $\Delta^{-1}=$ $J \Delta J$ has the spectral measure $\left(J E_{\lambda} J\right)$. Let f be a bounded Borel function, we have

$$
\begin{aligned}
<f\left(\Delta^{-1}\right) x, x> & =\int \bar{f}(\lambda) d<J E_{\lambda} J x, x> \\
& =\int \bar{f}(\lambda) d<J x, E_{\lambda} J x> \\
& =\int \bar{f}(\lambda) d<E_{\lambda} J x, J x> \\
& =<f(\Delta) J x, J x> \\
& =<J x, \bar{f}(\Delta) J x> \\
& =<J \bar{f}(\Delta) J x, x>
\end{aligned}
$$

This proves

$$
f\left(\Delta^{-1}\right)=J \bar{f}(\Delta) J
$$

In particular

$$
\begin{aligned}
\Delta^{i t} & =J \Delta^{i t} J \\
\Delta^{i t} J & =J \Delta^{i t}
\end{aligned}
$$

Finally note that $S \Omega=F \Omega=\Omega$ and thus $\Delta \Omega=F S \Omega=\Omega$ which finally gives

$$
\Delta^{1 / 2} \Omega=\Omega
$$

Let us now summarize the situation we have already described.
Theorem 4.4. There exists an anti-unitary operator J from \mathcal{H} to \mathcal{H} and an (unbounded) invertible, positive operator Δ such that

$$
\begin{gathered}
\Delta=F S, \Delta^{-1}=S F, J^{2}=I \\
S=J \Delta^{1 / 2}=\Delta^{-1 / 2} J \\
F=J \Delta^{-1 / 2}=\Delta^{1 / 2} J \\
J \Delta^{i t}=\Delta^{-i t} J \\
J \Omega=\Delta \Omega=\Omega
\end{gathered}
$$

The operator Δ is called the modular operator and J is the modular conjugation.

It is interesting to note the following. If the state ω were tracial, that is, $\omega(A B)=\omega(B A)$ for all A, B, we would have

$$
\left\|S_{0} A \Omega\right\|^{2}=\left\|A^{*} \Omega\right\|^{2}=<A^{*} \Omega, A^{*} \Omega>=\omega\left(A A^{*}\right)=\omega\left(A^{*} A\right)=\|A \Omega\|^{2}
$$

Thus S_{0} would be an isometry and

$$
\begin{gathered}
S=J=F \\
\Delta=I
\end{gathered}
$$

4.2 The modular group

Let $A, B, C \in \mathcal{M}$. We have

$$
S A S B C \Omega=S A C^{*} B^{*} \Omega=B C A^{*} \Omega=B S A C^{*} \Omega=B S A S C \Omega .
$$

This proves that B and $S A S$ commute. Thus $S A S$ is affiliated to \mathcal{M}^{\prime}.
Let us assume for a moment that Δ is bounded. In that case the operators $\Delta^{-1}=J \Delta J, S$ and F are also bounded.

We have seen that

$$
\begin{aligned}
S \mathcal{M} S & \subset \mathcal{M}^{\prime} \\
F \mathcal{M}^{\prime} F & \subset \mathcal{M}
\end{aligned}
$$

This way we have

$$
\begin{aligned}
\Delta \mathcal{M} \Delta^{-1} & =\Delta^{1 / 2} J J \Delta^{1 / 2} \mathcal{M} \Delta^{-1 / 2} J J \Delta^{-1 / 2} \\
& =F S \mathcal{M} S F \subset F \mathcal{M}^{\prime} F \subset \mathcal{M} .
\end{aligned}
$$

We also have

$$
\Delta^{n} \mathcal{M} \Delta^{-n} \subset \mathcal{M}
$$

for all $n \in \mathbb{N}$.
For any $A \in \mathcal{M}, A^{\prime} \in \mathcal{M}^{\prime}$, the function

$$
f(z)=\|\Delta\|^{-2 z}<\phi,\left[\Delta^{z} A \Delta^{-z}, A^{\prime}\right] \psi>
$$

is analytic on \mathbb{C}. It vanishes for $z=0,1,2, \ldots$
As $\left\|\Delta^{-1}\right\|=\|J \Delta J\|=\|\Delta\|$ we have

$$
|f(z)|=O\left(\|\Delta\|^{-2 \Re z}\left(\|\Delta \mid\|^{|\Re z|}\right)^{2}\right)=O(1)
$$

when $\Re z>0$.
By Carlson's theorem we have $f(z)=0$ for all $z \in \mathbb{C}$. Thus

$$
\Delta^{z} \mathcal{M} \Delta^{-z} \subset \mathcal{M}^{\prime \prime}=\mathcal{M}
$$

for all $z \in \mathbb{C}$. But

$$
\mathcal{M}=\Delta^{z}\left(\Delta^{-z} \mathcal{M} \Delta^{z}\right) \Delta^{-z} \subset \Delta^{z} \mathcal{M} \Delta^{-z}
$$

and finally

$$
\Delta^{z} \mathcal{M} \Delta^{-z}=\mathcal{M}
$$

Furthermore

$$
\begin{aligned}
J \mathcal{M} J & =J \Delta^{1 / 2} \mathcal{M} \Delta^{-1 / 2} J
\end{aligned}=S \mathcal{M} S \subset \mathcal{M}^{\prime} .
$$

We have proved

$$
J \mathcal{M} J=\mathcal{M}^{\prime}
$$

The results we have obtained here are fundamental and extend to the case when Δ is unbounded. This is what the following theorem says. We do not prove it as it implies pages of difficult analytic considerations. We hope that the above computations make it credible.

Theorem 4.5 (Tomita-Takesaki's theorem). In any case we have

$$
\begin{aligned}
J \mathcal{M} J & =\mathcal{M}^{\prime} \\
\Delta^{i t} \mathcal{M} \Delta^{-i t} & =\mathcal{M}
\end{aligned}
$$

Put

$$
\sigma_{t}(A)=\Delta^{i t} A \Delta^{-i t}
$$

This defines a one parameter group of automorphisms of \mathcal{M}.
Proposition 4.6. We have, for all $A, B \in \mathcal{M}$

$$
\begin{equation*}
\omega\left(A \sigma_{t}(B)\right)=\omega\left(\sigma_{t+i}(B) A\right) \tag{1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
<\Omega, A \Delta^{i t} B \Delta^{-i t} \Omega> & =<\Delta^{-i t} A^{*} \Omega, B \Omega> \\
& =<\Delta^{-i t-1 / 2} A^{*} \Omega, \Delta^{1 / 2} B \Omega> \\
& =<\Delta^{-i t-1} \Delta^{1 / 2} A^{*} \Omega, \Delta^{1 / 2} B \Omega> \\
& =<J \Delta^{-i t+1} J \Delta^{1 / 2} A^{*} \Omega, \Delta^{1 / 2} B \Omega> \\
& =<J \Delta^{1 / 2} B \Omega, \Delta^{-i t+1} J \Delta^{1 / 2} A^{*} \Omega> \\
& =<B^{*} \Omega, \Delta^{-i t+1} A \Omega> \\
& =<\Omega, B \Delta^{-i(t+i)} A \Omega> \\
& =<\Omega, \Delta^{i(t+i)} B \Delta^{-i(t+i)} A \Omega> \\
& =\omega\left(\sigma_{t+i}(B) A\right)
\end{aligned}
$$

It is interesting to relate the above equality with the following result.
Proposition 4.7. Let ω be a state of the form

$$
\omega(A)=\operatorname{tr}(\rho A)
$$

on $\mathcal{B}(\mathcal{K})$ for some trace-class positive ρ with tr $\rho=1$. Let $\left(\sigma_{t}\right)$ be the following group of automorphisms of $\mathcal{B}(\mathcal{K})$:

$$
\sigma_{t}(A)=e^{i t H} A e^{-i t H}
$$

for some self-adjoint operator H on \mathcal{K}. Then the following assertions are equivalent.
i) For all $A, B \in \mathcal{B}(\mathcal{K})$, all $t \in \mathbb{R}$ and a fixed $\beta \in \mathbb{R}$ we have

$$
\omega\left(A \sigma_{t}(B)\right)=\omega\left(\sigma_{t-\beta i}(B) A\right)
$$

ii) ρ is given by

$$
\rho=\frac{1}{Z} e^{-\beta H},
$$

where $Z=\operatorname{tr}(\exp (-\beta H))$.
Proof. ii) implies i): We compute directly

$$
\begin{aligned}
\omega\left(A \sigma_{t}(B)\right) & =\frac{1}{Z} \operatorname{tr}\left(e^{-\beta H} A e^{i t H} B e^{-i t H}\right) \\
& =\frac{1}{Z} \operatorname{tr}\left(A e^{i t H} B e^{(-i t-\beta) H}\right) \\
& =\frac{1}{Z} \operatorname{tr}\left(A e^{-\beta H} e^{(i t+\beta) H} B e^{(-i t-\beta) H}\right) \\
& =\frac{1}{Z} \operatorname{tr}\left(e^{-\beta H} e^{(i t+\beta) H} B e^{(-i t-\beta) H} A\right) \\
& =\omega\left(\sigma_{t-\beta i}(B) A\right)
\end{aligned}
$$

i) implies ii): We have

$$
\begin{aligned}
\operatorname{tr}(A B \rho) & =\operatorname{tr}(\rho A B)=\omega(A B) \\
& =\omega\left(\sigma_{-\beta i}(B) A\right)=\operatorname{tr}\left(\rho e^{\beta H} B e^{-\beta H} A\right)=\operatorname{tr}\left(A \rho e^{\beta H} B e^{-\beta H}\right)
\end{aligned}
$$

As this is valid for any A we conclude that

$$
B \rho=\rho e^{\beta H} B e^{-\beta H}
$$

for all B. This means

$$
B\left(\rho e^{\beta H}\right)=\left(\rho e^{\beta H}\right) B
$$

As this is valid for all B we conclude that $\rho \exp (\beta H)$ is a multiple of the identity. This gives ii).

Another very interesting result to add to Proposition 3.6 is that the modular group is the only one to perform the relation (1).

Theorem 4.8. σ. is the only automorphism group to satisfy (1) on \mathcal{M} for the given state ω.

Proof. Let τ. be another automorphism group on \mathcal{M} which satisfies (1). Define the operators U_{t} by

$$
U_{t} A \Omega=\tau_{t}(A) \Omega
$$

Then U_{t} is unitary for

$$
\begin{aligned}
\left\|U_{t} A \Omega\right\|^{2} & =<\tau_{t}(A) \Omega, \tau_{t}(A) \Omega>=<\Omega, \tau_{t}\left(A^{*} A\right) \Omega> \\
& =\omega\left(\tau_{t}\left(A^{*} A\right)\right)=\omega\left(\tau_{t+i}(I) A^{*} A\right) \\
& =\omega\left(A^{*} A\right)=\|A \Omega\|^{2}
\end{aligned}
$$

The family U. is clearly a group, it is thus of the form $U_{t}=\exp i t M$ for a self-adjoint operator M.

Note that $U_{t} \Omega=\Omega$ and thus $M \Omega=0$.
Let A, B be entire elements for τ., then the relation $\omega\left(\tau_{i}(B) A\right)=\omega(A B)$ implies

$$
\begin{aligned}
<B^{*} \Omega, \Delta A \Omega> & =<\Delta^{1 / 2} B^{*} \Omega, J J \Delta^{1 / 2} A \Omega> \\
& =<A^{*} \Omega, B \Omega> \\
& =\omega(A B) \\
& =\omega\left(\tau_{i}(B) A\right) \\
& =<\Omega, e^{-M} B e^{M} A \Omega> \\
& =<B^{*} \Omega, e^{M} A \Omega>
\end{aligned}
$$

This means

$$
\Delta=e^{M}
$$

and $\tau=\sigma$.

4.3 Self-dual cone and standard form

We put

$$
\mathcal{P}=\overline{\{A J A J \Omega ; A \in \mathcal{M}\}} .
$$

Proposition 4.9.

i) $\mathcal{P}=\overline{\Delta^{1 / 4} \mathcal{M}_{+} \Omega}=\overline{\Delta^{-1 / 4} \mathcal{M}_{+}^{\prime} \Omega}$ and thus \mathcal{P} is a convex cone.
ii) $\Delta^{i t} \mathcal{P}=\mathcal{P}$ for all t.
iii) If f is of positive type then $f(\log \Delta) \mathcal{P} \subset \mathcal{P}$.
iv) If $\xi \in \mathcal{P}$ then $J \xi=\xi$.
v) If $A \in \mathcal{M}$ then $A J A J \mathcal{P} \subset \mathcal{P}$.

Proof. i) Let \mathcal{M}_{0} be the $*$-algebra of elements of \mathcal{M} which are entire for the modular group σ. (that is, $t \mapsto \sigma_{t}(A)$ admits an analytic extension). We shall admit here that \mathcal{M}_{0} is σ-weakly dense in \mathcal{M}.

For every $A \in \mathcal{M}_{0}$ we have

$$
\begin{aligned}
\Delta^{1 / 4} A A^{*} \Omega & =\sigma_{-i / 4}(A) \sigma_{i / 4}(A)^{*} \Omega \\
& =\sigma_{-i / 4}(A) J \Delta^{1 / 2} \sigma_{i / 4}(A) \Omega \\
& =\sigma_{-i / 4}(A) J \sigma_{-i / 4}(A) J \Omega \\
& =B J B J \Omega
\end{aligned}
$$

where $B=\sigma_{-i / 4}(A)$. By $\sigma_{-i / 4}\left(\mathcal{M}_{0}\right)=\mathcal{M}_{0}$ and by the density of \mathcal{M}_{0} in \mathcal{M} we have

$$
B J B J \Omega \in \overline{\Delta^{1 / 4} \mathcal{M}_{+} \Omega} \subset \overline{\Delta^{1 / 4} \overline{\mathcal{M}_{+} \Omega}}
$$

for all $B \in \mathcal{M}$. Thus

$$
\mathcal{P} \subset \overline{\Delta^{1 / 4} \mathcal{M}_{+} \Omega} \subset \overline{\Delta^{1 / 4} \overline{\mathcal{M}_{+} \Omega}}
$$

Conversely, $\mathcal{M}_{0}^{+} \Omega$ is dense in $\overline{\mathcal{M}_{+} \Omega}$. Let $\psi \in \overline{\mathcal{M}_{+} \Omega}$. There exists a sequence $\left(A_{n}\right) \subset \mathcal{M}_{0}^{+}$such that $A_{n} \Omega \rightarrow \psi$. We know by the above that $\Delta^{1 / 4} A_{n} \Omega$ belongs to \mathcal{P}. But

$$
J \Delta^{1 / 2} A_{n} \Omega=A_{n} \Omega \rightarrow \psi=J \Delta^{1 / 2} \psi
$$

and thus

$$
\left\|\Delta^{1 / 4}\left(\psi-A_{n} \Omega\right)\right\|^{2}=<\psi-A_{n} \Omega, \Delta^{1 / 2}\left(\psi-A_{n} \Omega\right)>\rightarrow 0
$$

Thus $\Delta^{1 / 4} \psi$ belongs to \mathcal{P} and $\overline{\Delta^{1 / 4} \overline{\mathcal{M}_{+} \Omega}} \subset \mathcal{P}$.
This proves the first equality of i). The second one is treated exactly in the same way.
ii) We have

$$
\Delta^{i t} \Delta^{1 / 4} \mathcal{M}_{+} \Omega=\Delta^{1 / 4} \Delta^{i t} \mathcal{M}_{+} \Omega=\Delta^{1 / 4} \sigma_{t}\left(\mathcal{M}_{+}\right) \Omega=\Delta^{1 / 4} \mathcal{M}_{+} \Omega
$$

iii) If f is of positive type then f is the Fourier transform of some positive, finite, Borel measure μ on \mathbb{R}. In particular

$$
f(\log \Delta)=\int \Delta^{i t} d \mu(t)
$$

One concludes with ii) now.
iv) $J A J A J \Omega=J A J A \Omega=A J A J \Omega$.
v) $A J A J B J B J \Omega=A B J A J J B J \Omega=A B J A B J \Omega$.

Theorem 4.10.

i) P is self-dual, that is $\mathcal{P}=\mathcal{P}^{\vee}$ where

$$
\mathcal{P}^{\vee}=\{x \in \mathcal{H} ;<y, x>\geq 0, \forall y \in \mathcal{P}\} .
$$

ii) \mathcal{P} is pointed, that is,

$$
\mathcal{P} \cap(-\mathcal{P})=\{0\}
$$

iii) If $J \xi=\xi$ then ξ admits a unique decomposition as $\xi=\xi_{1}-\xi_{2}$ with $\xi_{1}, \xi_{2} \in \mathcal{P}$ and ξ_{1} orthogonal to ξ_{2}.
iv) The linear span of \mathcal{P} is the whole of \mathcal{H}.

Proof. i) If $A \in \mathcal{M}_{+}$and $A^{\prime} \in \mathcal{M}_{+}^{\prime}$ then
$<\Delta^{1 / 4} A \Omega, \Delta^{-1 / 4} A^{\prime} \Omega>=<A \Omega, A^{\prime} \Omega>=<\Omega, A^{1 / 2} A^{\prime} A^{1 / 2} \Omega>\geq 0$.
Thus \mathcal{P} is included in \mathcal{P}^{\vee}.
Conversely, if $\xi \in \mathcal{P}^{\vee}$, that is $\langle\xi, \nu>\geq 0$ for all $\nu \in \mathcal{P}$, we put

$$
\xi_{n}=f_{n}(\log \Delta) \xi
$$

where $f_{n}(x)=\exp \left(-x^{2} / 2 n^{2}\right)$. Then ξ_{n} belongs to $\cap_{\alpha \in \mathbb{C}} \operatorname{Dom} \Delta^{\alpha}$ and ξ_{n} converges to ξ. We know that $f_{n}(\log \Delta) \nu$ belongs to \mathcal{P} and thus

$$
<\xi_{n}, \nu>=<\xi, f_{n}(\log \Delta) \nu>\geq 0
$$

Let $A \in \mathcal{M}_{+}$then $\Delta^{1 / 4} A \Omega$ belongs to \mathcal{P} and

$$
<\Delta^{1 / 4} \xi_{n}, A \Omega>=<\xi_{n}, \Delta^{1 / 4} A \Omega>\geq 0
$$

Thus $\Delta^{1 / 4} \xi_{n}$ belongs to ${\overline{\mathcal{M}}{ }_{+} \Omega}^{\vee}$ which coincides with $\overline{\mathcal{M}_{+}^{\prime} \Omega}$ (admitted). This finally gives that ξ_{n} belongs to $\Delta^{-1 / 4} \overline{\mathcal{M}_{+}^{\prime} \Omega} \subset \mathcal{P}$. This proves i).
ii) If $\xi \in \mathcal{P} \cap(-\mathcal{P})=\mathcal{P} \cap\left(-\mathcal{P}^{\vee}\right)$ then $<\xi,-\xi>\geq 0$ and $\xi=0$.
iii) If $J \xi=\xi$ then, as \mathcal{P} is convex and closed, there exists a unique $\xi_{1} \in \mathcal{P}$ such that

$$
\left\|\xi-\xi_{1}\right\|=\inf \{\|\xi-\nu\| ; \nu \in \mathcal{P}\}
$$

We put $\xi_{2}=\xi_{1}-\xi$. Let $\nu \in \mathcal{P}$ and $\lambda>0$. Then $\xi_{1}+\lambda \nu$ belongs to \mathcal{P} and

$$
\left\|\xi-\xi_{1}\right\|^{2} \leq\left\|\xi_{1}+\lambda \nu-\xi\right\|^{2}
$$

That is $\left\|\xi_{2}\right\|^{2} \leq\left\|\xi_{2}+\lambda \nu\right\|^{2}$, or else $\lambda^{2}\|\nu\|^{2}+2 \lambda \Re<\xi_{2}, \nu>\geq 0$. This implies that $\Re<\xi_{2}, \nu>$ is positive. But as $J \xi_{2}=\xi_{2}$ and $J \nu=\nu$ then

$$
<\xi_{2}, \nu>=<J \xi_{2}, J \nu>=\overline{<\xi_{2}, \nu>}
$$

That is $\left\langle\xi_{2}, \nu\right\rangle \geq 0$ and $\xi_{2} \in \mathcal{P}^{\vee}=\mathcal{P}$.
iv) If ξ is orthogonal to the linear span of \mathcal{P} then ξ belongs to $\mathcal{P}^{\vee}=\mathcal{P}$. thus $<\xi, \xi>=0$ and $\xi=0$.

Theorem 4.11 (Universality).

1) If $\xi \in \mathcal{P}$ then ξ is cyclic for \mathcal{M} if and only if it is separating for \mathcal{M}.
2) If $\xi \in \mathcal{P}$ is cyclic for \mathcal{M} then $J_{\xi}, \mathcal{P}_{\xi}$ associated to (\mathcal{M}, ξ) satisfy

$$
J_{\xi}=J \quad \text { and } \quad \mathcal{P}_{\xi}=\mathcal{P}
$$

Proof. 1) If ξ is cyclic for \mathcal{M} then $J \xi$ is cyclic for $\mathcal{M}^{\prime}=J \mathcal{M} J$ and thus $\xi=J \xi$ is separating for \mathcal{M}. And conversely.
2) Define as before (the closed version of)

$$
\begin{aligned}
& S_{\xi}: A \xi \longmapsto A^{*} \xi \\
& F_{\xi}: A^{\prime} \xi \longmapsto A^{\prime *} \xi
\end{aligned}
$$

We have

$$
\begin{aligned}
J F_{\xi} J A \xi & =J F_{\xi} J A J \xi \\
& =J(J A J)^{*} \xi \\
& =A^{*} \xi \\
& =S_{\xi} A \xi
\end{aligned}
$$

This proves that $S_{\xi} \subset J F_{\xi} J$. By a symmetric argument $F_{\xi} \subset J S_{\xi} J$ and thus $J S_{\xi}=F_{\xi} J$.

Note that

$$
\left(J S_{\xi}\right)^{*}=S_{\xi}^{*} J=F_{\xi} J=J S_{\xi}
$$

This means that $J S_{\xi}$ is self-adjoint. Let us prove that it is positive. We have

$$
<A \xi, J S_{\xi} A \xi>=<A \xi, J A^{*} \xi>=<\xi, A^{*} J A^{*} \xi>
$$

which is a positive quantity for ξ and $A^{*} J A^{*} J$ belong to \mathcal{P}. This proves the positivity of $J S_{\xi}$.

We have

$$
S_{\xi}=J_{\xi} \Delta_{\xi}^{1 / 2}=J\left(J S_{\xi}\right)
$$

By uniqueness of the polar decomposition we must have $J=J_{\xi}$.
Finally, we have that \mathcal{P}_{ξ} is generated by the $A J_{\xi} A J_{\xi} \xi=A J A J \xi$. But as ξ belongs to \mathcal{P} we have that $A J A J \xi$ belongs to \mathcal{P} and thus $\mathcal{P}_{\xi} \subset \mathcal{P}$. Finally, $\mathcal{P}=\mathcal{P}^{\vee} \subset \mathcal{P}_{\xi}^{\vee}=\mathcal{P}_{\xi}$ and $\mathcal{P}=\mathcal{P}_{\xi}$.

The following theorem is very usefull and powerfull, but its proof is very long, tedious and cannot be summarized, thus we prefer not enter into it and give the result as it is (cf [B-R], p. 108-117).

For every $\xi \in \mathcal{P}$ one can define a particular normal positive form

$$
\omega_{\xi}(A)=<\xi, A \xi>
$$

on \mathcal{M}. That is, $\omega_{\xi} \in \mathcal{M}_{*+}$.

Theorem 4.12. 1) For every $\omega \in \mathcal{M}_{*+}$ there exists a unique $\xi \in \mathcal{P}$ such that

$$
\omega=\omega_{\xi}
$$

2) The mapping $\xi \longmapsto \omega_{\xi}$ is an homeomorphism and

$$
\|\xi-\nu\|^{2} \leq\left\|\omega_{\xi}-\omega_{\nu}\right\|^{2} \leq\|\xi-\nu\|\|\xi+\nu\|
$$

We denote by $\omega \longmapsto \xi(\omega)$ the inverse mapping of $\xi \longmapsto \omega_{\xi}$.
Corollary 4.13. There exists a unique unitary representation

$$
\alpha \in A u t(\mathcal{M}) \longmapsto U_{\alpha}
$$

of the group of $*$-automorphisms of \mathcal{M} on \mathcal{H}, such that
i) $U_{\alpha} A U_{\alpha}^{*}=\alpha(A)$, for all $A \in \mathcal{M}$,
ii) $U_{\alpha} \mathcal{P} \subset \mathcal{P}$ and, moreover,

$$
U_{\alpha} \xi(\omega)=\xi\left(\alpha^{-1^{*}}(\omega)\right)
$$

for all $\omega \in \mathcal{M}_{*+}$ and where $\left(\alpha^{*} \omega\right)(A)=\omega(\alpha(A))$.
iii) $\left[U_{\alpha}, J\right]=0$.

Proof. Let $\alpha \in \operatorname{Aut}(\mathcal{M})$. Let $\xi \in \mathcal{P}$ be the representant of the state

$$
A \longmapsto<\Omega, \alpha^{-1}(A) \Omega>
$$

That is,

$$
<\xi, A \xi>=<\Omega, \alpha^{-1}(A) \Omega>
$$

In particular ξ is separating for \mathcal{M} and hence cyclic. Define the operator

$$
U A \Omega=\alpha(A) \xi
$$

We have

$$
\|U A \Omega\|^{2}=<\xi, \alpha\left(A^{*} A\right) \xi>=<\Omega, A^{*} A \Omega>=\|A \Omega\|^{2}
$$

Thus U is unitary. In particular

$$
U^{*} A \xi=\alpha^{-1}(A) \Omega
$$

Now, for $A, B \in \mathcal{M}$ we have

$$
U A U^{*} B \xi=U A \alpha^{-1}(B) \Omega=\alpha\left(A \alpha^{-1}(B)\right) \xi=\alpha(A) B \xi
$$

and

$$
\alpha(A)=U A U^{*}
$$

We have proved the existence of the unitary representation. Note that

$$
\begin{aligned}
S U^{*} A \xi & =S \alpha^{-1}(A) \Omega \\
& =\alpha^{-1}(A)^{*} \Omega \\
& =\alpha^{-1}\left(A^{*}\right) \Omega \\
& =U^{*} A^{*} \xi \\
& =U^{*} S_{\xi} A \xi .
\end{aligned}
$$

Hence by closure

$$
J \Delta^{1 / 2} U^{*}=U^{*} J_{\xi} \Delta_{\xi}^{1 / 2}=U^{*} J \Delta_{\xi}^{1 / 2}
$$

That is

$$
U J U^{*} U \Delta^{1 / 2} U^{*}=J \Delta_{\xi}^{1 / 2}
$$

By uniqueness of the polar decomposition we must have $U J U^{*}=J$. This gives iii). For $A \in \mathcal{M}$ we have

$$
U A J A J \Omega=\alpha(A) J \alpha(A) J \xi
$$

Since ξ belongs to \mathcal{P} we deduce

$$
U \mathcal{P}=\mathcal{P}
$$

If $\phi \in \mathcal{M}_{*+}$ we have

$$
\begin{aligned}
<U \xi(\phi), A U \xi(\phi)> & =<\xi(\phi), U^{*} A U \xi(\phi)> \\
& =<\xi(\phi), \alpha^{-1}(A) \xi(\phi)> \\
& =\phi\left(\alpha^{-1}(A)\right) \\
& =\left(\alpha^{-1^{*}}(\phi)\right)(A) \\
& =<\xi\left(\alpha^{-1^{*}}(\phi)\right), A \xi\left(\alpha^{-1^{*}}(\phi)\right)>
\end{aligned}
$$

By uniqueness of the representing vector in \mathcal{P}

$$
U(\alpha) \xi(\phi)=\xi\left(\alpha^{-1^{*}}(\phi)\right)
$$

This gives ii) and also the uniqueness of the unitary representation.

References

1. O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics $1 C^{*}$ - and W^{*}-Algebras. Symmetry Groups. Decomposition of States, Texts and Monographs in Physics, 2nd ed. 1987, Springer Verlag.
2. O. Brattelli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics 2 Equilibrium States. Models in Quantum Statistical Mechanics, Texts and Monographs in Physics, 2nd ed. 1987, Springer Verlag 1987.
3. J. Dixmier, Les C^{*}-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
4. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983.
5. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras (II), Acad. Press, 1986.
6. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras (III), Acad. Press, 1991.
7. G.K. Pedersen, C^{*}-algebras and their automorphism groups, London Mathematical Society Monographs, Academic Press, 1989.
8. S. Sakai, C^{*}-algebras and W^{*}-algebras, Ergebnisse der mathematik und ihrer grenzgebiete 60, Springer Verlag.
