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Abstract

This paper answers important questions raised by the recent de-
scription, by Attal, of a robust and explicit method to approximate
basic objects of quantum stochastic calculus on bosonic Fock space by
analogues on the state space of quantum spin chains. The existence of
that method justifies a detailed investigation of discrete-time quantum
stochastic calculus. Here we fully define and study that theory and
obtain in particular a discrete-time quantum Itô formula, which one
can see as summarizing the commutation relations of Pauli matrices.

An apparent flaw in that approximation method is the difference
in the quantum Itô formulas, discrete and continuous, which suggests
that the discrete quantum stochastic calculus differs fundamentally
from the continuous one and is therefore not a suitable object to ap-
proximate subtle phenomena. We show that flaw is only apparent by
proving that the continuous-time quantum Itô formula is actually a
consequence of its discrete-time counterpart. 1

Introduction

From an early stage in the development of the theory of quantum stochastic
calculus on bosonic Fock space, simpler discrete-time versions based on toy
Fock spaces have been considered as a source of inspiration, but only by
formal analogy; for example, such ideas undermine the presentation of the

1Keywords: quantum probability, quantum stochastic integrals, Fock spaces, toy Fock
space, quantum Itô formula
AMS classification:81S25, 60H05
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field in [Mey]. Yet it was not believed the analogy could be upgraded to a
useful tool.

The recent paper [At3] by Attal showed such beliefs wrong. That paper
describes a completely explicit realization of toy Fock space TΦ as a sub-
space of the usual Fock space Φ = Γsym(L2 (R+)) and similarly fundamental
noises on TΦ are expressed in terms of increments of quantum noises on Φ.
These realizations depend on some scale; the interesting property here is that,
when that scale goes to zero, these objects approximate their continuous-time
counterparts. The simplicity of the method is surprising, but it should be
remarked that its discovery relies heavily on the picturesque abstract Itô cal-
culus description of Fock space (see [Mey] or [At2]). Discrete-time objects are
naturally simpler than continuous-time ones; here the simplification is a ma-
jor one since, as should be clear from the exposition in this paper, it reduces
many problems to finite-dimensional ones. There is therefore reasonable
hope that continous-time problems can be answered via the approximation
scheme.

The goal of this paper is to pave the road for systematic application of
this program. The first step is a rigorous treatment of discrete-time quantum
stochastic calculus. The state space for that theory is an infinite-dimensional
toy Fock space; such a space naturally appears as state space of a chain of
two-levels atoms, and in particular, our fundamental noises a+, a−, a◦, a× are
just linear combinations of the usual Pauli matrices. The most natural defi-
nitions of integrals

∑
hia

ε
i , ε = +, ◦,−,×, turn out to be discrete-time tran-

scriptions of the objects of the Attal-Lindsay theory of quantum stochastic
integration (see [A-L]), which extends the earlier versions (developed suc-
cessively in [H-P], [B-L], [A-M]). This means both that an important role
is played by discrete-time abstract Itô calculus and that our integrals enjoy
many properties.

Another issue which we address here is the lack, in Attal’s paper, of a re-
lation between a quantum stochastic integral on Fock space and the integral
representation of its discrete-time approximation. Such a representation ex-
ists under fairly general assumptions, as was proved by the author in [Pa1].
What’s more, these representations are explicit and expressed in terms of
the discrete-time abstract Itô calculus. Here we relate the discrete-time Itô
calculus to its continuous-time counterpart; this allows us to express the in-
tegral representation of the approximation of a quantum stochastic integral,
in terms of the original integrands.

Such calculations in turn allow us to answer a question which is a prob-
able reason why toy Fock approximation of Fock space quantum stochastic
calculus was not believed to be a relevant object. Let us describe that ques-
tion more precisely: on toy Fock space, there is, as we prove it, a quantum
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Itô formula describing the composition of two integrals∑
i∈N

hε
ia

ε
i

∑
i∈N

kη
i a

η
i =

∑
i∈N

hε
i (
∑
j<i

kη
j a

η
j )a

ε
i +
∑
i∈N

(
∑
j<i

hε
ja

ε
j)k

η
i a

η
i +

∑
i∈N

hε
ik

η
i a

ε.η
i ,

where aε.η is actually aεaη, so that it is given by the following table:

� − ◦ + ×
− 0 a− a×− a◦ a−

◦ 0 a◦ a+ a◦

+ a◦ 0 0 a+

× a− a◦ a+ a×

which, we recall, is a consequence of the Pauli matrices commutation rela-
tions. We call that table the discrete time Itô table. On the other hand, it
is known that on the Fock space, and under some analytical conditions, (see
[At1],[A-L], [A-M]) there is also an Itô formula, of similar form∫ ∞

0

Hε
t daε

t

∫ ∞

0

Kη
t daη

t =

∫ ∞

0

Hε
t (

∫ t

0

Kη
s daη

s)daε
t+

∫ ∞

0

(

∫ t

0

Hε
s daε

s)K
η
t daη

t +

∫ ∞

0

Hε
t K

η
t daε.η

t

for the continuous time integrals, but here daε.η is given by

� − ◦ + ×
− 0 da− da× 0
◦ 0 da◦ da+ 0
+ 0 0 0 0
× 0 0 0 0

which we call the continuous time Itô table.
From the slight difference in the two Itô tables it may seem that there exist

fundamental differences between discrete and continuous stochastic calculus.
Both in order to relieve the approximation scheme from this apparent defect
and to show its efficiency we will actually reprove the continuous-time Itô
formula from the discrete-time one and the approximation results – which,
we must note, do not depend on any composition formula.

This paper is organized as follows: in section one we develop a full theory
of quantum stochastic calculus on toy Fock space and recall the statement
of the theorem of representation as discrete quantum stochastic integrals
which we use in the sequel. In section two we recall Attal’s approximation
method, describe the relation between discrete and continuous-time abstract
Itô calculus and then compute the integral representations of approximations
of continuous-time quantum stochastic integrals; we will see that the form
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of the projections is not as trivial as one would expect. In section three we
recover the Itô formula with the associated continuous time Itô table from
our approximation scheme and the commutation relations for Pauli matrices.

For notational simplicity, this paper only describes the case of simple
toy Fock space. The case of higher multiplicity Fock spaces is a simple
consequence and is described in full detail in the author’s thesis [Pa2], which
the interested reader can consult for a general exposition of the applications
of the approximation method.

1 Stochastic calculus on toy Fock space

1.1 Definitions

Since our main goal is to reproduce as closely as possible the structure of
Fock space continuous calculus, we define many objects by analogy with the
continuous-time case. We therefore refer the reader to expositions of the
theory of quantum stochastic calculus using abstract Itô calculus, e.g. [A-M]
or [At2].

A basic property of the Fock space Φ = Γsym(L2 (R+)) is its Guichardet
interpretation that makes explicit a unitary equivalence with the space L2 (P)
of square-integrable functions over the set PR+ of finite subsets of R+ (see
section 2, [Gui], or the above references). Similarly, the toy Fock space
TΦ is most naturally defined as the antisymmetric Fock space over l2 (N).
Nevertheless, we define it at once by its “Guichardet form”. We denote by
P the set of finite subsets of N, that is, elements of P are either or the form
{i1, . . . , in} or the empty set ∅. The toy Fock space TΦ is then defined as the
space l2 (P) of square-integrable functions on the set P of finite subsets of
N, that is, TΦ is the space of all maps f : P 7→ C, such that∑

A∈P

|f(A)|2 < +∞,

When TΦ is seen as l2 (P), a natural basis arises, that of the indicators
1lA of elements A of P ; we will denote by XA these vectors, and by Ω the
vector X∅, called the vacuum vector. Every vector f ∈ TΦ thus admits an
orthogonal decomposition of the form

f =
∑
A∈P

f(A)XA.

The toy Fock space has an important property of tensor product de-
composition: for any partition ∪Nj of N, denote by TΦNj

the space l2(PNj
)
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where PNj
is the set of finite subsets of Nj; then TΦNj

can be identified with
a subspace of TΦ and one has the explicit isomorphism

TΦ =
⊗

j

TΦNj
,

where we identify any XA with
⊗

j XA∩Nj
. We will mainly consider cases

where the Nj’s are of the form {0, . . . , i−1} or {i, . . .}; we therefore introduce
the notations

TΦi = TΦ{0,...,i−1}, TΦ[i = TΦ{i,...}.

A particular family of elements of TΦ will be useful in the sequel: it is the
family of exponential vectors. To every u in l2 (N) we associate a function on
P by

e(u)(A) =
∏
i∈A

u(i) for A ∈ P,

and it can be seen to define a vector in TΦ by the inequality

n!
∑
|A|=n

∣∣∣∏
i∈A

|u(i)|
∣∣∣2≤ (∑

i≥0

|u(i)|2
)n

,

but this yields only ‖e(u)‖2 ≤ e‖u‖
2

and no (simple) formula for < e(u), e(v) >.
The family of exponential vectors is total but contrarily to the case of ex-
ponentials of the Fock space Γsym(L2 (R+)), a family of exponentials of dis-
tinct functions is not necessarily linearly independent: consider for exam-
ple the case of u = (0, . . .), v = (1, 0, . . .) and w = (2, 0, . . .), for which
e(u)− 2e(v) + e(w) = 0.

Note that the tensor decomposition of an exponential vector is simple:
any e(u) can be decomposed for example as e(ui) ⊗ e(u[i) where ui is the
restriction of u to {0, . . . , i− 1} and u[i is the restriction of u to {i, i+1 . . .}.

Fundamental operators on TΦ One defines for all i ∈ N three operators
by their action on the basis {XA}:

a+
i XA =

{
XA∪{i} if i 6∈ A

0 otherwise,

a−i XA =

{
XA\{i} if i ∈ A

0 otherwise,

a◦i XA =

{
XA if i ∈ A
0 otherwise,

(1.1)
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These operators are closable, of bounded closures (with norm 1), and we
will keep the same notations for their closures, which we call operators of
creation (a+), annihilation (a−) and conservation (a◦). Besides, one should
remark that they are of the form Id ⊗ aε

i ⊗ Id in TΦi ⊗ TΦ{i} ⊗ TΦ[i+1. For
notational simplicity we define for all i the operator a×i to be the identity
operator.

Relations with Pauli matrices A more physical description of our frame-
work would start with the following: quantum mechanically speaking, a par-
ticle with, for example, two energy levels should be described by the complex
vector space of dimension two: C2. The customary description for the most
important operators of position and momentum, which we denote for a few
lines by Q and P respectively, is

Q =

(
0 1
1 0

)
P =

(
0 −i
i 0

)
and Q,P satisfy the commutation relation

QP − PQ = 2i Id.

The *-algebra generated by Q and P is the whole of the algebra of complex
2×2 matrices; that algebra is also linearly generated by Id, Q, P and QP . If
we denote for consistency Q, P , −iQP by σx, σy, σz respectively, we obtain
the famous Pauli matrices. We therefore have a basis Id, σx, σy, σz with
particular algebraic relations.

Now if we denote by Ω, X the canonical basis

(
1
0

)
,

(
0
1

)
, there is a

more natural basis for the vector space of 2× 2 matrices, that is, Id, a+, a−,
a◦ with

a+Ω = X
a+X = 0

a−Ω = 0
a−X = Ω

a◦Ω = 0
a◦X = X,

(1.2)

and we have the relations

a+ =
1

2
(σx − iσy) a− =

1

2
(σx + iσy) a◦ =

1

2
(Id− σz), (1.3)

so that the commutation relations for a+, a−, a◦ are straightforward con-
sequences of those for Pauli matrices. One may wonder why we did not
choose the fourth operator of the canonical basis of linear operators on C2

instead of the identity; it is only in order to stay as close as can be to the
continuous-time case.
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Now our toy Fock space is simply the state space for a spin chain, that is,
an infinity of distinguishable particles with two energy levels; the operators
aε

i we consider are the natural ampliations of the above operators aε, ε =
+,−, ◦. More precisely, for any i, aε

i is Id ⊗ aε ⊗ Id in the decomposition
TΦ = TΦi ⊗ TΦ{i} ⊗ TΦ(i. The relation of the objects we consider with the
physically more customary Pauli matrices is therefore clear.

1.2 Abstract Itô calculus on TΦ

The main difference between Itô calculus on Toy Fock space and on regular
Fock space is that predictability should replace adaptability for a simpler
transcription of the classical results. Therefore we define the (everywhere
defined) predictable projection and gradient at time i ∈ N, of a vector f in
TΦ by

pif(M) = 1lM<i f(M)

dif(M) = 1lM<i f(M ∪ {i})
where 1lM<i is the indicator of the event denoted by M < i which is “j < i
for all j in M” (note that ∅ < i for all i).

The above operators are called predictable because for any f ∈ TΦ, both
(pif)i≥0 and (dif)i≥0 are predictable processes, that is, are sequences of vec-
tors such that the i-th vector belongs to TΦi. In contrast with the continuous
time case, there is no definition problem for the di’s as individual operators.
We will write, to simplify notations,

dA = di1 . . . din if A = {i1 < · · · < in},

and
d∅ = Id.

The other essential tool for quantum Itô calculus is the abstract Itô inte-
gral:

Definition 1.1 A predictable process of vectors (fi)i≥0 is said to be Itô-
integrable if ∑

‖fi‖2 < +∞.

One then defines its Itô integral as the sum of mutually orthogonal terms∑
i

fi Xi.

It can be alternatively described as the vector I(f) such that

I(f)(M) = f∨M(M − ∨M) and I(f)(∅) = 0,

where ∨M denotes the largest element in the n-uple M .
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Let us stress the fact that in fi Xi the product is just a tensor product
in TΦi ⊗ TΦ[i thanks to the previsiblity of the process: fi belongs to TΦi,
Xi belongs to TΦ[i. The condition for the alternative definition to actually
define a square-integrable function of A is easily seen to be the above Itô-
integrability condition.

Substituting the equality dif =
∑

A<i f(A + i)XA in the chaotic decom-
position of a vector f yields the following results:

Proposition 1.2 Any f ∈ TΦ admits a unique decomposition of the form

f = f(∅)Ω +
∑
i∈N

dif Xi

and one has the associated isometry formula:

‖f‖2 = |f(∅)|2 +
∑
i∈N

‖dif‖2.

This decomposition is called the predictable representation of f.

The isometry formula polarizes to the following adjoint relation:

〈
∑
i∈N

fiXi, g〉 =
∑
i∈N

〈fi, dig〉

for all g ∈ TΦ and all Itô-integrable process (fi)i≥0 of vectors of TΦ.

1.3 Quantum stochastic integration on TΦ

First of all we have to define predictability of an operator on TΦ; the following
definition is a natural extension of the classical predictability, in the sense
that it is satisfied by a “quantized” i-predictable random variable (for the
relation between quantum and classical stochastic calculus see [At2]).

Definition 1.3 An operator is i-predictable if it is of the form h ⊗ Id in
TΦi ⊗ TΦ[i.

It is clear from this definition that an i-predictable operator is bounded
and therefore can be extended to an everywhere defined operator of the
above form. We will therefore always assume predictable operators to be
everywhere defined and bounded.

The following lemma can be deduced from the former definition and links
our definition with a more algebraic approach which would be a transcription
of Attal and Lindsay’s definition in [A-L]:
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Lemma 1.4 A bounded operator h on TΦ is i-predictable if and only if it
satisfies the following conditions:

• Its domain Dom h is stable by pi and by all operators dj, j ≥ i.

• The following equalities hold on Dom h:

hpi = pih and

hdj = djh for all j ≥ i.

Proof.
It is clear that an i-predictable operator satisfies the above properties. Con-
versely, one can prove that the commutation relations in the statement of
the lemma are equivalent to the relation

hf(M) = (hpidM∩{i,...})f(M ∩ {0, . . . , i− 1}) (1.4)

for all f in Dom h, all M in P . From this relation one can then show that,
for any vector of the form f ⊗ g in TΦi ⊗ TΦ[i, one has f ∈ Dom h and
h(f ⊗ g) = (hf) ⊗ g. The boundedness of h implies that it is of the form
h⊗ Id.

�

We will now define quantum stochastic integrals in discrete time; first
remark that we wish these integrals to give analogues of predictable repre-
sentations for operators. This means that we want integrals to be formally
of the form

∑
i hi ai, where ai denotes an “elementary action at time i”.

What’s more, we wish to be able to consider the classical case where hi, ai

are multiplication operators, and yet the composition hiai should involve no
probabilistic interpretation, so that the operators hi and ai should be tensor-
product independent and the composition hiai be a tensor decomposition in
TΦi ⊗ TΦ{i}. We have remarked already that a+

i , a−i , a◦i , Id, is a basis for
TΦ{i}; for all these reasons we will consider integrals as series of the form∑

i h
ε
ia

ε
i where every hε

i is i-predictable.
We call predictable process a process (hi)i∈N of operators, such that every

hi is i-predictable.

Definition 1.5 Let (hε
i )i∈N be a predictable process. For any ε in {+,−, ◦,×},

we define the integral of (hε
i )i∈N with respect to aε, as the operator series∑

i∈N hε
ia

ε
i where this series means that
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• its domain Dom
∑

i h
ε
ia

ε
i is the set of all f ∈ TΦ such that{

for all M ∈ P ,
∑

i∈N |hε
ia

ε
if(M)| < +∞

M 7→
∑

i∈N hε
ia

ε
if(M) is square-integrable.

• the vector
∑

i h
ε
ia

ε
if is defined by

(
∑
i∈N

hε
ia

ε
if)(M) =

∑
i∈N

(hε
ia

ε
if(M))

for all M in P.

For some of the results to come we will need more restrictive summability
assumptions; we therefore define restricted integrals :

Definition 1.6 Let (hε
i )i∈N be a predictable process. For any ε in {+,−, ◦,×},

we define the restricted integral
∑R

i∈N hε
ia

ε
i of (hε

i )i∈N with respect to aε, as the
restriction of the integral

∑
i∈N hε

ia
ε
i to the set of vectors f in Dom

∑
i h

ε
ia

ε
i

which are such that
M 7→

∑
i∈N

|hε
ia

ε
if(M)|

is a square-integrable function on P.

We have mentioned already the relation between the above described,
natural definitions of integrals and discrete-time analogues of Attal and Lind-
say’s algebraic definitions of quantum stochastic integrals. One can see from
the definitions of operators aε, ε = +, ◦,−, that

• the quantity a+
i f(M) is null if i 6∈ M and if i ∈ M then a+

i f(M) =
f(M \ {i}). Therefore we have for all M in P ,∑

i

hia
+
i f(M) =

∑
i∈M

hif(M \ {i}),

and the action of
∑

i hia
+
i gives a “discrete Skorohod integral” of hif .

• the adapted gradient di equals pia
−
i , so that for all M inP ,∑

i

hia
−
i f(M) =

∑
i6∈M

hif(M ∪ {i}),

• the above two remarks and the equality a◦i = a+
i a−i imply that, for all

M in P , ∑
i

hia
◦
i f(M) =

∑
i∈M

hif(M)
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and in each of these equalities it is equivalent for one expression or for the
other to define a summable series (in the case where ε = −) and to define an
element of l2 (P). It is therefore clear that our integrals (including the case
ε = ×) are exactly transcriptions of Attal and Lindsay’s integrals as defined
in [A-L]; in a similar way, the restricted integrals we defined are analogues
of their restricted integrals.

In particular these integrals handle just like Attal and Lindsay’s, except
that, thanks to the discrete-time framework, the integrands hi are bounded
so that one of the domain conditions disappears; yet it is, of all conditions,
the one least intrinsic to the integral. We take advantage of these analogies
to state a few properties of these integrals and refer the reader to the proofs
in [A-L] instead of reproducing rather tedious computations. Of the proper-
ties we state here, the first is a discrete-time Hudson-Parthasarathy formula
for the action of an integral on the exponential domain; the second is an
alternative characterization of restricted integrals, in Attal-Meyer form. The
third is the famous Itô formula which gives the integral representation for
the composition of two stochastic integrals.

Proposition 1.7 (Hudson-Parthasarathy formulas) Let (hi)i≥0 be a pre-
dictable process, let ε ∈ {+, ◦,−,×} and assume an exponential vector e(u)
to be in the domain of the restricted integral

∑
i
Rhε

ia
ε
i . Then for all v in l2 (N)

one has

〈e(u),
∑
i∈N

h+
i a+

i e(v)〉 =
∑
i∈N

u(i) 〈e(u1l6=i), h
+
i e(v1l6=i)〉 if ε = +

〈e(u),
∑
i∈N

h−i a−i e(v)〉 =
∑
i∈N

v(i) 〈e(u1l6=i), h
−
i e(v1l6=i)〉 if ε = −

〈e(u),
∑
i∈N

h◦i a
◦
i e(v)〉 =

∑
i∈N

u(i)v(i)〈e(u1l 6=i), h
◦
i e(v1l6=i)〉 if ε = ◦

〈e(u),
∑
i∈N

h×i a×i e(v)〉 =
∑
i∈N

〈e(u), h×i e(v)〉 if ε = ×

and every one of the above series is summable. Here u1l6=i (respectively v1l 6=i)
represents the sequence which is equal to u (respectively to v), except for the
i-th term, which is null.

The following characterization for restricted integrals can be a most useful
tool, especially as it very nicely summarizes the domain conditions for an
integral to be defined.

Proposition 1.8 (Attal-Meyer characterization) Let (hε
i )i∈N be four pre-

dictable processes, ε = +, ◦,−,× ; the operator
∑∑R

i∈N hε
ia

ε
i is the maximal
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(in the sense of domains) operator h satisfying

hf =
∑
i∈N

hidif Xi +
∑
i∈N

h+
i pif Xi +

∑
i∈N

h−i dif +
∑
i∈N

h◦i dif Xi +
∑
i∈N

h×i pif,

where hi =
∑

j<i h
ε
ja

ε
j and where these equalities mean that

• a vector f is in the domain of h if and only if hidif is Itô-integrable
and the other series are Itô-integrable or summable in norm (depending
on ε),

• equality holds.

This characterization turns out to be very useful in many proofs; for ex-
ample the proof of the following proposition, which seems to reduce to a
simple permutation of two summations, is made quite painful because of do-
main considerations. Proposition 1.8 summarizes very nicely these problems
so that the proof becomes a (even then tedious) play with commutation rela-
tions between integrals and operators pi, di. Notice that in contrast with the
continuous-time Attal-Meyer definition (see section two), the above is not an
implicit definition via a kind of integral equation; thanks to the discrete-time
summation, an integral stopped at time i is readily defined as a finite sum
of operators.

The next theorem expresses the composition of two quantum stochas-
tic integrals in integral form. Note that, in the following proposition, the
considered integrals are restricted ones.

Theorem 1.9 (Itô formula) Let ε and η be two elements of {+, ◦,−,×}
and (hε

i )i∈N and (kη
i )i∈N be two predictable operator processes on TΦ. Then

the operator∑
i∈N

Rhia
ε
i

∑
i∈N

Rkia
η
i −

∑
i∈N

Rhε
i ki a

ε
i −

∑
i∈N

Rhik
η
i a

η
i −

∑
i∈N

Rhε
ik

η
i a

ε.η
i , (1.5)

is a restriction of the zero process; the symbol aε.η is given by the following
table

� − ◦ + ×
− 0 a− a×− a◦ a−

◦ 0 a◦ a+ a◦

+ a◦ 0 0 a+

× a− a◦ a+ a×

(1.6)

so that aε.η is simply aεaη.

The comparison between this theorem and its continuous-time analogue will
be the subject of section three.
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1.4 Integral representations of operators

Here we simply recall results from [Pa1]. In that paper we characterized
operators on TΦ which can be represented as quantum stochastic integrals,
and obtained explicit formulas for the integrands. For our purposes here, the
most useful result is the following:

Theorem 1.10 Let h be an operator on TΦ such that all vectors XA belong
to Dom h ∩ Dom h∗. Then the integral operator with integrands

h+
i pi = dihpi

h−i pi = piha+
i pi

h◦i pi = diha+
i pi − pihpi

(1.7)

and λ = 〈Ω, hΩ〉 is such that

h− (λ +
∑
i≥0

h+
i a+

i +
∑
i≥0

h−i a−i +
∑
i≥0

h◦i a
◦
i )

is a restriction of the zero process and the set {XA, A ∈ P} is in its domain.

This theorem is not quite enough if we want to consider predictable pro-
cesses of operators, that is, sequences (hi)i of operators such that hi is i-
predictable, and represent such a process by

hi =
∑

ε=+,◦,−,×

∑
j<i

hε
ja

ε
j .

Note that the presence of an integral with respect to a× is unavoidable if we
want the hε

j ’s to be independent of i. Minor adaptations of the above result
allow us to give the following description of representations of processes;
moreover, the boundedness of predictable operators simplifies the analytical
problems:

Corollary 1.11 Let (hj)j∈N be a predictable process of operators on TΦ.
Then for every j the operator hj is equal to

λ +
∑
i<j

h+
i a+

i +
∑
i<j

h−i a◦i +
∑
i<j

h◦i a
◦
i +

∑
i<j

h×i a×i

where 

h+
i pi = dihi+1pi

h−i pi = pihi+1a
+
i pi

h◦i pi = dihi+1a
+
i pi − pihi+1pi

h×i pi = pi(hi+1 − hi)pi

(1.8)
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and λ = 〈Ω, h0Ω〉.

2 Approximations of continuous-time integrals

2.1 A reminder on quantum stochastic calculus

We shall here recall briefly some necessary definitions and results from quan-
tum stochastic calculus on regular Fock space. Again we refer the reader
to [Mey] or [At2] for details on the general framework and on the definition
given here of quantum stochastic integrals.

First of all, thanks to Guichardet’s interpretation we can simply define
the Fock space as Φ = L2 (P), i.e. the set of functions on the set P of finite
subsets of R+. More precisely, we equip P with a measured space structure
using the fact that it is the union of the set of n-tuples and of the empty set.
On n-tuples we simply consider n-th dimensional Borel sets and Lebesgue
measure; the empty set is defined to be an atom of mass one. The canonical
variable will be denoted by σ, and the infinitesimal volume element by dσ.
Note that we denote the sets of finite subsets of N or R+ by the same symbol
P : the context should always prevent confusion.

The elements of Φ can be seen as the functions, defined on all increasing
simplices Σn = {t1 < · · · < tn} of R+, such that

∑
n

∫
Σn

|f(t1, · · · , tn)|2 dt1 · · · dtn < +∞. (2.1)

It is clear from this chaotic representation that Φ is isomorphic to the chaos
space of any normal martingale (see [Mey] or [At2] and the references therein)
e.g. the Brownian motion, the compensated Poisson process, the Azéma
martingales, etc. We shall label as Φt the analogous set of functions defined
on simplices of [0, t]; Φt will be canonically included in Φ.

A particular set of elements in Φ is relevant, the exponential domain: an
exponential over a function u ∈ L2 (R+) is defined by

E(u)(σ) =
∏
s∈σ

u(s). (2.2)

It is an element of Φ, as one can see that ‖E(u)‖2 = e‖u‖
2

. Besides, the
exponential domain E(L2 (R+)) is total in Φ and exponentials are easy to
handle so that it is a domain of choice for many proofs.
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Abstract Itô calculus Let us consider for all t the element χt of Φ defined
as follows:

χt(σ) =

{
1ls<t if σ = {s}
0 otherwise.

The isomorphism from Φ to any chaos space sends χt to the Brownian motion
at time t when onto the chaos space of Brownian motion, to the Poisson
process at time t when onto the chaos space of Poisson process, etc. One can
define an integral of adapted processes (ft)t≥0 of elements of Φ (that is, such
that ft ∈ Φt for all t), with respect to the curve (χt)t≥0, denoted

I(f) =

∫
ft dχt

and satisfying

‖I(f)‖2 =

∫
R+

‖ft‖2dt, (2.3)

as soon as the latter real-valued integral is finite; the complete construction
uses the isometry property (2.3) for step processes. This integral is called
the abstract Itô integral.

There is an alternate construction for this integral:

I(f)(σ) = f∨σ(σ−) (2.4)

where ∨σ is the largest element in σ and σ− = σ \ {∨σ}. The natural
conditions for this to be well defined can be seen to be the same as above,
namely the square-integrability of the process (‖ft‖)t≥0.

Let us define the two fundamental operators of abstract Itô calculus on Φ:

• the adapted projection Pt is defined for all t, as the orthogonal projec-
tion onto Φt. Explicitly, for any f ∈ Φ,

Ptf(σ) = 1lσ<tf(σ); (2.5)

• the adapted gradient is defined by

Dtf(σ) = 1lσ<tf(σ ∪ {t}). (2.6)

As in the discrete-time case, “σ < t” means “s < t for all s ∈ σ”.
Substituting (2.6) in (2.4) yields immediately the following analogues to

Proposition 1.2:

f = f(∅) +

∫
Dtf dχt (2.7)
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and

‖f‖2 = |f(∅)|2 +

∫
‖Dtf‖2dt. (2.8)

Now notice that we have not been precise in our definition of the operators
Dt; actually it is quite ill-defined in the sense that an individual Dt is not a
well-defined operator. All one can say is, thanks to formula (2.8), that for
any f , Dtf is defined for almost all t.

Quantum stochastic integrals We shall here define integrals∫ ∞

0

Hsdaε
s

with respect to the three quantum noises da+, da◦, da− and to time dt, which
we denote by da× for simplicity.

The heuristics of the Attal-Meyer quantum stochastic calculus, which
we present in a simplified way, derives from the fact that the noises, which
will turn out to be differentials of continuous-time fundamental operators,
should act just like the fundamental operators of toy Fock space (compare
with (1.1)):

• any daε
t acts only on Φ[t,t+dt], which from (2.7) can be seen as “gener-

ated” by Ω and dχt and

• the daε
t are given by the following table:

da+
t Ω = dχt

da+
t dχt = 0

da−t Ω = 0
da−t dχt = dt Ω

da◦t Ω = 0
da◦t dχt = dχt

da×t Ω = dt Ω
da×t dχt = 0.

These heuristics allow us to define integrals
∫

Hε
sdaε

s for adapted pro-
cesses (Hε

s )s≥0, that is, processes of operators such that for almost all s, all
f ∈ Dom Hs,

• the vectors Psf and Duf belong to Dom Hε
s for almost all u ≥ s

• the equalities Hε
sPsf = PsH

ε
sf and Hε

sDuf = DuH
ε
sf hold for almost

all u ≥ s.

In that case, a formal computation (see [A-M] or [Mey]) leads us to give
the following definition: the integral

∑
ε=+,◦,−

∫∞
0

Hε
sdaε

s is defined as the
only operator H which satisfies the following equality:

Hf =

∫ ∞

0

HsDsfdχs +

∫ ∞

0

H+
s Psfdχs +

∫ ∞

0

H−
s Dsfds +

∫ ∞

0

H◦
s Dsfdχs

(2.9)
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with Hs = PsHPs. That is, f is in the common domain of the integrals if
and only if the right-hand-side is well defined and equality holds. One can
define an integral

∫ b

a
Hsdaε

s as the integral of the process equal to Hs for
s ∈ [a, b] and zero otherwise; one then notices that (2.9) holds equivalently
with Hs =

∫ s

0
Hε

r daε
r. We also define the integral of an adapted process

(H×
s )s≥0 as the strong integral

∫
H×

s ds. The operators aε
t are then defined

as the integrals
∫ t

0
daε

s in the above sense.
We give here as a corollary the formulas of Hudson and Parthasarathy,

which were the cornerstone of the first theory of quantum stochastic integra-
tion on Fock space (described in [H-P]).

Hudson-Parthasarathy formula Let us consider a quantum stochastic
integral H defined on the exponential domain (see (2.2)). Then the following
equality holds for all u, v ∈ L2 (R+), almost all t ∈ R+:

〈E(u) , HE(v)〉 =

∫ ∞

0

φ(s)〈E(u) , Hε
sE(v)〉ds (2.10)

where

φ(s) =


u(s) if ε = +
v(s) if ε = −

u(s)v(s) if ε = ◦
1 if ε = ×.

2.2 Explicit formulas for the projections of integrals

In this section we use the embedding of toy Fock space in regular Fock space
defined by Attal in [At3] and the formulas (1.7) to obtain the projection of an
integral operator in discrete time. Let us first recall the definitions of [At3]:
we denote by P the filter of partitions of R+ partially ordered by inclusion.
A generic element of P is denoted by S = {0 = t0 < t1 < · · · }, and its mesh
size by |S|. For any S in P we define the following objects on Φ:

a−i = Id⊗
a−ti+1

− a−ti√
ti+1−ti

P (1) ⊗ Id

a+
i = Id⊗ P

(1)
i

a+
ti+1

− a+
ti√

ti+1−ti
⊗ Id

a◦i = Id⊗ P (1)(a◦ti+1
− a◦ti)P

(1) ⊗ Id,

where P (1) represents the projection on the chaos of order 1, and where the
tensor decomposition is meant in Φti⊗Φ[ti,ti+1]⊗Φ[ti+1

. The space TΦ(S) ⊂ Φ
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is defined as the closed subspace spanned by the vectors XA =
∏

i∈A Xi for
A ∈ P ; it is isomorphic to the toy Fock space, and this isomorphism sends
restrictions of the above operators aε

i to the operators defined in the previous
section. We denote by ES the projection on the subspace TΦ(S).

The main relations for our computations are given in the following lemma:

Lemma 2.1 Let us fix a given partition S = {0 = t0 < t1 < · · ·< tn < · · · }.
One has for all f ∈ Φ,

piESf = ESPtif,

diESf =
1√

ti+1−ti
ES

∫ ti+1

ti

PtiDtfdt,

and

ES

∫ ∞

0

ftdχt =
∑
i≥0

1√
ti+1−ti

ES

∫ ti+1

ti

Ptift dt Xi.

Proof.
The third equality is a consequence of the predictable representation property
on toy Fock space and of the second equality; the first is straightforward. We
therefore prove only the second one.

Since di = pia
−
i , one has:

diESf = pia
−
i ESf =

1√
ti+1−ti

ESPti((a
−
ti+1

− a−ti)f),

but

(a−ti+1
− a−ti)f =

∫ ∞

ti

(a−t∧ti+1
− a−ti)Dtf dχt +

∫ ti+1

ti

Dtfdt

by the Attal-Meyer formulas, so

diESf =
1√

ti+1−ti
piES(

∫ ti+1

ti

Dtfdt)

=
1√

ti+1−ti
ES(

∫ ti+1

ti

PtiDtfdt).

�

As a corollary, we obtain the following straightforward lemma:

Lemma 2.2 Let u belong to L2 (R+). The projection ESE(u) is again an
exponential vector in TΦ over the function ũ(i) = 1√

ti+1−ti

∫ ti+1

ti
u(s)ds. When

seen as a vector of Φ, it is not an exponential vector if u 6= 0, but one has
for all ti ≤ t < ti+1,

Dte(ũ) =
ũ(i)√
ti+1−ti

e(ũi).
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Now, if we want to apply Theorem 1.10 to approximations ESHES of
integrals H, we need to make some assumptions on these integrals.

(HD)
The integrals

∫ ∞

0

Hε
s daε

s and

∫ ∞

0

(Hε
s )
∗daε′ are well-defined

on E(L2 (R+)) and all its images by any ES .

Here ε′ is defined by +′ = − −′ = + ◦′ = ◦.

The case of ε = × will be treated later. The assumption (HD) implies
in particular, if we denote by H the integral

∫∞
0

Hs daε
s, that H∗ equals∫∞

0
(Hε

s )
∗daε′ on E(L2 (R+)) and all its projections by ES . It also implies

that the projections ESHES and ESH
∗ES are defined on all finite linear

combinations of XA’s. Indeed, by Lemma 2.2

ESE(1) = Ω

ESE(1l[ti,ti+1]) =
√

ti+1−ti Xi + Ω

ESE(1l[ti,ti+1]∪[tj ,tj+1]) =
√

ti+1−ti
√

tj+1−tj Xi,j+
√

ti+1−ti Xi+
√

tj+1−tj Xj+Ω

and so on. We therefore apply Theorem 1.10 to obtain the following:

Proposition 2.3 Let H =
∫

Hε
t daε

t be a quantum stochastic integral on Φ
that satisfies the assumptions (HD). Then ESHES has a representation as a
discrete quantum stochastic integral which holds at least on vectors {XA, A ∈
P} and the integrands h+

i , h−i , h◦i are given by:

• for ε = +,

h+
i =

1√
ti+1−ti

ES

∫ ti+1

ti

PtiH
+
t dt

h−i = 0

h◦i =
1

ti+1−ti
ES

∫ ti+1

ti

PtiH
+
t (a+

t − a+
ti
)dt

• for ε = −,

h+
i = 0

h−i =
1√

ti+1−ti
ES

∫ ti+1

ti

PtiH
−
t dt

h◦i =
1

ti+1−ti
ES

∫ ti+1

ti

Pti(a
−
t − a−ti)H

−
t dt
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• for ε = ◦,

h+
i = 0

h−i = 0

h◦i =
1

ti+1−ti
ES

∫ ti+1

ti

PtiH
◦
t dt

where the equalities are over TΦi (considering, for the right-hand-side, TΦi

as a subspace of Φti) and where all operator integrals are in the strong sense.
In the case where ε = ◦, the integral representation has the exponential

domain of TΦ in its restricted domain.

Remarks:

• note that for any s < t, (a+
t −a+

s )Ps is bounded with norm
√

t− s since,
on Φs, (a+

t −a+
s ) is simply multiplication by χt−χs. As a consequence,

Ps(a
−
t − a−s ) is also bounded on the exponential domain.

• It is rather disappointing that the discrete-time integrals are not defined
on a larger space, for example on the exponential domain of TΦ in the
case where ε = + or −. Let us discuss this phenomenon: notice first
that, in any case,

h+
i a+

i + h−i a−i + h◦i a
◦
i = ES

∫ ti+1

ti

Hε
s daε

sES .

Denote Hi =
∫ ti+1

ti
Hε

s aε
s. For all f ∈ Dom h, all A ∈ P , one has∑

i

|hε
ia

ε
if(A)| < +∞ and

∑
i

|h◦i a◦i f(A)| < +∞, (2.11)

so that the problems will arise from square-summability over A in P .
To prove the above claim (2.11), notice first that it is straightforward
when ε = + (the sum is finite) and continue with ε = −. The sum∑

i |ESHiESf(A)| is smaller than

∑
i

1√
(ti1+1−ti1) . . . (tin+1−tin)

∫ ti1+1

ti1

. . .

∫ tin+1

tin

|HiESf(s1, . . . , sn)| ds1 . . . dsn

(2.12)
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if A = {i1, . . . , in}. This is smaller than

(

∫ tin+1

tin

‖HsDsESf‖2 ds)1/2 +
∑

i

∫ ti+1

ti

∥∥H−
s DsESf

∥∥
which is finite. Besides, ESHiES is h−i a−i + h◦i a

◦
i and the condition∑

i |h◦i a◦i f(A)| is straightforward since only a finite number of terms in
the sum are nonzero and this implies the condition on

∑
i h

−
i a−i .

Then one has
∑

A∈P |
∑

i ESHiESf(A)|2 < +∞ since it is dominated

by ‖
∑

i HiESf‖2. Therefore one deduces that∑
A∈P

|
∑

i

(hε
ia

ε
i + h◦i a

◦
i )f(A)|2 < +∞, (2.13)

but there is no reason why one should have∑
A∈P

|
∑

i

h+
i a+

i f(A)|2 < +∞ and
∑
A∈P

|
∑

i

h◦i a
◦
i f(A)|2 < +∞;

choose for example ε = + and f = E(u) to see in detail what happens.
For ti ≤ t < ti+1 one has

Pte(ũ) = e(ũi) + ũ(i)e(ũi)
χt − χti

ti+1−ti
(2.14)

which implies (2.13) by the Attal-Meyer formulation but this does not
imply that∫ ∞

0

∥∥H+
t e(ũi)

∥∥2
dt +

∫ ∞

0

∥∥∥∥H+
t ũ(i)e(ũi)

χt − χti

ti+1−ti

∥∥∥∥2

dt < +∞.

One can on the other hand obtain the definiteness of the integral∑
i h

◦
i a

◦
i on the exponential domain from the fact that for ti ≤ t < ti+1,

ũ(i)√
ti+1−ti

H◦
t e(ũi) = H◦

t Dte(ũ).

The equality (2.14) is also the reason for the surprising presence of a a◦

integral in the projection of an integral with respect to aε when ε is + or −.
We prove now that that parasite integral vanishes in the limit; yet, since we
do not know if that integral is well-defined beyond the linear span of {XA, A ∈
P}, we have to prove that result on a subdomain of E(L2 (R+)) such that its
projections ES belong to that linear span. The set of exponential vectors of
square-integrable functions with compact support is such a subdomain.
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Lemma 2.4 Let H =
∫∞

0
Hs daε

s be an integral that satisfies the assumptions
(HD) with ε = + or −. Then the parasite a◦ integral which arises in the
projection ESHES vanishes, in the sense that the net(

ES
∑
i∈N

h◦i a
◦
i ES
)
S∈P

tends to zero in the w*-topology on the set of exponentials of functions with
compact support.

Proof.
Take for example ε = +; then one can see from the discrete Hudson--
Parthasarathy equation (Proposition 1.7) that

〈E(u), ES
∑

i

h◦i a
◦
i ESE(v)〉 =

∑
i

ũ(i)ṽ(i)〈e(ũ1l 6=i), h
◦
i e(ṽ1l 6=i)〉

=
∑

i

ũ(i)√
ti+1−ti

∫ ti+1

ti

〈e(ũi), H
+
t Pt(e(ṽi+1)− e(ṽi))〉 dt

=
∑

i

∫ ti+1

ti

〈DtESE(u), H+
t Pt(e(ṽi+1)− e(ṽi))〉.

Now, by the assumptions (HD) we know that∫ ∞

0

∥∥(H−
t )∗DtESE(u)

∥∥ dt < +∞

whereas ‖e(ṽi+1)− e(ṽi)‖ is of order ṽ(i), which is smaller than√∫ ti+1

ti

‖v(t)‖2dt

and converges to zero uniformly in i.

�

Proof of Proposition 2.3
Let us prove for example the case ε = +. Let us consider the action of
h+

i , h−i , h◦i on a vector XA with A < i. One has by (1.7) and Lemma 2.1,

h+
i XA = diESHXA

=
1√

ti+1−ti
ES

∫ ti+1

ti

PtiDtHXA dt
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and the Attal-Meyer equations yield DtHXA = H+
t XA, and we obtain the

expression of h+
i . The value of h−i is easily computed:

h−i XA = piESHa+
i XA

= ESPtiXA∪{i}

= 0,

because, again by straightforward application of the Attal-Meyer formula,

HXA∪{i} =

∫ ti+1

ti

Hs
XA√

ti+1−ti
dχs +

∫ ti+1

ti

H+
s XA

χs − χti√
ti+1−ti

dχs.

Finally,

h◦i XA = diESHa+
i XA − piESHXA

=
1√

ti+1−ti
ES

∫ ti+1

ti

PtiDtHXA∪{i} dt− ESPtiHXA.

From the above computation,

PtiDtHXA∪{i} =
1√

ti+1−ti
PtiHtXA +

1√
ti+1−ti

PtiH
+
t (XA(χt − χti));

now we have
PtiHtXA − PtiHXA = 0

for t ≥ ti and
H+

t (XA(χt − χti)) = H+
t (a+

t − a+
ti
)XA.

The proof is complete. The other two cases are treated exactly in the same
way. The definiteness of the restricted integral on the exponential domain
when ε = ◦ was proved in the discussion following the statement of Proposi-
tion 2.3.

�

Suppose now that we want to project an integral H =
∫

H×
s da×s ; it is pos-

sible to compute an integral representation for ESHES , but the coefficients
do not express simply in terms of (H×

t )t. The same is true if we compute
the integral representation of the process (ESHtiES)i. The reason is the fol-
lowing: the representation of H as

∫∞
0

H×
s ds is not unique; if we compute

projections according to our schemes, be it projections of the process or pro-
jections of the operator only, we compute an unique representation, that is,
we try to compute a representation with more information than the original
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one, so that one can not relate explicitly the coefficients of the projection
to the process (H×

s )s∈R+ . This is why it will be more convenient to take
a completely different approach to project integrals

∫∞
0

H×
s da×s . We only

state the following proposition, which shows an alternative way to project
integrals with respect to time and is proven immediately by an Attal-Meyer
argument:

Proposition 2.5 Let H =
∫ +∞

0
H×

s da×s be an integral in Φ which satisfies
the assumptions (HD). Then ESHES is equal on the exponential domain to
the restricted integral

∑
i≥1
R h

′×
i a×i , where

h
′×
i = ES

∫ ti

ti−1

H×
t dt ES .

We should emphasize here the fact that the representation given above is
not a contradiction to the formulas (1.8): it is just another consequence of
the fact that in discrete-time also, the representation of one operator h as
h =

∑
ε=+,◦,−,×

∑
i h

ε
ia

ε
i is not unique.

3 Convergence of the Itô table

3.1 A proof of the Itô formula by approximation

In this subsection we want to prove that the Itô formula for continuous-time
quantum stochastic integrals is a limit of the one for discrete-time integrals;
to achieve this we actually reprove the quantum Itô formula for regular semi-
martingales as defined in [At1], using nothing but our approximation scheme
and the Itô formula on toy Fock space. Throughout this section we will make
the following assumptions on the operator integrals

H =

∫ ∞

0

Hε
t daε

t :

(HS)


1. the integrands Hε

t are bounded operators such that t 7→ ‖Hε
t ‖ is:

• square-integrable if ε = + or −,
• integrable if ε = ×,
• essentially bounded if ε = ◦

2. H is a bounded operator on Φ.

Notice that these assumptions are those made for regular semimartingale
processes as defined in [At1].
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Let us fix the notations to be used in the rest of the paper: we will
consider two integrals

H =

∫ ∞

0

Hε
s daε

s et K =

∫ ∞

0

Kη
s daη

s

which satisfy the assumptions (HS); ε and η can take the values +,−, ◦
or×. The projections ESHES , ESKES will be denoted by h, k respectively.
In the case where ε or η is different from ×, the processes (hε

i )i∈N, (kη
i )i∈N

and (h◦i )i∈N, (k◦i )i∈N are as defined in Proposition 2.3; we will discuss again
later the case of ε = ×. If ε is + or − then we have seen that h is equal to

h =
∑

i

hε
ia

ε
i +
∑

i

h◦i a
◦
i ;

we then denote by h̃◦ the integral
∑

i h
◦
i a

◦
i which we will usually call the

“parasite” term. As before, hj will denote the integral stopped at time j

hj =
∑
i<j

hε
ia

ε
i +
∑
i<j

h◦i a
◦
i ;

and h̃◦j the integral

h̃◦j =
∑
i<j

h◦i a
◦
i .

The proof will be done in four steps. In the first step, we will discuss the
validity of obtained integrals. We show that they are valid in the restricted
sense on the whole of Fock space, when ε = +, ◦ or −. This will allow
us to apply the discrete Itô formula freely. To simplify further proofs, we
give an alternative description of the projection where ε = × integrals. In
the second step, we show that the unwanted a◦ integrals that appear when
projecting integrals with respect to a+ or a− vanish, as well as the terms
they create when two projections are composed. In the third step we prove
that, asymptotically, one can compute the composition of two projections
using the continuous Itô table. Last, we show that the remaining discrete-
time integrals obtained after composition do converge to the continuous-time
integrals we are looking for.

Validity of the discrete integrals
First let us assume that ε 6= ×. With such assumptions, it is straightforward
from general stochastic integration theory on Φ that H =

∫∞
0

Hε
t daε

t is the
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strong limit of the
∫ T

0
Hε

t daε
t as T goes to infinity, with uniform norm esti-

mates. As a consequence, H is the strong sum of all
∫ ti+1

ti
Hε

t daε
t and ESHES

is the strong sum of all

ES

∫ ti+1

ti

Hε
t dt ES = h+

i a+
i + h−i a−i + h◦i a

◦
i .

The following lemma, which will allow us to use full power of the Attal-Meyer
formulation, proves that the obtained integral representations are valid in the
restricted sense on the whole of TΦ.

Lemma 3.1 Let ε equal +,− or ◦ and the integral
∫∞

0
Hε

sdaε
s satisfy the

assumptions (HS). Then the integral
∑

i h
ε
ia

ε
i associated to ESHES has the

whole of TΦ for restricted domain.

Proof.
By the Attal-Meyer characterization of restricted integrals it is enough to
prove that for all f in Φ, the vector ESf of TΦ is such that

∑
i ‖hidiESf‖2

and
∑

i

∥∥h+
i piESf

∥∥2
,
∑

i

∥∥h−i diESf
∥∥ or

∑
i ‖h◦i diESf‖2, depending on ε, are

finite. This is obtained from the fact that ‖hi‖ and ‖h◦i ‖ are uniformly
bounded and that ∥∥h±i ∥∥2 ≤

∫ ti+1

ti

‖Hs‖2ds

is square-integrable.

�

Now let us consider the case when ε = ×. The representation of ESHES
given by Proposition 2.5 would eventually lead us to compare

∫ ti
ti−1

integrals

to
∫ ti+1

ti
integrals. To avoid this problem we give the following alternative

description:

Proposition 3.2 Let H =
∫∞

0
H×

s ds be an operator satisfying (HS). Then
ESHES is the strong limit on TΦ of the series

∑
i h

×
i a×i , where

h×i pi = ES

∫ ti+1

ti

PtiH
×
t dt ESpi.

Proof.
The series

∑
i h

×
i a×i has clearly TΦ as restricted domain by the Attal-Meyer

characterization. We are going to prove that, for all u in L2 (R+),

(
∑

i

h×i a×i −
∑

i

h′×i )ESE(u)
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converges to zero in norm. Since the considered operators are norm-bounded,
this will prove strong convergence of TΦ. The above quantity is∑

i≥0

h×i e(ũi)e(ũ[i)−
∑
i≥0

h′×i+1e(ũi+1)e(ũ[i+1)

=
∑

i

(
ES

∫ ti+1

ti

PtiH
×
t e(ũi) dt⊗ e(ũ[i)− ES

∫ ti+1

ti

H×
t e(ũi+1) dt⊗ e(ũ[i+1)

)
,

and replacing e(ũi), e(ũi+1) in the two integrals by Pte(ũ) creates an error
term which smaller than∑

i

|ũ(i)|
∫ ti+1

ti

∥∥H×
s

∥∥ ds ‖e(ũ)‖+
∑

i

|ũ(i + 1)|
∫ ti+1

ti

∥∥H×
s

∥∥ ds ‖e(ũ)‖ ,

so that it converges to zero. A similar estimate holds for the substitution of
e(ũ[i), e(ũ[i+1) by (Ω + χti+1

−χt/
√

ti+1−ti ũ(i))⊗ e(ũ[i+1). What we end up
with, after these substitutions, is

∑
i

ES

∫ ti+1

ti

(Pti − Id)H×
t Pte(ũ) dt.

This can be rewritten as

ES

∫ ∞

0

(Pti − Id)H×
t Pte(ũ) dt

where the i is actually a i(t). Now Lebesgue’s theorem applies and shows
that the above integral tends to zero with the mesh size of the partition.

�

Remark: notice that a projection ES
∫

H×
s da×s ES will, in our scheme, be

composed only with bounded operators. Besides, we will from now on only be
interested in weak convergences so that one can always consider adjoint rela-
tions. Because of that, we will systematically replace the projection ESHES
of an integral H =

∫
H×

s da×s by the series described in Proposition 3.2.

The vanishing of parasite terms
In this paragraph we show that the unwanted a◦ from the projection, as well
as the terms they induce after composition, vanish in the limit.
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Proposition 3.3 Let ε, η ∈ {+,−, ◦,×} and let H, K be two operator inte-
grals satisfying the assumptions (HS). Then the net(

ESHES ESKES − ES〈e(ũ) ,
∑

i

hε
ia

ε
i

∑
i

kη
i a

η
i ES

)
S∈P

tends to zero on the exponential domain in the w*-topology.

Proof.
If both ε and η are ◦, there is nothing to do but recall that ESHES and
ESKES converge strongly on Φ and are uniformly bounded in norm. If one
of ε, η is ×, the corresponding projection can be immediately replaced by
the integral with respect to a× thanks to the emphasized consequence of
Proposition 3.2.

To work out the other cases notice that

hk = ((h− h̃◦) + h̃◦)((k − k̃◦) + k̃◦) if ε and η are both + or −,

hk = ((h− h̃◦) + h̃◦)k if for example ε only is + or − .

Besides, h − h̃◦ =
∑

i h
ε
ia

ε
i , so that one only has to show that h̃◦k, hk◦ and

h◦k̃◦ tend to zero in our weak sense. Thanks to adjointness properties the
proof reduces to proving that

h̃◦k converges to zero for ε = −, + and any η (3.1)

and

h̃◦k̃◦ converges to zero when ε and η are both + or − (3.2)

where convergence is meant weakly on the exponential domain.
We first prove (3.1); for this let us state the simple estimate

‖h◦i e(ũi)‖ ≤
1√

ti+1−ti

∫ ti+1

ti

‖Hε
t ‖ dt ‖e(ũi)‖ , (3.3)

obtained by using the first remark after Proposition 2.3. This estimate im-
plies ∥∥∥h̃◦i e(ũi)

∥∥∥ ≤ ‖u‖

√∫ ∞

0

‖Hε
t ‖

2dt exp ‖u‖2/2 (3.4)

Observe that
〈e(ũ) , h̃◦ke(ṽ)〉 = 〈h̃◦

∗
e(ũ), ke(ṽ)〉

and that, since k = ESKES is bounded and (h̃◦)∗e(ũ) is uniformly bounded
by (3.4), one can replace e(ṽ) by anything which tends to it in norm with
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the mesh size |S|. One can approximate KE(v) by a linear combination of
exponential vectors; let us suppose for simplicity that KE(v) is approximated
by a single vector E(w). Then, since

‖ke(ṽ)− e(w̃)‖ = ‖ESE(w)− ESKESE(v)‖
≤ ‖ESE(w)− ESKE(v)‖+ ‖ESKE(v)− ESKESE(v)‖
≤ ‖KE(v)− E(w)‖+ ‖K‖ ‖E(v)− ESE(v)‖ ,

one can replace ke(ṽ) by e(w̃). Now our assumption reduces to showing that

〈e(ũ) , h̃◦e(w̃)〉 tends to zero with |S|. It is equal to∑
i

ũ(i)ṽ(i)〈e(ũi) , h◦i e(w̃i)〉〈e(ũ[i+1), e(ṽ[i+1)〉

=
∑

i

ũ(i)ṽ(i)

ti+1−ti

∫ ti+1

ti

〈e(ũi) , Pti(a
−
t − a−ti)H

−
t e(w̃i)〉dt 〈e(ũ[i+1), e(ṽ[i+1)〉

if for example ε = − (the case ε = + is proved by dual computations).By an
estimate similar to (3.4) we have∣∣∣〈e(ũ) , h̃◦e(w̃)〉

∣∣∣ ≤ ‖u‖ ‖w‖ exp ‖u‖ exp ‖w‖

√
supi

∫ ti+1

ti

∥∥H−
t

∥∥2
dt

and the last term converges to zero as the mesh size of the partition goes to
zero.

To prove (3.2) let us write

h̃◦k̃◦ =
∑

i

h◦i k̃
◦
i a

◦
i +

∑
i

h̃◦i k
◦
i a

◦
i +

∑
i

h◦i k
◦
i a

◦
i

using the discrete time Itô formula. That implies

〈e(ũ) , h̃◦k̃◦e(ṽ)〉 =
∑

i

ũ(i)ṽ(i)〈e(ũi) , (h◦i k̃
◦
i + h̃◦i k

◦
i + h◦i k

◦
i )e(ṽi)〉

up to uniformly bounded factors 〈e(ũ[i+1), e(ṽ[i+1)〉. For the sake of lisibility,
we will forget them and all their avatars from now on. Using estimates as
(3.3) and the fact that h̃◦i , k̃◦i are bounded with norms ≤ ‖H‖ , ‖K‖, one

has a majoration of
∣∣〈e(ũ) , h̃◦k̃◦e(ṽ)〉

∣∣ by three terms of the kind

∑
i

|ũ(i)ṽ(i)|

√∫ ti+1

ti

‖Kt‖2dt

and since the series
∑

ũ(i)ṽ(i) is convergent, this tends to zero with the mesh
size of the partition.
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�

We now move on to the third step of our proof, contained in the following
proposition.

Proposition 3.4 With the assumptions of Proposition 3.3, the net(
ESHES ESKES − ES

(∑
i

hε
ikia

ε
i +
∑

i

hik
η
i a

η
i +

∑
i

hε
ik

η
i a

ε.η
i

)
ES

)
S∈P

where ε.η is computed using formally the continuous Itô table, tends to zero
on the exponential domain in the w*-topology.

Proof.
All that is left to prove is that

for (ε, η) = (+,−), one has
∑

i

h+
i k−i a◦i →

|S|→0
0 (3.5)

and

for (ε, η) = (−, +), one has
∑

i

h−i k+
i a◦i →

|S|→0
0. (3.6)

plus the convergence to zero in all cases involving an integral with respect
to ×. The proofs of (3.5), (3.6) are the same; let us prove for example (3.5):

|〈e(ũ) ,
∑

i

h−i k+
i a◦i e(ṽ)〉| ≤

∑
i

|ũ(i)| |ṽ(i)|
∥∥h−∗i e(ũi)

∥∥∥∥k+
i e(ṽi)

∥∥
up to a constant factor, and since

∥∥h−∗i e(ũi)
∥∥ ≤√∫ ti+1

ti

∥∥H−∗
t

∥∥2
dt ‖e(ũi)‖

with a similar estimate for
∥∥k+

i e(ṽi)
∥∥,one concludes as before.

Now in the case where ε, for example, is ×, one writes the usual equalities

〈e(ũ) , aη(h×kη)e(ṽ)〉 =
∑
i∈N

〈e(ũi) , h×i kη
i e(ṽi)〉〈e(ũ[i), e(ṽ[i)〉

=
∑
i∈N

∫ ti+1

ti

∫ ti+1

ti

〈e(ũi) , H×
t Kη

s e(ṽi)〉〈e(ũ[i), e(ṽ[i)〉 dt ds

(keep in mind that ×.η = η in all cases), and this is dominated by the
following quantities:
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•
∑

i

∫ ti+1

ti

∥∥H×
t

∥∥ dt
∫ ti+1

ti

∥∥K×
t

∥∥ dt if η = ×,

•
∑

i

√
ti+1−ti

∫ ti+1

ti

∥∥H×
t

∥∥ dt
√∫ ti+1

ti
‖Kη

t ‖
2dt if η = +,−,

•
∑

i(ti+1−ti)
∫ ti+1

ti

∥∥H×
t

∥∥ dt ‖K◦‖∞ if η = ◦

where all majorations are up to constant factors. In all three cases the
summed term in the majorant is a summable one multiplied by a vanishing
one.

�

We now apply these results to prove the final result:

Theorem 3.5 (Itô formula in continous time) Let H =
∫∞

0
Hε

s daε
s and

K =
∫∞

0
Kη

s daη
s be two continuous-time integrals satisfying the assumptions

(HS). Then the following equality holds on Φ:∫ ∞

0

Hε
t daε

t

∫ ∞

0

Kη
t daη

t =

∫ ∞

0

Hε
t Ktdaε

t +

∫ ∞

0

HtK
η
t daη

t +

∫ ∞

0

Hε
t K

η
t daε.η

t

where aε.η is computed using the continuous Itô table.

Remark : let us repeat that this reproves the Itô formula on regular Fock
space knowing nothing but its counterpart on the toy Fock space.

Proof.
We will prove that for any u, v ∈ L2 (R+) one has

〈E(u) ,

∫ ∞

0

Hε
t daε

t

∫ ∞

0

Kη
t daη

t E(v)〉 =

〈E(u) , (

∫ ∞

0

Hε
t Ktdaε

t +

∫ ∞

0

HtK
η
t daη

t +

∫ ∞

0

Hε
t K

η
t daε.η

t ) E(v)〉.

By Proposition 3.4, it suffices to show that

〈e(ũ) ,
∑

i

hε
ikia

ε
i e(ṽ)〉 → 〈E(u) ,

∫ ∞

0

Hε
sKs daε

s E(v)〉

〈e(ũ) ,
∑

i

hik
η
i a

η
i e(ṽ)〉 → 〈E(u) ,

∫ ∞

0

HsK
η
s daη

s E(v)〉

〈e(ũ) ,
∑

i

hε
ik

η
i a

ε.η
i e(ṽ)〉 → 〈E(u) ,

∫ ∞

0

HεKη daε.η
s E(v)〉
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but one can see that the previous propositions apply to the integrals
∫

Hε
sKsdaε

s,∫
HsK

η
s daη

s ,
∫

Hε
sK

η
s daε.η

s so that one also has that

〈e(ũ) ,
∑

i

(HεK)ε
ia

ε
i e(ṽ)〉 → 〈E(u) ,

∫ ∞

0

Hε
sKsdaε

s E(v)〉

〈e(ũ) ,
∑

i

(HKη)η
i a

η
i e(ṽ)〉 → 〈E(u) ,

∫ ∞

0

HsK
η
s daη

s E(v)〉

〈e(ũ) ,
∑

i

(HεKη)ε.η
i e(ṽ)〉 → 〈E(u) ,

∫ ∞

0

Hε
sK

η
s daε.η

s E(v)〉

where (HKη)η
i , (HεK)ε

i are the integrands associated by Proposition 2.3 (or
by Proposition 3.2) to the integral

∫
HsK

η
s daη

s , etc. It suffices then to prove
that

〈e(ũ) ,
∑

i

(hε
iki − (HεK)ε

i )a
ε
i e(ṽ)〉 → 0 (3.7)

〈e(ũ) ,
∑

i

(hik
η
i − (HKη)η

i )a
η
i e(ṽ)〉 → 0 (3.8)

〈e(ũ) ,
∑

i

(hε
ik

η
i − (HεKη)ε.η

i )aε.η
i e(ṽ)〉 → 0 (3.9)

The convergences (3.7) and (3.8) derive one from another by adjointness.
Let us prove the different cases one by one.

Proof of (3.7)
First consider (3.7) in the case ε = − or +: let us take for example ε = +.

〈e(ũ) , aε(hεk − (HεK)ε
i )e(ṽ)〉 =

∑
i

ũ(i)〈e(ũi) , (h+
i ki − (H+K)+

i )e(ṽi)〉.

The above quantities are equal to

∑
i

ũ(i)〈e(ũi) ,
1√

ti+1−ti

∫ ti+1

ti

Pti(H
+
t ki −H+

t Kt)e(ṽi)dt〉

=
∑

i

ũ(i)√
ti+1−ti

∫ ti+1

ti

〈H+∗
t e(ũi), (ki −Kt)e(ṽi)〉dt
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So the norm of the left-hand-side is smaller than∑
i

|ũ(i)|√
ti+1−ti

∫ ti+1

ti

∥∥H+∗
t

∥∥ ‖(ki −Kt)e(ṽi)‖ dt

≤
∑

i

|ũ(i)|

√∫ ti+1

ti

‖Ht‖2‖(ki −Kt)e(ṽi)‖2dt

≤ ‖ũ‖2
l2

√∫ ∞

0

∥∥H+
t

∥∥2‖(ki −Kt)e(ṽi)‖2dt (3.10)

by repeated use of the Cauchy-Schwarz formula and convenient erasing of
constant terms. The index i in the last line is actually a i(t).

But, since ki = ESKtiES ,

‖(ki −Kt)e(ṽi)‖ ≤ ‖Ktie(ṽi)‖+ ‖Kte(ṽi)‖ .

If η = +, ◦,−, then (Kt) is an operator martingale, so, since ti ≤ t with
e(ṽi) ∈ Φti ,

‖(ki −Kt)e(ṽi)‖ ≤ ‖ESKtie(ṽi)‖+ ‖Kte(ṽi)‖
≤ 2 ‖Ke(ṽi)‖
≤ 2 ‖K‖ ‖e(ṽ)‖ .

A majoration of the same kind is immediately obtained in the case η = ×
since ‖Kt‖ ≤

∫
‖K×

s ‖ ds. One can then apply Lebesgue’s dominated conver-
gence theorem to the integral in (3.10). Besides,

‖(ki −Kt)e(ṽi)‖ ≤ ‖(ESKti −Kti)e(ṽ)‖+ ‖(Kti −Kt)PtiESE(vti)‖

and both terms on the right-hand-side tend to zero a.e.

We now consider (3.7) in the case ε = ◦: consider the quantity∑
i

ũ(i)ṽ(i)〈e(ũi) , (h◦i ki − (H◦K)◦i )e(ṽi)〉

where we forget once again the last factor. It is equal to

∑
i

ũ(i)ṽ(i)

ti+1−ti

∫ ti+1

ti

〈e(ũi) , H◦
t (ki −Kt)e(ṽi)〉dt

=

∫ ∞

0

ũ(i)ṽ(i)

ti+1−ti
〈e(ũi) , H◦

t (ki −Kt)e(ṽi)〉dt.
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The bracket is uniformly bounded, and t 7→ ũ(i)√
ti+1−ti

, ṽ(i)√
ti+1−ti

where once again

i is actually a i(t), tend to u,v in L2 (R+) by the martingale convergence
theorem. One can therefore consider, instead of the above, the quantity∫ ∞

0

u(t)v(t)〈e(ũi) , H◦
t (ki −Kt)e(ṽi)〉dt

so that one can now apply Lebesgue’s theorem in the same way as in the
previous case.

Now turn to (3.7) in the case ε = ×: we have∑
i

〈e(ũi) , (h×i ki − (H×K)×i )e(ṽi)〉

=
∑

i

∫ ti

ti−1

〈H×∗
t e(ũi), (ESKti −Kt)e(ṽi)〉dt,

and we conclude as before.

Proof of (3.9)
Let us now prove (3.9). The following lemma will be most useful:

Lemma 3.6 One has the following estimates:

• if η = +, then kη
i a

η
i e(ṽi+1) = kη

i e(ṽ1l 6=i)Xi, and

‖kη
i a

η
i e(ṽi+1)‖ ≤

√∫ ti+1

ti

‖Kη
t ‖

2dt ‖E(v)‖ .

• if η = −, then kη
i a

η
i e(ṽi+1) = ṽ(i) kη

i e(ṽ1l6=i) and

‖kη
i a

η
i e(ṽi+1)‖ ≤

√∫ ti+1

ti

‖Kη
t ‖

2dt |ṽ(i)| ‖E(v)‖ .

• if η = ◦, then kη
i a

η
i e(ṽi+1) = ṽ(i) kη

i e(ṽ1l6=i)Xi and

‖kη
i a

η
i e(ṽi+1)‖ ≤ sup ‖K◦

s‖ |ṽ(i)| ‖E(v)‖ .

• if η = ×, then k×i a×i e(ṽi+1) =
(
k×i e(ṽi)

)
(Ω + ṽ(i)Xi) and

‖kη
i a

η
i e(ṽi+1)‖ ≤

∫ ti+1

ti

∥∥K×
t

∥∥ dt (1 + |ũ(i)|).
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First let us treat the case where one of ε or η is ×; we take for example
ε = ×. In this case we have to show that

〈e(ũ) ,
∑

i

h×i kη
i a

η
i e(ṽ)〉

vanishes when the mesh size of the partition tends to zero. But that quantity
is smaller in norm than ∑

i

∥∥(h×i )∗e(ũ)
∥∥ ‖kη

i a
η
i e(ṽ)‖

which in turn is smaller than a constant times∑
i

∫ ti+1

ti

∥∥H×∗
t

∥∥ dt ‖kη
i a

η
i e(ṽi+1)‖ . (3.11)

From Lemma 3.6, we obtain that whatever η, (3.11) is a sum of terms of the
form

∫ ti+1

ti

∥∥H×∗
t

∥∥ times a term that vanishes uniformly in i with the mesh
size of the partition.

There are four non trivial cases left: (ε, η) equal to (−, +), (◦, ◦), (◦, +)
and (−, ◦). The last two cases have similar proofs; let us prove them first.
We therefore consider (3.9) in the case (ε, η) = (−, ◦) or (◦, +): take for
example (ε, η) = (◦, +). What we want to prove is that

〈e(ũ) ,
∑

i

(h◦i k
−
i − (H◦H+)+

i )a+
i e(ṽ)〉 −→

|S|→0
0.

This quantity is equal to∑
i

ũ(i)〈e(ũi) , (h◦i k
+
i − 1√

ti+1−ti

∫ ti+1

ti

PtiH
◦
t K+

t dt)e(ṽi)〉

=
∑

i

ũ(i)〈e(ũi) ,
1√

ti+1−ti

∫ ti+1

ti

H◦
t (

1√
ti+1−ti

k+
i −K+

t )dt e(ṽi)〉

hence the norm of the left-hand-side is, up to a factor term depending only
on u, v, smaller than:∑

i

|ũ(i)|√
ti+1−ti

∫ ti+1

ti

‖H◦
t ‖ ‖(

1√
ti+1−ti

k+
i −K+

t )e(ṽi)‖dt

≤ sup ‖H◦
t ‖
∑

i

|ũ(i)|

√∫ ti+1

ti

‖( 1√
ti+1−ti

k+
i −K+

t )e(ṽi)‖2dt .
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Since e(ṽi+1)− e(ṽi) = ṽ(i)e(ṽi)Xi, substituting e(ṽi) with e(ṽi+1) creates
an error term which is smaller than(∑

i

∫ ti+1

ti

∥∥∥∥( 1

ti+1−ti

∫ ti+1

ti

K+
s ds−K+

t )ṽ(i)e(ṽi)Xi)

∥∥∥∥2

dt
)1/2

≤
(
2
∑

i

∫ ti+1

ti

(
1

(ti+1−ti)2

(∫ ti+1

ti

‖Ks‖ ds

)2

+ ‖Kt‖2) |ṽ(i)| dt
)1/2

up to a constant factor; but that is smaller by the Cauchy-Schwarz inequality
than (∑

i

∫ ti+1

ti

(
1

ti+1−ti

∫ ti+1

ti

‖Ks‖2ds + ‖Kt‖2) |ṽ(i)|2 dt
)1/2

=
(∑

i

|ṽ(i)|2 (

∫ ti+1

ti

‖Ks‖2ds +

∫ ti+1

ti

‖Kt‖2dt)
)1/2

up to constant factors again. This tends to zero with the mesh size of the
partition.

Using the adaptation of operators, one sees easily that, once e(ṽi+1) has
been substituted with e(ṽi), it can be in turn substituted with e(ṽ); the usual
majorations allow one to substitute it then with E(v). The convergence to
zero of ∑

i

∫ ti+1

ti

‖ 1

ti+1−ti

∫ ti+1

ti

K+
s E(v)ds−K+

t E(v)‖2dt

is then a simple consequence of the L2 martingale convergence theorem.

Now consider (3.9) in the case (ε, η) = (−, +): what we must show van-
ishes is ∑

i

〈e(ũi) , (h−i k+
i − (H−K+)×i )e(ṽi)〉.

We show that ∑
i

〈e(ũi) ,
(
h−i k+

i − ES

∫ ti+1

ti

H−
t K+

t dt
)
e(ṽi)〉

vanishes. Its norm is easily shown to be smaller than∑
i

∫ ti+1

ti

∥∥H−
t

∥∥ ‖( 1√
ti+1−ti

k+
i −K+

t )e(ṽi)‖dt

≤
( ∫ ∥∥H−∥∥2)1/2

√∑
i

∫ ti+1

ti

‖( 1√
ti+1−ti

k+
i −K+

t )e(ṽi)‖2dt
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and one concludes using Proposition 3.2.
Last, consider (3.9) in the case (ε, η) = (◦, ◦):we prove that

〈e(ũ) ,
∑

i

(h◦i k
◦
i − (H◦K◦)◦i )a

◦
i e(ṽ)〉 −→

|S|→0
0.

This is equal to ∑
i

ũ(i)ṽ(i)〈e(ũi) , (h◦i k
◦
i − (H◦K◦)◦i )e(ṽi)〉

up to the usual last factor in the sum. The above line is equal to:∑
i

ũ(i)ṽ(i)〈e(ũi) ,
1

ti+1−ti

∫ ti+1

ti

(H◦
t k◦i −H◦

t K◦
t )e(ṽi)dt〉

=

∫ ∞

0

ũ(i)ṽ(i)

ti+1−ti
〈H◦∗

t e(ũi),
1

ti+1−ti

∫ ti+1

ti

(K◦
s −K◦

t )e(ṽi)ds〉dt

As in the proof of 3.1 we can replace ũ(i)ṽ(i)
ti+1−ti

by u(t)v(t). The norm of the

integrated function is then smaller than

|u(t)v(t)| 2 sups ‖H◦∗
s ‖ sups ‖K◦

s‖ ‖E(u)‖ ‖E(v)‖

which is integrable. By Lebesgue’s theorem, the considered quantity tends
to zero with the mesh size of the partition.

�

3.2 A remark on the classical Itô formula

It is well known that the classical Itô formula for quantum stochastic integrals
with respect to any normal martingale is a consequence of the quantum Itô
formula. Indeed, any normal martingale, that is, any martingale M with
square bracket [M ]t = t, can be identified with a multiplication operator on
Fock space. That operator has a quantum stochastic integral representation
(see [At2]), so that its angle bracket can be obtained from the Itô formula.

Therefore, we have proved that, once the normality of the martingale is
known, the value of the angle bracket is deduced from the quantum stochastic
integral representation of the multiplication operator and the commutation
relations for Pauli matrices. There is nothing very deep here since the inte-
gral representation of the multiplication operator itself is derived from the
structure equation of the martingale (see for example [At2]), but it may help
and shed some light on the general computations we have made.
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The Brownian motion (Bt)t≥0 can be identified to the operator process
(a+

t + a−t )t≥0. If we consider a partition S with constant steps δ, then the
approximation of the multiplication operator by Bt will be

∑
i|ti≤t

√
δ(a+

i +

a−i ) plus some terms which we have shown can be, in the limit when δ goes
to zero, neglected. Besides, a+

i + a−i is σx so that(√
δ(a+

i + a−i )
)2

δσ2
x = δI.

The operator δI is the approximation of the deterministic process (t)t≥0.
This, as we have shown, implies that d〈B〉t = dt.

Another example is the compensated Poisson process (Nt−t)t≥0 = (Xt)t≥0.
It can be identified with the operator process (a+

t + a−t + a◦t )t≥0. If we con-
sider again a partition S with constant step δ, a+

t + a−t + a◦t is projected
to
∑

i|ti≤t(
√

δa+
i +

√
δa−i + a×i ) plus asymptotically negligible terms. Since√

δa+
i +

√
δa−i + a×i =

√
δσx − 1

2
σz + 1

2
I, we obtain(√

δa+
i +

√
δa−i + a×i

)2

= δσ2
x +

1

4
σ2

z +
1

4
I

− 1

2

√
δ(σxσz + σzσx) +

√
δσx −

1

2
σz

=
(√

δa+
i +

√
δa−i + a×i

)
+ δI

because σxσz + σzσx = 0 and σ2
x = σ2

z = I. That, as we have shown, implies
that d〈X〉t = Xt + t.

Much more interesting remarks can be made on the relation between ran-
dom walks and normal martingales from the viewpoint of our approximation
scheme, in particular in higher dimensional cases. In the paper [A-P], in col-
laboration with Stéphane Attal, we show that limits of random walks can be
completely determined by the order of magnitude, with respect to the time
scale, of the coefficients of their (discrete-time) structure equations.

A Proof of Lemma 3.1
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[B-L] V.P.Belavkin and J.M.Lindsay: The kernel of a Fock space oper-
ator II, Quantum Probability and Related Topics VIII (1993), World
scientific.

[Gui] A.Guichardet: Symmetric Hilbert spaces and related topics, Lec-
ture Notes in Mathematics 261 (1970), Springer Verlag.

[H-P] R.L.Hudson and K.R.Parthasarathy: Quantum Itô’s formula
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