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Introduction.

A stationary motion on the real line with independent increments is described
by a Levy process, or equivalently by a convolution semigroup of probability
measures. This naturally extends to “rigid” motions represented by Levy
processes on Lie groups. If one assumes the continuity of the paths, a con-
volution semigroup on a Lie group (G is determined by an element of the Lie
algebra g (the drift) and a scalar product on g (the diffusion matrix) (see
for example [21]). We call them the local characteristics of the convolution
semigroup.

We will be interested in stationary “fluid” random evolutions which have
independent increments. Strong solutions of Lipschitz stochastic differential
equations (SDEs) define such evolutions. Those are of a regular type, namely

(a) The probability that two points thrown in the fluid at the same time
and at distance ¢ separate at distance one in one unit of time tends to
0 as ¢ tends to 0.

(b) Such points will never hit each other.

Their laws can be viewed as convolution semigroups on the group of diffeo-
morphisms. The local characteristics are given by a drift vector field and



a covariance function, which determine the SDE. But it can be seen that
covariance functions which are not smooth on the diagonal (e.g. covariance
associated with Sobolev norms of order between d/2 and (d + 2)/2, d be-
ing the dimension of the space) can produce strong solutions, which define
random evolutions of different type :

- diffusive (or turbulent) evolutions where (@) is not satisfied, which means
that two points thrown initially at the same place separate,

- coalescing evolutions where (b) does not hold.

Among diffusive evolutions, we can distinguish the intermediate ones where
two points thrown in the fluid at the same place separate but can meet
after, i.e. where (a) and (b) are both not satisfied. Regular or coalescing
evolutions are represented by flows of maps. Turbulent evolutions by flows
of probability kernels obtained by dividing infinitely the initial point.

In the intermediate phase, we will see that the evolution can be modified
in order to get a coalescing motion, which solves the SDE on an extended
probability space. The associated noise, in Tsirelson sense (see [30]), is not
linearizable, i.e. cannot be generated by a white noise.

A complete classification of the solutions can be given : They are obtained
by filtering a coalescing motion defined on an extended probability space with
respect to a sub-noise containing the Gaussian part of its noise.

The original purpose of this work was actually to get a better under-
standing of coalescing solutions of SDEs. In a previous work [18] we have
shown that, given a Brownian motion W on vector fields, a strong solution
(S54(W), s <) of the SDE driven by W can be defined as a stochastic flow of
kernels under very general circumstances. All the possible behaviours were
shown to hold in examples of special interest, namely isotropic stationary
Brownian vector fields associated with Sobolev norms.

The intermediate phase, where the diagonal can be hit and left by the two-
point process, also occurs. It has been shown in [8] (for gradient fields) and
(at a physical level) in [9, 10, 12] that in such cases, a coalescing solution of
the SDE can be defined in law, i.e. in the sense of the martingale problems
for the n-point motion. We present a construction of a coalescing flow in
the intermediate phase. This flow obviously differs from (S5;:, s < t) and
corresponds to an absorbing boundary condition on the diagonal for the two-
point motion.



This flow generates a vector field valued white noise W and we can identify
(Sst, s <t) as the coalescing flow (s, s < t) filtered by o(W).

Let us explain in more details the contents of the paper. We give in section
1 a construction result of a stochastic flow of kernels (K :, s <) associated
with a general compatible family (P,E”), n > 1) of Feller semigroups, which
represents the motion of n points thrown in the fluid. The two notions are
shown to be equivalent. This is related to a recent result of Ma and Xiang
[19] where an associated measure valued process was constructed in a special
case (the flow can actually be viewed as giving the genealogy of this process,
i.e. as its “historical process”) and to a result of Darling [8]. Note however
that Darling did not get flows of measurable maps except in very special
cases.

In section 2, coalescing flows are constructed and briefly studied. They
can be obtained from any flow whose two-point motion hits the diagonal.
Then the original flow is shown to be recovered by filtering.

In section 3 we restrict our attention to diffusions generators. We define
the vector field valued white noise W associated with the stochastic flow of
kernels (K¢, s < t) and prove that the flow solves the SDE driven by the
white noise W.

In section 4, under some off diagonal uniqueness assumption for the law
of the n-point motion, we show there is only one strong solution. In the
intermediate phase described above, the classification of other solutions by
filtering of the coalescing solution is established. Then we identify the linear
part of the noise generated by these solutions to the noise generated by W.

The examples related to our previous work (see [18]) are presented in
section 5, with an emphasis on the verification of the Feller property for
the semigroups P,E”), the classification of the solutions and the appearance of
predictable noises which cannot be generated by white noises.



1 Stochastic flow of kernels, Feller convolu-
tion semigroup and compatible family of
Feller semigroups.

1.1 Presentation of the results.

Let M be a separable compact metric space and d a distance on M. We
denote by P(M) the space of probability measures on M, equipped with the
weak convergence topology. Let (f.)nen be a sequence of functions dense in
{f e CM), ||flle <1}. We will equip P(M) with the distance p(u,v) =
(X, 27 ([ fo du — [ fo dv)?)M? for all p and v in P(M). Thus P(M) is a

separable compact metric space.

Definition 1.1.1 Let (PE”), n > 1) be a family of Feller semigroups ', re-
spectively defined on M™ and acting on C(M"™). We say that this family is
compatible as soon as for all k < n,

PO f(ary . en) = PMg(yr, .y yn) (1.1)
where f and g are any continuous functions such that

with {i1,..., 0} C{L,...,n} and (21, ..., 28) = (Yiyy - -5 Yir)-
We will denote by P
P,E”) starting from (xy,...,x,). This Markov process will be called the n-point

motion of this family of semigroups. It is defined on the set of cadlag paths
on M"™ which is a Polish space (see [20]).

) the law of the Markov process associated with

Let us recall that a kernel on M is a measurable mapping from M into
P(M), M and P(M) being equipped with their Borel o-fields. For all kernel
K, feC(M)and z € M, K f(z) denotes [ f(y) K(z,dy). We denote by E
the space of all kernels on M and we equip £ with the o-field generated by
the mappings K — K f(x), for all f € C(M) and * € M. We denote this
o-field by £.

1P£n) is a Feller semigroup on M™ if and only if PE”) is positive (i.e. PE”)f > 0 for all
f>0), PE”Jl = 1 and for all continuous function f, lim;_¢ Pgn)f(r) = f(z) which implies

the uniform convergence of PE”)f towards f (see theorem 9.4 in chapter I of [6]).
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Let E™ denote the space of measurable mappings on M. Note that the
inclusion map of £ in E is measurable with respect to £™ = {ANE™, A €
£}, though E™ is not in &.

Definition 1.1.2 A family (14)i>0 of probability measures on (E,£) is a
convolution semigroup if for all nonnegative s and t, on the probability space
(E% E%? vy @ 1y), there exists a (E, E)-valued random variable K of law vy
such that for all x € M,

K(z) = K1 Ky(x) vs @ u(dKy,dK;) — a.s., (1.3)

where K1Ky(z) = [ Ky(y)Ki(z,dy). (Note that in general, (Ky, K;) —
K1 K, is not measurable.)

We say that a convolution semigroup (v4)i>o is a Feller convolution semi-
group as soon as

(i) Vf e C(M), limyosup,cp [(Kf(z) = f(2))*re(dK) = 0.
(il) Vf e C(M), ¥Vt > 0, limg )0 [ (K f(2) — K f(y))*ve(dK) = 0.

Definition 1.1.3 Let (2, A,P) be a probability space. Then a family of
(E, E)-valued random variables (K, s <t) is a stochastic flow of kernels if
and only if

(a) For all s < u < t, for all x € M, P-almost surely, for all continuous
function f, Ks1f(x) = KoKyt f)(2). (cocycle property).

(b) For all s <t, the law of K, only depends of t — s. (Stationarity)

(¢) The flow has independent increments, i.e. for all ty <ty < --- <t,, the
Jamily {Ky.4,,,, 1 <1< n—1} is independent.

(d) For all continuous function f,

lim  sup E[(I(s,tf(x) - [(uwf(x))Q] = 0. (1'4)

(u,v)—)(s,t) zeM

(e) For all s < t, for all continuous function f,

lim E[(K,:f(z) — K.:f(y))*] = 0. (1.5)

d(z,y)—0



Let (29, A%) (respectively (%™, A%™)) denote the measurable space
(I.<i B, @5<:€) (respectively ([[ <, £™, ®s<:E™)). For s < t, let K,; de-
note the random variable w + w(s,t). Let also K (respectively ¢) be the
random variable (K, s < t) (respectively (ps:, s < t)). Then K(w) = w
(respectively p(w) = w).

We say that a probability measure on (E,&) (or on (29, .A4°)) is carried
by E™ (or by Q%™) if and only if it is the image of a probability measure on
E™ (or on Q%™) by the inclusion map. We will use the same notation.

Let (Th)ner be the one-parametric group of transformations of Q° (and

of 0%™) defined by Ty (w)(s,t) = w(s + h,t + h), for all s < ¢, h € R and w.

Theorem 1.1.4 1- For all compatible family (PE”), n > 1) of Feller semi-
groups on M, there exists a unique Feller convolution semigroup (v¢)i>0 on

(E,E) such that for alln >1,t >0, f € C(M") and x € M™,

P f(2) = / K®" f(z) n(dK). (1.6)

Conversely, for all Feller convolution semigroup (v¢)¢>0 on (E,€), equation
(1.6) defines a compatible family of Feller semigroups on M.

2- For all Feller convolution semigroup v = (4)ss0 on (E, &), there exists
a unique (Th)ner-itnvariant probability measure P, on (Q°, A%) such that the
family of random variables (K, s < t) is a stochastic flow of kernels and
for all s <t, the law of K, 1s vy_s.

This flow of kernels is called the canonical stochastic flow of kernels as-
sociated with v (or equivalently with (PE”), n>1)).

Conversely every stochastic flow of kernels (defined on some probability
space (Q, A, P)) defines a canonical stochastic flow of kernels associated with
a (unique) compatible family of Feller semigroups on M and a Feller convo-
lution semigroup on (E,£).

Remark 1.1.5 We will say that a stochastic flow of kernels K = (K, s <
t) (defined on some probability space (2, A,P)) is a stochastic flow of map-
pings if and only if the law of K is carried by Q%™ , i.e. if there exists a family
of (E™,E™)-valued random variables (¢s+, s < t) such that for all x € M,
P-almost surely, K,i(x) = 0y, ). Then this family of random mappings
satisfies



(a) Foralls <u<t, forallz € M, P-almost surely, os+(x) = @u10@su(T).
(cocycle property).

(b) For all s <t, the law of w5 only depends of t — s. (Stationarity)

(c¢) The flow has independent increments, i.e. for all t; <ty < --- <t,, the
Jamily {¢4, 4., 1 <1 <n—1} is independent.

(d) limquu)—(s,0) SUPzenr E[(d(05,6(2), pun(2)))?] = 0.
(e) For all s <t, limy(sy)—o E[(d(@s¢(2), s:(y)))*] = 0.

Note that every stochastic flow of measurable mappings defines a compat-
ible famzl% of Feller semigroups and a Feller convolution semigroup.

P;"’, n > 1) denotes the associated compatible family of Feller semi-
groups, then for all Ti,...,x, in M, the law oth(n) = (pos(1), ..., pos(xn))
is P,E”)(:cl, ooy y). It follows that the law of (Xt(n), t>0) is PEZ? )"
Theorem 1.1.6 Let (P,(j”), n > 1) be a compatible family of Feller semi-
groups on M, then the associated canonical stochastic flow of kernels is a
stochastic flow of mappings if and only if for oll f € C(M), v € M and
t>0,

P fo (2, x) = Puf*(x). (17)

Remark 1.1.7 The theorems of this section are also satisfied when M 1is
a locally compact separable metric space. In this case, (P,E”), n>1)1isa
compatible family of Markovian semigroups acting continuously on Co(M"),
the set of continuous functions on M™ converging towards 0 at oo (we call
them Feller semigroups). In the previous definitions (1.1.2 and 1.1.3) and
in the statement of the theorems the function f has to be taken in Co(M)
or in Co(M™). Moreover (i1) of definition 1.1.2 must be modified by: for all
reM, feCo(M)andt >0,

limy, [(Kf(y) — Kf(z))* n(dK) = 0 (1.8)
and limyoo [(Kf(y))? (dK) = 0. '

In definition 1.1.3, (e) must be modified by: for all x € M, f € Co(M) and

s <t,
{ lim, . E[(Ks.f(z) — Ko f(y))*] = 0 (1.9)
and lim, o E[(Ks:f(y))?*] = 0. ‘
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In remark 1.1.5, (e) must be modified by: for all x € M and s <,

limyo, E[(d(one(@), pur@))?] = 0
{and limy oee E[(d(ne(y), K7 = 0 (1.10)

for all compact K.

Proof. In order to prove this remark, note that the one-point compactifi-

cation of M, M=MU {o0}, is a separable compact metric space. On M

we define the compatible family of Feller semigroups, (P,E”), n > 1), by the

following relations, )
for all n > 2 and all family of continuous functions on M, {f;, i > 1},

P Ae---0f = Pgo - ®g. (1.11)

+ Zfz(oo)lsgn_l)fl ®"'®fi_1 R Gix1 @ - D gn

and
Wi = fi(oe) + PMgy, (1.12)

where ¢, = fi — fi(oo) € Co(M) and with the convention Pgn)gl R ®
gn(x1,. .., x,) = 0 if there exists ¢ such that z; = co. We apply theorem

1.1.4 to M and to the family (|5§”), n > 1) to construct Feller convolution
semigroup  and a stochastic flow of kernels (K,:, s < t) on M. This
stochastic flow of kernels satisfies

(i) [a’sﬂf(oo) =, for all s <t and
(i1) [g’w(x:)(oo) =0 for all z € M and s <.
Proof of (i). For all f € C(M),

E[(Ky.f(o0) — f(oe)?] = P, F%%(c0,00) — 2f(00)PY, foo) + f(oo)?

o O

since |5§2_)5f®2(oo, o00) = f(00)?* and |5§1_)5f(oo) = f(o0). This implies (i). 0
Proof of (ii). Let g, be a sequence in Co(M) such that g, € [0,1] and simply
converging towards 1. Then f, = 1 —g, € C(M) is such that f,(cc) = 0 and

E[(K,1fu(2))Y] = PP g2 (2, 2) + 1 — 2P, g, (2).

10



This implies that )
lim E[(K,+f.(z))*] = 0.
n— 00

Assertion (ii) follows since [&'37,5(:0)(00) = lim,, 0o ]&’sifn(;v). O

For all = € M, let us denote K,,(z) by K,(z). Assertions (i) and (ii)
implies that K, is a kernel on M and that (K,:, s < t) is a stochastic
flow of kernels on M. In a similar way, one can show that & induces a Feller
convolution semigroup on (£, £). Note that the converse statements are easy
to prove. It is also easy to see that theorem 1.1.6 holds. [

On a first reading, we advise to skip the long proof of theorem 1.1.4 and
go directly to section 1.5.

1.2 Proof of the first part of theorem 1.1.4.

Let us explain briefly the method we employ to prove theorem 1.1.4. We first
suppose we are given a compatible family of Feller semigroups. We begin by
defining a convolution semigroup (Q;, ¢ > 0) on measurable mappings on
P(M). For all ¢, to define Q;, we first define the law of ([g’(,ui), i € N),
where the law of K is Qq, for some dense family (y;, ¢ € N) in P(M) and
get Q; by an approximation. This convolution semigroup induces the Feller
convolution semigroup (v4)¢>0 on (E,E).

The approximation used to construct this convolution semigroup allows
us to define a stochastic flow of mappings on P(M) in such a way that these
mappings are measurable, defining it first on the dyadic numbers. Note that
a difficulty to get this measurability comes from the fact that the composi-
tion of mappings from P(M) onto P(M) is not measurable with respect to
the natural o-field. This stochastic flow of measurable mappings on P(M)
induces a stochastic flow of kernels on M.

In the following we assume we are given a compatible family of Feller
semigroups, (PE”), n > 1). And we intend to construct a Feller convolution
semigroup (v4)¢>0 on (£, €) satisfying (1.6). Note that the uniqueness of such
a convolution semigroup is immediate since (1.6) characterizes v4.

1.2.1 A measurable choice of limit points in P(M).

It is known that, as a separable compact metric space, P(M) is homeomor-
phic to a closed subset of [0, 1] (see corollaire 1 §6.1 of chapter 9 in [7]).
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A probability y can be represented by a sequence (y")nen € [0,1]. Let
y = (yi)ien be a sequence of elements of P(M).
Let y' = limsup;_, /. Let i) = inf{s, [y" —y}| < 1/k}. By induction,
for all integer j, we construct y’ and {s;, k € N} by the relations
y' =limsupy’,_, and i, =inf{i e {iI7", ke N}, v/ —y!| < 1/k}.
k— oo k

We denote (y"),en by I(y). Note that I(y)! = lim, ., yfg Hence [(y) belongs
to P(M). It is easy to see that [ satisfies the following lemma.

Lemma 1.2.1 [ : P(M)Y — P(M) is a measurable mapping, P(M) being
equipped with the Borel o-field B(P(M)) and P(M)Y with the product o-field
B(P(M))®N. Moreover [((y:)ien) = Yoo when y; converges towards ye..

1.2.2 Notations and definitions.

Let I' denote the space of measurable functions {i’ : P(M) — P(M) and
G the o-field generated by the sets of the form {K € I', K(u) € A} where
p € P(M)and A € B(P(M)).

Let {u;, [ € N} be a dense family in P(M ), which will be fixed in the
following. We wish to define a measurable mapping i : P(M)Y — I such
that 2((y;)jen) () = yi for all integer /.

Let (ex)ren be a positive sequence decreasing towards 0 (this sequence
will be fixed later). Let i : P(M)" — I be the injective mapping defined
by

1(y) (1) = (Y ) keny) (1.13)
where
ny = inf{n, p(pn, p) < e}, (1.14)

for (y, 1) € P(M)N x P(M). Note that i(y) defined this way is a measurable
mapping since [ is measurable and p — (’yng)keN is measurable. Note also
that the relation «(y)(u) = yi is satisfied for all integer [.

Lemma 1.2.2 For n > 1, the mapping V,, : P(M) x (P(M)™)* — P(M),
defined by

Uo(psy's - y™) =i(y") oi(y" ™) o+ oi(y')(p), (1.15)
is measurable. (P(M) x (P(M)M)" is equipped with the product o-field.)

12



Proof. Note that U; is the composition of the mappings [ and (u,y) —
('yng)keN. Since these mappings are measurable, U, is measurable.
By induction, we prove that ¥, is measurable since, for n > 2,

Vg y'seoy™) = U (Vo (s y's 9" )y"). O
Lemma 1.2.3 For n > 1, the mapping ®,, : (P(M)Y)" — T, defined by
Sy, y") = i(y") od(y" ) o0y, (1.16)
is measurable. In particular, i is measurable.
Proof. Note that for all A € P(M),
O ({K €T, K(u) € A}) = {y € (P(M)")", (u,y) € U;'(A)}.

This event belongs to (B(P(M))@N)(@” since ¥,, is measurable. This shows
the measurability of ®,. [

We need to introduce the functions ®,, and V¥, because the composition

application ' — T, ([&’1, cee ]&’n) — K, 00K is not G®"-measurable in
general.
Let j : I' — P(M)Y be the mapping defined by
J(K) = (K (m))en. (1.17)

Lemma 1.2.4 The mapping j is measurable and satisfies joi(y) =y for all
y € P(M)M.

Proof. We have for all A € P(M)®",
Iy € POMY, (yr,.. . yn) € A}) = {K €T, (K(m),...,K(u)) € A}.

This set belongs to G. [
Note that for all [ € Nand K € T, i 0 j(K)() = K ().
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1.2.3 Constructions of probabilities on P(M)" and on T.

The method we employ to construct the probability Q; on (I',G) consists in
constructing a probability HEOO) on (P(M)N, B(P(M))®Y) such that HELOO) is
the law of ([&’(,ul), [ € N), when the law of K is Q;, and then in defining Q;
using the mapping 1.

In order to construct HEOO), we first construct for all integer £ a Feller
semigroup H,ﬂ’“) acting on the continuous functions on P(M)* (see Ma-Xiang
[19] for a similar construction when k = 1).

Let A denote the algebra of functions g : P(M)* — R such that 2

glps o) = (Fp5™ @ - @ p™) (1.18)

for f € C(M™) and ny,...,n, integers such that n = ny +-- - +ny (A is the
union of an increasing family of algebras A,, ., ). For all g € A, given by
equation (1.18), let

.....

M) = (P L™ @ - @ ™). (1.19)

with g = (p1,...,pux) € P(M)*. Note that since the family of semigroups
(P,E”), n > 1) is compatible, (1.19) is independent of the expression of ¢ in
(1.18).

Let us notice that, by the theorem of Stone-Weierstrass, the algebra Ay
is dense in C'(P(M)*) and that Hgk) acts on Ay.

Lemma 1.2.5 H,ﬁ’“) is a Markovian operator acting on Ay.

Proof. The only thing to be proved is the positivity property (it is obvious
that TIM1 = 1).

For all integer N, let ((X',..., X™¥) 1 < i < k) be a family of in-
dependent Markov processes associated with the Markovian semigroup PEN)
such that the law of (X} ..., X2") is u®V. Let us introduce the following

Markov process on P(M)*, pV = (u', ...,y ") where

N
: 1
Ny ) E P
= N ;:1 5Xt],z7 for 1 <1 <k. (1.20)

ZHere and in the following, for all measure p and f € L!'(u), we denote [ f du by
(fom), (p, f) or pf.
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For g(py, ... px) = (fLui™ @ -+ @ pp*), a simple computation (when
k=1, see (3.2) in [19]) gives

Elg(e)] = ELPIf, (1) @ - @ (g *)™)): (1.21)

The law of large numbers implies that ,uév’i converges weakly towards p;.
Therefore we get

k . ¢
Mg, o) = lim Elg(uy™")]. (1.22)

This shows that Hgk) is positive. [
()

Using this lemma, it is easy to define II;¢ for all continuous function ¢
and to show that Hff“) is a Markovian semigroup acting on C'(M").
(n)

Let us remark that since the semigroups P; "’ are Feller, the semigroups

Hﬁ’“) are also Feller : for all g in Ay, then Hgk)g is continuous and lim;_q Hgk)g =
g and these properties extend to every continuous functions.

The family of semigroups (H,E’“), k > 1) is compatible (in the sense given
in section 1.1). Thus (H,E’“), k > 1) is a compatible family of Feller semigroups
on P(M). We will denote Hgi),u) the law of the Markov process associated

with HEQ) starting from (u, ) and we will denote this process by (e, 14).

By Kolmogorov’s theorem, we construct on P(M)"N a probability mea-
sure HEOO) such that HEOO)(A x P(M)Y) = Hgn)lA(ul, ey fiy), for any A €
B(P(M))®". We now prove useful lemmas satisfied by HEOO)

Lemma 1.2.6 For all positive T, there exists a positive function ep(r) con-
verging towards 0 as r goes to 0 such that

sup EE [ 1)) < ex(p(p, v)). (1.23)

telo,T
Proof. Note that for all continuous function f,
ol = v = P (, ) + T g% (v, v) = 2017 g% (1, ),
where g(,u) = uf = [ f du. We conclude the lemma after remarking that
this function is uniformly continuous in (¢, g, v) on [0,7] x P(M)*. O

From now on we fix T" and define the sequence (ex)reny (Which defines
the sequence (nf )yen for all p € P(M) by equation (1.14)) such that 0 <
r < 2¢; implies er(r) < 273%. The sequence (e )ren is well defined since
lim, 0 er(r) = 0.
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Lemma 1.2.7 For all t € [0,T] and for any independent random variables

X and Y respectively in P(M) and P(M)N, such that the law of Y is HEOO),
then Y,x converges almost surely towards l((Yng)keN) = 1(Y)(X) as k goes
to co.

Proof. Note that (Yn?)k’EN is a random variable (the mapping (u,y) —
(’yng)keN is measurable). For all integer k,

Plo(Yor, Yix ) > 275 < 2¥Elen(plup o px N <275 (124)

Using Borel-Cantelli’s lemma, we prove that almost surely, (Yng)keN is a
Cauchy sequence and therefore converges. Its limit can only be l((Yng)keN)-

O

Lemma 1.2.8 Let (X,,)nen be a sequence of random variables in P(M) con-
verging in probability towards a random variable X and Y a random variable

in P(M)N of law HELOO) independent of (X, )nen, then i(Y)(X,) = l((Ynfn)keN)
converges in probability towards i(Y)(X) = l((Yng)keN) as n tends to oo.

Proof. Let Z, = l((Ynkxn)keN) and 7 = l((Ynf)keN)- For all integer k, we

have

PIp(Z0s2) > <] < Plp(Za,Y,x) > £/31 4 Plp(Y,x0, Yox) > /3]
+ Plp(Y,x,2) > ¢/3].

Lemma 1.2.7 implies that the first and last terms of the right hand side of

the preceding equation converge towards 0 as k£ goes to co. The second term

is lower than ZE[er(p(p, xn, ft,x)) A 8]. Since for all positive a, there exists
k

a positive i such that |r| < n implies Z|er(r)| < a, we get

Plo(Yoxn, Yox) > /3] < o+ CPlp(pm, prox ) > 1]
< a4 CPp(X,, X) >n—2700],

where C' = 72/e*. Therefore, we get P[p(Z,,7Z) > ¢] < a+CP[p(X,, X) > 7]
and for all positive a, limsup,_, . P[p(Z., Z) > €] < a. We therefore prove
that Z, converges in probability towards Z. [

For all t € [0,T1], let Q; = i*(HEOO)). It is a probability measure on (I',G)
and it satisfies the following proposition.
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Proposition 1.2.9 Q; is the unique probability measure on (I',G) such that
for any continuous function f on P(M)" and any (11,...,v,) € P(M)",

/F FK (), .., Kwn)QdK) =TI f(1, ... ). (1.25)

Proof. The unicity is obvious since (1.25) characterizes Q;. Let us check

that Q; = i*(HEOO)) satisfies (1.25). Let Y be a random variable of law HEOO)
then for all f € C(P(M)") and all (v4,...,v,,) € P(M)",

/F FE ), K)QUAR) = E[F(Y)(0)s .. i(Y) ()]
= Jim E[f(Yz1,..., Vo))

v
k— oo k

I )
- 1}5& Ht f(/unkl A 7/unk")
f— Hgn)f(V17 . 7Vn)7

using first dominated convergence theorem and lemma 1.2.7, then the defi-
nition of HEOO) and the fact that Hﬁ”) is Feller. [

Remark 1.2.10 (i) Then it is obvious that j*(Q;) = HEOO) and that (i o
Q) = (1) = Q..

(ii) Note that, since T can be taken arbitrarily large, we can define Q; for
all positive t and the definition of Q; is independent of the chosen T,
since Qq satisfies proposition 1.2.9.

1.2.4 A convolution semigroup on (I',G).

The following lemma will be very useful in the following.

Lemma 1.2.11 Fort € [0,71], let K and X be independent random variables
respectively I'-valued and P(M)-valued such that the law of K is Qq, then

10 ]([&7)()() = R’(X) almost surely. (1.26)

Proof. Note that, since Q; = i*(HEOO)), if Y is a random variable of law
1)

Plp(K (%), K(X)) >27%] = Plp(Y,x,i(Y)(X)) > 27¥]
= lim P[p(Y,x,Y,x) > 27" <27*

(=00
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(see equation (1.24)). Using Borel-Cantelli’s lemma, we prove ];(/,Lni() con-

verges almost surely towards [%(X). This proves the lemma. [

Lemma 1.2.12 For all ty,...,t, in [0,T],

Proof. Let us prove that q)z(Hgfo) R ® HE:O)) satisfies (1.25) for all
feC(PM)),allv e P(M)* and t = ¢, + -+ +t,. To simplify we prove
this for £ = 1. Let f € C(P(M)) and v € P(M), then applying Fubini’s

theorem,
/ﬂk@»@aw%@~®nﬁwwh
r
- ”/°f ooi(y)(v) T (dy') @ - @ T (dy”)

= /Ham@nwm~w@wmﬂ$W@w®m®H;Mdnw

The proof is similar for f € C(P(M))* and v € P(M)*. We conclude using
proposition 1.2.9. []

Let cr = ®,05%2. Then cr is a measurable mapping from I' x I into I' and
for all s and ¢ in [0, 7] (the definition of ¢p depends on T'), ¢f:(Qs @ Q) = Q4

Proposition 1.2.13 (Q;):>0 is a convolution semigroup on (I',G), i.e. for
all nonnegative s andt, on the probability space (T2,G%2,Q;2Q;), there exists
a (I'; G)-valued random variable K of law Qsy¢ such that for all p € P(M),

K(p)= K0 Ki(p) Q@ QudKy,dKy) — as. (1.28)
(Note that in general, ([{’17 [%2) — Ky 0 K, is not measurable.)

Proof. We fix T' = s V t to define cr. We set K = CF([{’I,[{’Q), then K
is a (I',G)-valued random variable K of law Q4 and for all p € P(M),
Q,® Qt(dfxl,dlxg) almost surely,

er(Ky, Ky)(p) = (10 j)(K3) 0 (i 0 )(K1)(p) = Ky 0 Ky (p) (1.29)

from lemma 1.2.11. O
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1.2.5 A convolution semigroup on (£, ¢).

Let 6 : (I,G) — (F, &) be the measurable mapping defined by 5([&’)(1@) =
K (4;) (4 is measurable since the restriction to Dirac measures of a measurable
function on P(M) induces a measurable function on M). For all t > 0, we

set vy = 6*(Qy).

Lemma 1.2.14 For all t > 0 and p € P(M),

A

K(p) = / §(K)(z) p(dz)  Qu(dK) — a.s. (1.30)

Proof. Take f € C(M) and u € P(M), then

/ (K(p) = Kp, f)* Q(dK) = TP g% (u,p) -2 / 9% (1, 6,) p(da)
- / 11 %%(6,,8,) p(d)u(dy),

with g(p) = [ f dp, K = 5([&) and Ky = [ K(z) p(dz). Since, for all y and
vin P(M )

1Y g%, )—/P§2)f'®2(:v,y) p(dz)v(dy),

we get E[ [&t — [ Ki(z z), f)*] = 0. This proves the lemma. 0
Then one can easily check that the family (14);>0 satisfies (1.6).

Lemma 1.2.15 Let (y,)nen € P(M)N converging towards y in P(M). Then

/p(f%(yn) K (y))? QudK) / (/ K dyn,/[x dy> (dK)  (1.31)

converges towards 0 as n tends to oo and there exists a subsequence (ng)ren
such that as k tends to oo,

K(y,) = K(y)  QudK) — a.s. (1.32)
| K dy,, = [ Kdy v(dK) — a.s. ’
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Proof. The equality (1.31) is a consequence of lemma 1.2.14 and of the fact
that vy = 6*(Q:). Now, take f € C(M),

/Yk@m>—ﬁxwhﬂ2axdk> = TP¢% (g, yn) + TP g%y, y)

—211 g% (y,., y)
= (P (g — y)™)
where g(y) = [ f dy. We conclude since PEQ)
statement is just a classical application of Borel Cantelli’s lemma. []

Let U : (E,€) — (I',G) be the measurable mapping defined by

is a Feller semigroup. The last

U([() =1 <(/ K d,ul)leN) . (133)
Then for all ¢t € [0, 7], U*(v1) = Q; (the definition of U depends on T').

Lemma 1.2.16 For allt € [0,T] and y € P(M),
/K dy = U(K)(y) (dK) — a.s. (1.34)
Proof. From the definition of U, we have for all integer [,

/K dpy = U(K) () (dK) — a.s. (1.35)

(recall that (u;)ien is the dense sequence in P(M) we used to define 7).
For all y € P(M), using lemma 1.2.15, there exists a sequence (fin, )ken
converging towards y such that

{ | K dpy,,, — [ Kdy v (dK) — a.s.

U(K) () = U(K)() 1h(dK) — as. (1.36)

Thus the lemma is proved. [

Proposition 1.2.17 (v4);>0 is a Feller convolution semigroup on (E,£).
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Proof. Take s and ¢ in [0, 00 and 7' = sV ¢ to define i. Let cg = §ocpolU®?,
then ¢y : F x F — E is measurable and c¢j;(vs @ v4) = vs4:. Note that for
all z € M,

cp(Ky, K)(x) = /Kg(y) Ki(z,dy) vs @ i(dKy,dKy) —as.  (1.37)

since lemma 1.2.16 implies that v; ® 14(dK;, dK3)-almost surely
cp(Ky, K3)(x) = ep(U(K1),U(K3))(d:) = U(Kz)oU(Ky)(6z)
= /Kg(y) Ki(z,dy).

This proves that (14):>0 is a convolution semigroup. Let us now prove it is a
Feller convolution semigroup. Properties (i) and (ii) in definition 1.1.2 are

satisfied since for all f € C(M) and (z,y) € M?,
/ (Kf(x) = f(2)* n(dK) = PP ) = 2/ (2)P f(2) + £ (),

/ (Kf(z) = Kf(y))? n(dK) = P® ez 2) + PP fo2(y, y)
~2P{ %z, y)

and we use the Feller property of the semigroups P,ﬁ”) forn € {1,2}. O

Thus we have proved the direct statement of the first part of theorem
1.1.4. The converse statement will be proved at the end of the next section.

1.3 Proof of the second part of theorem 1.1.4.

1.3.1 Construction of a probability space.

Foralln € N, let D, = {j27", j € Z} and D = U,enD,, the set of the dyadic
numbers. To define the functions 7 and ®,, we let T' = 1.

For all integer n > 1, let (S, Sy, Pr) denote the probability space
(P(M)N,B(p(M))®N,H(Qo_o,z)®z. Let mp_1,: Sp — Sp—1, W™ = "' where

W = j o By(who, W) = (i) oiwha)). (138)

i
on—1 2 21 27

From lemma 1.2.12, 7% _, (P,) = P,_;.
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Let Q@ = {(w")nen € [[ Sny Trno1n(w™) = w™ '} and A be the o-field on
Q) generated by the mappings 7, : @ — S, with m,((w")ren) = w". Let P
be the unique probability on (£2,.4) such that 7(P) = P,, (see theorem 3.2
in [24]).

For all dyadic numbers s < t, let F;; be the o-field generated by the
mappings (w*)geny — w? for all n € Nand u € D, N [s,t[.

1.3.2 A stochastic flow of mappings on P(M).
Definition 1.3.1 On (Q, A, P), we define the following random variables

1. Forall s<te D,, let [g'f’t((wk)keN) = D_gon (W], ... W)

2. Forall s<te D, let [{75775 = ]&’Zt where n = inf{k, (s,t) € Di}.

Let us remark that for all s <t € D,,, the law of Ks,t and of [/A(:,t 1s Qi_s
(this is a consequence of lemma 1.2.12). Note also that forall s <u <t € D,
we have K, = K, 0 K,,.

Proposition 1.3.2 Foralls <t € D, and all P(M)-valued random variable
X independent of F,

[/A(:,t(X) = [/;’s,t(X) P-almost surely.

Proof. It is enough to prove that for all s < ¢t € D, R’Zt(X) = [a’gfl(X)
almost surely. This holds since

R7(X) = i(wfpmn) 000 i(wl)(X)

S

= (iog) (K, ) oo (o) (K], )(X).
Using lemma 1.2.11 and the independence of the family of random variables
{w'*' w € D,41}, we prove that the last term is almost surely equal to

A ~

frnr 0.0 gt (X) _ [;72;}—1()() [l

t—27"¢ s,54+27"

Remark 1.3.3 The preceding proposition implies that for all s <u <t € D
and all P(M)-valued random variable X independent of F+,

]%SJ(X) = Ku,t o IQ’M(X) almost surely. (1.39)
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We now intend to define by approximation for all s < ¢ in R a (T',G)-
valued random variable K; of law Q;—;. In order to do this, we prove the
following lemma.

Lemma 1.3.4 For all continuous function f on P(M)?, the mapping

(57 t7 u, v, W, V) = E[f([;’&t(/“b)v [§7U7U(V))] (140)
is continuous on {(s,t) € D?, s < t}* x P(M)*. (And therefore uniformly

continuous on every compact.)

Proof. For all s <u <t <wvin D, using the cocycle property, we have

ELf(Kou(p), Kuw(¥)] = E[f(Kus0 Koulps), Kiy 0 Kui(v))]
= @Y, @ nu® (1o nl,) ().

For all s <u <wv <tin D, using the cocycle property, we have

E[f(Koi(p), Kun(v)] = E[f(Ky0Kyyo Kyu(p), Kyo(v))]
= (I, @ NIZ, (1, @ 1) f(,v).
Forall s<t<wu<wvin D,

ELS(Kae(p). Kup(0))] = (U2 @ TE2,) (s, v).
All these functions are continuous. This implies the lemma. [J

For all real ¢ and all integer n, let ¢, = sup{u € D,, u < t}. For all
s <t € R, we define the increasing sequences (s, )nen and (¢,)nen. Using
lemma 1.3.4 for f(u,v) = p(p,v) and the Markov inequality, we have

lim sup sup P[p(Ky, 0, (1), Koy, (1) > €] = 0 (1.41)
00 k>n o ue’P (M)

for all positive e. Let (ny)ren be the increasing sequence depending only on
s and t defined by induction by the relations :

Mo = 0,

nepr = inf{n >ng, sup sup P[p(K, 0 (1), Koy (p) > 275 < 27%).
k>n peP (M)

Using Borel-Cantelli’s lemma, we prove that for all u € P(M), as k tends to
00, K, 1, (1) converges almost surely towards a limit we denote by K (4).

Then ]&’s,t is a (I', G)-valued random variable.
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Lemma 1.3.5 For all positive €, for all s <t,

lim sup P[P(R’sn,tn(/ub), ]%SJ(/QL)) > ¢] = 0. (1.42)

Proof. This follows from the definition of R’S,t and equation (1.41). 0
Proposition 1.3.6 For all s <t € R, the law of [&’57,5 15 Qs

Proof. For all positive integer &, all continuous function f on P(M)* and
all (v1,...,v) in P(M)*, lemma 1.3.5 and dominated convergence theorem
implies that
E[f([%s,t(yl)a o [%s,t(]/k))] = nh_g)lo E[f([;75n7tn(l/1)7 R [a,smtn(yk))]
(k)

= lim II; 7, f(va,...,ve)
n— 00
= Hgli)sf(z/l,...,l/k)

since Hgk) is Feller. [J

Let us now prove the cocycle property.

Proposition 1.3.7 For all s <u <t and all p € P(M), P-almost surely,
Koo(p) = Kuygo Kyup). (1.43)

Proof. Almost surely, we have Rfsn,tn (n) = [gfun7tno[§’sn7un (p) since s, < u, <
t, belongs to D. On one hand, K, ; (u) converges in probability towards
Ks:(p). On the other hand,

PIO(R ot © Ko (1), K © K1) > €]
< P[P(Run,tn ° Ksn,un (1), [%u,t °© R’sn,un (1) >€/2]
4+ Plp(Kys0 Ky, (1), Kuy 0 Kyo(p)) > 2/2).
Lemma 1.3.5 shows that the first term converges towards 0 and lemma 1.2.8
shows that the second term converges towards 0 (with X,, = Ky, (u), X =

R’S’u(,u), Y = ](];ut) and we use the fact that ioj([g’m)(/,a) = K, +(p) almost
surely for every u € P(M)). O

Thus we have constructed a stochastic flow of measurable mappings on
P(M) associated with the compatible family of Feller semigroups (H,ﬁ’“), k>

).
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1.3.3 Construction of a stochastic flow of kernels on M.

For all s <1, let K,; be defined by 5([&’57,5). Note that when s = ¢, K,4(z) =
Oy

Proposition 1.3.8 (K,:, s < 1) is a cocycle P-almost surely, i.e. for s <
u<tand x € M, P-almost surely, for all continuous function f,

Koo f(z) = Kyu(Koof)(2). (1.44)

Proof. This is a consequence of propositions 1.3.7 and lemma 1.2.14. [J

Note that the family (K¢, s <) is a stochastic flow of kernels associated
with the convolution semigroup v = (14):er. Indeed, (d) and (e) in definition
1.1.3 are satisfied since the function (for f(u,v) = (p(u,v))?) defined in
lemma 1.3.4 is also continuous on {(s,?) € R? s <{}* x P(M)?.

Let K be the (2°, A%)-valued random variable defined by K = (K;,, s <
t). Let P, = K*(P) be the law of K. Then by a monotone class argument we
show that T7(P,) = P, for all h € R. Thus, we have constructed the canon-
ical stochastic flow of kernels on M associated with the Feller convolution
semigroup v.
Proof of the reciprocal. Let (K,:, s <1t) be a stochastic flow of kernels.

For all positive integer n, let us define the operator P,ﬁ”) acting on C'(M) such
that for all f € C(M™) and x € M,

PY f(2) = E[(Ko)®" f(2)]: (1.45)

It is clear that (PE”), n > 1) is a compatible family of Markovian semigroups.
It remains to prove the Feller property.

For all h € C(M™) in the form fi ® -+ ® fu, © = (x1,...,2,) and
Y= (Y1,...,Yn), we have for M large enough

B[

PPh(y) = PIPh(a)| < M3 El(Koafu(wn) = Koafela)'

k=1

(1.46)

which converges towards 0 as d(z,y) goes to 0 since (e) in definition 1.1.3 is
satisfied. We also have

[N

PM () — h(x)] < MY E[(Koufu(xr) — fe(zi))?] (1.47)
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which converges towards 0 as ¢ goes to 0 since (d) in definition 1.1.3 is satis-
fied. These properties extend to all function A in C(M™) by an approxima-
tion argument. This proves the Feller property of the Markovian semigroups
P,ﬁ”). This ends the proof of the reciprocal since the stochastic flow of kernels
(Kst, s <t)is obviously associated with the family (Pgn) n>1).

?

In a similar way, we prove that starting with a Feller convolution semi-
group on (F,£), the family of semigroups defined by equation (1.6) is com-
patible family of Feller semigroups on M. [J

1.4 Proof of theorem 1.1.6.

Let us remark that a probability measure g in P(M) is a Dirac measure if
and only if for all f € C(M), ([ f du)* = [ f* dp.

The fact that PEQ)f‘m(:c, r) = Pgl)fQ(x) holds for all positive ¢, x € M and
f € C(M), implies that for all s < ¢,z € M and f € C(M), E[(K,.f)*(z)] =
E[Ks.f*(x)] and

(Kot f)(z) = K, f* () P, —a.s., (1.48)

where (K, s < 1) is the canonical flow associated with (P,E”), n > 1), of
law P,,.

Let Ay, = {(z,w) e M xQ, Vf e C(M), (Ks+f)*(z,w) = K5 f*(z,w)}.
The set As; belongs to B(M) ® A and for all (z,w) in Asy, Ki(z,w) is a
Dirac measure we denote d, ,(z.). For (z,w) not in Ay, let o (2, w) = .
Thus we have defined a mapping ¢,; : M x @ — M. This mapping is
measurable since for all A € B(M),

Par(A) = (K ({8, y € A}) N A U (Ax QN A7) (1.49)

is a measurable set (note that {6,, y € A} € B(P(M)) holds since C(M)
is separable and when A is open, {d,, y € A} = {u € P(M), u(A°) =
0 and pf? = (uf)?*, f € C(M)} and use monotone class theorem). Then it is
easy to check that the family (@5, s <1) is a stochastic flow of measurable
mappings with K (z) = dg, ,(») Po-a.s. for all s <t and x € M. This proves
that P,, the law of K, is carried by Q%™. [
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1.5 The noise generated by a stochastic flow of kernels.

We recall the definition of the noise given by Tsirelson in [30].

Definition 1.5.1 A noise consists of a probability space (2, A,P), a one-
parametric group (Th)ner of P-preserving transformations of Q and a family

{Fsty, —00<s<t< oo} of sub-o-fields of A such that
(a) Ty, sends F,; onto Fopnspn for all h € R and all s < t,
(b) F.; and Fi, are independent for all s <t < u,

(¢) ForVFiu=Fsu forals<t<u.

Moreover, we will assume that, for all s < t, Fs; conlains all P-negligible

sets of F_co,00, denoted F.

Let K = (K, s <t), defined on the probability space (Q°, A% P,), be
the canonical flow associated with a Feller convolution semigroup v.

For all —o0 < s <t < o0, let Fiy be the sub-o-field of A° generated
by the random variables K, for all s < u < v <t completed by all P,-
negligible sets of A°. Then the cocycle property of K implies that N, :=
(Q° A°, (FY)s<t> Pu, (Th)her) is a noise. We call it the noise generated by
the canonical flow (Ks;, s <1).

Definition 1.5.2 Given a Feller convolution semigroup v, let N be a noise
(Q, A, (Fst)s<t, P, (Th)rer) and a stochastic flow of kernels K of law P, de-
fined on (Q, A,P) such that for all s <t, K;; is Fss-measurable and for all
heR,

[(s—l—h,t-l—h = [X”sﬂg o) Th, a.s. (150)

We will call (N, K) an extension of the noise N,,.

Let (N1, K1) and (N3, K3) be two extensions of the noise N,. Let Q =
2y x Qy, A=A; @ Ay and P be a probability measure on Q defined by

E[Z] - /El[Z1|[\]1 - ](]EQ[Z2|[(2 - I(] Py(d](), (151)

for any bounded random variable Z(wy,wy) = Z1(w1)Z2(w2). Let (Th)ner be
the one-parametric group of P-preserving transformations of () defined by

Th(wi,w2) = (THw1), TH(we)). For all s < t, let F,; = F} ®‘7:527t. Then

s,t
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N = (Q, A, (Fs)s<t, P, (Th)rer) is a noise. And if K denotes the random
variable K(wy,wy) = Ky (w;)(= Kz(wz) P-a.s.), then (N, K) is an extension of
N,. We will call (N, K) the product of the extensions (N7, K1) and (N3, K3).
Note that N; and N, are isomorphic to sub-noises of N.

1.6 Filtering by a sub-noise.

Let N be a sub-noise of an extension (N,K) of N,, i.e. N is a noise

(Q, A, (Fst)s<t, P, (Th)ner)) such that F,, C F,, for all s < t.

Remark 1.6.1 A sub-noise is characterized by F_oo o0, denoted F. It has
to be stable under Ty, to contain all P-negligible sets of F, and be such that
F: (Fﬂf_oo’o) V (Fﬁ F07oo).

For all n > 1, let |5§”) be the operator acting on C(M™) defined by
P (fie- = E[[] E[Ko, fiz:)| F 1.52
t (1@ @ fu)(xr,. ., 2,) [ (Kot fil®:)| Foll, (1.52)
=1

for all 1,...,2, in M and all fi,..., f, in C(M).

Lemma 1.6.2 The family (?E”), n > 1) is a compatible family of Feller
SeMigroups.

Proof. Note that the semigroup property of Isgn) follows directly from the

independence of the increments of the flow. The Markovian property and in
particular the positivity property holds since for all h € C(M™),

P h(ay,. .., 2.) = E[(h, @7 E[Koi(2:)|Foul)]- (1.53)

From this, it is clear that (Rﬁ”), n > 1) is a compatible family of Markovian
semigroups respectively acting on C'(M").

It remains to prove the Feller property. Note that for all continuous
functions fi,...,fo, h=fi®@ - @ fu, v = (21,...,2,) and y = (y1,...,Yn)
in M", for M large enough,

Ph(e) — PRI < M EIEKoc:(e) = Koefity) Fod) )

=1

< MY E[(Koufi(w) = Koufiw)’12 (154)

=1
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which converges towards 0 as y tends to x since (e) in definition 1.1.3 is
satisfied.
We also have, forall h = fi ®---® f, and . = (z1,...,2,) in M", for M

large enough,

PP h(x) = h(x)] < MY EI(E[(Koefile:) = fi(zi) | Fou))*]?

=1

< MY E(Koufi(es) = file:))? (1.55)

=1

which converges towards 0 as ¢ tends to 0 since (d) in definition 1.1.3 is
satisfied. Hence, for all function A € C'(M™) such that & is a linear combi-
naison of functions of the type fi ®---® f,., we have ﬁﬁ”)h is continuous and
lim;_ |5§”)h(:c) = h(z) for all x € M™. By an approximation argument, we
conclude. [J

Let us denote by v = (1)¢>0 the Feller convolution semigroup on (E, &)
associated with (?ﬁ”) 1

is the same, i.e. ISELl P

). Note that the one point motion of v and of v

)-

n >
(1
1

Lemma 1.6.3 1- Let K be a (E, E)-valued random variable of law v defined
on a probability space (O, A, P). Assume that v satisfies

lim p(K(z), K(y))? v(dK) = 0. (1.56)
d(z,y)—0

Let G be a sub-o-field of A. Then there exists a (E, E)-valued random variable
KY which is G-measurable and such that

K9f(z) = E[K f(x)|G] P—a.s. (1.57)

for all f € C(M) and x € M. Thus KY = E[K|G]. Note that KY = K9
where G = J(KQ).

2- Let (N, K) be an extension of N, and N be a sub-noise of N. Then
there exists K = (K,+, s <t) a stochastic flow of kernels of law P, such that
(N, K) is an extension of N, and

R’ij(x) = E[[&”S7tf($)|‘7':5¢] = E[[&”S7tf($)|‘7':] P—a.s. (1.58)

foralls <t,x € M and f € C(M). We say K is obtained by filtering K
with respect to N.
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Proof. 1- Let (z;);en be a dense sequence in M. Equation (1.56) implies
the existence of a sequence (&x)ren such that if d(z,y) < e, then

Elp(K(z), K(y))?] <27°". (1.59)

For all @ € M, let (nf)ren be defined by nf = inf{n € N, d(z,,z) < e}.
Then limy_, o Tpe =T and Borel Cantelli’s lemma shows that

lim [X’(l‘nﬁ) = K(z) P—a.s. (1.60)

k— 00

(since v[p(K(znz), K(x)) > 27%] < 27%). Then by dominated convergence,
limy oo E[K (22)|G] = E[K(2)|G], P-a.s. Let us chose an everywhere defined
G-measurable version of E[K (z;)|G] for all © € N.

Let K9 be defined by K9(z) = l((E[K(:{:niﬂg])keN). Then K9 is a
(E, £)-valued G-measurable random variable and for all z € M,

K9z) = lim E[K (2,.2)|G] = E[K(z)|G] P —a.s. (1.61)

k— oo

2- Since for all t > 0, v; satisfies (1.56), 1- shows that for all s <t there
exists K;; a (F,E)-valued F;;-measurable random variable such that

K, f(x) = E[K, . f(2)]|Fs ] P—a.s. (1.62)

forall s <t,z € M and f € C(M).

It is easy to see that K = (R’sﬂf, s < t) is a stochastic flow of kernels of
law P, and that (N, K) is an extension of N,. Let us just show the cocycle
property. For all s <u <t a2 € M and f € C(M), P,-a.s.,

EIK, f(2)|Fei] = E[KsuKusf(x)|Fsd
= E[E[[(s,u[(u,tf(x)|Fs,u \ Fu,t”FS,t]
= Rfsﬂb[j(u’tf(lf).

Thus the lemma is proved. [

Definition 1.6.4 Given two Feller convolution semigroups on (E, &), v* and
v?, we say that v' dominates (respectively weakly dominates) v?, denoted
vt = v? (respectively v =" v?), if and only if there exists a sub-noise of
N1 (respectively of an extension (N', K') of N,1) such that P, is the law
of the flow obtained by filtering the canonical flow of law P 1 (respectively by

filtering K*') with respect to this sub-noise.
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Notice that lemma 1.6.3 implies that v weakly dominates v and that v
dominates v if N is a sub-noise of N,. Note that the domination relation is
in fact an extension of the notion of barycenters.

Lemma 1.6.5 Let v and v be two Feller convolution semigroups such that
v dominates v. Let (N, K) be an extension of N,. Let N, be the sub-noise
(isomorphic to N,) of N generated by K. Then there exists a sub-noise N
of N, such that P, is the law of the flow obtained by filtering K with respect
N.

Proof. Let N, := (Q°, A% (f;t)sgt, P, (Th)rer) be the noise generated by
the canonical flow associated with v. Notice that v > r means the existence
of N° a sub-noise of N, such that P, is the law of K, the flow obtained by
filtering the canonical flow of law P, with respect to N°.

Note that K : (9, A) — (Q°, A°) is measurable. Let F be the completion
of K=Y(F°) by all P-negligible sets of A and, for all s < ¢, set F,; = FNF,;.
Then N = (0, A, (.7:—5775)33,5, P,(Th)rer) is a sub-noise of N. Lemma 1.6.3
allows us to define K the flow obtained by filtering K with respect to N.
One can check that K = K°(K). This implies that the law of K is P,. Thus
the proposition is proved. [

Proposition 1.6.6 The domination relation and the weak domination rela-
tion are partial orders on the class of Feller convolution semigroups.

Proof. 1) The transitivity of the domination relation follows from lemma
1.6.5 by the chain rule for conditional expectations.

Let us observe that if ! < v? and v? < v! then v!' = v% Indeed, if
vt = v?*, Jensen’s inequality shows that for all fi,..., f, in C(M), zq,..., 2,
in M and ¢t > 0,

E,. [exp(z Ko fi(z:))] > E, [eXp(Z Ko fi(z))]. (1.63)

Therefore, if moreover ! < 1%, the preceding inequality becomes an equality.

This proves v! = 12

2) For the weak domination relation, the proof is similar. We prove
the transitivity using the product of extensions. Indeed, if v <" ., given
any extension (N', K') of N,, there exist a larger extension (N, K) and
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a subnoise N of N such that K has law P,: let N? be a sub-noise of an
extension (N?% K?) of N, such that K? has law P, then (N, K) is taken as
the product of the extensions (N', K) and (N?, K?), and N is induced by
Nt [

1.7 Sampling the flow.

Let (Ks:, s < t) be a stochastic flow of kernels defined on a probability
space (12, A, P). In this section, we construct on an extension of (€2, 4,P) a
random path X starting at z such that for all positive ¢,

Kouf(x) = E[J(X:)| Al (1.64)

For z € M and w € 2, by Kolmogorov’s theorem, we define on MEY 4
probability P®  such that

z,w

Eg,w[H (XD = Ko, (f1( Kty 6 (- -+ (fam1 Koy 0 f2)))) (@), (1.65)

=1

forall fi,...,fnin C(M),0<t; <ty <---<t, and where ng denotes the
expectation with respect to P2 .

With P and Pg,w? we construct a probability PY(dw,dw’) = P(dw) ®
Pg‘,w(dw/) on O x ME* Then, on the probability space (€2 x MR+’,4 ®
B(M)@R‘i" PY), the random process (X}, ¢ > 0), defined by X?(w,w’) = &'(¢),

. . . . 1 .
is a Markov process starting at  with semigroup P, since

E T X1 = P AP fol o (Fuca P, F))(@),  (1.66)

=1

for all fi,..., [, in C(M),0 <t <ty <---<t, and where E denotes the
expectation with respect to PY.

Therefore, there is a cadlag (or continuous when P,E” is the semigroup of
a continuous Markov process) modification X = (X;, ¢ > 0) of (X7, ¢ > 0).
Let now P, be the law of X knowing A. It is a law on D(R*, M), the space
of cadlag functions (or C'(R*, M) when Pgl) is the semigroup of a continuous
Markov process). Equipped with the Skorohod topology (see [20] or [4]),
D(R*, M) becomes a Polish space (respectively C(R™, M) is equipped with
the topology of uniform convergence).
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On the probability space (@ x D(RT, M), A @ B(D(R*, M)),P,) (re-
spectively on (@ x C(R*, M), A® B(C(R*, M)),P.)), where P,(dw,dw') =
P(dw) @ P; . (dw'), let X be the random process X (w,w’) = w’. Then X is a

cadlag (respectively continuous) process and

E A = Eel[] 50X (1.67

= Kon(fi(Knm ol (oot Koy f)))(2),

where E, denotes the expectation with respect to P,.

Let (K.,, s <t) be the stochastic flow of kernels defined on (Q, 4, P) by

5,19
Ko f(z,w) = Ko, f (@, Tow) (1.68)

where

Ky () = Ea[F(X0)|A] = / F(Xe(w,)Ponlde’)  (1.69)

for f € C(M), v € M. Then (K,, s <1t)isa cadlag in ¢ (respectively
continuous in ¢) modification of (Ks;, s <1).

1.7.1 Continuous martingales.

Let F be the filtration (Fo )0 (recall that Fy; = o(Kyu., s <u <wv <t)).
Let M(F) be the space of locally square integrable F-martingales.

Proposition 1.7.1 Suppose that P,E” s the semigroup of a Markov process

with continuous paths, then M(JF) is constituted of continuous martingales.

Proof. Let M € M(F) be a martingale in the form E[F|Fy,] where F' =
1T, Kyt fi(x:), with fi,..., f, in C(M), 21,...,2, in M and 0 < s; <
t; (we take here the continuous modification in ¢ of the stochastic flow of
kernels). Since martingales of this form are dense in M(F), it is enough to
prove the continuity of these martingales.

For all ¢, let K; be the kernel defined on R+ x M by

7 _ 55—7,‘ & 51‘ for s Z t7
Ki(s, x) = { 0o @ Ks4(x) for s <t (1.70)

Then we can rewrite /' in the form []._, [z’tiﬁ'(si, x;), where ﬁ(s, z) = fi(x).
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Note that ([g}i(si,xi), 1 < ¢ < n) is a Markov process on (B(R') ®
P(M))*. This Markov process is continuous and Feller (the Feller prop-
erty follows from the Feller property of the semigroups (H,E’“), E>1)). It
is well known that the martingales relative to the filtration denoted here

(ft{si’l?é}lsisn, t > 0) generated by such a process are continuous (see [28§]
tome 1II).

This proves that E[F|ft{sé’zi}15i5"] is a continuous martingale. We con-
clude after remarking that M, = E[F|ft{si’zi}1§i§"], which holds since the

o-field fjsi’zi}lsis" is a sub-o-field of F; and M; is ft{si’xé}lsisn—measurable.
g

1.8 The example of Lipschitz SDEs.

We first show a sufficient condition for a compatible family of Markovian
kernels semigroups to be constituted of Feller semigroups.

Lemma 1.8.1 A compatible family (Pgn), n > 1) of Markovian kernels semi-
groups is constituted of Feller semigroups when the following condition s

satisfied

(F) Forall f € C(M) andx € M, lim;_0 Pgl)f(:r:) = f(x) and for allz € M,
e>0andt >0, limy, PEQ)fE(x,y) =0, where fo(2,y) = li@y)se-

Proof. Let h € C(M") be in the form f; @ --- ® f, and & = (21,...,2,) in
M"™. We have for M large enough

Ph(x) — (@) < MY (PP + 12 = 2fiPO )b an) (LT
k=1

which converges towards 0 as ¢ goes to 0 since for all f € C(M) and all
x € M, lim_ Pgl)f(.r) = f(x). We also have for y = (y1,...,y,) in M",

PPA(y) — PPh(x) < MY PP ® fi — fr @ 1)y ze)  (1.72)
k=1
which converges towards 0 as y tends to « since for all f € C(M) and x € M,

limy— P,@(H @ f—f®1)(y,z) = 0. Indeed, Vo > 0, 3¢ > 0 such that
d(z,y) < e implies | f(y) — f(x)| < a. This implies

PA(1® f—fa1)(y ) <a+2|flleP® flz,y). (1.73)
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This implies lim sup, PEQ)(H Rf—f@1)(y,z) <aforal a>0. 0

Remark 1.8.2 o The previous result extends to the locally compact case
(using the fact that Co(M) is constituted of uniformly continuous functions).

o When (F) is satisfied, for all positive t, f € Co(M) and v € M,
P,g?)f‘m(x,x) = Pgl)fQ(x). Therefore a stochastic flow of kernels associated
with this family of semigroups is a stochastic flow of mappings. This implies
that (F) is not a necessary condition.

Let V, Vi,..., Vi be bounded Lipschitz vector fields on a smooth locally
compact manifold M. Let W', ..., W* be k independent real white noises .

We consider the SDE on M

k
dX; =Y Vi(Xi)odW;+V(X:), tER (1.74)

=1

From the usual theory of strong solutions of SDEs (see for example [15]),
it is possible to construct a stochastic flow of diffeomorphisms (s, s < t)
such that for all # € M, ¢,(x) is a strong solution of the SDE (1.74) with
ss(x) = .

Using this stochastic flow, it is possible to construct a compatible family
of Markovian semigroups (PE”), n > 1) with

PO h(ay, ..., 20) = E[A(gos(1), ., posln))] (1.75)

for h € C(M™) and z1,...,2, in M. Using lemma 1.8.1, it is easy to check
that these semigroups are Feller (these properties were previously observed
by P. Baxendale in [2]).

It can also easily be shown that the canonical stochastic flow of kernels
associated with this family of semigroups is a stochastic flow of measurable
(actually, here, continuous) mappings equal in law to (s, s < t). Moreover,
we will show that the noise (in Tsirelson’s sense) generated by this stochastic
flow is the noise generated by the family of white noises W1, ..., W* (see
section 4).

3By a real white noise, we mean a two-parametric family (W, ., s < t) of centered
Gaussian variables respectively with variance ¢ — s such that for all ((s;,%;), 1 < i < n)
with s; <t; < sj41, the random variables (W, +,, 1 < ¢ < n) are independent and for all
s<t<u, Wy =W+ Wy
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2 Stochastic coalescing flows.

In this section we study stochastic coalescing flows, we denote by (¢4, s < t).
In section 2.2, it is shown that for s < ¢, ¢} ,(}) is atomic (where A denotes
any positive Radon measure on M). We study this point measure valued
process which provides a description of the coalescing flow.

In section 2.3, starting from a compatible family of Feller semigroups, un-
der the hypothesis that starting close to the diagonal the two-point motion
hits the diagonal with a probability close to 1, we construct another com-
patible family of Feller semigroups to which is associated with a stochastic
coalescing flow. We then show that the stochastic flow of kernels associated
with the first family of semigroups can be defined by filtering the stochastic
coalescing flow with respect to a sub-noise of an extension of its canonical
noise.

Finally, we give three examples. The first one, due to Arratia [1], describes
the flow of independent Brownian motions sticking together when they meet.
The second one is due to Propp and Wilson [25] in the context of perfect
simulation of the invariant distribution of a finite state irreducible Markov
chain, their stochastic flows being indexed by the integers. The third one is
the construction of a stochastic coalescing flow solution of Tanaka’s SDE

dXt = SgH(Xt)th, (21)

where W is a real white noise. This coalescing flow was first constructed by
Watanabe in [33]. In [18], a stochastic flow of kernels solution of this SDE
was constructed as the only strong solution of this SDE.

2.1 Definition.

Let M be a locally compact separable metric space.

Definition 2.1.1 A stochastic flow of mappings on M, (ps:, s < 1), is a
stochastic coalescing flow if and only if for all (z,y) € M?, T,, = inf{t >
0, woi(x) = wor(y)} is finite with a positive probability and for all t > T, ,,
vot(x) = @o+(y). In other words, every pair of points stick together after a
finite time with a positive probability.

Let (P,E”), n > 1) be a compatible family of Feller semigroups. We denote

by Pg)y) the law of the Markov process associated with PEQ) starting from

(z,y) and we denote this process (X, Y;) or Xt(Q).
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Remark 2.1.2 A compatible family (PE”), n > 1) of Feller semigroups de-
fines a stochastic coalescing flow if and only if for all (z,y) € M?, Ty, =

inf{t > 0, X; = Y;} satisfies Pzi?y)[vay < oo > 0 and for all t > T,,,

X; =Y, ngy)-almost surely.

2.2 A point measures valued process associated with
a stochastic coalescing flow.

In this subsection, we suppose we are given a compatible family of Feller
semigroups (PE”), n > 1) such that

{ Vo & M, 120, limy Py [Xe#¥] = 0 (2.2)

(z,y)€ M?, limsup,,, P [X, #Y)] <

Remark 2.2.1 The assumption (2.2) is verified in all the examples of coa-
lescing flows we will study except for the example presented in section 2.4.3,
where Pgi?y) [X: # Yi] does not converge towards 0 as y tends to x when x # 0.
Proposition 2.2.2 A compatible family (PE”), n > 1) of Feller semigroups
satisfying (2.2) defines a stochastic coalescing flow.

[Toy = oc] < PP (X, # V]
for all positive t. Hence P’ 15, = oo] < limsup,_,, szy) (X: # Y] < L.
We conclude using the strong Markov property and the fact that PE?I) [(X; #
Y;]=0.0

For all s <t € R, let p,; = ¢;,(A), where A is any positive Radon
measure on M.

Proof. Note that for all (z,y) € M?, p()

(Ivy)
(2)

Proposition 2.2.3 (a) For all s <t € R, almost surely, us; is atomic.

(b) Forall s <u <t €R, almost surely, s, is absolutely continuous with
respect 1o fly.

Proof. Fix s < t € R. For all positive ¢ and all z € M, let m? =

xr

fB(z 6)1¢,Syt(m):%t(y) AMdy) (m? is well defined since (z,w) — @s:(x,w) is
measurable). For all o €]0,1[ and z € M, let

At ={mg < (1 - a)A(B(z,¢,))}, (2.3)
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where ¢ is a positive sequence such that d(z,y) < &% implies

p(2)

( ,y) [Xt—s 7& )/t—s] S 2—71.

Lemma 2.2.4 For all positive a, x € M and n € N, P(A%*) < L.

a2”n

Proof. For all integer n, we have

E[m?,] = PC) [Xies = i) Ady)
B(z,e%)

Y

/B( x)(l B Pg?w[}@—s # Yi_s]) Mdy)
> (1 =27")A(B(x,¢)).

’n

And we conclude since

Elmz] < P(A)(1 — a)M(B(z, &) + (1 = P(AT)A(B(z, €7))

Iy n

(we use the fact that mZ < A(B(z,e7))). U
Lemma 2.2.5 For all v € M, almost surely, mZ ~ M B(z,¢7)) asn — oo.

Proof. Using Borel-Cantelli’s lemma, for all a €]0, 1]

1—a < liminf ——2—— <1 %<
TS ABe ) T e ABre))
almost surely. This implies lim,, % =1 a.s. U

Since for all (z,w) € M x 0,

tsi({esi(2)}) = Ay, wsi(y) = pse(@)})
> My € B(z,en), vs:(y) = psa(2)}),

lemma 2.2.5 implies that for all z € M,

fsi({@si(x)}) >0 (2.4)
almost surely. Since (z,w) — ps({@ss(x)}) is measurable,
Ade) & Pdoyae,  posl{parle)}) > 0. (2.5
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This equation implies (since us; = ¢} ,(A))

psi(dy)ae,  p({y}) >0 (2.6)

almost surely. This last equation is one characterization of the atomic nature
of s+ and (@) is proved.

To prove (b), note first that for any Dirac measure d,, almost surely,
@y 1(0z) is absolutely continuous with respect to ¢} (A) = p, since (2.4)
holds. Note also that A(dz) ® P(dw)-a.e, vs:(2) = @u:0@s(x). This implies

Psg = Puillisu) s, (2.7)

Since ps,, 1s atomic and independent of ¢, , it follows that p,, is absolutely
continuous with respect to g, . This proves (b). [

Remark 2.2.6 o (us;, s <1)is Markovian in ¢.

e Since (5, 1s atomic for ¢t > s, there exists a point process &; = {f;t}
and weights {a},} € R such that p,, = ), a;tég;t. The point process
€5+ and the marked point process (&4, as,) are Markovian in ¢ since for all
s<u<t, €= @ui(ésn) and ozij = E{j, € =gur(El)) a§7u.

o Let A}, = ¢;/(£,) and II,; be the collection of the sets A%, Note
that UZ'A;t = M MA-a.e, the union being disjoint. Note also that being given
&+ and 1l ¢ determines ¢, A-a.e. Note finally that II,; is Markovian in
s when s decreases, since for all s < u < t, II,; = {¢;.(A,,)}. This
Markov process has also a coalescence property : one can have for ¢ # 7,

on(AL,) = @;i(Ait) When s decreases, the partition II;; becomes coarser.

2.3 Construction of a family of coalescent semigroups.

Let (Pgn), n > 1) be a compatible family of Feller semigroups on a sepa-
rable locally compact metric space M and v = (14):cr the associated Feller
convolution semigroup on (K,&). Let A, = {& € M", i # 5, z;, = x;}
and Ta, = inf{t > 0, Xt(n) € A,}, where Xt(n) denotes the n-point motion,
i.e. the Markov process on M" associated with the semigroup Pgn). We will

denote A, by A.

Theorem 2.3.1 There exists a unique compatible family, (P,ﬁ”)’c, n > 1)

of Markovian semigroups on M such that if XU)¢ is the associated n-point
motion and T3 = inf{t >0, X e A,}, then
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° ()(t(”)’c7 t < T3 ) is equal in law to (Xt(n), t <Tha,),
o fort>T% , Xt(n),c e A,.

Moreover, this family is constituted of Feller semigroups if condition (C)
below is satisfied,

(C) Fforallt>0,e>0andze M,

lim P2 [{Ta > 1} N {d(X,, ;) > }] =0

Yy—T

where (X3, Y;) = Xt(Z). And for all x and y in M, Pgi)y)[TA < o] > 0.

In this case, the associated canonical stochastic flow of kernels is a coalescing
flow of maps (we will call it the canonical coalescing flow).

Proof. For 1 <k < n, denote
8kM”:{"E€M”, i< < e <‘in—k—|—1; T, :"':.fin_k_l_l}. (28)

Then O,M™ ~ M, 0,M™ = M"™ and 0, M™ is the union of C’fj_l copies F,
of M* indexed by ¢(n, k), the set of subsets of {1,...,n} with (n — k + 1)
elements.

For a € ¢(n, k), denote j, the isometry between F, and M*. We denote
also OE, = j;Y(9s_1M*). We remark that for a € ¢(n,k), 0E, = E, N
(8k_1M”) and Uaec(mk)(Ea\aEa) = 8kM”\8k_1M”.

By induction on k, we define a Markov process Xk on 9y M™. For k = 1
and a € ¢(n,1), X)) = oYX W), We obtain X (k) concatenating the
process (when the starting point is in £,) j7'(X¥) stopped at the entrance
time in Oy M" (or equivalently in dF,) with the process X (nk=1) starting
from the corresponding point.

(n)

For all integer n, let P; “ be the Markovian semigroup associated with
the Markov process X(»™ . 1In the following we will denote this Markov

[

process by X )¢ From the above construction, it is clear that the family

(Pgn)’c7 n > 1) of Markovian semigroups is compatible.

It remains to prove that when (C) is satisfied, this family of Markovian
semigroups is constituted of Feller semigroups. This holds since (C) implies

(F) in lemma 1.8.1 : for all positive ¢, PEQ;[d(Xt,}Q) > ¢] < Pg?y)[{TA >
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t} N {d(X, Y:) > e}] which converges towards 0 as y — x. Note that when
(C) holds, then condition (2.2) is satisfied so that the canonical flow is a
coalescing flow. [J

We now suppose that (Pgn)’c, n > 1) is constituted of Feller semigroups
(which is true when (C) holds). We denote by v° the associated Feller
convolution semigroup.

Theorem 2.3.2 The convolution semigroup v° weakly dominates v.

Proof. The idea of the proof is to define a coupling between the flows of
kernels K and K° respectively defined by v and v°.

In a way similar to the construction of the Markov process X+ in the
proof of theorem 2.3.1, for all integer n > 1, we construct a Markov process

X on (M x M) identified with M"™ x M™ such that:
o ()A(l(n), . 7)27(171)) is the n-point motion of v°,
. ()A(?(;_?l, . ,)A(:EZ)) is the n-point motion of v,

o between the coalescing times, X is described by the (k + n)-point
motion of v (when (Xl(n), e ,Xﬁ”)) belongs to 0 M™).

Let |5£n) be the Markovian semigroup associated with X™. One easily
checks that this semigroup is Feller using the fact that P,E”) and Pﬁn)’c are
Feller. Then (Isgn), n > 1) is a compatible family of Feller semigroups,
associated with a Feller convolution semigroup v.

Let K be the canonical stochastic flow associated with this family of

semigroups. Straightforward computations show that for all s < ¢, (f,g) €
C(M)? and (z,y) € M?,

E(K,(f 2 9)(2,y)Y] = PELF®gog(e,y.y),
E(K(f @)K (12 9)(x,y)] = P09 g,y y),
E[(Koa(f @ 9)Ko(f @ VK, (12 9)(z,y)] = PO 2090 g(z.y,y).
This implies that
E[(Ki(f @ 9) — Kou(f @ DK,0(1@ 9))*(2,y)] = 0. (2.9)
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Thus we have R’s’t(x,y) = K,(r) ® Ky4(y) and it is easy to check that
the laws of K° and of K are respectively P, and P,. Thus (N;, K°¢) is an
extension of N,.. Let N, be the sub-noise of N, generated by K.

Let us notice now that for all g, fi1,..., f, in Co(M), all y,xy,...,2, in
M and all s < t, we have (setting y; = z,41 =y and fori < n, h; = fi @1
and h,41 =1®g)

n+1

Astg H[Xstf = E[H [gfs,thi(lii’yi)]

= n+1)f1 ®fn®g($177$nay)

More generally one can prove in a similar way that for all ¢, f1,..., f, in
Co(M), all y,z1,...,2, in M, all s <t and all (s;,%;)1<i<, with s; <t; that

E[K; 9(y H]\sutz )] = E[Ks.9(y H]\sutz (2.10)

This implies that K;,g(y) = E[K{,(y)|o(K)] and therefore that v¢ =" v. 0

2.4 Examples.
2.4.1 Arratia’s coalescing flow of independent Brownian motions.

The first example of coalescing flows was given by Arratia [1]. On R, let P,
be the semigroup of a Brownian motion. With this semigroup we define the

compatible family (P{"

, n > 1) of Feller semigroups. Note that the n-point
motion of this family of semigroups is given by n independent Brownian
motions. Let us also remark that the canonical stochastic flow of kernels

associated with this family of semigroups is not random and is given by
(Pt—57 S S t)

Let (P,E”), n > 1) be the compatible family of Markovian coalescent semi-
groups associated with (P$”, n > 1) (see section 2.3). Note that the n-point
motion of this family of semigroups is given by n independent Brownian
motions who stick together when they meet.

Proposition 2.4.1 The family (P,E”), n > 1) is constituted of Feller semi-
groups and the associated canonical flow of kernels is a coalescing flow.

Proof. It is obvious after remarking that two real independent Brownian
motions meet each other almost surely (condition (C) is verified). U
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2.4.2 Propp-Wilson algorithm.

Similarly to Arratia’s coalescing flow, let P; be the semigroup of an irreducible
aperiodic Markov process on a finite set M, with invariant probability mea-
sure m. Let (P,E“), n > 1) be the compatible family of Markovian coalescent
®n

£t >1).

semigroups associated with (Py",

Proposition 2.4.2 The canonical flow of kernels associated with (P,E”), n >
1) is a coalescing flow.

Proof. It is obvious since the two-point motion defined by P?? hits the
diagonal almost surely. [

Let (@54, s < t) denote this coalescing flow. Then almost surely, for
all z,y in M, 7., = inf{t > 0, wo:(x) = wor(y)} is almost surely finite.
Therefore, after a finite time Card{o+(z), € M} = 1.

In Propp-Wilson [25], an algorithm to exactly simulate a random vari-
able distributed according to the invariant probability measure of a Markov
chain with finite state space is given. The method consists in constructing a
stochastic coalescing flow. We explain this in our context.

Let 7 = inf{t > 0, ¢p_,o(x) = p_10(y) for all (z,y) € M*}.

Proposition 2.4.3 7 is almost surely finite and the law of X, the random
variable ¢_,o(x) (independent of x € M), is m.

Proof. Let us remark that for ¢ > 7 and all + € M, the cocycle property
implies that ¢_;o(z) = X,.
Since for all positive ¢,

Plr > 1] P3z,y, ¢-t0(2) # o-r0(y)]

Z:(z,y)EM2 P[Tl'vy 2 t]
which converges towards 0 as ¢ goes to oo, we have 7 < oo a.s.

For all function fon M and all x € M, lim;_., Pif(x) = X2 cps fly)m(y)

and

P.f(z) = E[f(¢-to(2))] = E[f(p—to(x))le<-] + E[f(X:)1ree].  (2.12)

Since 7 is almost surely finite, as ¢ goes to oo, the first term of the right

(2.11)

IA I

hand side of the preceding equation converges towards 0 and the second
term converges towards E[f(X,)]. Therefore we prove that E[f(X,)] =

> pen Fly)m(y). O
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2.4.3 Tanaka’s SDE.

In [18], starting from a real Brownian motion B, we constructed the stochas-
tic flow of kernels (S;, ¢ > 0), strong solution of the SDE

dXt = SgH(Xt)dBt7 t Z 0. (213)
For f continuous,
1
Sef(x) = f(RY ) Lecr, + S(F(RY) + f(=B))ler,, (2.14)
where R is the Brownian motion x 4+ B, reflected at 0 and T, the first time
it hits 0. For all continuous functions fi,..., f,, let

P L@ @ ). .. ) = E[H Sy fixi)). (2.15)

Then it is easy to see that (PE”), n > 1) is a compatible family of Feller
semigroups. Let (P,ﬁ”)’c, n > 1) be the family of semigroups constructed by

theorem 2.3.1.

Let us describe the n-point motion associated with (P,E”)’C, n > 1). Let
(X:, t > 0) be a Brownian motion starting at 0. Let B; = fot sgn(X;) dXs,
(Bt, t > 0) is also a Brownian motion starting at 0. For all z € R, let
7. = inf{t > 0, |z| + B; = 0}. Note that X, = 0. For all z € R, let

. | z+sgn(z)B; if t<T,, .
Xi = { X, if t>7. (2.16)

Note that for all € R, we have B; = fot sgn(X7) dX7 and X7 is a

solution of the SDE

dX? =sgn(X7) dB,, >0, X&= (2.17)

T.
Then for all zy,...,2, in M, ((X{*,...,X{), t > 0) is the n-point
motion of the family of semigroups (PE”)’C n>1).

?

Proposition 2.4.4 The family (Pgn)’c, n > 1) is constituted of Feller semi-
groups and the associated canonical flow of kernels is a coalescing flow.

Proof. It is easy to see that (Pgn)’c, n > 1) is constituted of Feller semigroups
since for all ¢, x — X7 is continuous (it implies that (F) in lemma 1.8.1 is
satisfied). This also implies that the associated stochastic flow of kernels is
a flow of maps. And it is a coalescing flow since almost surely, every pair of
point meets after a finite time. Note that condition (C) is verified. [J
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3 Stochastic flows of kernels and SDE’s.

3.1 Hypotheses.

In this section, M is a smooth locally compact manifold and we suppose
we are given (P,E”), n > 1), a compatible family of Feller semigroups, or
equivalently a Feller convolution semigroup v = (14)¢>0 on (£,€). For all
positive integer n, we will denote by Xt(n) the Markov process associated

(n)

with the semigroup P;” and we will call it the n-point motion. We assume
that

(i) The space C3(M) @ C3(M) * of functions of the form f(z)g(y), with
f,gin C4(M) and z,y in M, is included in the domain > D(A®) of

the infinitesimal generator A®) of PEQ).

(ii) The one-point motion Xt(l) has continuous paths.

In that case, we say that v is a diffusion convolution semigroup on (F,£)

and that the P,E”) are diffusion semigroups.

Let us denote by A the infinitesimal generator of P,El) in C%(M). Note
that it follows easily from (i) and (ii) that for all f € C% (M),

Wl = FO) S0~ [ s as (3.1)

is a martingale. Since f? also belongs to C} (M), using the martingale M,
it is easy to see that

()= [ DX ds (3.2)

where
D(J) = Af? — 2fAF. (33)
In the following I'(f, g) will denote A(fg)—fAg—gAf, for f and g in C3-(M).

4CKk(M) (respectively C%(M)) denotes the set of continuous (respectively C?) func-
tions with compact support.

5 f is in the domain of the infinitesimal generator A of a Feller semigroup P; if and only
if &tti converges uniformly as ¢ goes towards 0. Its limit is denoted Af.
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Lemma 3.1.1 On a smooth local chart on an open set U C M, there exist
continuous functions on U, a*? and b* such that for all f € C%(M),

i d*f b af
oxtoxi ozt

1
Proof. For all z € U, let ¢'(z) = 2' denote the coordinate functions of the
local chart. We can extend ¢' into an element of C%(M). For f € C%(M),
using [t6’s formula, for ¢ < Ty, the exit time of U,

P = 5o = [ (Gaexng T + s Lo )

is a martingale, where b'(z) = Ap'(z) and a™(z) = [(¢', p?)(z). And we

(1)
get (3.4) since for all z € U, Af(x) = limy—o w‘ 0

Note that the two-point motion Xt({“)) has also continuous trajectories and
these results also apply to functions in C%(M) @ C3(M). For all f,g in
CE(M), let

Clf.9)=AD(fog) - fOAg- Af®y. (3.5)

It is clear that on a local chart on U x V C M x M,
CUF,0)(,y) = ¢ (e,) () 2 y), (3.6

ox oy’

where ¢ € C(UxV). Note that we can shortly write A? = AQI+IRA+C.
On a local chart on U x V, for all h € CE (M) @ C{ (M),

82

Wz, y) + b(2) 2

1 .
(2) . g v .
¢ Y L ey b Lhey) (60
2% W5 gy ¥) 5wy :
2
+ Cz’](x’y)axiayih(x’y)'

We will call I'(f, ¢)(x) = C(f,g)(x,z) = %A(Q)(l Rf—g@ 1)} z,2)—(1®
f—9g21)(1®Af — Ag ® g)(z,x) the pure diffusion form. It can easily be
seen that it vanishes if the associated canonical flow is a flow of maps. The
converse is not true (see examples in section 5). Diffusive flows for which the
pure diffusion form vanishes may be called turbulent.
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Note that the two-point motion Xt(Q) = (X}, Y:) solves the following mar-
tingale problem associated with A(2)

MI® = [(X)g(Y)) = [(Xo)g(¥s) - / AD(f © g)(X,, Vo) ds - (38)

is a martingale for all f and ¢ in C3(M).

Note also that for all functions &, and hy in CE(M) @ C%(M), the mar-
tingale bracket (hl(X(Q)), hg(X(Q))>t is equal to

13
/ (AD(hihy) — b1 APhy — by AP R )(X @) ds (3.9)
0

S

(J(X),9(Y)): =

and for all functions f and g in Cx (M),
¢

CUf9)(Xo i) ds. (3.10)
0

Proposition 3.1.2 (a) C is a covariance function on the space of vector

fields ©

(b) For all fi,...,f, in C:(M), then g = fi @ --- @ f, € D(A™) and for
r=(x1,...,2,) € M",

= 1@ Afie) + > Cs fi) s ag) T Felxe):

t A 1< k#1,5
(3.11)

Proof. Note that for all f and g in C3. (M), C(f,g)(z,y) is a function of
df (z) and of dg(y) we denote C'(df(z),dg(y)). Hence C is a symmetric map
from T*M? in R and its restriction to T M x T;*M is bilinear. To prove (a),
it remains to prove ) .. C(&, ;) > 0 for all &,...,&, in T*M?. This holds
since, for all fi,..., f, in C*(M) and all zy,...,z, in M,

ZC(fi,fj)(;ci,xj) = (AW g2 —2gAMg) (24, ..., 2,) (3.12)

6C is a covariance function on the space of vector fields if and only if C is a symmetric
map from 7% M? in R such that C restricted to T M x 1y M is bilinear and for any n-uples
(&1,...,&n) of T*M?, ZKl nC&,&5) >0, (see [18]) And for f and g in Ck (M), we
denote C(df(x), dg(y)) by C(7,9)(x. ).
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where g(z1,...,2,) = Y., fi(z;) € D(A™). This expression is nonnegative
since AMg? — 2gAM g =Tlim, o £ (P{"g* — (P{Vg)? + (P{"g — 9)?).

The proof of (b) is an application of 1td’s formula. [
Definition 3.1.3 The restriction of A to C%(M) and the covariance func-

tion C are called the local characteristics of the family (P,E”), n > 1) or of
the diffusion convolution semigroup.

When there is no pure diffusion, to give the local characteristics (A, C) is
equivalent to give a drift b and C (this corresponds to the usual definition of a
local characteristics of a stochastic flow) since in this case a*/(z) = ¢"(z, z).

Remark 3.1.4 Note that when (P,E”), n > 1) satisfies (C), (i) and (i1), then
(P,E”)’C, n > 1) also satisfies (1) if and only if for all x in M and all f, g in
CE(M), C(f,g9)(x,z) =T(f,g)(x) (this holds since we have C(f,g)(x,x) —
L'(f,9)(x) = limso %(PEQ)’C(f@)g)(x, T)— Pgl)(fg)(:c))), i.e. when there is no
pure diffusion. So that the results of this section also apply to (P,ﬁ”)’c, n>1).

Then in this case (P,E”), n > 1) and (P,ﬁ”)*c, n > 1) have the same local
characteristics.

Let (K4, s < t) be a stochastic flow of kernels associated with (P,E”), n >
1) defined on a probability space (€2, 4,P).

In this section, we intend to define on (Q,.4,P) a vector field valued
white noise W of covariance C' such that (K, s < t) solves a SDE driven
by W. Let us recall that (W, s < 1) is a vector field valued white noise
of covariance C' if and only if for all s; < t; < s;11, the random variables
variables (W, 1 < i < n) are independent, for all s <t < u, W, =
Wit + Wy as. and for all s < ¢, {(W,;, &), € € T*M} 7 is a centered

Gaussian process of covariance given by
E{(Wer, ) (Wer, )] = (1 = 5)C(£,€), (3.13)
for £ and £ in T*M.

In section 4, under an additional assumption, we will prove that the linear
(or Gaussian) part of the noise generated by (K, s <t) (in the case it is
the canonical flow) is the noise generated by the vector field valued white
noise W.

“when & = (z,u), (Ws,&) = (W (), u).
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3.2 Construction of W.
For all s <t all f € C3(M) and all z € M, let

t

M. f(z) = Ksrf(x) — f(2) —/ K (Af)(z) du. (3.14)
Lemma 3.2.1 Foralls € R, f € C3(M) andz € M, M{* = (M, f(x), t >
s) is a martingale with respect to the filtration F° = (Fsy, t > s) and

d

(Mo f (), My,g(y))e = KGZC(f,9)(@, ), (3.15)

forall f, g in C3-(M) and all x, y in M.

Proof. Since (K,:, s < t) is a stochastic flow of kernels and that for all
positive & and all f in C3-(M),

Mipinf(x) = Myp f(x) = Kog(Mign f)(2), (3.16)

M7 is a martingale. Note that equation (3.16) also implies that for all
positive h, all f, g in C%(M) and all z, y in M,

E[(Mseinf(2) — Moo f(2))(Ms409(y) — Mse9(y)) | Fsye]
= KZHEMynf @ Myyng))(z,y).

The stationarity implies that E[M; ¢y n f(2) My 1409(y)] = E[Mo s f(x)Morg(y)].
Computation using the fact that P,El)f —f= fg Pgl)Af ds and P,@(f ®g)—
f®g= fot PQQ)A@)(f ® g) ds gives

(Mo f (2) Mog(y)] = / PR(C(f. 9))(x,y) ds. (3.17)

Since PEQ) is Feller and C'(f,g) is continuous with compact support,

E[Monf(x)Morg(y)] = h C(f,9)(x,y) + o(h), (3.18)
uniformly in (z,y) € M.

Therefore E[( M 14nf(2) — Ms o f(2))(Ms1409(y) — Ms19(y))| Fs,e) is equiv-
alent as h tends to 0 to h [&"SEC(f,g)(x, y). This proves the lemma. [J
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Remark 3.2.2 Note that in the case of Arratia’s coalescing flow (54, § <
1), C =0 but %<M57.f(x), M;.9(y))t = Lg. () =er(y)}- In this case, CF(M)®
C2%(M) is not included in D(A®)). This property also fails for the coalescing
flow associated with Tanaka’s SDE.

Forall s <t,n>1and 0 < k < 2" — 1, let t} = s+ k277(t — s).
For all f € Ci(M) and all © € M, let W}, = et Mgz i, . Note that
(Mtg,tg+l)ogk§2"—1 are independent equidistributed random variables taking
their values in the space of vector fields.

3.2.1 Convergence in law.

Lemma 3.2.3 For all s <t and all ((z;, f;), 1 <i<m) e (MxCiE(M))™,
then 7", W2 fi(x;) converges in law towards Yo Wi fi(x;) as n tends to
oo, where W is a vector field valued white noise of covariance C.

Proof. Using lemma 3.2.1, we have for all f, g in C%(M) and all z, y in M,

27" (t—s)
ElM i, f(@)Mez i, 9(y)] = /0 POC(f,9)(x,y) du
= 27"t = s)C(f,9)(x,y) +0(27")  (3.19)

and this developement is uniform in  and y in M.

We will only prove the proposition when m = 1 (the proof being the
same for m > 1). The proposition is just an application of the central limit
theorem for arrays (see [5]), which one we can apply since (3.19) is satisfied
provided the Lyapounov condition

2" —1
lim » E[[ My, f2)] =0 (3.20)
k=0

for some positive ¢, is satisfied.
Using Burkholder-Davies-Gundy’s inequality and lemma 3.2.1,

244
2

27" (t—s)
E|Mygp,, ()] < CE ( | e e du)
0
< o

20



where C' is a constant (changing every lines) depending only on f, (t — s)
and 0. This implies
2n_1

Z E[| Mo, /(@) ] < C272

k+1

Bt oo 0 (3.21)

Remark 3.2.4 For Arratia’s coalescing flow, one can show the convergence

in law of (W[,(x1),...,Wli(x)) towards (B;, Bst) where (B!, ..., B)

P
1s a k-dimensional white noise.

3.2.2 Convergence in L*(P).

In the preceding section, we proved the convergence in law of W" towards
a vector field valued white noise of covariance C'. In this section, we prove
that this convergence holds in L?(P).

Lemma 3.2.5 Forall s <t andall (z, f) € MxC}{ (M), W], f(x) converges
in L*(P).
Proof. For all f € C{ (M), all z € M and all s < ¢,
E[(Wy,f(x) = W2 f(2)))] = E[(W],f(2))"] + E[(W]F f(=))?]
— 2E[WRf(a)WiHEf(2)]  (3.22)

Elementary computations using equation (3.18) implies

E[(W, f(2))’] = (t—s) C(f, )z, z) + o(1) (3.23)
E[(Wi ()] = (t—s) C(f, f)(x,2) +o(1) (3.24)

as n goes to oo and this uniformly in £ € N. Using the independence of the
increments, the last term (3.22) rewrites

on_1 (i4+1)2%F—1

E[Wstf(x)ngk Z Z E[Mir 7, ll?)Mt;z+k7t;z_:rlkf(r)] (3.25)

=0 ] —i2k

Note that for s < v < v < ¢, using first the martingale property, then
equation (3.18) and the uniform continuity of C(f, f), we have

E[MS,tf(x)Mu,vf(x)] = E[ svf( ) U,vf(x)]

= E[(Kou® D(Mypf @ My f)(z, )]

= E[([XSU®[)(E[Muvf®Muuf])( )]

= (=) C(f, f)lw0) +olo—w),  (3.26)
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uniformly in @ € M. This implies

EWE ()W f(a)] = (t = s) C(f, )@, 2) + o(1) (3.27)

as n tends to oo and uniformly in & € N. We therefore have

lim sup E[(W7, f(z) — W2 f(2))7] = 0, (3.28)
n—=00 LeN

i.e. (W2, f(x), n € N)is a Cauchy sequence in L*(P). This proves the lemma.
0

Remark 3.2.6 For Arratia’s coalescing flow, this lemma is not satisfied
since (W], f(x), n € N) fails to be a Cauchy sequence in L*(P).

Thus, for all s < , we have defined the vector field valued random variable
W+ such that Wy, f(z) is the L*(P)-limit of W f(x) for all x € M and all
f € C(M). Then, using lemma 3.2.3, it is easy to see that W = (W, ,, s <1t)
is a vector field valued white noise of covariance C'.

3.3 The stochastic flow of kernels solves a SDE.

In [18], it is shown that a vector field valued white noise W of covariance C
can be constructed with a sequence of independent real white noises (W),
by the formula W = > V,W*?, where (V?), is an orthonormal basis of Hc,
the self-reproducing space associated with C'.

For all predictable (with respect to the filtration (F_ ., t € R)) process
(H;):er taking its values in the dual of He, we define the stochastic integral
of H with respect to W by the formula

/ H, (W (du)) = Z/ (H,, V) W (du), (3.29)

for s < t. Note that the above definition is independent of the choice of the
orthonormal basis (V*),.

In particular this applies to H,(V) = K. (V f)(2)l<ucs for f € Cx(M)
and z € M. Then the stochastic integral ) f: K (Vo fY)W?(du) is denoted

/ K (Wf(du))(z). (3.30)
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Remark 3.3.1 Note that the stochastic integral (3.30) is equal to the limit
in L*(P) of Zi 61 Ky m n(Winm  f)(x) as n tends to oo, where ¢} = s+k27"(t—

Elky1
s). Indeed,
2n—1 2
E (/ Koo (W f(du)) ZAM (Wepep, f )(1;)) -
_ N e P, —21 @ P
- Z tg—s( + u—t? ® ) (f f)(.f .17)
k=0 Y1

which tends to 0 as n tends to co.

Proposition 3.3.2 W is the unique vector field valued white noise such that
foralls <t,z € M and f € C} (M), P-almost surely,

Koif(z) = f(z) + / K, o(WF(du))(z) + / Kyu(Af)(2) du.  (3.31)

Note that giving the local characteristics of the flow is equivalent to giving

this SDE. This SDE will be called the (A, C)-SDE. By a solution of the
(A, C)-SDE, we mean a stochastic flow of kernels K" and a vector field valued
white noise W of covariance C such that (3.31) holds. Under some additional
assumptions, we will give in section 4 a representation of all solutions of the
(A, C)-SDE.

Proof. For all s < ¢, from remark 3.3.1,

t 2" —1
/ K. u(Wf(du))(z) = lim Y Kip(Wew fz) (3.32)
s k=0
in L*(P), where ¢} = s + k27"(t — s).
Note that for all integers 7,/,k and n such that [ > n and k2" < <
(k 4+ 1)2'=" — 1, the development (3.26) implies

E(My 0, f(2) Mg, f(@)] = 27(0 = $)C(F, w,2) +o(27),  (3.33)

uniformly in x € M. This implies that for [ > n,

2
(k+1)2t-7—1

E Y Mg, f(@) = Mg, fe) | | =027, (3.34)

i=k2l-n
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uniformly in x € M. Taking the limit as [ goes to oo, we get

El(Wipap,, f(x) — My tk+1f($))2] =o0(27"), (3.35)
uniformly in x € M. We use this estimate to prove that

2"—1

13
/S Ksu(W(du) f)(z) = lim Z Ky (Mg f)() (3.36)

in LQ(P). This holds since

271 2n—1 2
(Z Kop(Wepn [ — Z [(s,tg(MtZ,tZ_l_lf)) ()| =
k=0 k=0

= Y El(Kip(Wegp, f— Mg ) ()]
k=0

< SR (ElWipag,, £~ My, 1) (2)
k=0

< 27 0(27") =o(1)
271
Note now that Z [Xstn Mn, Z_Hf)("g) =
k=0

= Z I(s,tg ([&’tn Z+1f - / k41 [X’tg,u(Af) du) (z)
k=0 23
= K:f(z)— f(x) —/ K (Af)(z) du

This proves that (K, s < t) solves the (A, C)-SDE driven by W. Finally,
note that if (K s < t) solves the (A, C)-SDE driven by a vector field
valued white noise W’ then we must have W/ = W. [

Let X = (X;, t > 0) be the Markov process defined in section 1.7 on
(Qx C(RT,M),A® B(C(R*,M)),P(dw) @ P, ,(dw')) by X(w,w') = '
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Proposition 3.3.3 Assume there is no pure diffusion (i.e. for all f €
C3(M) and all x € M, T(f)(z) = C(f, f)(z,z)). Then, for all t > 0,
zx €M and f € CE(M), P(dw) @ P, (dw')-almost surely,

F(X / W (du) f / Af(X.) d (3.37)
t.e. X is a weak solution of this SDE.

Proof. Like in the proof of (3.36) in proposition 3.3.2, we show that

2"—1

/ W(du)f(X,) = lim Z M g f(Xp) (3.38)

in L*(P,), with P, = P(dw) @ P, (du')). Let M/ = f(X;) — f(z) —
fo Af(X,) du, then (Mtf, t > 0) is a martingale relative to the filtration
(FX, ¢ > 0) generated by the Markov process X. We now prove that
E.[(M] — fo X)) = 0, where E, denotes the expectation with
respect to P,. It is easy to see that, since there is no pure diffusion,

Emm%aMWWWMH%Mﬁmmmmmymm

Equation (3.38) and the martingale property of Mtf implies that

2"—-1

1
E[M/ /0 W(du)f(X,)] = lim Y EMf  x Myo f(Xp)]  (3.40)
=0
2" —1
= lim Z Eo[(Mf, | — Mp) x My, F( X))

=0
Since for all 0 < s < t, E,[M] — M/|AV FX] = M, f(X,), we get

2"—1

mWAWMWm=g$ZEM%ﬂ%M

= / W (du) f( X)) (3.41)
Therefore E.[(M] — [ W(du)f(X.))?] = 0. O
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3.4 Strong solutions.

We say that K = (K;;, s < t) is a strong solution of the (A,C)-SDE
if and only if it solves the (A, C)-SDE and for every s < ¢, Ky, is .7:;?;—
measurable, where .7:3”2 is the completion by all P-negligible sets of A of the
o-field o(Wy,, s < u < wv <t). This obviously only depends of P, the law
of K, i.e. of (Pgn), n > 1) or of v = (4)i>0. We will say they define a strong
solution of the (A, C)-SDE.

Let us now consider the canonical flow associated with v, a diffusion
convolution semigroup. Let N := (QO,AO,(f;z)sgt, P.,(Th)rer) be the
noise generated by the vector field valued white noise W. Note that NV is
a linear or Gaussian ® sub-noise of N,, the noise generated by the canonical
flow.

Let (R’sﬂf, s < t) be the stochastic flow of kernels obtained by filtering
the canonical flow with respect to the sub-noise N (see section 1.6). It is
easy to see that (K,;, s < t) also solves the (A,C)-SDE (see the proof of
lemma 3.7 in [18]) and has the same local characteristics as the canonical
flow. Since, for all s < ¢, K, is f!‘f;—measurable, it is a strong solution of the
(A, C)-SDE. Let v" denote the associated diffusion convolution semigroup.

For any f € Co(M) and = € M, K,;f(z) can be expanded into a
sum of Wiener chaos elements, i.e. iterated Wiener integrals of the form
DD J O sy, 8,) AW2 - dW2. Since W was constructed
from the flow, it is clear that the functions C'*'»** are determined by the
law of the flow (we will give, under some additional assumptions, an explicit
form of them in the following section).

Definition 3.4.1 We say that strong uniqueness holds for the (A,C)-SDE
when there is only one diffusion convolution semigroup with local character-
istics (A, C) defining a strong solution.

3.5 The Krylov-Veretennikov expansion.

In addition to our previous assumptions, we suppose in this section that there
exists a Radon measure m on M such that Ptl) is symmetric with respect

8The noise (gsyt)sst is Gaussian if and only if there exists a countable family of inde-
pendent Brownian motions {WW;*} such that, up to negligible sets, G, ; is generated by the
random variables W — W2 for all s <u < v <t and all .
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(1)

to m (this would also apply if P;’ was associated with a non-symmetric
Dirichlet form). Let (K:, s <t) be a strong solution of the (A, C')-SDE and
W the associated white noise (of covariance C'). In [18], starting from such a
vector field valued white noise W, we defined (Ss;, s < t) a stochastic flow
of Markovian operators (acting on L*(m)).

Proposition 3.5.1 For all s <t, m @ P-a.e., for all f € Cx(M),

K1 f = Ssuf. (3.42)
Thus strong uniqueness holds for the (A, C)-SDE.
Proof. Since (K, s < t) is a strong solution, applying theorem 3.2 in

[18] where strong uniqueness ? is proved, equation (3.42) is satisfied for all
continuous function with compact support f, m @ P-a.e. [

Following [18], by induction, we define for all f € Cx(M), = € M and
s < t a family of random variables (S7,f(x), n» > 0) in L?*(P) such that

E[(ST,f(2))?] < P, f2(x) : we take S, f(x) = P{Y, f(x) and

7@ =PI + [ SRR )@, 34

S

Indeed, if the inequality E[(Sftf(x))z] PEL )SfQ( ) is satisfied for all f €
Cr (M), then (using C(f, f)(z,z) < T'(f)(z))

el 7)) < P + PP, F))(2) du = P, ().

Then, for all f € Cx(M) and z € M, we let J7, f(z) be Pgl_)sf(x) and for
n>1,J7 f(z) be S”tf( ) — SNY:J_I (z). Then J7, f(z) can be written by the

multlple stochastic integral
Jrf(z) =/ PO W (dsy)PL, - PO Wi(ds,)PY, f(e).
’ s<s1 < Son <t
(3.44)

Note that we have the following Wiener chaos decomposition

Sef =Y _Jif in L*m@P) (3.45)

n>0

°In [18], strong uniqueness means that (Ss:, s < t) is the only flow of Markovian
operators acting on L?(m) being a strong solution of the (A, C')-SDE.
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Proposition 3.5.2 Assume that P,(f) s absolutely continuous with respect to
m. Then, for all x € M and f € Cx(M), the Wiener chaos decomposition

Koif(x) = 32,50 J5uf(2) holds P-a.s.

Proof. Note that for all s < ¢, P£1)55+5¢f(;17) is a martingale as ¢ decreases.
(1)

Indeed, since P:’ is absolutely continuous with respect to m and the fact

that (3.42) holds,
P£1)55+57tf(37) = P£1)1X73+57tf(fﬁ) = E[[X’S7tf($)|f'5+57t]. (346)

This martingale converges and its limit is K, f(z). Let us denote by j:tf(;c)
the n-th Wiener chaos of K f(z). Then JI',f = J7,f in L*(m @P). Finally,

since
‘]:,tf(x) = 15% Pgl)*];-e,tf(w)a (3.47)
we must have j:tf@) = J:tf(x) This proves the proposition. [J

This proposition improves the results in [18] in the sense that (3.45) holds
only in L*(m ® P) and here we get a modification of (S,;, s < t) such that
its Wiener chaos decomposition holds in L*(P) for all z € M.

4 Noise and classification.

4.1 Assumptions.

In this section, we fix a pair of local characteristics (A, C'). We suppose there
exists at least one diffusion convolution semigroup v = (v4)ier with these
local characteristics.

Let M(n,z) be the following martingale problem associated with A
and x € M" :

There exists a probability space on which is constructed a stochastic process

X0 = (Xt(n), t > 0) such that

¢
FOX) = fe) = [ AP ) a (1.48)
0
is a martingale for all test function f in C3(M)® --- ®@ C%(M) and
where A(") is the operator acting on C%(M)®--- @ CE(M) defined by
(3.11).
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In addition we suppose that the local characteristics (A, C) verify the
following assumption

(U) For all n > 1, the martingale problem M (n,z) has a unique solution in
law in the set of trajectories stopped at A,.

Remark 4.1.1 Condition (U) is satisfied when the coefficients of the local
characteristics are C? outside of A,, (see theorem 12.12 and section V.19 in
[28]) or when A is elliptic outside of A, (see section V.24 in [28]).

Our purpose is to classify Feller convolution semigroups associated with
these local characteristics. We will treat two cases

(a) The non coalescing case where the solution of the martingale problem
M(2, z) does not hit the diagonal when x = (xy, x3) with z1 # 2.

(b) The coalescing case where assumption (C) holds for Xt(Q) = (X4, V)
the solution of M(2,z) and there is no pure diffusion (i.e. I'(f)(z) =
C(f,f)(z,z) for all f € C:(M) and z € M).

When the local characteristics are non coalescing, assumption (U) im-
plies that these local characacteristics are associated with a unique convolu-
tion semigroup and a unique canonical flow. From section 3.4 we know the
latter has to be a strong solution of the SDE (otherwise uniqueness would
be violated).

Note that the family of semigroups given in the example of Lipschitz
SDE’s (see section 1.8) satisfies these assumptions.

4.2 The coalescing case : classification.

We assume (C) and that there is no pure diffusion.

Following Harris [13], M(n,z) has a unique solution in the set of coa-
lescing trajectories, i.e. X (w) € C™ where C™ is the set of continuous
functions f : RT — M" such that if fi(s) = f;(s)for 1 <i,j <nand s >0
then for all t > s, fi(t) = f;(¢) (In [13], this martingale problem is solved
when M = R, but the proof can obviously be adapted to our framework).

Hence all coalescing flows with these local characteristics have the same
law P,c. They induce the same family of semigroups (P,ﬁ”)’c, n > 1) and the
same diffusion convolution semigroup v°.
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Let N,c be the noise generated by the canonical coalescing flow (@5, s <
t) associated with the local characteristics (A, C).

Let W be the vector field valued white noise defined on (02°, A% P,c) in
section 3 and N the sub-noise of N, generated by W. Then NY is a
Gaussian sub-noise of N and it is possible to represent it by a countable
family of independent real white noises {W*} and W = > _V,W*®, where
{V,} is a countable family of vector fields on M.

We denote by v the diffusion convolution semigroup associated with
the flow obtained by filtering the canonical coalescing flow of law P,. with
respect to N .

The following theorem gives a representation of all flows with the same
local characteristics. They lie “between” the strong solution and the coalesc-
ing solution of the SDE which are distinct when the coalescing solution is
not a strong solution of the SDE.

Theorem 4.2.1 Suppose we are given a set of local characteristics (A,C)
verifying (U) and (C) associated with at least one diffusion convolution semi-

group.

(a) v° is the unique diffusion convolution semigroup associated with (A, C)
and defining a flow of maps (which is coalescing).

(b) voW is the unique diffusion convolution semigroup associated with (A, C')

and defining a strong solution of the (A, C)-SDE.

(c) The diffusion convolution semigroups associated with (A,C) are all the

Feller convolution semigroups weakly dominated by v° and dominating
c, W
vorr,

Proof. We have already proved (a). Theorem 2.3.2 implies that every
diffusion convolution semigroup v with local characteristics (A, C) is weakly
dominated by v° so that a stochastic flow K of law P, can be obtained by
filtering on an extension (N, ¢) of N,e the coalescing flow ¢ with respect to
a sub-noise N of N.

Proposition 3.3.2 shows that K solves the (A, C')-SDE driven by W a vec-
tor field valued white noise of covariance C. Notice that W can be obtained
by filtering W with respect to N. Indeed section 3.2 shows that W;t (de-
fined from K') converges (in L?) towards W, ; and we have that for all s < ¢,
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feCk(M)and x € M, W2, f(z) = ELWftf(xﬂfst] a.s. and therefore that

W, f(z) = ELWS7tf(I)|fs,t] a.s. Since W and W have the same law, we must

have Wy, = W, a.s. This proves that v dominates v,

Let us now suppose that K is a strong solution of the (A, C')-SDE driven
by W (i.e. that i defines a strong solution). Then, since W = W, we must
have NZ};/ =N (since R’M is Fg—measurable) and thus v = . This proves
the strong uniqueness for the (A, C')-SDE.

Finally let v be a Feller convolution semigroup weakly dominated by v°
and dominating v>". The fact that v < v° implies that a stochastic flow
K of law P, can be obtained by filtering on an extension (N, ) of N,c the
coalescing flow ¢ with respect to a sub-noise NV of N. Then section 3.2 shows
that W:t (defined from K) converges (in L?) towards W,, = E[W,|F,].
Now, since v = " there exists (see lemma 1.6.5) a sub-noise N of N such
that the flow obtained by filtering K or equivalently, the coalescing flow,
with respect to N has law P,.w. The associated white noise W verifies for

all s<t,z € M and f € CL(M)
ﬁ/s,tf(x) = E[Ws,tf(x”?s,t] = E[Ws,tf(‘r”ﬁ's,t]' (449)

Since W has covariance C, it has to coincide with W and W = W.
Thus, K solves the (A,C)-SDE driven by W so that v is a diffusion

convolution semigroup whose local characteristics are (A, C). [

4.3 The coalescing case : martingale representation.

On the probability space (2°, A% P,c), let F*° be the filtration (‘7:6/;)7520 and
M(F"") be the space of locally square integrable F* -martingales.

Proposition 4.3.1 All F*"-martingale M = (M;),cr+ has the predictable
representation property : There exist predictable processes % = (®),>0
such that

M, = Z/Ot % W (ds). (4.50)

Proof. We follow an argument by Dellacherie (see Rogers-Williams (V-
25) [28]). Suppose there exists F' € L*(Fy) orthogonal in L*(Fy) to
all stochastic integrals of (W), of the form (4.50), then M, = E[F|F{}] is
orthogonal to W¢ for all a, i.e. (M, W ); = 0.
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Let 7 = inf{t, |M;| = 1/2} and P, = (1 + M,) - P,c. Since M is a
uniformly integrable martingale and 7 a stopping time (with 1 + M, > 1/2),
P, is a probability measure on (€2, A). Since (M, W§ ); = 0, we get that

under Isl,c, (W5 )a is a family of independent Brownian motions.

We are now going to prove that since (U) is satisfied, we must have
P,c = P,c, which implies M; = 0 and a contradiction.

Let F =[], filpos(x;)), for fi,.... fnin C} (M), t1,...,t, in RT and
T1,..., 2, in M. We know that under P,c, for all 1 <@ <n, (po(x;), t > 0)
is a solution of the SDE

dgi(oi(x:)) Z Vagi(poi(:) )W (dt) + Af(po(wi))dl, (4.51)

for all g1,...,9, in CE(M). Note that under P,c, these SDEs are also
satisfied. Since under Isl,c7 (W?), is a family of independent Brownian
motions, ((wos(z;), t > 0), 1 < i < n) is a coalescing solution of the
martingale problem associated with A and (U) implies that the law of
((pos(zi), t >0), 1 <1 < n)is the same under P, and under P,.. There-
fore E[F] = E[F], where E denotes the expectation with respect to Pe.

To conclude that P, = P,c, we need to prove E[F] = E[F] with F =
HZ filosig(xg) forall fi,..., f,inCEH(M),0 <s; <t;inRtand zq,...,2,
in M. This can be proved the same way but using the kernel K, introduced
in section 1.7. In this case K; = dz,, where @; : Rt x M — R* x M is mea-
surable. Then F' =[], ﬁ(@l(sz,rz)) and (P¢(si, z;), t > 0) is a solution of
an SDE on RT x M. [

4.4 The coalescing case : the linear noise.

Note that for all diffusion convolution semigroup v, N, is a predictable noise
(see proposition 1.7), i.e. M(F") is formed of continuous martingales (in
particular, a Gaussian noise is predictable). Following Tsirelson [30], a linear
representation of a predictable noise N = (Q, A, (F;)s<t, P, (Th)rer) is a
family of real random variables (X, s <t) such that

(a) Xsi0Th = Xspnin forall s <tandall h € R,

(b) X,.is Fssmeasurable for all s <,
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(¢) Xos+ Xsp=X,pas, forall r <s<t.

The space of linear representations is a vector space. Equipped with the norm
|(Xst)s<el] = (E[|X071|2])%, it is a Hilbert space we denote by Hj;,. Let Hﬁn
be the orthogonal in Hj;, of the one-dimensional vector space constituted
of the representation X;; = v(t — s) for v € R, then Hﬁn is constituted
with the centered linear representations. Note that if (X, ;).<¢ € Hﬁn with
|(Xs¢)s<e]| = 1, then (Xo4)¢>0 is a standard Brownian motion. The Hilbert
space Hﬁn is a Gaussian system and every (X;;).<¢ € Hﬁn is a real white
noise.

Note that if X and Y are orthogonal linear representations then X and
Y are independent.

For all —oo < s <t < o0, let .7:;1? be the o-field generated by the random
variables X, , for all X & Hﬁn and s < u < v < t, and completed by all
P-negligible sets of F_. 1o0. Then Nj, = (£, A4, (‘7:31:1,511)53,5, P, (Th)her) is
a noise. It is called the linearizable part of the noise N. The noise N},
is a maximal Gaussian sub-noise of N, hence N is Gaussian if and only if

Njjp = N. When Nj;, is trivial (i.e. constituted of trivial o-fields), one says
that N is a black noise (when N is not trivial).

Theorem 4.4.1 N = Nlicn.

Proof. Let H" be the space of centered linear representations of the noise
NY. Then H" is an Hilbert space (an orthonormal basis of H" is given by
{(W2,)s<:}) and we have HY C Hy . This implies that NYW is a Gaussian

s,t
sub-noise of Nll,lcn .

If NW £ Niicn then there exists a linear representation (X,:)s<: # 0 €
Hﬁn orthogonal to H" and therefore independent of {W*}. Since (Xozt)e>0 €
M(F), proposition 4.3.1 implies that the martingale bracket of Xy, equals
0. This is a contradiction. [

In section 5, we give an example of a stochastic coalescing flow whose noise
is predictable but not Gaussian, i.e. an example of non-uniqueness of the
diffusion convolution semigroup associated with a set of local characteristics.

Remark 4.4.2 In example 2.4.3, although (i) is not satisfied, it is still
possible to construct a white noise W from the coalescing flow (¢5:, s <

t). For all s < t, we set W, = fst sgn(@su(0)) dps.(0). Then we have
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W = f: sgn(@su(x)) dosu(z) for all z € R. Therefore one can check that
W = (W4, s <t)is areal white noise.
The coalescing flow (¢s+, s <) solves the SDE

3
pst(x) = / sgn(ps(x)) dW,, for s <tand x € R. (4.52)

The results of this subsection apply since proposition 4.3.1 is also satisfied
if we only assume the uniqueness in law of the coalescing solutions '° of
the SDE satisfied by the n-point motion (i.e. the SDE (4.51)), which here
is almost obvious. Therefore, the linear part of the noise generated by the
coalescing flow is given by the noise generated by W. But since the strong
solution of the SDE (4.52) is not a flow of mappings, the coalescing flow is
not a strong solution. Therefore, we recover the result of Watanabe [33] that
the noise of this stochastic coalescing flow is predictable but not Gaussian.

The strong solution given in section 2.4.3 can be recovered by filtering
the coalescing solution with respect to the noise generated by W.

5 Isotropic Brownian flows.

In this section, we give examples of compatible families of Feller semigroups.
They are constructed on M, an homogeneous space, with C' an isotropic
covariance function on the space of vector fields and the semigroup of a
Brownian motion on M.

5.1 Isotropic covariance functions.

Let M = G/K be an homogeneous space. Then a covariance function C is
said isotropic if and only if

for all g € G and (£,&') € (T*M)* and where g - £ = T'g(£) (or g - (z,u) =
(g, Tgyu) for (z,u) € T*M).

Examples of isotropic covariances are given by Monin and Yaglom in [22]
on R? and by Raimond [26, 27] on the sphere and on the hyperbolic plane. In

19ie. such that if (X',..., X™) solves the SDE then if for i # j and s > 0, X! = X{
then X! = X/ for all t > s.
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these examples, the group G of isometries on R? (making R? homogeneous)
is generated by O(d) and by the translations. For the sphere S¢ this group
is O(d + 1) and for the hyperbolic space, it is SO(d, 1).

5.2 A compatible family of Markovian semigroups.

Let C be an isotropic covariance on X' (M), the space of vector fields on
an homogeneous space M = /K. To this isotropic covariance function is
associated a Brownian vector field on M (i.e. a X'(M)-valued Brownian mo-
tion W such that E[{(W;, )(W, &) =t As C(£,€')). Let P be the associated
Wiener measure, constructed on the canonical space = {w : RT — X (M)},
equipped with the o-field A generated by the coordinate functions.

We denote by W the random variable W(w) = w, then W is a Brownian
vector field of covariance C'. W is isotropic in the sense that for all ¢ € G,
(dg;*Wi(gz), t € RT, z € M) is a Brownian vector field of covariance C'.

Notice that the restriction of C' to the diagonal defines a G-invariant
metric on M, we assume to be non-degenerate. Let P; be the associated heat
semigroup, m the associated volume element and A the associated Laplacian.

Let (Sy, t > 0) be the family of random operators defined in [18], asso-
ciated with W and to the heat semigroup P;. Following [18], we define the
associated semigroups of the n-point motion, Pﬁ”) = E[SP"] (with P,El) = P,).
Then, it is obvious that (PE”), n > 1) is a compatible family of Markovian
semigroups of operators acting on L?*(m). We now prove that these semi-
groups are induced by Feller semigroups (the question was raised in [19]).

One can extend (W;)¢>o into a vector field valued white noise (W4, s <1t)
of covariance C' such that Wy = Wy, for t > 0 and associate to it a stationary
cocycle of random operators (S5, s <t) such that So, = S; for ¢ > 0.

5.3 Verification of the Feller property.

For all g € G, let L, : @ — Q defined by L,w;(-) = Tg ' (wi(g)), for all t € R
and * € M. Then L, is linear and for all ¢, and ¢, in G, L,,, = L, Ly,
(i.e. g — L, is a representation of (7). It is easy to check that for all g € G,
(L,)*P = P. Note that this last condition is also a characterization that C
is isotropic.

For all g € G, L, induces a linear transformation on L*(Q, A, P) we will

also denote by L,. Then for all f € L*(Q, A, P), we have L, f(w) = f(L,w).
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This transformation is unitary since
L1 = [ (L) Plae) = [ F) (L) PIa) = I

(where || - || denotes the L*(P)-norm), i.e. L, is an unitary representation of

(@ with carrier space L*(Q2, A4, P).

Proposition 5.3.1 For all v € L*(Q, A, P), the mapping g — L,v is con-
linuous.

Proof. Note that, since L is a representation, it is enough to prove the
continuity at e, the identity element in G.

Remark 5.3.2 Note that if (v,, n € N) is a sequence in L*(Q, A, P) con-
verging towards v € L*(Q, A,P) as n — oo such that lim,_,. L,v, = v, for
all integer n, then lim,,. L,v = v. Indeed, since for all g € GG, L, is unitary,
I Zyo—oll < 200 —vl|F [ Lyon —all- Hence limsup, . [ Lyo— o] < 2o, —o
for all integer n and we conclude using the convergence of v, towards v.

We first prove that lim,_,. Lyv = v for every v of the form ) . W, (&)
(with Wi(z,u) = (Wi(z), u), where (-,-) denotes the Riemannian metric) :

1243 Weul&) = > W6 H?—zth (6:6) = Clg- &)

which converges towards 0 as g tends to e.

Let H denote the closure (in L*(Q, A, P)) of the class of all v of the form
> Wi (&). Remark 5.3.2 implies that lim,_,. L,v = v holds for all v € H.

It is well known that L*(€, A, P) is the orthogonal sum of the Wick pow-
ers H™ of H (See [29]), also called the n-th Wiener chaos (see [23]), H" is
constituted by the constants. The space H" is isometric to the symmetric
tensor product spaces H®™. We now prove that lim, . L,v = v holds for all
veH" Forallv=v, ® - - ®°v, € H" (or : vivy--- v, 1), with vy,..., v,
in H,

[ Lgv — v
< D o1 @° - @° Lyvjy @° (Lyv; —v;) @° 0j31 @ -+ ®° v,
J
< VY Lgv; — vl < [ il
i i
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which converges towards 0 as g tends to e. Since the class of linear com-
binaisons of elements of the form vy ®°--- ®° v, is dense in H”, we have
limy,,. Lyv = v for all v in H”. And we conclude since L, is linear and
L*(Q,A,P) = @™ O

Forallz € M,s <tand f € Co(M),let K f(x) = limeyo PeSsyes f(2) =
> nso Jaif(@), where J7, f(z) is an element of H™ defined by equation (3.44)
(the proof of proposition 3.5.2 applies). Then, S;,f = K,.f in L*(m @ P)
and P,ﬁ”) = f)t(n), where f)t(n) denotes E[K 7).

Lemma 5.3.3 The mapping x — K, f(z) is continuous for all Lipschitz
function f and all s < t.

Proof. Note that for all g € G and all z € M,

LyKif(z) = Ko f? (g2) (5.2)
where fg_l(x) = f(g~'x). We then have
1Ko f(g2) = Koaf(2)| < [[Koif(g2) — Ko f7 (g2)]| (5.3)

+ Ly Ko f (@) = Ko f(2)]-

Hence lim, . K. f(gx) = Ks.f(z) since limy. L, K1 f(z) = K. f(x)
and || K. f(gx) — [&’S7tfg_l(g;v)H < |If - o ||co Which converges towards 0

(since |f(z)—f9 (z)| < Cd(z,g 'z) = €(g™")). This implies the proposition.

a

Proposition 5.3.4 (a) (|5§”), n > 1) is a compatible family of Feller semi-
groups.

(b) The associated convolution semigroup vV = (1} )i>0 is a diffusion con-
volution semigroup with local characteristics (%A, C).

Proof. For all bounded Lipschitz functions fi,..., f,, lemma 5.3.3 implies
that (zq,...,2,) — |5§n)f1 @+ @ fulzr, ... x,) = E[[]; Ksifi(a;)] is con-
tinuous. This suffices to prove (a) (the proof that lim;_q PE”)h(:n) = h(x) for
all h € C(M") is the same as in lemma 1.8.1).

To prove (b), notice that 1t6’s formula for (S5, s <) (see theorem 3.2
in [18]) implies that for all f € C%(M) and s < ¢,

/ Kn(Af)) du,  (5.4)

S

K, f(z) = f(:n)—l—/ Ks,u(Wf(dU))(fﬂ)Jr%

ie. (K s <t)solves the (%A, C)-SDE. Thus (ii) is satisfied. U
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5.4 Classification.

Let " be the diffusion convolution semigroup constructed above. It defines
a strong solution of the (%A, C)-SDE. Note that there is no pure diffusion.

Let (d¢)i>o denote the distance process induced by the 2-point motion
Xt(Q) = (X1, Y;) (then d; = d(X:,Y;:)). The isotropy condition implies that
it is a real diffusion. We denote in the following the law of this diffusion
starting from = > 0 by P,. Let H, = inf{t > 0, d; = z}.

Proposition 5.4.1 (a) " defines a non-coalescing flow of maps (i.e. such
that the 2-point motion starting outside of the diagonal never hits the
diagonal) if and only if 0 is a natural boundary point, i.e. if

Yz >0, P.[Hy < oc] =0 and Po[H, < oc] = 0. (5.5)

(b) vY defines a coalescing flow of maps if and only if 0 is a closed exit
boundary point, i.e. if

dz >0, P,[Hy < o] >0 and Yz > 0, Po[H, < oo] = 0. (5.6)

c) VW defines a turbulent flow ** without hitting (i.e. such that the 2-point
g p
motion starting outside of the diagonal never hits the diagonal) if and
only if 0 is an open entrance boundary point, i.e. if

Vo >0, P.[Hy < o0l =0 and 3z > 0, Po[H, < oc] > 0. (5.7)

(d) v" defines a turbulent flow with hitting (i.e. such that the 2-point mo-
tion starting outside of the diagonal hits the diagonal with a positive
probability) if and only if 0 is a reflecting regular boundary point, i.e.

if
dz >0, P.[Hy < oo] >0 and Jz > 0, Py[H, < o] > 0. (5.8)
In all cases except (d), v" is the unique diffusion convolution semigroup
with local characteristics (37, C).

In case (d), called the intermediate phase, v° # v and theorems 4.2.1
and 4.4.1 apply. Thus N,c is a predictable non-Gaussian noise.

1'We recall that a turbulent flow was defined as a stochastic flow of kernels which is not
a flow of maps and without pure diffusion.
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Proof. The proof of (a), (b), (¢) and (d) is straightforward. Notice that the
local characteristics satisfy (U). In all cases, "V defines a strong solution of
the (A, C')-SDE. This with proposition 5.4.1 implies that in the coalescing
case (b), since vV = v = " W is the unique diffusion convolution
semigroup whose local characteristics are (%A, C).

In the non-coalescing case (a) and in the turbulent case without hitting
(), the fact that v is the unique diffusion convolution semigroup whose local
characteristics are (3A, C') follows directly from (U).

In the intermediate phase (d), (C) holds so that we can conclude using

theorems 4.2.1 and 4.4.1. U

Remark 5.4.2 The (3A,C)-SDE has a solution, unique in law except in
the intermediate phase, in which case all solutions are obtained by filtering,
on an extension (N, @) of the noise of the coalescing solution, this coalescing
solution @ with respect to a sub-noise of N containing W.

Remark 5.4.3 The conditions involving the distance process can be verified
using the speed and scale measures of this process which are explicitly deter-
mined by the spectral measures of the isotropic fields (cf [18] for R? and for
S9).

5.5 Sobolev flows.
In [18], Sobolev flows (S, ;, s <t) on R? and on S? are studied. The Sobolev

covariances are described with two parameters o > 0 and n € [0,1]. The
associated self-reproducing spaces are Sobolev spaces of vector fields of order
(d + «)/2. The incompressible and gradient subspaces are orthogonal and
respectively weighted by factors n and 1 — 7.

Let us apply the results obtained in [18]. We will call the stochastic
flow associated with (Ss;, s < t) (see section 3.5 and 5.3) Sobolev flow
as well. When a > 2, we are in case (a) and Sobolev flows are flows of
diffeomorphisms. More interestingly, when 0 < o < 2 then

If d € {2,3} and n < 1 — 2%, we are in case (b) and the Sobolev flow is a
coalescing flow.

Ifd>4orifde {23} and n > 1 — “=2 we are in case (c) and the

2 2a0 7
Sobolev flow is turbulent without hitting.
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ifde{2,3}and 1 — %L <p<i- (dQ_aQ), we are in case (d) (i.e. the

intermediate phase) and the Sobolev flow is turbulent with hitting.

By construction, in all these cases, the noise generated by the Sobolev flows
are Gaussian noises. And in the intermediate phase, the noise of the associ-
ated coalescing flow is predictable but not Gaussian.

These different cases are represented by the phase diagram below, for the
homogeneous space S°.

4 T T T T T T T T
3.5F B
3+ stable flow -
25F b
unstable flow
[= 2]
coalescent
f?ow
diffusive with
1.5 nhitting 1
1 . . . . N
diffusive without hitting
0.5 b
0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n
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