
3.THE ALGEBRA OF CANONICAL COMMUTATION RELATIONS

3.1 Fock spaces

In classical mechanics a point system is characterized by its coordinates Qi(t)
and impulsion Pi(t), i = 1 . . . n. In the Hamiltonian description of motion equa-
tions there exists a fundamental function H(P,Q) of motion, which describes the
system and satisfies Euler-Lagrange equations:

∂H

∂Pi
= Q̇i ,

∂H

∂Qi
= −Ṗi .

If f(P,Q) is a functional of the trajectory, we then have the evolution equation

df

dt
=
∂f

∂P

∂P

∂t
+
∂f

∂Q

∂Q

∂t

or else
df

dt
= {f,H}

where {g, f} denote the Poisson bracket of f by h:

{g, h} =
∂g

∂P

∂h

∂Q
− ∂g

∂Q

∂h

∂P
.

In particular we have

{Pi, Pj} = {Qi, Qj} = 0

{Pi, Qj} = δij .

It happens that it is not exactly the definitions of the Pi andQi which is important,
but the relations above. Indeed, a change of coordinates P ′(P,Q), Q′(P,Q) will
give rise to the same motion equations if and only if P ′ and Q′ satisfy the relations
above.

In quantum mechanics it is essentially the same situation. We have a self-
adjoint operator H (the Hamiltonian) which describes all the evolution of the
system via the Schrödinger equation

ih̄
d

dt
ψ(t) = H ψ(t) .

There are also self-adjoint operators Qi, Pi which represent the position and the
impulsion of the system and which evolve following

Qi(t) = eitHQie
itH

Pi(t) = e−itHPie
itH .

Thus any observable A defined from P and Q satisfies the evolution equation

d

dt
A(t) = − i

h̄
[A(t), H]

where [·, ·] denotes the commutator.
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But the operators Pi, Qi satisfy the relation

[Pi, Pj] = [Qi, Qj] = 0

[Qi, Pj] = ih̄δijI .

Once again, it is not the choice of the representations of Pi and Qi which is
important, it is the relations above. It is called commutation relation.

In quantum field theory we have an infinite number of degrees of freedom.
The operators position and impulsion are indexed by IR3 (for example): we have
a field of operators and the relations

[P (x), P (y)] = [Q(x), Q(y)] = 0

[Q(x), P (y)] = ih̄δ(x− y)I .

If one puts a(x) = 1√
2
(Q(x) + iP (x)) and a∗(x) = 1√

2
(Q(x) − iP (x)) then a(x)

and a∗(x) are mutually adjoint and satisfy the canonical commutation relations
(CCR)

[a(x), a(y)] = [a∗(x), a∗(y)] = 0

[a(x), a∗(y)] = h̄δ(x− y)I .

Actually it happens that these equations are valid only for a particular family
of particles: the bosons (photons, mesons, gravitons,...). There is another family of
particles: the fermions (electrons, muons, neutrinos, protons, neutrons, baryons,...)
for which the correct relations are the canonical anticommutation relations (CAR)

{b(x), b(y)} = {b∗(x), b∗(y)} = 0

{b(x), b∗(y)} = h̄δ(x− y)I

where {A,B} = AB +BC is the anticommutator of operators.
A natural problem, which has given rise to a huge literature, is to find concrete

realisations of these relations. Let us see the simplest example: find two self-adjoint
operators P and Q such that

QP − PQ = ih̄I .

In a certain sense there is only one solution. This solution is realized on L2(IR) by
Q = x (multiplication by x) and P = ih̄ d

dx . It is the Schrödinger representation
of the CCR. But in full generality this problem is not well-posed. We need to
be able to define the operators PQ and QP on good common domains. One can
construct pathological counter-examples (Reed-Simon).

The problem is well-posed if we transform it in terms of bounded operators.
Let Wx,y = e−i(xP−yQ) and Wz = Wx,y when z = x+ iy ∈ C. We then have the
Weyl commutation relations

WzWz′ = e−i=〈z,z′〉Wz+z′ .

Posed in these terms the problem has only one solution: the symmetric Fock space
(Stone-von Neumann theorem).

The anticommutation relations as they are written with b(x) and b∗(x) have
a more direct solution for b(x) and b∗(x) have to be bounded. We will come back
to that later.
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The importance of Fock space comes from the fact they give an easy realization
of the CCR and CAR. They are also a natural tool for quantum field theory,
second quantization... (all sorts of physical important notions that we will not
develop here). The physical ideal around Fock spaces is the following. If H is the
Hilbert space describing a system of one particle, then H⊗H describes a system
consisting of two particles of the same type. The space H⊗n = H⊗· · ·⊗H, n-fold,
describes n such particles. Finally the space ⊕n∈INH⊗n describes a system where
there can be any number of such particles which can disappear (annihilate) or be
created. But depending on the type of particles (bosons or fermions) we deal with,
there are some symmetries which force to look at certain subspaces of ⊕nH⊗n. We
did not aim to describe the physics behind Fock spaces (we are not able to), but
we just wanted to motivate them. Let us come back to mathematics.

Let H be a complex Hilbert space. For any integer n ≥ 1 put

H⊗n = H⊗ · · · ⊗ H
the n-fold tensor product of H. That is, the Hilbert space obtained after completion
of the pre-Hilbert space of finite linear combinations of elements of the form u1 ⊗
· · · ⊗ un, with the scalar product

〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉 = 〈u1, v1〉 · · · 〈un, vn〉 .
For u1, . . . , un ∈ H we define the symmetric tensor product

u1 ◦ · · · ◦ un =
1

n!

∑

σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n) ,

where Sn is the group of permutations of {1, 2 . . . n}, and the antisymmetric tensor
product

u1 ∧ · · · ∧ un =
1

n!

∑

σ∈Sn

εσuσ(1) ⊗ · · · ⊗ uσ(n) ,

where εσ is the signature of the permutation σ.
The closed subspace of H⊗n generated by the u1◦· · ·◦un (resp. u1∧· · ·∧un) is

denoted H◦n (resp. H∧n). It is called the n-fold symmetric (resp. antisymmetric)
tensor product of H.

Sometimes, when the notation is clear, one denotes by Hn the space H⊗n,
H◦n or H∧n, and one calls it the n-th chaos of H. In any of the three cases we put

H0 = C .

The element 1 ∈ C = H0 plays an important role. One denotes it by 1l (usually
by Ω in the literature) and one calls it the vacuum vector.

If one computes

〈u1 ∧ · · · ∧ un, v1 ∧ · · · ∧ vn〉 =
1

(n!)2

∑

σ,τ∈Sn

εσετ 〈uσ(1), vτ(1)〉 · · · 〈uσ(n), vτ(n)〉

one finds
1

n!
det(〈ui, vj〉)ij.
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In order to remove the n! factor we put a scalar product on H∧n which is
different from the one induced by H⊗n, namely:

〈u1 ∧ · · · ∧ un, v1 ∧ · · · ∧ vn〉∧ = det(〈ui, vj〉)ij .

This way, we have

‖u1 ∧ · · · ∧ un‖2
∧ = n!‖u1 ∧ · · · ∧ un‖2

⊗ .

In the same way, on H◦n we put

〈u1 ◦ · · · ◦ un, v1 ◦ · · · ◦ vn〉◦ = per(〈ui, vj〉)ij ,

where per denotes the permanent of the matrix (that is, the determinant without
the minus signs). This way we get

‖u1 ◦ · · · ◦ un‖2
◦ = n!‖u1 ◦ · · · ◦ un‖2

⊗ .

We call free (or full) Fock space over H the space

Γf (H) =
∞⊕

n=0

H⊗n .

We call symmetric (or bosonic) Fock space over H the space

Γs(H) =

∞⊕

n=0

H◦n .

We call antisymmetric (or fermionic) Fock space over H the space

Γa(H) =

∞⊕

n=0

H∧n.

It is understood that in the definition of Γf (H), Γs(H) and Γa(H) each of the
spaces H⊗n, H◦n or H∧n is equipped with its own scalar product 〈·, ·〉⊗, 〈·, ·〉◦
or 〈·, ·〉∧. In other words, the elements of Γf (H) (resp. Γs(H), Γa(H)) are those
series f =

∑
n∈IN fn such that fn ∈ H⊗n (resp. H◦n, H∧n) for all n and

‖f‖2 =
∑

n∈IN

‖fn‖2
ε <∞

for ε = ⊗ (resp. ◦, ∧).
If one want to write everything in terms of the usual tensor norm, we simply

have that an element f =
∑

n∈IN fn is in Γs(H) (resp. Γa(H)) if fn ∈ H◦n (resp.
H∧n) for all n and

‖f‖2 =
∑

n∈IN

n!‖fn‖2
⊗ <∞ .

The simplest case is obtained by taking H = C, this gives Γs(C) = `2(IN). If
H is of finite dimension n then H∧m = 0 for m > n and thus Γa(H) is of finite
dimension 2n; this is never the case for Γs(H).

In physics, one usually consider bosonic or fermionic Fock spaces over H =
L2(IR3).

In quantum probability it is the space Γs(L
2(IR+)) which is important for

quantum stochastic calculus (we will meet this space during the second semester).
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We now only consider symmetric Fock spaces Γs(H).
For a u ∈ H one notes that u ◦ · · · ◦ u = u⊗ · · · ⊗ u. The coherent vector (or

exponential vector) associated to u is

ε(u) =
∑

n∈IN

u⊗n

n!

so that
〈ε(u), ε(v)〉 = e〈u,v〉

in Γs(H).

Proposition 3.1 – The vector space E of finite linear combinations of coherent
vectors, is dense in Γs(H).

Every finite family of coherent vectors is linearly independent.

Proof

Let us prove the independence. Let u1 . . . un ∈ H. The set

Ei,j =
{
u ∈ H; 〈u, ui〉 6= 〈u, uj〉

}
,

for i 6= j, is open and dense in H. Thus the set
⋂

i,j Ei,j is non empty. Thus
there exists a v ∈ H such that the θj = 〈v, uj〉 are two by two different. Now, if∑n

i=1 αi ε(ui) = 0 this implies that

0 =
〈
ε(zv),

n∑

i=1

αiε(ui)
〉

=
n∑

i=1

αie
zθi

for all z ∈ C. Thus the αi all vanish and the family
{
ε(u1) . . . ε(un)

}
is free.

In order to show the density, we first notice that the set {u ◦ · · · ◦ u, u ∈ H}
is total in Γs(H) for

u1 ◦ · · · ◦ un =
∑

εi=±1

(ε1u1 + · · ·+ εnun)◦n .

But u◦n = dn

dtn ε(tu)∣∣t=0
. This gives the result.

Corollary 3.2 – If S ⊂ H is dense subset, then the space E(S) generated by the
ε(u), u ∈ S, is dense in Γs(H).

Proof

We have
‖ε(u) − ε(v)‖2 = e‖u‖2

+ ee‖v‖2 − 2<e〈u,v〉 .

Thus the mapping u 7→ ε(u) is continuous. We now conclude easily from Proposi-
tion 3.1.

Theorem 3.3 – Let H1, H2 be two Hilbert spaces. Then there exists a unique
unitary isomorphism

U : Γs(H1 ⊕H2) −→ Γs(H1) ⊗ Γs(H2)

ε(u⊕ v) 7−→ ε(u) ⊗ ε(v).
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Proof

The space E(Hi) is dense in Γs(Hi), i = 1, 2, and {ε(u) ⊗ ε(v) ; u ∈ H1, v ∈
H2} is total in Γs(H1) ⊗ Γs(H2). Furthermore, we have

〈ε(u⊕ v), ε(u′ ⊕ v′)〉 = e〈u⊕v,u′⊕v′〉

= e〈u,u′〉+〈v,v′〉

= e〈u,u′〉e〈v,v′〉

= 〈ε(u), ε(u′)〉〈ε(v), ε(v′)〉
= 〈ε(u) ⊗ ε(v), ε(u′) ⊗ ε(v′)〉 .

Thus the mapping U is isometric. One concludes easily.

An example we will follow all along this chapter: the space Γs(C). It is
equal to `2(IN) but it can be advantageously interpreted as L2(IR). Indeed, let U
be the mapping from Γs(C) to L2(IR) which maps ε(z) to the function fz(x) =

(2π)−1/4ezx−s2/2−x2/4. It is easy to see that U extends to a unitary isomorphism.
We will come back to this example later.

There is an interesting characterization of the space Γs(H) which says roughly
that Γs(H) is the exponential of H. Idea which is already confirmed by Theorem
3.3.

Theorem 3.4 – Let H be a separable Hilbert space. If K is a Hilbert space such
that there exists a mapping

λ : H −→ K

u 7−→ λ(u)

satisfying
i) 〈λ(u), λ(v)〉 = e〈u,v〉 for all u, v ∈ H
ii) {λ(u) ; u ∈ H} is total in K.

Then there exists a unique unitary isomorphism

U : K −→ Γs(H)

λ(u) 7−→ ε(u).

Proof

Clearly U is isometric and maps a dense subspace onto a dense subspace.

It is useful to stop a moment in order to describe Γs(H) when H is of the
form L2(E, E , m). We are going to see that if (E, E , m) is a measured, non
atomic, σ-finite, separable measured space then Γ(L2(E, E , m)) can be written
as L2(P, EP , µ) for an explicit measured space (P, EP , µ).
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If H = L2(E, E , m), then H⊗n interprets naturally as L2(En, E⊗n, m⊗n) and
H◦n interprets as L2

sym(En, E⊗n, m⊗n) the space of symmetric, square integrable
functions on En.

If f(x1 . . . xn) is a n-variable symmetric function on E then

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

for all σ ∈ Sn. If the xi are two by two different we thus can see f as a function
on the set {x1, . . . , xn}. But as m is non atomic, almost all the (x1 . . . xn) ∈ En

satisfy xi 6= xj once i 6= j. An element of Γs(H) is of the form f =
∑

n∈IN fn

where each fn is a function on the n-element subsets of E. Thus f can be seen as
a function on the finite subsets of E.

More rigorously, let P be the set of finite subsets of E. Then P = ∪n∈INPn

where P0 = {∅} and Pn is the set of n-elements subsets of E. Let fn be an element
of L2

sym(En, E⊗n, m⊗n), we define f on P by
{
f(σ) = 0 if σ ∈ P and |σ| = n ,
f({x1, . . . , xn}) = fn(x1, . . . , xn) otherwise.

Let EP be the smallest σ-field on P which makes all these functions measurable
on P.

Let ∆n ⊂ En be the set of (x1 . . . xn) such that xi 6= xj once i 6= j. By the
non-atomicity of m, we have m(En\∆n) = 0. For F ∈ EP we put

µ(F ) = 1l∅(F ) +

∞∑

n=1

1

n!

∫

∆n

1lF∩Pn
(x1, . . . , xn)dm(x1) · · ·dm(xn) .

For example, if E = IR with the Lebesgue structure, then Pn can be identified
to the increasing simplex Σn = {x1 < · · · < xn ∈ IR} ⊂ IRn. Thus Pn inherits the
Lebesgue measure from IRn.

The measure µ we have defined is σ-finite, it possesses only one atom: {∅}
which has mass 1. We call (P, EP , µ) the symmetric measure space over (E, E , m).
This construction is due to Guichardet.

For all u ∈ L2(E, E , m) one defines by πu the element of L2(P, EP , µ) which
satisfies

πu(σ) =

{
1 if σ = ∅∏

s∈σ u(s) otherwise

for all σ ∈ P.

Theorem 3.4 – The mapping πu 7−→ ε(u) extends to a unitary isomorphism from
L2(P, EP , µ) onto Γs(L

2(E, E , m)).

Proof

Clearly 〈πu, πv〉 = e〈u,v〉 = 〈ε(u), ε(v)〉. The set of functions πu is total in
L2(P, EP , µ). One concludes easily.

3.2 Creation and annihilation operators

We now come back to general symmetric and antisymmetric Fock spaces
Γs(H) and Γa(H).
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For u ∈ H we define the following operators:

a∗(u) : H◦n −→ H◦(n+1)

u1 ◦ · · · ◦ un 7−→ u ◦ u1 ◦ · · · ◦ un

b∗(u) : H∧n −→ H∧(n+1)

u1 ∧ · · · ∧ un 7−→ u ∧ u1 ∧ · · · ∧ un

a(u) : H◦n −→ H◦(n−1)

u1 ◦ · · · ◦ un 7−→ ∑n
i=1〈u, ui〉u1 ◦ · · · ◦ ûi ◦ · · · ◦ un

b(u) : H◦n −→ H◦(n−1)

u1 ∧ · · · ∧ un 7−→ ∑n
i=1(−1)i〈u, ui〉u1 ∧ · · · ∧ ûi ∧ · · · ∧ un .

These operators are respectively called bosonic creation operator, fermionic
creation operator, bosonic annihilation operator and fermionic annihilation opera-
tor.

Notice that a∗(u) and b∗(u) depend linearly on u, whereas a(u) and b(u)
depend antilinearly on u. Actually, one often finds in the literature notations with
“bras” and kets”: a∗|u〉, b

∗
|u〉, a〈u|, b〈u|.

Note that

a∗(u)1l = b∗(u)1l = u

a(u)1l = b(u)1l = 0 .

All the operators above extend to the space Γf
s (H)(resp. Γf

a(H)) of finite sums
of chaos that is those f =

∑
n∈IN fn ∈ Γs(H) (resp. Γa(H)) such that only a

finite number of fn do not vanish. This subspace is dense in the corresponding
Fock space. It is included in the domain of the operators a∗(u), b∗(u), a(u), b(u)
(defined as operators on Γs(H) (resp. Γa(H))), and it is stable under their action.
On this space we have the following relations:

〈a∗(u)f, g〉 = 〈f, a(u)g〉
[a(u), a(v)] = [a∗(u), a∗(v)] = 0

[a(u), a∗(v)] = 〈u, v〉I
〈b∗(u)f, g〉 = 〈f, b(u)g〉
{b(u), b(v)} = {b∗(u), b∗(v)} = 0

{b(u), b∗(v)} = 〈u, v〉I
In other words, when restricted to Γf

s (H) (resp. Γf
a(H)) the operators a(u)

and a∗(u) (resp. b(u) and b∗(u)) are mutually adjoint and they satisfy the CCR
(resp. CAR).

Proposition 3.6 – For all u ∈ H we have

i) b∗(u)2 = 0,

ii) ‖b(u)‖ = ‖b∗(u)‖ = ‖u‖.
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Proof

The anticommutation relation {b∗(u), b∗(u)} = 0 means 2b∗(u)b∗(u) = 0, this
gives i).

We have

b∗(u)b(u)b∗(u)b(u) = b∗(u){b(u), b∗(u)}b(u)
= ‖u‖2b∗(u)b(u) .

Thus

‖b(u)‖4 = ‖b∗(u)b(u)b∗(u)b(u)‖ = ‖u‖2‖b∗(u)b(u)‖
= ‖u‖2‖b(u)‖2 .

As the operator b(u) is null if and only if u = 0 we easily deduce that ‖b(u)‖ = ‖u‖.

The identity i) expresses the so-called Pauli exclusion principle: “One cannot
have together two fermionic particles in the same state”.

The bosonic case is less simple for the operators a∗(u) and a(u) are never
bounded. Indeed, we have a(u)v◦n = n〈u, v〉v◦(n−1), thus the coherent vectors are
in the domain of a(u) and

a(u)ε(v) = 〈u, v〉ε(v) .
In particular

sup
‖h‖=1

‖a(u)h‖ ≥ sup
v∈H

‖a(u)e−‖v‖2/2ε(v)‖

= sup
v∈H

|〈u, v〉| = +∞ .

Thus a(u) is not bounded.
The action of a∗(u) can be also be made explicit. Indeed, we have

a∗(u)v◦n = u ◦ v ◦ · · · ◦ v =
d

dε
(u+ εv)◦n∣∣ε=0

.

Thus ε(v) is in the domain of a∗(u) and

a∗(u)ε(v) =
d

dε
ε(u+ εv)∣∣ε=0

.

The operators a(u) and a∗(u) are thus closable (they have a densely defined ad-
joint). We extend them by closure, while keeping the same notations a(u), a∗(u).

Proposition 3.7 – We have a∗(u) = a(u)∗.

Proof

On Γf
s (H) we have 〈f, a(u)g〉 = 〈a∗(u)f, g〉. We extend this relation to f ∈

Dom a∗(u). The mapping g 7→ 〈f, a(u)g〉 is thus continuous and f ∈ Dom a(u)∗.
We have proved that a∗(u) ⊂ a(u)∗.

Conversely, if f ∈ Dom a(u)∗ and if h = a(u)∗f . We decompose f and h in
chaoses: f =

∑
n fn and h =

∑
n hn. We have 〈f, a(u)g〉 = 〈h, g〉 for all g ∈ Γf

s (H).
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Thus, taking g ∈ H◦n we get 〈fn−1, a(u)g〉 = 〈hn, g〉 that is, 〈a∗(u)fn−1, g〉 =
〈hn, g〉. This shows that hn = a∗(u)fn−1 This way

∑
n ‖a∗(u)fn‖2 is finite, f

belongs to Dom a∗(u) and a∗(u)f = a(u)∗f .

In physics, the space H is often L2(IR3). An element hn of H◦n is thus a
symmetric function of n variables on IR3. With our definitions we have

(
a(f)hn

)
(x1 . . . xn−1) =

∫
hn(x1 . . . xn−1, x)f(x) dx

and
(
a∗(f)hn

)
(x1 . . . xn+1) =

n+1∑

i=1

hn(x1 . . . x̂i . . . xn+1)f(xi) .

But in the physic literature one often use creation and annihilation operators
indexed by the points of IR3, instead of the elements of L2(IR3). One can find
there a(x) and a∗(x) formally defined by

a(f) =

∫
f(x)a(x) dx

a∗(f) =

∫
f(x)a∗(x) dx

with
(
a(x)hn

)
(x1 . . . xn−1) = hn(x1 . . . xn−1, x)

(
a∗(x)hn

)
(x1 . . . xn+1) =

n+1∑

i=1

δ(x− xi)hn(x1 . . . x̂i . . . xn+1) .

If one comes back to our example Γs(C) ' L2(IR), we have the creation and
annihilation operators a∗(z), a(z), z ∈ C. They are actually determined by two
operators a∗ = a∗(1) and a = a(1). They operate on coherent vectors by

a ∈ ε(z) = z(ε(z), a∗ε(z) =
d

dε
ε(z + ε)∣∣ε=0

.

On L2(IR) this gives

afz(x) = zfz(x) =
( d
dx

+
x

2

)
fz(x)

a∗fs(x) =
d

dε
fz+ε(x)∣∣ε=0

= (x− z)fz(x) =
(x

2
− d

dx

)
fz(x) .

The operators Q = a+ a∗ and P = i(a− a∗) are thus respectively represented by
the operator x and 2i d

dx on L2(IR). That is, the Schrödinger representation of the
CCR (with h̄ = 2).

To conclude in this section, note that the operator Q = a+a∗ is an observable,
in the physical sens. If we are given a state on L2(IR), for example the vaccum
state 1l,then the observable Q has a natural probability law. This law isthe one
which describes the probabilistic behaviour of the observable Q if one tries to
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measure it in the state 1l. One can also see this law in the following way: the
mapping t 7→ < 1l , eitQ1l> satisfies the Bochner criterion and is thus the Fourier
transform of some probability measure µ.

From the postulats of quantm mechanics, the n-th moment of this law are
given by

< 1l , Qn1l>.

Passing by the L2(IR) interpretation, this quantity equals

<f0 , x
nf0> =

1√
2π

∫
xne−x2/2 dx

that is the n-th moment of the standard normal law N (0, 1). The observable Q,
in the vaccum state, follows the N (0, 1) law.

3.3 Second quantization

If one is given an operator A from an Hilbert space H to another K, it is
possible to rise, in a natural way, this operator into an operator Γ(A) from Γs(H)
to Γs(K) (and in a similar way from Γa(H) to Γa(K)) by putting

Γ(A)(u1 ◦ · · · ◦ un) = Au1 ◦ · · · ◦Aun .

One easily sees that
Γ(A)ε(u) = ε(Au) .

This operator Γ(A) is called the second quantization of A.
One must be careful that even if A is bounded operator, Γ(A) is not bounded

in general. Indeed, if ‖A‖ > 1 then Γ(A) is not bounded. But on easily sees that

Γ(AB) = Γ(A)Γ(B)

and
Γ(A∗) = Γ(A)∗.

In particular if A is unitary, then so is Γ(A). Even more, if (Ut)t∈IR is a
strongly continuous one parameter group of unitary operators then so is (Γ(Ut)t∈IR).

In other words, if Ut = eitH for some self-adjoint operator H, then Γ(Ut) =
eitH′

for some self-adjoint operator H ′. The operator H ′ is denoted Λ(H) (or
sometimes dΓ(H) in the litterature) and called the differential second quantization
of H.

One easily checks that

Λ(H) u1 ◦ · · · ◦ un =
n∑

i=1

u1 ◦ · · · ◦Hui ◦ · · · ◦ un

and Λ(H)1l = 0.
In particular, if H = I we have

Λ(I) u1 ◦ · · · ◦ un = nu1 ◦ · · · ◦ un .

This operator is called number operator.
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Proposition 3.7 – We have

Λ(H)ε(u) = a∗(Hu)ε(u) .

Proof

We have Λ(H)u◦n = n(Hu) ◦ u ◦ · · · ◦ u. Thus

Λ(H)
u◦n

n!
= (Hu) ◦ u◦(n−1)

(n− 1)!
= a∗(Hu)

u◦(n−1)

(n− 1)!
.

Proposition 3.8 – For all u ∈ H, we have

Λ(|u〉〈u|) = a∗|u〉a〈u| .

Proof

Indeed, we have

Λ(|u〉〈u|)ε(v) = a∗(〈u, v〉u)ε(v)
= 〈u, v〉a∗(u)ε(v)
= a∗|u〉a〈u|ε(v) .

Coming back to L2(IR), there is only one differential second quantization:

Λ(I) = Λ = a∗a .

We obtain

Λ =
(x

2
− d

dx

)(x
2

+
d

dx

)

=
x2

4
− d2

dx2
− 1

2
that is

Λ +
1

2
=
x2

4
− d2

dx2

the Hamiltonian of the one dimensional harmonic oscillator.
Note that Λ is self-adjoint and its law in the vacuum state is just the Dirac

mass in 0, for Λ1l = 0.

3.4 Weyl operators

Let H be a Hilbert space. Let G be the group of displacements of H that is,

G =
{
(U, u) ; U ∈ U(H), u ∈ H

}
,

where U(H) is the group of unitary operators on H. This group acts on H by

(U, u)h = Uh+ u .
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The composition law of G is thus

(U, u)(V, v) = (UV, Uv + u)

and in particular
(U, u)−1 = (U∗,−U∗u) .

For every α = (U, u) ∈ G one defines the Weyl operator Wα on Γs(H) by

Wα ε(v) = e−‖u‖2/2−〈u,Uv〉ε(Uv + u) .

In particular
WαWβ = e−i=〈u,Uv〉Wαβ

for all α = (U, u), β = (V, v) in G. These are called the Weyl commutation
relations.

Proposition 3.8 – The Weyl operators Wα are unitary.

Proof

We have

〈Wαε(k),Wαε(`)〉 = e−‖u‖2−〈Uk,u〉−〈u,U`〉〈ε(Uk + u), ε(U`+ u)〉
= e−‖u‖2−〈Uk,u〉−〈u,U`〉e〈Uk+u,U`+u〉

= e〈Uk,U`〉 = e〈k,`〉 = 〈ε(k), ε(`)〉 .
Thus Wα extends to an isometry. But we furthermore have

WαWα−1 = e−i=〈u,−UU∗u〉Wαα−1

= e−i=(−‖u‖2)W(I,0)

= I .

Thus Wα is invertible.

The mapping :

G −→ U(Γ(H))

α 7−→Wα

is a unitary projective representation of G.

If one considers the group G̃ of (U, u, t), U ∈ U(H), u ∈ H and t ∈ IR with

(U, u, t)(V, v, s) = (UV, Uv + u, t+ s+ =〈u, Uv〉) ;

we obtain the so-called Heisenberg group of H. The mapping (U, u, t) 7−→ W(U,u)e
it

is thus a unitary representation of G̃.

Conversely, if W(U,u,t) is a unitary representation of the Heisenberg group of
H we then have

W(U,u,t) = W(U,u,0)W(I,0,t)

and
W(I,0,t) = W(I,0,s)W(I,0,t+s) .

13



This means that
W(U,u,t) = W(U,u,0)e

itH

for some self-adjoint operator H, and the W(U,u,0) satisfy the Weyl commutation
relations.

If we come back to our Weyl operators W(U,u) one easily sees that

W(U,u) = W(I,u)W(U,0) .

By definition W(U,0)ε(k) = ε(Uk) and thus

W(U,0) = Γ(U) .

Finally, write Wu for W(I,u). Then

WuWv = e−i=〈u,v〉Wu+v .

These relations are often also called Weyl commutation relations. As a consequence
(W(I+tu))t∈IR is a unitary group; it is strongly continuous (exercise).

Proposition 3.9 – We have

W(I,tu) = eit 1

i
(a(u)−a∗(u)) .

Proof

1

i

d

dt
∣∣t=0

W(I,tu)ε(k) =
1

i

d

dt
∣∣t=0

e−
t
2

2
‖u‖2−t〈u,k〉ε(k + tu)

= −1

i
〈u, k〉ε(k) +

1

i

d

dt
∣∣t=0

ε(k + tu)

=
1

i
(−a(u) + a∗(u))ε(k) .

Coming back to our example on L2(IR), the Weyl operators are defined by

Wzε(z
′) = e−

|z|2

2
−zz′

ε(z + z′) .

These operators are very helpfull for computing the law of some observables.

Proposition 3.10 – The observable 1/i (za∗ − za) follows a law N (0, |z|2) in the
vaccum state.

Proof

We have

< 1l , et(za∗−za)1l> = < 1l , Witz1l>

= < E(0) , WitzE(0)>

= < E(0) , E(itz)>e−t2|z|2/2

= e−t2|z|2/2.
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Proposition 3.11 – The observable Λ+αI follows the law δα in the vaccum state.

Proof

Indeed,
< 1l , (Λ + αI)

n
1l> = αn< 1l , 1l> = αn.

Let us now compute the law, in the vaccum state, of the observable Λ+za∗−
za+ |z|2 I, sum of the two previous observables.

Lemma 3.12 –
W−ze

itΛWz = eit(Λ+za∗−za+|z|2I).

Proof

It suffices to show that W−zΛWz = Λ + za∗ − za+ |z|2 I. We have

< E(z1) , W−zΛWz E(z2)> = <aWzE(z1) , aWzE(z2)>

= < (z1 + z)E(z1 + z) , (z2 + z)E(z2 + z)>×
× e−|z|2−zz2−z1z

= (z1z2 + z1z + z2z + |z|2)ez1z2 .

Proposition 3.13 – The law of the observable Λ + za∗ − za+ |z|2 I in the vaccum

state is the Poisson law P(|z|2).

Proof

We have

< 1l , eit(Λ+za∗−za+|z|2I)1l> = <Wz1l , e
itΛWz1l>

= e−|z|2< E(z) , eitΛE(z)>

= e−|z|2e|z|
2eit

= e|z|
2(eit−1).

Comments: This result may seem very surprising: the sum of a Gaussian
variable and a deterministic one, gives a Poisson distribution! Of course such a
phenomena cannot be realised with usual random variables. What does this mean?

Actually it is one of the manifestation of the fact that the random phe-

nomena attached to quantum mechanics cannot be modelized by usual

probability theory.

There has been many attemps to give a probabilistic model to the stochastic
phenomena of quantum mechanics, such as the “hidden variable theory” which
tried to give a model of the randomness in measurement by saying that many
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parameters of the systems are unknown to us (hidden variables) since the begining
and that their effects appear at the measurement and give this uncertainty, this
randomness.

But it has been proved by Bell, that if one tries to attach random variables
behind each observable and try to find (complicated) rules that explain the princi-
ples of quantum mechanics, then this reaches an impossibility. Indeed, taking the
spin of a particle in three well-choosen directions, one obtains three Bernoulli vari-
ables, but their correlations cannot be obtained by any triplet of classical Bernoulli
variables.

What then can we do to express the probabilistic effects of measurement in a
probabilistic language? Actually, one does need to look very far away. Quantum
mechanics in itself, in its axioms, contains the germ of a new probability theory.
Indeed, now accept to consider a probability space to be a couple (H,Ψ), where H
is a Hilbert space and Ψ is a normalized vector of H; instead of the usual (Ω,F , P ).
Accept to consider a random variable to be a self-adjoint operator A on H, instead
of a measurable function X : Ω → IR. Accept that the probability distribution of
A under the state Ψ is the one described above:

E 7−→ <Ψ , 1lE(A)Ψ>.

Then what do we obtain ?

Actually this probability theory, as stated here, is equivalent to the usual
one when considering a single random variable. Indeed, a classical probabilistic
situation (Ω,F , P,X) is easily seen to be also a quantum one (H,Ψ, A) by putting
H = L2(Ω,F , P ), Ψ = 1l and A = MX the operator of multiplication by X . The
(quantum) distribution of A is then the same as the (classical) distribution of X .

Conversely, given a quantum triplet (H,Ψ, A), then by the spectral theorem
the operator A can be represented as a multiplication operator on some measured
space (by diagonalization).

Where does the difference lie? When considering two non commuting observ-
ables on H (for example P,Q on L2(IR)), then each of them is a classical random
variable, but on its own probability space (they cannot be diagonalized simultane-
ously). We have put together two classical random variables which have nothing to
do together, in a same context. We have not stick the together by declaring them
independant, there is a dependency ([Q,P ] = iI) which has some consequences
(uncertainty principle for example) which cannot be expressed in classical terms.

This is to say that what quantum mechanics teaches us is that the observables,
under measurement, behave as true random variables, but each one with its own
random, and that their interdependency cannot be expressed in a simpler way
than the axioms of quantum mechanics.

It is then not a surprise that adding two observables which do not commute
we obtain a distribution which has nothing to do with the convolution of their
respective distributions. This is the example above. One also obtains a surprising
one with P 2 +Q2 (exercise).
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3.5 The CCR algebra

We now denote by W (f) the Weyl operator W(I,f), f ∈ H.

Theorem 3.14 – Let K be any (algebraic) subspace of a Hilbert space H. There
exists a C∗-algebra, denoted CCR(K) of operators on Γ(H), unique up to isomor-
phism, generated by nonzero elements W (f), f ∈ K, such that

W (f)∗ = W (−f) for all f ∈ K
W (f)W (g) = W (f + g)e−i=< f , g > for all f, g ∈ K.

Proof

The existence of a C∗-algebra satisfying the two conditions is obvious. It
suffices to consider the C∗-algebra generated by the Weyl operators W (f), f ∈ K
of Γ(H).

We now give the proof of uniqueness but it can omited by the reader as it
makes use of tools that are not pertinent for us.

Put b(f, g) = exp(−i=<f , g >/2) for all f, g ∈ K. For every F ∈ `2(K) put

(Rb(g)F )(f) = b(f, g)F (f + g)

(R(g)F )(f) = F (f + g).

then R is a unitary representation of the additive abelian group K in `2(K) and
Rb is also a unitary representation, but up to a multiplier b.

Assume we have U1 and U2, two CCR algebras on K, with associated Weyl
elements Wi, i = 1, 2. Assume they are faithfully represented in H1 and H2. On
the space `2(K;Hi) = `2(K) ⊗Hi we put

((Wi ×R)(g)Ψ)(f) = Wi(g)Ψ(f + g).

Finally, define Ui, unitary operator on `2(K;Hi) by

(UiΨ)(f) = Wi(f)Ψ(f).

Then a simple computation proves that

Ui(Wi ×R)(g)U∗
i = Ii ⊗Rb(g).

If Bi denotes the C∗-algebra generated by {(Wi ×R)(g); g ∈ K}, then there exists
a ∗-isomorphism τ from B1 to B2 such that

τ((W1 ×R)(g)) = (W2 ×R)(g).

Thus it would be sufficient now to find ∗-isomorphisms τi from Ui to Bi such that

τi(Wi(g)) = (Wi ×R)(g).

Now set W = Wi. It suffices to show that∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λi(W ×R)(fi)

∣∣∣∣∣

∣∣∣∣∣ =
∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λiW (fi)

∣∣∣∣∣

∣∣∣∣∣

17



for all λi ∈ C, fi ∈ K.
The representation W ×R is, via Fourier transform on `2(K), unitary equiv-

alent to the representation W × R̂ on `2(K̂,H) defined by

((W × R̂)(g)Ψ)(χ) = W (g)χ(g)Ψ(χ), χ ∈ K̂
and hence ∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λi(W ×R)(fi)

∣∣∣∣∣

∣∣∣∣∣ = sup
χ∈K̂

∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λiχ(fi)W (fi)

∣∣∣∣∣

∣∣∣∣∣ .

The set of characters {χg} on K of the form χg(f) = b(f, g)2 is dense in K̂ for it
is a subgroup with annihilator zero.

Note that χg(f)W (f) = W (g)W (f)W (g)∗, thus∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λi(W ×R)(fi)

∣∣∣∣∣

∣∣∣∣∣ = sup
g∈K

∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λiχg(fi)W (fi)

∣∣∣∣∣

∣∣∣∣∣

= sup
g∈K

∣∣∣∣∣

∣∣∣∣∣W (g)
n∑

i=1

λiW (fi)W (g)∗
∣∣∣∣∣

∣∣∣∣∣

=

∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

λiW (fi)

∣∣∣∣∣

∣∣∣∣∣ .

Proposition 3.15 – Let K ⊂ H be a subspace of H. It follows that CCR(K) =
CCR(H) if and only if K = H.

Proof

If K 6= H, then consider the representation of CCR(H) on `2(H) defined by

(W (g)F )(f) = b(f, g)F (f + g)

with the same notation as in the proof of uniqueness in the above theorem. If
g ∈ H \ K then((

W (g) −
n∑

i=1

λiW (gi)

)
F

)
(f) = b(f, g)

(
F (f + g) +

−
n∑

i=1

λib(f, gi − g)F (f + gi)

)
.

If F is supported by K then∣∣∣∣∣

∣∣∣∣∣

(
W (g) −

n∑

i=1

λiW (gi)

)
F

∣∣∣∣∣

∣∣∣∣∣ ≥ ||F ||

for the vector f 7→ F (f + g) is orthogonal to each of the vectors f 7→ b(f, gi −
g)F (f + g − i).

Therefore
inf

A∈CCR(K)
||W (g) −A|| ≥ 1

and hence W (g) 6∈ CCR(K).
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