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Abstract This lecture concerns special aspects of Operator Theory which
are of much use in Quantum Mechanics, in particular in the theory of Quan-
tum Open Systems. These are the concepts of trace-class operators, tensor
products of Hilbert spaces and operators, and above all of partial traces. Note
that a general treatment of partial traces in the infinite dimensional case, as
we do in this lecture, is not at all common in the literature.
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2 Stéphane ATTAL

Most of this lecture deals with bounded operators, hence the full theory
of unbounded operators, Spectral Theorem, etc is not necessary here. We
assume the reader is familiar with the usual theory of bounded operators and
in particular with compact operators and their fundamental representation,
with the notion of positive (bounded) operators, with continuous functional
calculus for bounded operators, and with the polar decomposition. For all
these notions, read the corresponding sections in Lecture 1 if necessary.

2.1 Trace-Class Operators

We first start with the notions of trace, trace-class operators and their proper-
ties. We shall explore the nice duality properties which are attached to these
spaces. We end up with a closely related family of operators: the Hilbert-
Schmidt operators.

2.1.1 Basic Definitions

Definition 2.1. Let T be a bounded positive operator on a Hilbert space H.
For a fixed orthonormal basis (en) of H we define the quantity

Tr (T) =
∑
n∈N
〈en , Ten〉 ,

which is positive (eventually infinite). It is called the trace of T. We shall
sometimes simply denote it by Tr T.

Proposition 2.2. The quantity Tr T is independent of the choice of the or-
thonormal basis (en).

Proof. Let (fn) be another orthonormal basis of H. As T is a positive oper-
ator, it admits a square root

√
T. We then have (the series below being all

made of positive terms, interchanging the sums is allowed)
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n

〈fn , T fn〉 =
∑
n

∥∥∥√T fn∥∥∥2
=
∑
n

∑
m

∣∣∣〈√T fn , em〉∣∣∣2
=
∑
m

∑
n

∣∣∣〈fn , √T em〉∣∣∣2
=
∑
m

∥∥∥√T em∥∥∥2
=
∑
m

〈em , T em〉 .

This proves the independence property. ut

We now define the trace-class operators for general bounded operators.

Definition 2.3. A bounded operator T on H is trace-class if

Tr |T| <∞ .

Theorem 2.4.

1) Every trace-class operator is compact.

2) A compact operator T, with singular values (λn)n , is trace-class if and
only if ∑

n

λn <∞ . (2.1)

In that case we have
Tr |T| =

∑
n

λn . (2.2)

Proof. Assume first that T is positive and trace-class. Let (en) be an or-
thonormal family in H, then∑

n

∥∥∥√T en∥∥∥2 =
∑
n

〈en , Ten〉 ≤ Tr T <∞ .

Hence
∥∥∥√T en∥∥∥ converges to 0 and

√
T is compact. In particular the operator

T =
√
T
√
T is also compact.

Now if T is a bounded operator which is trace-class, then |T| is trace-class
by definition. Hence |T| is compact. By the Polar Decomposition the operator
T = U |T| is also compact. We have proved 1).

If T is compact then |T| = U∗T is also compact. The operator |T| can thus
be decomposed as

|T| =
∑
n

λn |vn〉〈vn| ,
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for some positive λn’s and some orthonormal basis (vn).
Taking the trace of |T| with respect to the orthonormal basis (vn) gives

Tr |T| =
∑
n

λn .

It is easy to conclude now. ut

Theorem 2.5. If T is a trace-class operator on H then for every orthonormal
basis (en) of H the series

Tr T =
∑
n

〈en , Ten〉

is absolutely convergent. Its sum is independent of the choice of the orthonor-
mal basis (en).

We always have
|Tr T| ≤ Tr |T| . (2.3)

Proof. By Theorem 2.4 the operator T is compact, hence it admits a decom-
position as

T =

∞∑
n=1

λn |un〉〈vn| ,

for some positive λn’s and some orthonormal bases (un), (vn) of H. We then
have∑

k

|〈ek , Tek〉| ≤
∑
k

∑
n

λn |〈ek , un〉| |〈vn , ek〉|

≤
∑
n

λn

(∑
k

|〈ek , un〉|2
)1/2 (∑

k

|〈vn , ek〉|2
)1/2

=
∑
n

λn ‖vn‖ ‖un‖

=
∑
n

λn

which is finite by Theorem 2.4. We have proved the absolute convergence and
the inequality (2.3).

Let us prove the independence with respect to the choice of the orthonor-
mal basis. Let (fn) be any orthonormal basis of H. We then have (using the
absolute convergence above and Fubini’s Theorem)
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k

〈fk , Tfk〉 =
∑
k

∑
n

λn 〈fk , un〉 〈vn , fk〉

=
∑
n

λn
∑
k

〈vn , fk〉 〈fk , un〉

=
∑
n

λn 〈un , vn〉 .

This quantity does not depend on the choice of (fn). ut

By the way, we have proved the following characterization.

Corollary 2.6. A bounded operator T on H is trace-class if and only if it
can be decomposed as

T =
∑
n

λn |un〉〈vn|

where (un) and (vn) are orthonormal families in H and (λn) is a sequence
of positive numbers such that ∑

n

λn <∞ .

Definition 2.7. The set of trace-class operators on H is denoted by L1(H).
We also put

‖T‖1 = Tr |T| .

2.1.2 Properties

Let us start with the very fundamental properties of trace-class operators.

Theorem 2.8.

1) The set L1(H) is a vector space, the mapping ‖ · ‖1 is a norm on L1(H).
When equipped with the norm ‖·‖1, the space L1(H) is a Banach space. This
norm always satisfies

‖T‖ ≤ ‖T‖1 .

2) The space L1(H) is two-sided ideal of B(H). For every T ∈ L1(H) and

X ∈ B(H) we have
‖XT‖1 ≤ ‖X‖ ‖T‖1 . (2.4)

3) The space L0(H) is ‖·‖1-dense in L1(H).

4) If T belongs to L1(H) then so does T∗ and we have

Tr (T∗) = Tr (T) .
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5) For any two bounded operators S and T such that one of them is trace-class,
we have

Tr (ST) = Tr (TS) .

Proof.

1) In order to prove that L1(H) is a vector space and that ‖ · ‖1 is a norm,
the only non-trivial point to be proved is the following: for every positive
bounded operators S and T on H we have

Tr |S + T| ≤ Tr |S|+ Tr |T| .

Let us prove this fact. Let

S = U |S| , T = V |T| , S + T = W |S + T|

be the polar decompositions of S,T and S + T. Let (en) be an orthonormal
basis of H. We have∑

n

〈en , |S + T| en〉 =
∑
n

〈en , W∗ (S + T) en〉

=
∑
n

〈en , W∗ U |S| en〉+
∑
n

〈en , W∗ V |T| en〉

≤
∑
n

∥∥∥√|S|U∗W en

∥∥∥ ∥∥∥√|S| en∥∥∥+

+
∑
n

∥∥∥√|T|V∗W en

∥∥∥ ∥∥∥√|T| en∥∥∥
≤

(∑
n

∥∥∥√|S|U∗W en

∥∥∥2)1/2 (∑
n

∥∥∥√|S| en∥∥∥2)1/2

+

+

(∑
n

∥∥∥√|T|V∗W en

∥∥∥2)1/2 (∑
n

∥∥∥√|T| en∥∥∥2)1/2

.

But we have∑
n

∥∥∥√|S|U∗W en

∥∥∥2 =
∑
n

〈en , W∗ U |S| U∗W en〉

= Tr (W∗ U |S| U∗W) .

Choosing an orthonormal basis (fn) which is adapted to the decomposition
H = KerW ⊕ (KerW)⊥, we see that

Tr (W∗ U |S| U∗W) ≤ Tr (U |S| U∗) .

Applying the same trick for U∗ shows that
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Tr (U |S| U∗) ≤ Tr (|S|) .

Altogether, we have proved that∑
n

〈en , |S + T| en〉 ≤ Tr (|S|) + Tr (|T|) .

This proves the vector space structure of L1(H) and also the norm property
of ‖ · ‖1.

By the usual properties of the operator norm we have

‖ |T| ‖2 =
∥∥ |T|∗ |T|∥∥ =

∥∥∥ |T|2∥∥∥ = ‖T∗ T‖ = ‖T‖2 .

As |T| is self-adjoint its norm is given by

sup
‖x‖=1

〈x , |T|x〉 .

The above quantity is clearly smaller than Tr |T|. We have proved that ‖T‖ ≤
‖T‖1.

As a consequence, if (Tn) is Cauchy sequence in B(H) for the norm ‖ · ‖1
then it is a Cauchy sequence for the usual operator norm. Hence it converges
in operator norm to a bounded operator T. To each operator Tn is associated

a sequence λ
(n)
· of singular values. By hypothesis this family of sequences

is `1-convergent. We have proved that it is also `∞-convergent and that it

converges to the sequence λ
(∞)
· of singular values of T. Hence the `1-limit of

λ
(n)
· has to be λ

(∞)
· . This means that the sequence (Tn) converges to T in

‖ · ‖1. We have proved 1).

2) We shall need the following useful lemma.

Lemma 2.9. Every bounded operator is a linear combination of four unitary
operators

Proof. Let B ∈ B(H), then we can write B as a linear combination of two
self-adjoint operators:

B =
1

2
(B + B∗)− i

2
(B− B∗) .

Now, if A is a bounded self-adjoint operator, with ‖A‖ ≤ 1 (which we can
assume without loss of generality), the operators A ± i

√
I− A2 are unitary

and they sum up to 2A. ut

We are now back to the proof of Property 2). By Lemma 2.9, it is sufficient
to prove that for all T ∈ L1(H) and all unitary operator U we have that UT
and TU belong to L1(H). But we have |UT| = |T| and hence UT belong
to L1(H). We also have |TU| = U∗ |T| U and the same conclusion. We have
proved the two-sided ideal property.
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Let us prove the norm inequality now. When U is unitary, we see from the
considerations above that ‖UT‖1 ≤ ‖T‖1. On the other hand, every bounded
B operator is a linear combination of four unitary operators with coefficients
in the linear combination being smaller than ‖B‖. It is easy to conclude.

The property 3) comes immediately from the canonical form of trace-class
operators (Corollary 2.6).

4) Consider the polar decompositions T = U |T| and T∗ = V |T∗|. We then
have |T∗| = V∗ |T| U∗. By Property 2, the operator |T∗| is trace-class, and
so is T∗. Finally

Tr (T∗) =
∑
n

〈en , T∗en〉 =
∑
n

〈Ten , en〉 = Tr T .

5) Let S and T be such that S is bounded and T is trace-class, for example.
By Lemma 2.9 we can reduce the problem to the case where S is unitary. Let
(en) be an orthonormal basis and fn = S∗en for all n. We have

Tr (ST) =
∑
n

〈en , ST en〉

=
∑
n

〈S∗ en , T en〉

=
∑
n

〈fn , TS fn〉

= Tr (TS) . ut

We end up this subsection with a useful characterization.

Theorem 2.10. A bounded operator T on H is trace-class if and only if∑
n

|〈gn , Thn〉| <∞

for all orthonormal families (gn) and (hn) in H.
Moreover there exists orthonormal families (gn) and (hn) in H such that∑

n

|〈gn , Thn〉| = ‖T‖1 .

Proof. Assume first that T is trace-class. Then T can be decomposed as
(Corollary 2.6)

T =
∑
n

λn |un〉〈vn| ,

for some orthonormal families (un) and (vn) and a summable sequence (λn)
of positive scalars. Hence we have
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n

|〈gn , Thn〉| =
∑
n

∑
k

λk |〈gn , uk〉| |〈vk , hn〉|

≤
∑
k

λk

(∑
n

|〈gn , uk〉|2
)1/2 (∑

n

|〈vk , hn〉|2
)1/2

≤
∑
k

λk ‖uk‖ ‖vk‖

=
∑
k

λk <∞ .

We have proved the first part of theorem in one direction. Note that, in the
above computation, if one had chosen gn = un and hn = vn for all n we
would have∑

n

|〈gn , Thn〉| =
∑
n

∑
k

λk |〈gn , uk〉| |〈vk , hn〉| =
∑
k

λk = ‖T‖1 .

This proves the second part of the theorem in that case.

Conversely, let T be a bounded operator on H satisfying∑
n

|〈gn , Thn〉| <∞

for all orthonormal families (gn) and (hn) in H. Let T = U |T| be its polar
decomposition. Choose an orthonormal sequence (hn) in Ran |T| and put
gn = Uhn for all n. Since U is isometric on Ran |T| we have U∗gn = hn for
all n. Hence we have∑

n

|〈gn , Thn〉| =
∑
n

|〈hn , |T| hn〉| =
∑
n

〈hn , |T| hn〉 .

By our hypothesis on T this proves that
∑

n 〈hn , |T| hn〉 is finite. Complete

the family (hn) into an orthonormal basis
(
h̃n

)
of H, by completing with

orthonormal vectors in Ran |T|
⊥

= Ker |T|. Then∑
n

〈
h̃n , |T| h̃n

〉
=
∑
n

〈hn , |T| hn〉

and hence is finite. This proves that Tr |T| < ∞ and that T is trace-class.
ut
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2.1.3 Dualities

Definition 2.11. Let H be any separable complex Hilbert space. For any
trace-class operator T and bounded operator X on H we write

〈T , X〉 = Tr (TX) ,

which is well-defined by Theorem 2.8.

Theorem 2.12.

1) The Banach space (L1(H), ‖ · ‖1) is isometrically isomorphic to the dual
of (L∞(H), ‖ · ‖) under the correspondence T 7→ 〈T , ·〉|L∞(H) .

2) The Banach space (B(H), ‖ · ‖) is isometrically isomorphic to the dual of
(L1(H), ‖ · ‖1) under the correspondence X 7→ 〈 · ,X〉|L1(H) .

Proof.

1) For all T ∈ L1(H) the mapping X 7→ 〈T , X〉 = Tr (TX) define a linear
form λT on L∞(H). By (2.3) and (2.4) we have

|Tr (XT)| ≤ Tr |XT| ≤ ‖X‖ ‖T‖1 .

Hence λT is a continuous linear form, with norm ‖λT‖ ≤ ‖T‖1. Taking X = U∗

where U is the partial isometry in the polar decomposition of T, gives the
equality of norms: ‖λT‖ = ‖T‖1.

Conversely, let λ be a continuous linear form on L∞(H). The mapping

B : (u, v) 7−→ λ(|u〉〈v|)

is a sesquilinear form on H and it satisfies ‖B(u, v)‖ ≤ ‖λ‖ ‖u‖ ‖v‖. Hence
there exists a bounded operator T on H such that

λ(|u〉〈v|) = 〈v , Tu〉 = Tr (T |u〉〈v|).

Consider the polar decomposition T = U |T| of T and choose an orthonormal
basis (un) in Ran |T|. As a consequence the family {vn = Uun ; n ∈ N} forms
an orthonormal basis of RanT. The operator

Xn =

n∑
i=1

|ui〉〈vi|

is finite rank and norm 1. We have

λ(Xn) =

n∑
i=1

〈vi , Tui〉 =

n∑
i=1

〈ui , |T| ui〉 .

This shows that
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∞∑
j=1

〈ui , |T| ui〉 ≤ ‖λ‖ .

Completing the orthonormal basis (un) of Ran |T| into an orthonormal basis
of H (by choosing any orthonormal basis of (Ran |T|)⊥ = Ker |T|), we have
found an orthonormal basis (fn) of H such that∑

n∈N
〈fn , |T| fn〉 ≤ ‖λ‖ <∞ .

This shows that T is trace-class and that ‖T‖1 ≤ ‖λ‖.
As the finite rank operators are dense in the compact operators for the

operator norm, passing to the limit on the identity

λ(Xn) = Tr (TXn)

shows that
λ(X) = Tr (TX)

for all X ∈ L∞(H). Finally, we have

|λ(X)| = |Tr (TX)| ≤ ‖T‖1 ‖X‖ .

Hence ‖λ‖ ≤ ‖T‖1. This proves the equality of norms and the part 1) is
completely proved.

2) The proof is very similar to the one of 1) above. Let B ∈ B(H) and
define the linear form λB on L1(H) by λB(T) = Tr (BT). Again, the inequality
|λB(T)| ≤ ‖B‖ ‖T‖1 proves that λB is continuous with ‖λB‖ ≤ ‖B‖.

Take T = |x〉〈y| for some x, y ∈ H such that ‖x‖ = ‖y‖ = 1, this gives
λB(T) = 〈y , Bx〉. But we have

‖B‖ = sup{|〈y , Bx〉| ; x, y ∈ H , ‖x‖ = ‖y‖ = 1}
= sup{|λB(T)| ; T = |x〉〈y|, ‖x‖ = ‖y‖ = 1}
≤ sup{|λB(T)| ; T ∈ L1(H) , ‖T‖1 = 1}
= ‖λB‖ .

Hence we have proved the equality ‖λB‖ = ‖B‖.
Conversely, if λ is a continuous linear form on L1(H) then (u, v) 7→

λ(|u〉〈v|) defines a bounded sesquilinear form on H. Hence there exists a
bounded operator X such that

λ(|u〉〈v|) = Tr (X |u〉〈v|).

If T ∈ L1(H) is of the form
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T =
∑
n

λn |un〉〈vn|

then it is easy to check that ∑
n≤N

λn |un〉〈vn|

converges to T in L1(H) when N tends to +∞. As λ is continuous we get

λ(T) = Tr (XT)

for every T ∈ L1(H). It is easy to conclude now. ut

Definition 2.13. As B(H) is the dual of L1(H) it inherits a ∗-weak topology,
that is, the topology which makes the mappings λT(X) = Tr (XT) being
continuous on B(H) for all T ∈ L1(H). It is easy to see that it coincides with
the topology induced by the seminorms

ne,f (X) =
∑
n

|〈en , X fn〉|

where (en) and (fn) run over all sequences in H such that∑
n

‖en‖2 <∞ and
∑
n

‖fn‖2 <∞ .

This fact can be easily deduced from the canonical form of trace-class opera-
tors (Corollary 2.6). The topology above is often called the σ-weak topology
on B(H).

The following result is a very classical consequence of the theory of Banach
space duals (see [RS80], Theorem IV.20).

Corollary 2.14. Every σ-weakly continuous linear form λ on B(H) is of the
form

λ(X) = Tr (TX)

for some T ∈ L1(H). This trace-class operator T associated to λ is unique.

2.1.4 Hilbert-Schmidt Operators

We end up this section with the another special family of operators which are
closely connected to the trace-class operators: the Hilbert-Schmidt operators.

Definition 2.15. An operator T ∈ B(H) is Hilbert-Schmidt if

Tr (T∗ T) <∞ .
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The set of Hilbert-Schmidt operators on H is denoted by L2(H).

The following properties are obtained in a similar way as those of L1(H).
We leave the proofs to the reader.

Theorem 2.16.

1) The space L2(H) is a two-sided ideal of B(H).

2) An operator T ∈ B(H) is Hilbert-Schmidt if and only if there exists an
orthonormal basis (en) of H such that∑

n

‖T en‖2 <∞ .

In that case the series converges to the same sum for all orthonormal basis
of H.

3) The mapping
〈S , T〉 = Tr (S∗ T)

defines a scalar product on L2(H) which gives it a Hilbert space structure.
The norm ‖·‖2 associated to this scalar product satisfies

‖A‖ ≤ ‖A‖2 ≤ ‖A‖1 .

4) Every Hilbert-Schmidt operator is a compact operator. Conversely, a com-
pact operator is Hilbert-Schmidt if and only if the sequence of its singular
values (λn) satisfies ∑

n

λ2n <∞ .

Every trace-class operator is Hilbert-Schmidt.

2.2 Tensor Products

As already explained in the introduction of this chapter, we leave the trace-
class operators for a while and start with a completely different topic: the
tensor products of Hilbert spaces and of operators. The connections between
the two notions appear in next section.

The notion of tensor product of Hilbert spaces and of tensor product of
operators are key concepts in Quantum Mechanics, where they appear each
time that several quantum systems are involved and interact with each other.
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2.2.1 Tensor Products of Hilbert Spaces

Definition 2.17. Let H1,H2 be two Hilbert spaces. Let ϕ ∈ H1 and ψ ∈ H2.
We define ϕ⊗ ψ to be the bi-antilinear form on H1 ×H2 given by

ϕ⊗ ψ (ϕ′, ψ′) = 〈ϕ′ , ϕ〉〈ψ′ , ψ〉 .

Let E be the set of all finite linear combinations of such forms, acting in the
obvious way on H1 ⊗H2. We equip E with an internal product defined by

〈ϕ⊗ ψ , ϕ′ ⊗ ψ′〉 = 〈ϕ , ϕ′〉〈ψ , ψ′〉
= ϕ′ ⊗ ψ′(ϕ,ψ) ,

and its natural extension to linear combinations.

Proposition 2.18. The product 〈 · , · 〉 on E is well-defined and positive def-
inite.

Proof. To show that 〈 · , · 〉 is well-defined, we need to show that 〈λ , λ′ 〉 does
not depend on the choice of the linear combinations representing λ and λ′.
It is thus sufficient to show that if µ is the null linear combination then
〈λ , µ 〉 = 0 for all λ ∈ E. Assume λ is of the form

∑n
i=1 αi ϕi ⊗ ψi, we have

〈λ , µ〉 =
〈 n∑

i=1

αi ϕi ⊗ ψi , µ
〉

=

n∑
i=1

αi 〈ϕi ⊗ ψi , µ〉

=

n∑
i=1

αi µ (ϕi, ψi)

= 0 .

This proves that the product is well-defined. Let us prove it is positive def-
inite. Let λ =

∑n
i=1 αi ϕi ⊗ ψi again, and let (ei)i=1,...,k and (fi)i=1,...,` be

orthonormal bases of the spaces generated by {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn}
respectively. Then

λ =

k∑
i=1

∑̀
j=1

αij ei ⊗ fj ,

for some coefficients αij , and thus

〈λ , λ〉 =

k∑
i=1

∑̀
j=1

|αij |2 .

Thus 〈λ , λ〉 is positive and 〈λ , λ〉 = 0 if and only if λ = 0. ut
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Definition 2.19. As a consequence (E, 〈 , · , · 〉) is a pre-Hilbert space. We
denote by H1 ⊗ H2 its completion. It is called the tensor product of H1 by
H2.

Proposition 2.20. Let N and M be sets of indices in N such that (ei)i∈N
and (fj)j∈M are any orthonormal basis of H1 and H2 respectively. Then
(ei ⊗ fj)(i,j)∈N×M is an orthonormal basis of H1 ⊗H2 .

Proof. The fact that the set {ei ⊗ fj ; (i, j) ∈ N ×M} is an orthonormal
family is clear for the definition of the scalar product onH1⊗H2. Let us check
it forms a basis. Let S be the vector space generated by {ei ⊗ fj ; (i, j) ∈
N ×M}. Let ϕ⊗ψ be an element of E, then we have decompositions of the
form

ϕ =
∑
i∈N

ciei with
∑
i∈N
|ci|2 <∞

and
ψ =

∑
j∈M

djfj with
∑
j∈M

|dj |2 <∞ .

As a consequence we have ∑
(i,j)∈N×M

|cidj |2 <∞

and the vector
∑

i,j cidj ei ⊗ fj belongs to S, the closure of S. But by direct
computation one sees that, for all N,M ∈ N∥∥∥∥∥∥∥ϕ⊗ ψ −

∑
i≤N
i∈N

∑
j≤M
j∈M

cidj ei ⊗ fj

∥∥∥∥∥∥∥
2

=
∑
i∈N

∑
j∈M

|ci|2 |dj |2 −
∑
i≤N
i∈N

∑
j≤M
j∈M

|ci|2 |dj |2

and hence converges to 0 when N and M tend to +∞. Thus E is included
in S. This give the density of S in H1 ⊗H2. ut

2.2.2 Tensor Products of Operators

Definition 2.21. Let A be an operator on H1, with a dense domain DomA,
and B be an operator on H2, with dense domain DomB. Let D denote the
space DomA⊗DomB, that is, the space of finite linear combinations of ϕ⊗ψ
with ϕ ∈ DomA and ψ ∈ DomB. Clearly D is dense in H1⊗H2. One defines
the operator A⊗ B on D by

(A⊗ B)(ϕ⊗ ψ) = Aϕ⊗ Bψ ,

and its obvious linear extension to all D.
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Proposition 2.22. The operator A⊗B is well-defined. If A and B are closable
operators then so is A⊗ B.

Proof. Being well-defined in this case means that if

n∑
i=1

ci ϕi ⊗ ψi =

m∑
j=1

dj ϕ
′
j ⊗ ψ′j (2.5)

then
n∑

i=1

ci Aϕi ⊗ Bψi =

m∑
j=1

dj Aϕ
′
j ⊗ Bψ′j . (2.6)

But, passing through orthornormal bases (ei)i∈N and (fj)j∈M for H1 and
H2, the identity (2.5) is equivalent to

n∑
i=1

ci 〈ϕi , ej〉 〈ψi , fk〉 =

k∑
i=1

di 〈ϕ′i , ej〉 〈ψ′i , fk〉 ,

for all j, k. Applying A⊗ B to
∑n

i=1 ci ϕi ⊗ ψi but in the basis {ej ⊗ fk ; j ∈
N , k ∈M} gives the identity (2.6) immediately.

Now, if g ∈ DomA∗⊗DomB∗ and f ∈ DomA⊗DomB we have obviously

〈(A⊗ B) f, g〉 = 〈f, (A∗ ⊗ B∗)g〉 .

Thus Dom(A ⊗ B)∗ contains DomA∗ ⊗ DomB∗ which is dense. This means
that the operator A⊗ B is closable. ut

In particular we have also proved that

(A⊗ B)∗ ⊂ A∗ ⊗ B∗ .

Definition 2.23. If A and B are two closable operators we call tensor product
of A by B the closure of A⊗ B. It is still denoted by A⊗ B.

Proposition 2.24. If A and B are bounded operators on H1 and H2 respec-
tively then A⊗ B is a bounded operator on H1 ⊗H2 and we have

‖A⊗ B‖ = ‖A‖ ‖B‖ .

Proof. Assume that f ∈ H1⊗H2 can be decomposed as f =
∑n

i,j=1 cij ei⊗fj
in some orthonormal basis of H1 ⊗H2. Then we have
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‖(A⊗ I)f‖2 =

∥∥∥∥∥∥(A⊗ I)

n∑
i,j=1

cij ei ⊗ fj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

i,j=1

cij Aei ⊗ fj

∥∥∥∥∥∥
2

=

n∑
j=1

∥∥∥∥∥
n∑

i=1

cij Aei

∥∥∥∥∥
2

≤ ‖A‖2
n∑

j=1

n∑
i=1

|cij |2

= ‖A‖2‖f‖2 .

We have proved that A ⊗ i is bounded on H1⊗H2, with ‖A ⊗ I‖ ≤ ‖A‖.
Hence its closure is a bounded operator on H1 ⊗ H2, with the same norm
estimate. In the same way, we obtain I⊗ B is bounded, with ‖I⊗ B‖ ≤ ‖B‖.
As A⊗ B = (A⊗ I)(I⊗ B) (at least obviously on H1⊗H2) we get that A⊗ B
is bounded and

‖A⊗ B‖ ≤ ‖A‖ ‖B‖ .

Let ε > 0 be fixed, choose ϕ and ψ in H1 and H2 respectively, such that
‖Aϕ‖ ≥ ‖A‖ − ε ,
‖Bψ‖ ≥ ‖B‖ − ε ,
‖ϕ‖ = ‖ψ‖ = 1 .

Then

‖(A⊗ B)(ϕ⊗ ψ)‖ = ‖Aϕ‖ ‖Bψ‖ ≥ ‖A‖ ‖B‖ − ε‖A‖ − ε‖B‖+ ε2 .

Making ε go to 0, this proves that ‖(A ⊗ B)‖ ≥ ‖A‖ ‖B‖. The equality of
norms is proved. ut

Tensor products of operators preserve most of the classes of bounded op-
erators.

Theorem 2.25. Let H1 and H2 be (separable) Hilbert spaces. Let A and B
be bounded operators on H1 and H2 respectively.

1) If A and B are compact operators then A ⊗ B is a compact operator on
H1 ⊗H2.

2) If A and B are trace-class operators then A ⊗ B is trace-class too. In
particular we have

‖A⊗ B‖1 = ‖A‖1 ‖B‖1 (2.7)

and
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Tr (A⊗ B) = Tr (A) Tr (B) . (2.8)

3) If A and B are Hilbert-Schmidt operators then A ⊗ B is Hilbert-Schmidt
too. In particular we have

‖A⊗ B‖2 = ‖A‖2 ‖B‖2 . (2.9)

Proof. We start by noticing that

|u1〉〈v1| ⊗ |u2〉〈v2| = |u1 ⊗ u2〉〈v1 ⊗ v2|

as can be easily seen by applying these operators to elements of the form
f ⊗ g in H1 ⊗H2, then passing to linear combinations and finally passing to
the limit to general elements of H1 ⊗H2.

Now the main characterizations of compact (resp. trace-class, resp. Hilbert-
Schmidt) operators is that they are represented as∑

n

λn|un〉〈vn|

for some orthonormal families (un) and (vn) and a sequence of positive scalars
(λn) which converges to 0 (resp. is summable, resp. is square summable). It
is now very easy to conclude in all the three cases. ut

2.2.3 Countable Tensor Products

All along this book we shall also make heavy use of the notion of countable
tensor products of Hilbert spaces. Let us detail here how they are constructed.

Let (Hn) be a sequence of Hilbert spaces. All the finite tensor products

H0 ⊗ . . .⊗Hn

are well-defined by the above constructions. But it is not clear how one can
rigorously define the countable tensor product⊗

n∈N
Hn .

The idea is the following: one defines ⊗n∈NHn as the inductive limit of the
spaces H0⊗ . . .⊗Hn, when n tends to +∞. This can be achieved only if one
finds a way to see the space H0 ⊗ . . .⊗Hn as a subspace of H0 ⊗ . . .⊗Hn+1

for all n. The way this is obtained is by choosing a unit vector un ∈ Hn

for each n, which will constitute a reference vector of Hn. Then elements
f0 ⊗ . . . ⊗ fn of H0 ⊗ . . . ⊗ Hn are identified to f0 ⊗ . . . ⊗ fn ⊗ un+1 as an
element ofH0⊗. . .⊗Hn+1. This embedding is isometric, it preserves the scalar
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product, etc ... One can easily go the limit n → +∞ in this construction.
This gives rise to the following definition.

Let (Hn) be a sequence of Hilbert spaces. Choose a sequence (un) such
that un ∈ Hn and ‖un‖ = 1, for all n. This sequence is called a stabilizing
sequence for ⊗n∈NHn. The space ⊗n∈NHn is defined as the closure of the
pre-Hilbert space of vectors of the form⊗

n∈N
fn

such that fn ∈ Hn for all n and fn = un for all but a finite number of n. The
scalar product on that space being obviously defined by〈⊗

n∈N
fn ,

⊗
n∈N

gn

〉
=
∏
n∈N
〈fn , gn〉 .

The above infinite product is finite for all but a finite number of its terms
are equal to 〈un , un〉 = 1.

This is all for the definition of a countable tensor product of Hilbert space.
Note that the construction depends on the choice of the stabilizing sequence
(un) which has been chosen initially. Hence, when dealing with such tensor
products, one should be clear about the choice of the stabilizing sequence.

2.3 Partial Traces

The notion of partial trace appears naturally with the tensor products of
Hilbert spaces and of operators. This notion is essential in the study of open
quantum systems.

2.3.1 Partial Trace with Respect to a Space

Definition 2.26. Let H and K be separable Hilbert spaces. For any g ∈ K
consider the operator

|g〉
K

: H −→ H⊗K
f 7−→ f ⊗ g .

It is clearly a bounded operator from H to H⊗K, with norm ‖g‖. Its adjoint
is the operator defined by

K
〈g| : H⊗K −→ H

u⊗ v 7−→ 〈g , v〉 u ,
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and its natural extension by linearity and continuity. Note that its operator
norm is also equal to ‖g‖.

In particular, if T is a bounded operator on H⊗K then the operator

K
〈g|T |g〉

K

is a bounded operator on H.

Lemma 2.27. If T is a trace-class operator on H⊗K then for all f ∈ K the
operator

K
〈f |T |f〉

K

is a trace-class operator on H.

Proof. Let f ∈ K and assume it is norm 1, without loss of generality. Let
(gn) and (hn) be any orthonormal family in H. We have∑

n

∣∣〈gn , K〈f |T |f〉K hn〉∣∣ =
∑
n

|〈gn ⊗ f , Thn ⊗ f〉| .

We now use the characterization of Theorem 2.10 in both directions. As T is
trace-class on H⊗K the right hand side is finite for (gn⊗f) and (hn⊗f) are
particular orthonormal sequences in H ⊗ K. This means that the left hand
side above is finite for all orthonormal sequences (gn) and (hn), which ensures
that

K
〈f |T |f〉

K
is trace-class. ut

We can now prove the main theorem which defines and characterizes the
partial traces.

Theorem 2.28. Let H and K be two separable Hilbert spaces. Let T be a
trace-class operator on H ⊗ K. Then, for any orthonormal basis (gn) of K,
the series

TrK(T) =
∑
n
K
〈gn|T |gn〉K (2.10)

is ‖ · ‖1-convergent. The operator TrK(T) defined this way does not depend
on the choice of the orthonormal basis (gn).

The operator TrK(T) is the unique trace-class operator on H such that

Tr (TrK(T)B) = Tr (T (B⊗ I)) (2.11)

for all B ∈ B(H).

Proof. Let (gn) be an orthonormal basis of K. As each
K
〈gn|T |gn〉K is trace-

class on H (Lemma 2.27) then, by Theorem 2.10, there exist for all n ∈ N
orthonormal families (enm)m∈N and (fnm)m∈N in H such that∥∥

K
〈gn|T |gn〉K

∥∥
1

=
∑
m

∣∣〈enm ,
K
〈gn|T |gn〉K f

n
m

〉∣∣ .
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Hence we have∑
n

∥∥
K
〈gn|T |gn〉K

∥∥
1

=
∑
n

∑
m

∣∣〈enm ,
K
〈gn|T |gn〉K f

n
m

〉∣∣
=
∑
n

∑
m

|〈enm ⊗ gn , T fnm ⊗ gn〉| .

Note that the families (enm ⊗ gn)n,m∈N and (fnm ⊗ gn)n,m∈N are orthonormal
in H ⊗ K, hence, by Theorem 2.10 again, the above quantity is finite, for T
is trace-class on H ⊗ K. We have proved that the series

∑
n K
〈gn|T |gn〉K is

‖ · ‖1-convergent. The operator

TrK(T) =
∑
n
K
〈gn|T |gn〉K

is a well-defined, trace-class operator on H.

Let us check that this operator is independent of the choice of the basis
(gn). Let (hn) be another orthonormal basis of K, we have

〈x , TrK(T) y〉 =
∑
n

〈x⊗ gn , T (y ⊗ gn)〉

=
∑
n

∑
k

∑
l

〈gn , hk〉 〈hl , gn〉 〈x⊗ hk , T (y ⊗ hl)〉

=
∑
k

∑
l

〈hl , hk〉 〈x⊗ hk , T (y ⊗ hl)〉

=
∑
k

〈x⊗ hk , T (y ⊗ hk)〉 .

This proves that TrK(T) is also equal to
∑

k K
〈hk|T |hk〉K . We have proved

the independence property.

We prove now the characterization (2.11). Let B be any bounded operator
on H, we have

Tr (T (B⊗ I)) =
∑
n

∑
m

〈en ⊗ gm , T (B⊗ I) en ⊗ gm〉

=
∑
n

∑
m

〈en ⊗ gm , T (B en ⊗ gm)〉

=
∑
n

∑
m

〈
en , K〈gm|T |gm〉K B en

〉
= Tr (TrK(T)B) .

We have proved that TrK(T) satisfies the relation (2.10). We have to prove
uniqueness now, and the theorem will be completely proved. If S and S′ are
two trace-class operators on H satisfying (2.10), then in particular Tr ((S −
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S′)B) = 0 for all B ∈ B(H). This is in particular true for all B ∈ L∞(H)
hence, by Theorem 2.12, this implies that S− S′ = 0. ut

We now give a list of the most useful properties of the partial trace. They
are all straightforward applications of the definition and theorem above, we
leave the proofs to the reader.

Theorem 2.29. Let H and K be two separable Hilbert spaces, let T be a
trace-class operator on H⊗K.

1) If T is of the form A⊗ B, with A and B being trace-class, then

TrK(T) = Tr (B)A .

2) We always have
Tr (TrK(T)) = Tr (T) .

3) If A and B are bounded operators on H then

TrK ((A⊗ I)T (B⊗ I)) = A TrK(T)B .

2.3.2 Partial Trace with Respect to a State

In applications to Quantum Mechanics one sometimes also needs the notion
of partial trace with respect to a given trace-class operator, or more precisely
with respect to a state. This partial trace is different, but related to the
previous one.

Once again this partial trace is better defined through a theorem which
characterizes it.

Theorem 2.30. Let H and K be two separable Hilbert spaces. Let T be a
fixed trace-class operator on K, with canonical form

T =
∑
n

λn |un〉〈vn| .

Then, for any bounded operator X on H⊗K, the series∑
n

λn K〈vn|X |un〉K (2.12)

is operator-norm convergent on H. Its limit, denoted by TrT(X), is a bounded
operator on H.

The operator TrT(X) is the only bounded operator on H satisfying

Tr (TrT(X)S) = Tr (X (S⊗ T)) (2.13)
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for all S ∈ L1(H).

Proof. The series
∑

n λn K〈vn|X |un〉K is operator-norm convergent for∑
n

∥∥λn K〈vn|X |un〉K∥∥ ≤∑
n

|λn|
∥∥
K
〈vn|X |un〉K

∥∥
≤
∑
n

|λn|
∥∥
K
〈vn|

∥∥ ‖X‖ ∥∥|un〉K∥∥
≤
∑
n

|λn| ‖X‖ <∞ .

Hence it defines a bounded operator, which we denote by TrT(X).
We shall now check that it satisfies the relation (2.13). Recal that the

family (vn) appearing in the canonical form of T is an orthonormal family
on K. Hence we can extend the family (vn) into an orthonormal basis (ṽn) of
K. Recall that T vanishes on the orthogonal complement of the family (vn).
Finally, recall that

Tvm = λmum

for all m. Let S be a trace-class operator on H and let (en) be an orthonormal
basis of H. We have

Tr (X (S⊗ T)) =
∑
n,m

〈en ⊗ ṽm , X (S⊗ T) en ⊗ ṽm〉

=
∑
n,m

〈en ⊗ ṽm , X (S en ⊗ T ṽm)〉

=
∑
n,m

〈en ⊗ vm , X (S en ⊗ T vm)〉

=
∑
n,m

λm 〈en ⊗ vm , X (S en ⊗ um)〉

=
∑
n,m

λm
〈
en , K〈vm|X |um〉K S en

〉
=
∑
n

〈en , TrT(X)S en〉

= Tr (TrT(X)S) .

The required relation is proved.

We just have to prove uniqueness now. If X1 and X2 are two bounded
operators on H such that

Tr (Xi S) = Tr (X(S⊗ T))

for all S ∈ L1(H), then we must have

Tr ((X1 − X2)S) = 0
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for all S ∈ L1(H). By Theorem 2.12, this implies X1 − X2 = 0. ut

2.3.3 Comments

The second family of partial traces TrT(X) are called “with respect to a state”
for, in most of the quantum mechanical situations where they appear, the
operator T is a quantum state, a density matrix (see Lecture 4).

The partial traces with respect to a space, TrK(T), are in general simply
called partial traces (if everyone is clear about the space which is concerned!).
For those with respect to a state T one generally makes it more precise:
“partial trace with respect to T”.

Note that the two partial traces could be formally related by the following
formulas:

TrT(X) = TrK(X (I⊗ T)) , (2.14)

and
TrK(T) = TrI(T) , (2.15)

which can be obtained easily from (2.11) and (2.12), but which are not quite
correct in general! Indeed, in full generality the operator X (I⊗T) is not trace-
class, so its partial trace TrK is not defined; the operator I is not trace-class
in general neither, so the trace TrI is not defined.

Actually these formula are correct once X (I ⊗ T) is trace-class, reap. I is
trace-class. This is to say, they are meaningful and true in finite dimension
typically.

Once can weaken the definitions so that the identities (2.14) and (2.15)
are always true, by asking weaker convergences in the series that define these
partial traces. But it is not worth developing this here.

Notes

There is no true references which are specially dedicated to trace-class oper-
ators or to tensor products. The references we have given in Lecture 1 are
still valid here.

Only the discussion on partial traces is not easy to find in the literature. It
is most often not treated, or treated only in the finite-dimensional case. As a
consequence the treatment we give here on partial trace is original, above all
by the approach we take with partial “bras” and “kets”, which is very close
to the way the physicists usually understand partial traces.
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