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Scaling Limit, Noise, Stability

Boris Tsirelson

Abstract

Linear functions of many independent random variables lead to
classical noises (white, Poisson, and their combinations) in the scal-
ing limit. Some singular stochastic flows and some models of oriented
percolation involve very nonlinear functions and lead to nonclassical
noises. Two examples are examined, Warren’s ‘noise made by a Pois-
son snake’ and the author’s ‘Brownian web as a black noise’. Classical
noises are stable, nonclassical are not. A new framework for the scal-
ing limit is proposed. Old and new results are presented about noises,
stability, and spectral measures.
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Introduction

Functions of n independent random variables and limiting procedures for
n — oo are a tenor of probability theory.

Classical limit theorems investigate linear functions, such as f (&1, ...,&,) =
(& + -+ - +&,)/+v/n. The well-known limiting procedure (a classical example
of scaling limit) leads to the Brownian motion. Its derivative, the white
noise, is not a continuum of independent random variables, but rather an
infinitely divisible ‘reservoir of independence’, a classical example of a con-
tinuous product of probability spaces.

Percolation theory investigates some very special nonlinear functions of
independent two-valued random variables, either in the limit of an infinite
discrete lattice, or in the scaling limit. The latter is now making spectacu-
lar progress. The corresponding ‘reservoir of independence’ is already con-
structed for oriented percolation (which is much simpler). That is a modern,
nonclassical example of a continuous product of probability spaces.

An essential distinction between classical and nonclassical continuous
products of probability spaces is revealed by the concept of stability /sensitivity,
framed for the discrete case by computer scientists and (in parallel) for the
continuous case by probabilists. Everything is stable if and only if the setup
is classical.

Some readers prefer discrete models, and treat continuous models as a
mean of describing asymptotic behavior. Such readers may skip Sects. 6D,
Bd, RO, Bd, Bd. Other readers are interested only in continuous models. They
may restrict themselves to Sects. Bdl, Bd, B B, B, [ B

Scaling limit. A new framework for the scaling limit is proposed in Sects.
[0 B2, BaH3d

Noise. The idea of a continuous product of probability spaces is formal-
ized by the notions of ‘continuous factorization’ (Sect. Bdl) and ‘noise’ (Sect.
Bd). (Some other types of continuous product are considered in [I§], [19].)
For two nonclassical examples of noise see Sects. HEl, [

Stability. Stability (and sensitivity) is studied in Sects. B, Bal Bdl For an
interplay between discrete and continuous forms of stability /sensitivity, see
especially Sects. bd, Bdl

The spectral theory of noises, presented in Sects. Bd, Bdland used in Sects.
Bl B generalizes both the Fourier transform on the discrete group Zj (the
Fourier-Walsh transform) and the It6 decomposition into multiple stochastic
integrals. For the scaling limit of spectral measures, see Sect.

Throughout, either by assumption or by construction, all probability
spaces will be Lebesgue-Rokhlin spaces; that is, isomorphic mod 0 to an in-
terval with Lebesgue measure, or a discrete (finite or countable) measure



space, or a combination of both.

1 A First Look

la Two toy models

The most interesting thing is a scaling limit as a transition from a lattice
model to a continuous model. A transition from a finite sequence to an
infinite sequence is much simpler, but still nontrivial, as we’ll see on simple
toy models.

Classical theorems about independent increments are exhaustive, but a
small twist may surprise us. I demonstrate the twist on two models, ‘discrete’
and ‘continuous’. The ‘continuous’ model is a Brownian motion on the circle.
The ‘discrete’ model takes on two values +1 only, and increments are treated
multiplicatively: X (¢)/X(s) instead of the usual X (t) — X(s). Or equiva-
lently, the ‘discrete’ process takes on its values in the two-element group Zo;
using additive notation we have Zs = {0,1}, 1 + 1 = 0, increments being
X(t) — X(s). In any case, the twist stipulates values in a compact group
(the circle, Zy, etc.), in contrast to the classical theory, where values are in
R (or another linear space). Also, the classical theory assumes continuity (in
probability), while our twist does not. The ‘continuous’ process (in spite of
its name) is discontinuous at a single instant ¢ = 0. The ‘discrete’ process
is discontinuous at t = %, n=1,2,..., and also at t = 0; it is constant on
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[ 5) for every n.

lal Example. Introduce an infinite sequence of random signs 7,7, ...;

that is,
1
P(Tk = —1) :P(Tk :+1) =3 for each k,
Ti,To, ... are independent.
For each n we define a stochastic process X,(-), driven by 7,...,7,, as
follows:
a sample path of X4
(here TN =T =Tq = —1,T3 = -+1)
k:1/n<1/k<t ;} L }1 1 }
—

For n — oo, finite-dimensional distributions of X,, converge to those of a
process X (). Namely, X consists of countably many random signs, situated
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on intervals [25, 1). Almost surely, X has no limit at 0+. We have

(1a2) j{f—(t): M =

(S) k:s<1/k<t

whenever 0 < s < t < oo. However, ([[ad) does not hold when s <
0 < t. Here, the product contains infinitely many factors and diverges al-
most surely; nevertheless, the increment X (¢)/X(s) is well-defined. Each
X, satisfies ([[@2) for all s,¢ (including s < 0 < ¢; of course, k < n),
but X does not. Still, X is an independent increment process (multiplica-
tively); that is, X (t2)/X(t1),..., X(ts)/X(t,—1) are independent whenever
—00 < t) < -+ < t, < oo. However, we cannot describe the whole X
by a countable collection of its independent increments. The infinite se-
quence of 7, = X(3+)/X(3—) does not suffice since, say, X (1) is inde-
pendent of (71,7,...). Indeed, the global sign change z(:) — —z(-) is a
measure-preserving transformation that leaves all 75, invariant. The condi-
tional distribution of X(-) given 7y, 7y,... is concentrated at two functions
of opposite global sign. It may seem that we should add to (71,7s,...)
one more random sign 7., independent of (71, 7,...) such that X(3) is a
measurable function of 74, 7x11,... and 7. However, it is impossible. In-
deed, X(1) = 7 ... 7 X (3). Assuming X () = fi(Th Ths1s-- -3 Too) We get
fi(m, 725 To0) = T e Tt i (Thy Tha1s - - -5 Too) for all k. Tt follows that
J1(11, 72, .. .5 Too) is orthogonal to all functions of the form g(7, ..., 7,)h(7)
for all n, and thus, to a dense (in Lj) set of functions of 7,7, ...;7; a
contradiction.

So, for each n the process X,, is driven by (%), but the limiting process
X is not.

1a3 Example. (See also [3].) We turn to the other, the ‘continuous’ model.
For any ¢ € (0,1) we introduce a (complex-valued) stochastic process

{exp(iB(ln t)—iB(lng)) fort>e,

Yo(t) = .

1 otherwise,

where B() is the usual Brownian motion; or rather, (B(t))icjo,00) and
(B(—t))te[o,oo) are two independent copies of the usual Brownian motion.
Multiplicative increments Yz (t)/Yz(t1), ..., Ye(t,)/Y:(t,—1) are independent
whenever —oo < t; < -+ < t, < oo, and the distribution of Y.(t)/Y:(s)
does not depend on ¢ as far as € < s < t (in fact, the distribution depends
on t/s only). The distribution of Y.(1) converges for ¢ — 0 to the uniform
distribution on the circle |z| = 1. The same for each Y.(¢). It follows easily
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that, when € — 0, finite dimensional distributions of Y. converge to those of
some process Y. For every t > 0, Y () is distributed uniformly on the circle;
Y is an independent increment process (multiplicatively), and Y (¢) = 1 for
t < 0. Almost surely, Y(-) is continuous on (0, 00), but has no limit at 0+.
We may define B(-) by

Y(t) =Y (1)exp(iB(Int)) forteR,

B(:) is continuous on R.

Then B is the usual Brownian motion, and

Y(t)  exp(iB(Int))

— f .
Y(s)  exp(iB(lmg)) rU<s<t=oo

However, Y (1) is independent of B(-). Indeed, the global phase change
y(-) — ey(-) is a measure preserving transformation that leaves B(-) in-
variant. The conditional distribution of Y'(-) given B(-) is concentrated on a
continuum of functions that differ by a global phase (distributed uniformly
on the circle). Similarly to the ‘discrete’ example, we cannot introduce a
random variable B(—o0) independent of B(-), such that Y'(¢) is a function
of B(—o0) and increments of B(r) for —oo < r < Int.

So, for each ¢, the process Y, is driven by the Brownian motion, but the
limiting process Y is not.

Both toy models are singular at a given instant ¢ = 0. Interestingly,
continuous stationary processes can demonstrate such strange behavior, dis-
tributed in time! (See Sects. B ).

1b  Our limiting procedures

Imagine a sequence of elementary probabilistic models such that the n-th
model is driven by a finite sequence (74, . . ., 7,) of random signs (independent,
as before). A limiting procedure may lead to a model driven by an infinite
sequence (71, 7o, . . . ) of random signs. However, it may also lead to something
else, as shown in [[al This is an opportunity to ask ourselves: what do we
mean by a limiting procedure?

The n-th model is naturally described by the finite probability space
Q, = {—1,+1}" with the uniform measure. A prerequisite to any limiting
procedure is some structure able to join these 2, somehow. It may be a
sequence of ‘observables’, that is, functions on the disjoint union,

ka(QlL‘UQQLﬂ...)HR.



1b1l Example. Let fy(7,...,7,) = 7% for n > k. Though f; is defined
only on £ W Qxyq W. .., it is enough. For every k, the joint distribution of
fi,--., fr on Q, has a limit for n — oo (moreover, the distribution does not
depend on n, as far as n > k). The limiting procedure should extend each
fr to a new probability space €2 such that the joint distribution of fi,..., fx
on 2, converges for n — oo to their joint distribution on 2. Clearly, we
may take the space of infinite sequences 2 = {—1,+1}> with the product
measure, and let f; be the k-th coordinate function.

1b2 Example. Still fi(7,...,7,) = 7 (for n > k > 1), but in addition, the
product fo(71,...,7n) = T1...7, is included. For every k, the joint distribu-
tion of fy, f1,..., fr on Q, has a limit for n — oo; in fact, the distribution
does not depend on n, as far as n > k (this time, not just n > k). Thus,
in the limit, fy, f1, f2,... become independent random signs. The functional
dependence fy = fifs... holds for each n, but disappears in the limit. We
still may take Q = {—1,+1}>°, however, f; becomes a new coordinate.

This is instructive; the limiting model depends on the class of ‘observ-
ables’.

1b3 Example. Let fy(71,...,7) = T ... T, for n > k > 1. In the limit, fj
become independent random signs. We may define 75 in the limiting model
by 7 = fx/frr1; however, we cannot express fi in terms of 7. Clearly, it is
the same as the ‘discrete’ toy model of [Tal

The second and third examples are isomorphic. Indeed, renaming f; of
the third example as g5 (and retaining f; of the second example) we have

gk:L fk:&fork:>0, and f():gl;

froofoer! Gt

these relations hold for every n (provided that the same €, = {—1,+1}" is
used for both examples) and naturally, give us an isomorphism between the
two limiting models.

That is also instructive; some changes of the class of ‘observables’ are
essential, some are not.

It means that the sequence (f;) is not really the structure responsible for
the limiting procedure. Rather, f, are generators of the relevant structure.
The second and third examples differ only by the choice of generators for the
same structure. In contrast, the first example uses a different structure. So,
what is the mysterious structure?

I can describe the structure in two equivalent ways. Here is the first
description. In the commutative Banach algebra (21 W QW ...) of all
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bounded functions on the disjoint union, we select a subset C' (its elements
will be called observables) such that

(1b4)

C'is a separable closed subalgebra of [, (£2; W Qs W ...) containing the unit.

In other words,

C contains a sequence dense in the uniform topology;
fn€C, fp — funiformly — feC,;
(1b5) frgeC,a,beR = af+bgeC;
1eC;
frgeC = fgel

(here 1 stands for the unity, 1(w) =1 for all w). Or equivalently,

C contains a sequence dense in the uniform topology;
(1b6) fn€C, f, = funiformly — feC;
f,g€C, ¢:R?* — R continuous = ¢(f,g)€C.

Indeed, on one hand, both af+bg and fg (and 1) are special cases of ¢(f, g).
On the other hand, every continuous function on a bounded subset of R? can
be uniformly approximated by polynomials. The same holds for ¢(f1,. .., f,)
where fi,...,f, € C, and ¢ : R" — R is a continuous function. Another
equivalent set of conditions is also well-known:

C contains a sequence dense in the uniform topology;
fn€C, f, — funiformly — feC;
(1b7) frgeC,a,beR = af+bgeC;
1eC;
feC = |fleC;

here | f| is the pointwise absolute value, | f|(w) = | f(w)].
The smallest set C' satisfying these (equivalent) conditions (Ih4])—(IhAD)
and containing all given functions f; is, by definition, generated by these f.
Recall that C' consists of functions defined on the disjoint union of finite
probability spaces €2,; a probability measure P, is given on each €2,. The
following condition is relevant:

(1b) lim fdP, exists for every f € C'.

n—oo Q
n



Assume that C' is generated by given functions fi. Then the property (IDLS)
of C'is equivalent to such a property of functions fy:

For each k, the joint distribution of fi,..., fx on €,
weakly converges, when n — oo.

(1h9)

Proof: ([hd) means convergence of [ ¢(fi,..., fx) dP, for every continuous
function ¢ : R* — R. However, functions of the form f = o(fy,..., fi) (for
all k, p) belong to C and are dense in C.

We see that (L) does not depend on the choice of generators f; of a
given C.

The second (equivalent) description of our structure is the ‘joint com-
pactification’ of Q,s,... I mean a pair (K, ) such that

K is a metrizable compact topological space,
(1b10) a: (W ... ) — K isamap,
the image a(2; W Qo W ... ) is dense in K.

Every joint compactification (K, «) determines a set C satisfying (ID4).
Namely,
C=a'(C(K));

that is, observables f € C' are, by definition, functions of the form

f=goaq, that is, f(w) = g(a(w)), g€ C(K).

The Banach algebra C' is basically the same as the Banach algebra C'(K) of
all continuous functions on K.

Every C' satisfying (Ih4) corresponds to some joint compactification.
Proof: C' is generated by some f; such that |fx(w)| < 1 for all k,w. We
introduce

a(w) = (fl(w)7f2(w>7”‘) S [_171]007
K is the closure of a(2; W QoW ... ) in [—1,1];

clearly, (K, «) is a joint compactification. Coordinate functions on K gener-
ate C(K), therefore f; generate o (C(K)), hence a™*(C(K)) = C.

Finiteness of each €2, is not essential. The same holds for arbitrary prob-
ability spaces (Q,, F,, P,). Of course, instead of [(2; W Qy W...) we use
Loo(WQeW. .. ), and the map o : (21 W Q... ) — K must be measurable.
It sends the given measure P, on €, into a measure a(FP,) (denoted also by
P,oa ') on K. If measures a(P,) weakly converge, we get the limiting
model (£2, P) by taking Q@ = K and P = lim,, .o, a(F,).

8



1c Examples of high symmetry

1cl Example. Let 2, be the set of all permutations w : {1,...,n} —
{1,...,n}, each permutation having the same probability (1/n!);

f(QwQyw...) — Ris defined by
f(w) = [{k:w(k) = k}|;

that is, the number of fixed points of a random permutation. Though f
is not bounded, which happens quite often, in order to embed it into the
framework of [[H we make it bounded by some homeomorphism from R to
a bounded interval (say, w +— arctan f(w)). The distribution of f(-) on €,
converges (for n — 00) to the Poisson distribution P(1). Thus, the limiting
model exists; however, it is scanty: just P(1).

We may enrich the model by introducing

fulw) = [{k <un:w(k) = k}|;

for instance, fy5(+) is the number of fixed points among the first half of
{1,...,n}. The parameter u could run over [0, 1], but we need a countable
set of functions; thus we restrict u to, say, rational points of [0, 1]. Now the
limiting model is the Poisson process.

Each finite model here is invariant under permutations. Functions f,
seem to break the invariance, but the latter survives in their increments,
and turns in the limit into invariance of the Poisson process (or rather, its
derivative, the point process) under all measure preserving transformations
of [0,1].

Note also that independent increments in the limit emerge from dependent
increments in finite models.

We feel that all these f,(-) catch only a small part of the information
contained in the permutation. You may think about more information, say,
cycles of length 1,2, ... (and what about length n/27)

1c2 Example. Let Q,, be the set of all graphs over {1,...,n}. That is, each
w € €, is a subset of the set ({1"'2""}) of all unordered pairs (treated as edges,
while 1,...,n are vertices); the probability of w is p'ﬁ'(l — pp)" /27Nl
where |w]| is the number of edges. That is, every edge is present with proba-
bility p,, independently of others. Define f(w) as the number of isolated
vertices. The limiting model exists if (and only if) there exists a limit
lim, n(1 — p,)" ' = XA € [0,00);! the Poisson distribution P(\) exhausts
the limiting model.

!Formally, the limiting model exists also for A = oo, since the range of f is compactified.



A Poisson process may be obtained in the same way as before.

You may also count small connected components which are more compli-
cated than single points.

Note that the finite model contains a lot of independence (namely, n(n —
1)/2 independent random variables); the limiting model (Poisson process)
also contains a lot of independence (namely, independent increments). How-
ever, we feel that independence is not inherited; rather, the independence
of finite models is lost in the limiting procedure, and a new independence
emerges.

1c3 Example. Let , = {—1,+1}" with uniform measure, and f, : (Q; &
Qo W...) — R be defined by

as before, 71, ..., 7, are the coordinates, that is, w = (7’1 (W), ..., Tn(w)) and
u runs over rational points of [0,1]. The limiting model is the Brownian
motion, of course.

Similarly to [[c]l each finite model is invariant under permutations. The
invariance survives in increments of functions fj, and in the limit, the white
noise (the derivative of the Brownian motion) is invariant under all measure
preserving transformations of [0, 1].

A general argument of Bd will show that a high symmetry model cannot
lead to a nonclassical scaling limit.

1d Example of low symmetry

Example may be rewritten via the composition of random maps

a_ oy L — 1,
a(k)=k—-1, ay(k)=k+1;

Ay = Orp(w) O - - QA (W) 5

Wl
NN

thus, a, (k) =k + 1 (w) + - -+ + 7, (w), and we may define fi(w) = ﬁaw(O),
which conforms to [c3l Similarly, f,(w) = ﬁa%u(()), where «a,, is the
composition of o, () for k& < un. The order does not matter, since a_, ay
commute, that is, a_ ooy = a; o a_. It is interesting to try a pair of

noncommuting maps.
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1d1 Example. (See Warren [22].) Define

1
T4 T4 = 3o o
Qa_, oy + 5 — 7+ 5 1/23 //:
a_(z) ==z —1/2 .
(z) foer(Z—i—%)ﬂ(O 00) _3/24  » :\
ay(z) =1x o at
o (~2) = —a(x), ay(~2) = —a. (@)

These are not invertible functions; a_ is not injective, o is not surjective.
Well, we do not need to invert them, but need their compositions:

= anweoanw. N\ ANTRAN

Q- O0Q =0 (41,-1) Q4O —=Q(_1,41)

All compositions belong to a two-parameter set of functions h,,

T+ a for x > b,
ay(x) =hep(z) =< o —a for x < —b, .
(=1 %(a+0b) for —b<z <V / ------- -
ba+be (Z+3)N(0,00)={5,2,2,...}.
Indeed, a— = h_115, oy = h105, and hg, by © hay b, = hep Where a = a3 + ao,

b = max(by, by — a;). Thus, a, = ha()w), and we define

f1Z(QlLﬂQQL‘U...>—>R2X{—1,+1},

filw) = <a\(/%),&\;%), (—1)b(w)—0.5) '

However, the function is neither bounded nor real-valued; in order to fit
into the framework of [0 we take, say, arctan(a(w)/v/n), arctan(b(w)/v/n),
and (—1)"@)=05_ The latter is essential if, say, ﬁaw(OB) is treated as an
‘observable’; indeed, ozw(O 5) = (— 1)b(“)_0'5ﬁ(a(w) + b(w)). The limiting
model exists and is qulte interesting. (See also Bd) As before, a random
process appears by considering the composition over k < un.

Here, finite models are not invariant under permutations of their indepen-
dent random variables (since the maps do not commute), and the limiting
model appears not to be invariant under measure preserving transformations

of [0,1].
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Independence present in finite models survives in the limit, provided that
the limit is described by a two-parameter random process; we’ll return to
this point in Ed

le Trees, not cubes

lel Example. A particle moves on the sphere S%. Initially it is at a given
point 2y € S2. Then it jumps by ¢ in a random direction. That is, X, = zo,
while the next random variable X; is distributed uniformly on the circle
{z € 8% : |xg — x| = €}. Then it jumps again to X such that |X; — X,| =&,
and so on. We have a Markov chain (X}) in discrete time (and continuous
space). Let €. be the corresponding probability space; it may be the space
of sequences (xg, x1, x9, . .. ) satisfying |xy —x41| = €, or something else, but
in any case X}, : 2. — S%. We choose €, — 0 (say, &, = 1/n), take ,, = Q.
and define f, : (W W...) — S? by

fulw) = Xp(w) for 2k <u<ei(k+1), we,.

Of course, the limiting model is the Brownian motion on the sphere S2.

In contrast to previous examples, here €2, is not a product; the n-th
model does not consist of independent random variables. But, though we
can parameterize these Markov transitions by independent random variables,
there is a lot of freedom in doing so; none of the parameterizations may be
called canonical. The same holds for the limiting model. The Brownian
motion on S? can be driven by the Brownian motion on R? according to
some stochastic differential equation, but the latter involves a lot of freedom.

le2 Example. (See [12].) Consider the random walk on such an oriented
graph:

A particle starts at 0 and chooses at random (with probabilities 1/2, 1/2)
one of the two outgoing edges, and so on (you see, exactly two edges go out
of any vertex). Such (Zy, Z1, ... ) is known as the simplest spider walk. It is a
complex-valued martingale. The set 2,, of all n-step trajectories contains 2"
elements and carries its natural structure of a binary tree. (It can be mapped
to the binary cube {—1, +1}" in many ways.) We define f, : (QwQ4...) —

12



C by .
fu(w):ﬁZk(w) fork<nu<k+1, weq,.

The limiting model is a continuous complex-valued martingale whose values
belong to the union of three rays.

The process is known as Walsh’s Brownian motion, a special case of the
so-called spider martingale.

1f Sub-o-fields

Every example considered till now follows the pattern of [H; a joint com-
pactification of probability spaces €2,, and the limiting 2. Moreover, €2, is
usually related to a set T,, (a parameter space, interpreted as time or space),
and € to a joint compactification T of these T,,.

Example T, T
=1 TR S R E SIS AVE (1)
Ta3 len, 1] 0,1]
[T, e, M3, AT, MeTl, M | {2+, 2,..., 1} [0,1]

Examples [[a]l, [a3], deal (for a finite n) with independent increment pro-
cesses, taking on their values in a group, namely, [c3 R (additive); Talk
{—1,41} (multiplicative), the circle {z € C : |z| = 1} (multiplica-
tive). Every ¢ € T, splits the process into two parts, the past and the
future; in order to keep them independent, we define them via increments,
not values.? In terms of random signs 7, (for [[all, [c3) it means simply
{=1,+1}" = {=1,+1}* x {=1,4+1}"7*; here k depends on ¢. The same idea
(of independent parts) is formalized by sub-o-fields Fo; (the past) and F;,
(the future) on our probability space (€2, or §2). Say, for the Brownian mo-
tion [[c3l Fo, is generated by Brownian increments on [0, t], while F;; — on
[t,1]. Similarly we may define Fs; for s < ¢, and we have

Frs @ Fsy=F.p whenever r < s<t.

2In fact, the process of [[all has also independent values (not only increments); but that
is irrelevant.
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It means two things: first, independence,
IP’(AOB) :IP(A)IP’(B) whenever A € F,,, B € Fyy;

and second, F,; is generated by F,., and Fy, (that is, F,; is the least sub-
o-field containing both F, s and F; ;). Such a two-parameter family (Fs;) of
sub-o-fields is called a factorization (of the given probability space). Some
additional precautions are needed when dealing with semigroups (like [dl),
and also, with discrete time.

Sub-o-fields F4 can be defined for some subsets A C T" more general than
intervals, getting

Fi® Fgp=Fc whenever AWB=C.

Models of high symmetry admit arbitrary measurable sets A; models of low
symmetry do not. For some examples (such as [[c]l [[cZ), a factorization
emerges after the limiting procedure.?

No factorization at all is given for [ell Me2l Still, the past Fo; = F; is
defined naturally. However, the future is not defined, since possible continu-
ations depend on the past. Here we deal with a one-parameter family (F;)
of sub-o-fields, satisfying only a monotonicity condition

F, C F; whenever s <t;

such (F) is called a filtration.

2 Abstract Nonsense of the Scaling Limit

2a More on our limiting procedures

The joint compactification K of Q; W Qy W ..., used in MO is not quite
satisfactory. Return to [[c3:

(2a1) Fulw) = % S () forue[0,1]NQ

k<un

(Q being the set of rational numbers). The limiting model is the Brownian
motion, restricted to [0, 1]NQ. What about an irrational point, v € [0, 1]\Q?
The random variable f, may be defined on €2 as the limit (say, in L) of f,
for u — v, u € [0,1] N Q. On the other hand, f, is naturally defined on

3For [ some factorization is naturally defined for €2,,, but is lost in the limiting
procedure, and a new factorization emerges.
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QW Q... (by the same formula (2all)). However, f, is not a continuous
function on the compact space K.* Thus, the weak convergence P, — P is
relevant to f,, but not f,. Something is wrong!

What is wrong is the uniform topology used in ([b4)-([IR7). A right topol-
ogy should take measures P; into account. We have two ways, ‘moderate’
and ‘radical’.

Here is the ‘moderate’ way. We choose some appropriate subsets B, C
(U WQW...), By C By C...,such that

inf P(B,,NQ;)T1 form— o0

and in (IB3)—(@RD) replace the assumption “f, € C, f, — f uniformly =
f € C” with

(2a2) fn€C, f, — f uniformly on each B,, — feC.

2a3 Example. Continuing (Zall) we define B,, by

!
&)
B,NQ =K we): sup 173 <m;
0<k<I<i (#) /
then®
| fu(w) = fo(w)| < m|u—v|"? for w € B, N,

if 7 is large enough (namely, 2/i < |u — v|). The set C' (satisfying ([2ad))
generated by f, for all rational u, also contains f, for all irrational v.

Similarly to[[D, we may translate (2aZ) into the topological language. For
each m, the restriction of C' to B,, corresponds to a joint compactification
(Ko, ) of B,,NQ;. Clearly, K,,, C K,,, for m; < mg, and a,,, = Oém2|1<ml.
Thus, we get a joint o-compactification

Oé(QlL'UQQL‘U)HKOOZKlLJKQU

4There exist w,, € , such that lim,, f,(w,) exists for all u € [0, 1]NQ, but lim,, f,(w,)
does not exist.

) AN |

50f course, |u — v|® for any a € (0,1/2) may be used, not only |u — v|'/3.
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We do not need a topology on the union K., of metrizable compact spaces
K C Ky C ...° We just define C(K ) as the set of all functions g : K, — R
such that ¢|g,, is continuous (on K,,) for each m. We have

C = a_l(C(KOO)) ,
that is, observables f € C' are functions of the form

f=goa, thatis, f(w)=g(a(w)), g€ C(Kw).

If measures «(P;) weakly converge (w.r.t. bounded functions of C(K),
recall (IbY), (IRJ)), we get the limiting model (€2, P) by taking Q = K, and
P =lim; . a(P).

2a4 Example. Continuing we see that the limiting measure P exists,
and the joint distribution of all f, (extended to K, by continuity) w.r.t. P
is the Wiener measure. The ‘uniform’ metric on K,

dist(z,y) = sup |fu(r) — fu(y)l,

0<u<l

is continuous on each K, (intersected with the support of P). Therefore,
every function continuous in the ‘uniform’ metric belongs to C'(K). Our
joint o-compactification is another form of the usual weak convergence of
random walks to the Brownian motion.

That was the ‘moderate way’. It requires special subsets B,, C (2;WQW
...), in contrast to the ‘radical way’; basically, the latter allows the sequence
of sets B,, to depend on a sequence of functions f,,, see (2aZ). In other words,
instead of uniform (or ‘locally uniform’) convergence, we introduce a weaker
topology by the metric”

[/ (w) — g(w)]
L+ [f(w) = g(w)]

6But if you want, K., may be equipped with the inductive limit topology; that is,
U C K is open if and only if for every m, U N K,, is open (in K,,). However, the
topology usually is not metrizable.

7 Alternatively, we may restrict ourselves to bounded functions QW Qo -+ — [—1,+1]
(applying a transformation like arctan) and use, say,

(2a5) dist(f, g) = sqp/ dP;(w).

)

dist(£.9) = sup [ 1) - g(w)|dP(w).
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If f, € C(K) and dist(f,, f) — 0 then f, converge in probability w.r.t. P;
thus, f is naturally defined P-almost everywhere.®
Let C be the closure of C'(K) in the metric (2aH). Then

/Qo(flwuvfd)dpiz SO(fla'-wfd)dP

for every d, every bounded continuous function ¢ : R? — R, and ev-
ery fi,...,fa € C. The joint distribution of fi,..., f; w.r.t. P; converges
(weakly) to that w.r.t. P. So, the weak convergence P; — P is relevant for
the whole C' (not only C'(K)). That is the idea of the ‘radical way’, presented
systematically in PO, 2d.

Returning again to we see that f, (for v € [0,1]) is the limit of f,
(for v € [0,1] N Q) in the metric ([Zaf); thus, f, € C for all v € [0, 1].

However, much more can be said. Not only

Lim; o, (%;}Kb Tk(w)) _ / "aB ().

where ‘Lim’ means the scaling limit (as explained above), but also

Lim; e (rd/2 > Tkl(w)...%(w))

ai<ky <--<kq<bi

1
_ // AB(t)...dB(ta) = - Ha(Bb) - Bla),b—a)
a<ty<--<tqg<b .

where Hy is the Hermite polynomial (see for instance [I1), IV.3.8]). Taking
finite linear combinations and their closure in the metric ([Zaf) we get

(2a6) Limim(zz‘d/z > wd(%,...,’“—#)ml(w).--de(w))
d=0 0<ki<--<kq<i

(e}

= // baltr, . ) AB(t) ... dB(t)

d=0 0<t1<-<tg<l

provided that functions ¢; are Riemann integrable, and vanish for d large
enough. The right-hand side is well-defined for all v¥; € Ly such that

8In fact, every (equivalence class of) P-measurable function can be obtained in that
way provided that, for each ¢, supports of P; and P do not intersect. It means that every

random variable on the limiting probability space is the scaling limit of some function on
QW Qo W. .. (see also EcH).
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>4 llvall3 < oo the scaling limit may be kept by replacing vq(%, ..., %)
with the mean value of ¢4 on the 1/i-cube centered at ( 7‘1) Now,
(0, 1) may be replaced with the whole R; 14 is defined on A, = {(xl, CeXg) €
R?: 2y < -+ < z4}. The right-hand side of ([Zafl) gives us an isometric lin-
ear correspondence between Lo(AgW Ay W Ay W...) and Ly(Q2, F, P), where
(Q, F, P) is the probability space describing the Brownian motion (on the

whole R).

2b Coarse probability space: definition and simple ex-

ample
2b1 Definition. A coarse probability space ( Q[i], Pli]) 1,./4) consists
of a sequence of probability spaces (Q[i], F[i], P []) and a set A of subsets
of the disjoint union Qlall] = Q(1) W Q(2) W ..., satisfying the following
conditions:

(a) VA € AVi (ANQ[]) € Flil;

(b) VA, Be A(ANBe A, AUBE€ A, Qfall]\ A € A);

(c) A contains every A C [all] such that Vi (AN Qi]) € F[i] and
Pli](ANQ[i]) — 0 for i — oo;

(d) (UiozlAk) € A for every pairwise disjoint A, Ag, - -+ € A such that
> sup; Pli] (A, N Qi) < oo;

(e) lim; P[i](ANQ[i]) exists for every A € A,;

(f) there exists a finite or countable subset .4; C A that generates A in

the sense that the least subset of A satisfying (b)—(d) and containing
A; is the whole A.

A set A satisfying (a)—(f) will be called a coarse o-field® (on the coarse
sample space (Qi], Fi], P[i])$2,). Each set A belonging to the coarse o-field
A will be called coarsely measurable (w.r.t. A), or a coarse event.

2b2 Remark. Condition Bhil(c) is equivalent to

(cl) Vi Fli] C A. That is, if a set A C Q[all] is contained in some §2[7],
and is F[i]-measurable, then A € A.

Also, Condition PRII(d) is equivalent to each of the following conditions
(d1)—(d4). There, we assume that A C Qlall], Vi (AN Q[]) € Fli], and
Vk A, € A.

(d1) If A, T A (thatis, Ay C Ay C ... and A = U, Ay) and sup; P[i]((A\
Ap) N Q[i]) — 0 for k — oo, then 4 € A.

9Tt is not a o-field, unless A contains all sets satisfying EbI(a).
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(d2) If sup; P[i] ((A A Ax) N Q[i]) — 0 for k — oo, then A € A. (Here
AD A= (A\ A U (A \ A))
(d3) If Ay T A and limsup, P[i]((A\ Ax) N Q[i]) — 0 for k — oo, then
AecA
(d4) If limsup; P[i]((A & Ay) N Qi) — 0 for k — oo, then 4 € A.
So, we have 10 equivalent combinations: (¢)&(d), (c1)&(d), (¢)&(d1), (c1)&(dl),
(¢)&(d2), ..., (c1)&(d4). (I omit the proof.)
However, “sup,” in (d) cannot be replaced with “lim sup,”.

2b3 Lemma. Let A; be a finite or countable set satisfying 2hIl(a,e) and
(b1) VA, Be A (ANB e A)).
Then the least set A containing A; and satisfying BbIl(b,c,d) is a coarse
o-field.

Proof. The algebra generated by A; satisfies (e), since P[i]((AUB)NQ[i]) =
PliJ(ANQ[]) + P)(BNQ[i]) — Pli]((ANB) NQi]). We enlarge the algebra
according to (c), which preserves (e), as well as (a), (b). Finally, we enlarge it
according to (d), which preserves (a), (b), (e); (c) and (f) hold trivially. O

In such a case we say that the coarse o-field A is generated by the set A;.

2b4 Example. Let Q[i] = {0,1,..., =1}, and P[i] be the uniform distribu-
tion on Qi]. Every interval (s,t) C (0,1) gives us a set A, C Q[all],

Ay, N Q] = (s.8) N Q.

0 s t 1

We take a dense countable set of pairs (s, t) (say, rational s,t) and consider
the set A; of the corresponding A,;. The set A; satisfies the conditions
of B3l therefore it generates a coarse o-field A. In fact, A consists of all
A = All] W A[2] W ... such that sets Afi] + (0,1/i) C (0,1) converge in
probability to some A[oo] C (0,1); that is, mes(A[oco] A (A[i]+(0,1/4))) — 0

for 1 — oo.

T e—
: —e
le———— o

e :
L] : [ &
0 s t 1

If A= A,; then, of course, A[oo] = (s,1).

2b5 Example. Continuing L], we take Q[i] = {—1,+1}" with the uniform
distribution P[i]. Given n and a = (aq,...,a,) € {—1,+1}", we consider
A, C Qlall],

A NQl ={(n,...,m):n=a1,...,Tn =a,} fori>n.
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Such sets A, (for all @ and n) are a countable collection A; satisfying the
conditions of Bh3l therefore it generates a coarse o-field A. In fact, A consists
of all A = A[l] W A[2] W ... such that sets 3;'(A) C (0,1) converge in
probability to some Afoc] C (0,1); here §; : (0,1) — §2[i] is such a measure
preserving map:

Bi(x) = (=1)”,..., (1)) when z — (% dot ;—) e (o, 21) ,

for any ¢1,...,¢; € {0,1}.

You may guess that some limiting procedure produces a (‘true’; not
coarse) probability space out of any given coarse probability space. Indeed,
such a procedure, called ‘refinement’, is described in Bd.

2c  Good use of joint compactification

Having a coarse probability space ((Q[i], F[i], P[i]):2;,.A) and its refine-
ment (Q, F, P) (to be defined later), we may hope that the Hilbert space
Ly[oo] = Lo(02, F, P) is in some sense the limit of Hilbert spaces Ls[i] =
Ly (Q[d], F[i], P[i]). That is indeed the case in the framework of joint com-
pactification, as we’ll see. A bad use of the framework, tried in [H, is a joint
compactification of given probability spaces. A good use, considered here, is
a joint compactification of metric (Hilbert, ...) spaces built over the given
probability spaces.

2c1 Definition. A coarse Polish space is ((S[i], p[i])$2;, ¢), where each (S[i],
pli]) is a Polish space (that is, a complete separable metric space!®), and
¢ C S[1] x S[2] x ... is a set of sequences x = (x[1],z[2],...) satisfying the
following conditions:

(a) if 1,25 € S[1] x S[2] x ... are such that p[i](21[i], 22[i]) — 0 (for
i — 00), then (21 € ¢) <= (2 € ¢);

(b) if z, 1, 29, - - - € S[1]x S[2] x. .. are such that sup; pi] (zx[], z[i]) — 0
(for k — o0), then (Vk T € c) — (:E € c);

(c) lim; pli] (@1[i], z2[t]) exists for every @1, x5 € ¢

(d) there exists a finite or countable subset ¢; C ¢ that generates ¢ in the
sense that the least subset of ¢ satisfying (a), (b) and containing ¢; is the
whole c.

2c2 Remark. Condition 2cI(d) does not change if ‘satisfying (a), (b)’ is
replaced with ‘satisfying (b)’. That is, BcIl(d) is just separability of ¢ in the
metric a1,z +— sup; pli] (z1[i], z2[i]).

OMany authors define a Polish space as a metrizable topological space admitting a
complete separable metric. However, I assume that a metric is given.
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The refinement of a coarse Polish space ((Si], p[i])2,, ¢) is basically the
metric space (c, ﬁ), where

p(1, 22) = lim pli] (w1[i], z2[i])

However, p is a pseudometric (semimetric); it may vanish for some 7 # x.
The equivalence class, denoted by x[oc], of a sequence = € ¢ consists of all
z1 € c such that pli](z1[i],z[i]) — 0. On the set S[oo] of all equivalence
classes we introduce a metric p[oo],

ploo] (xl[oo],xg [oo]) = lim p|i] (:El[z'],xg [2]) :

1— 00

thus, (S[oo], p[oc]) is a metric space. We write
(locl, ploc) = Lt (S[i: )

and call (S[oo], p[oo]) the refinement of the coarse Polish space ((S[i], p[i])52,,
c). Also, for every x = (z[1],z[2],...) € ¢ we denote its equivalence class
x[oo] € S[oo] by

xfoo] = Lim;_o . 2],

and call it the refinement of z.

2¢3 Lemma. For every coarse Polish space, its refinement (S, p) is a Polish
space.

Proof. Separability follows from EcIl(d); completeness is to be proven. Let
x1,Z2,... be a Cauchy sequence in (S, p); we have to find = € S such that
p(zg,x) — 0. We may assume that ), p(xy, xp41) < oo. Each x; is an
equivalence class; using (a) we choose for each k = 1,2, 3, ... a representative
si € S[1] x S[2] x ... of x such that sup; p[i] (sk[i], sk+1[i]) < 2p(xk, Tpi1)-
Completeness of (S[i], p[i]) ensures existence of seo[i] = limy, s[i]. Condition
(b) ensures so, € ¢. The equivalence class x € S of sy satisfies p(xy, ) <
sup; pli] (skli], sso[i]) — 0 for k — oc. O

Let (S[i], p[i])s2,, ¢) be a coarse Polish space, and (S, p) its refinement.
On the disjoint union (S[1]WS[2]W...) WS we introduce a topology, namely,
the weakest topology making continuous the following functions f : (S 1] W
S2lW...) WS — [0,00) for s € c,

fs(x) = pli](z, sli]) for z € S[i],
fs(x) = p(x, s[oc]) forx e S,
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and an additional function fo: (S[1JWS2]W...) WS — [0,00), fo(z) =1/
for x € S[i], fo(z) =0 for z € S. On every S[i] separately (and also on S),
the new topology coincides with the old topology, given by pli] (or p).

We may choose a sequence (s;) dense in ¢; the topology is generated by
functions f;, (and fo), therefore it is a metrizable topology. Moreover, the

71}:;3))20:1 (and fj) maps the disjoint union into the

metrizable compact space [0, 1]°; and is a homeomorphic embedding. Thus,
we have a joint compactification of all S[i] and S; and so, we treat them as
subsets of a compact metrizable space K;

sequence of functions (

Silc K, SCK.

2c4 Lemma. Let so, € S, s1 € S[1],s2 € S[2],... Then s; — s, in K if
and only if s = (s1,59,...) € c and Lim; oo . $; = Seo-

Proof. The ‘if’ part. The needed relation, fi(s;) — fi(Seo) for i — oo, is
ensured by 2cTl(c).

The ‘only if " part. We choose © € ¢ such that z[co] = su; then pli] (s;, z[i])
p(So0, z[o0]) = 0, thus s € ¢ by Ecll(a). 0O

The assumption ‘s,, € S’ is essential. Other limiting points (not be-
longing to S) may exist; corresponding sequences converge in K but do not
belong to ¢. And, of course, sets S, S[1], 5[2],... are not closed in K, unless
they are compact.

2c¢5 Lemma. A set ¢; C ¢ generates c¢ if and only if the set of refinements
{z[o0] : & € ¢1} is dense in S[oo].

Proof. The ‘only if’ part follows from a simple argument: if S’ is a closed
subset of S then the set ¢’ of all z € ¢ such that z[oo] € S’ satisfies EcTa,b).

The ‘if " part. Let {z[oo] : € c¢;} be dense in S[oco] and s € ¢. We
choose zp € ¢; such that xi[oo] — s. Similarly to the proof of Bc3 we
construct yx € ¢; such that pi](sgi], ye[i]) — 0 when i — oo for each k,
and sup; p[i] (yx[i], s[i]) — 0 when k — oco. The subset of ¢ generated by ¢;
contains all y, by BcIl(a). Thus, it contains s by EcIl(b). O

Given continuous functions f[i] : S[i] — R, floo] : S[oc] — R, we
write floo] = Limy_,o. f[i] if f[i](z[i]) — floo](z[occ]) whenever z[oo] =
Lim; . . x[i]. If functions f[i] are equicontinuous (say, |f[i](x) — fli](y)| <
pli|(z,y) for all i and x, y € S[i]), then it is enough to check that f[i](z[i]) —
floo](xk[oc]) for some sequence (zx)72,, xr € ¢, such that the sequence
(x[o0])72, is dense in S[oo].
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Given continuous maps f[i] : S[i] — S[i], floo] : S — S, we write
floo] = Lim; oo fi] if Limy—oo e fli](2[i]) = floo](x]o0]) whenever z[oo] =
Lim; . z[i]. That is, Lim(f[i](z[i])) = (Lim f[i]) (Limz[z]). If maps f[i]
are equicontinuous then, again, convergence may be checked on x; such that
xy[oo] are dense.

Given continuous maps f[i] : Sloo] — S[i], we may ask whether
Lim; . fli](x) = « for all x € S[oo], or not. If maps f[i] are equicon-
tinuous then, still, convergence may be checked for a dense subset of S[oo].

If every S[i] is not only a metric space but also a Hilbert (or Banach)
space, and c is linear (that is, closed under linear operations), then the re-
finement S is also a Hilbert (or Banach) space, and linear operations are
continuous on (S[1JUS[2JU...) US C K in the sense that

Lim; o0 c(@s1[i] 4 bs2[i]) = a Lim; 0 ¢ $1[7] + b Lim; 0 ¢ S2[7]

for all sq, 89 € c.
Consider the case of Hilbert spaces S[i] = H[i], S = H. Given linear'!
operators Rli] : H[i] — H]i], we may ask about Lim R[i]. If it exists, we get

Lim(Rli]z[i]) = (Lim R[i]) (Lim z[4]) .

If sup; ||R[7]|| < oo, then R[i] are equicontinuous, and convergence may be
checked on a sequence zy, such that vectors zx[oo] span H (that is, their linear
combinations are dense in H). For example, one-dimensional orthogonal
projections; if z[oo] = Lim z[i] then Proj,.) = Lim Proj, ;.

Given linear operators R[i| : H — H[i|, we may ask whether Lim R[i](z) =
x for all z € H, or not. If sup, || R[i]|| < oo then convergence may be checked
on a sequence that spans H. Such R[i] always exist; moreover, ||R[i]| < 1
may be ensured. Proof: we take z; such that xj[oco] are an orthonormal
basis of H. After some correction, xy[i] become orthogonal (for each i), and
|lzx(7)]| < 1.'2 Now we let Rli]zy[oo] = x[i].

We return to coarse probability spaces.

Let (], Fli], P[i])321,A) be a coarse probability space. For each i
the pseudometric A, B — P[i](A A B) on FJi] gives us the metric space
MALG([i] = MALG(Q[i], Fli], P[i]) of all equivalence classes of measurable
sets. It is not only a metric space but also a Boolean algebra, and moreover,
a separable measure algebra (as defined in [7, 17.44]). Treating every coarse
event A € A as a sequence of A[l] € MALG[1], A[2] € MALG[2],... we get
a coarse Polish space ((MALG[i])2,,A). Its refinement is a metric space

1 Continuous, of course.
120f course, ||zx[i]|| — 1 for i — oo, but in general we cannot ensure ||zx[i]|| = 1. It
may happen that dim H[i] < oo but dim H = cc.
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MALG][oo]. The set A is closed under Boolean operations (union, intersec-
tion, complement). Therefore MALG|oo] is not only a metric space but also
a Boolean algebra. Using it is easy to check that MALG[oo] is a sepa-
rable measure algebra. Therefore [7, 17.44] it is (up to isomorphism) of the
form

MALG|oo] = MALG(Q, F, P)

for some probability space (€2, F, P). In the nonatomic case we may take
(Q,F,P)=(0,1) with Lebesgue measure; in general, we may take a shorter
(maybe, empty) interval plus a finite (maybe, empty) or countable set of
atoms. Such a probability space (Q.F, P) (unique up to isomorphism) will be
called the refinement of the coarse probability space ((Q[i], F[i], P[i]):2,, A),
and we write

(ij:v P) = lezaoo,A(Q[lLf[Z]vP[z])

(in practice, sometimes I omit “/ — 00” or “A” or both under the “Lim”).
Every sequence A = (A[1], A[2],...) € A has its refinement

Limy .ot Ali] = Aloc] € MALG(Q, F, P).

2c6 Lemma. A subset A; of a coarse o-field A generates A if and only if the
refinement F of A is generated (mod 0) by refinements Afoo] of all A € A;.

Proof. We apply to the algebra generated by A;. O

In order to define Ly(A) as a set of functions on [all], we start with
indicators 14 for A € A, form their linear combinations, and take their
completion in the metric

1/ | z2a) = sup [Lf ]| gy »

where Lo[i] = Ly (Q[i], F[i], P[i]); the completion is a Banach (not Hilbert)
space Ls(A). Each element f of the completion is evidently identified with
a sequence of f[i] € Ls[i], or a function on Q[all]. We have a coarse Polish
space ((Ls[i])2y, La(A)). It has its refinement, Ly[oc].

2c¢7 Lemma. The refinement Ly[oo] of ((Lo[i])s2y, L2(A)) is (canonically
isomorphic to) Ly(Q, F, P), where (2, F, P) is the refinement of (€[], F[d],
Pli))%,, A).

Proof. We define the canonical map Lo(A) — Lo(Q2, F, P) first on indicators
by 14 — 14, and extend it by linearity and continuity to the whole Ly(A).
We note that the image of f € Ly(A) in Ly(Q2, F, P) depends only on the
refinement f[oo] € Ly[oo] of f, and their norms are equal (both are equal to
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lim; || f[¢]]]). We have a linear isometric embedding La[oo] — Lo(Q2, F, P). Its
image is closed (since Ls[oo] is complete by 2c3), and contains indicators 15
for all B € MALG(Q2, F, P); therefore the image is the whole Ly(Q2, F, P).

U

2c8 Remark. The same holds for L, for each p € (0, 00), and for the space
Ly of all random variables (equipped with the topology of convergence in
probability). Elements of Ly(A) will be called coarsely measurable (w.r.t.
A) functions (on Q[all]), or coarse random variables; elements of Lo(A) —
square integrable coarse random variables.

Let f be a coarse random variable. Then (usual) random variables f[i] :
Q[i] — R converge in distribution (for i — 00) to the refinement f[oo] : Q@ —
R. The distribution of f[oco] will be called the limiting distribution of f.

It may happen that f € Lo(A) but (sgnf) ¢ La(A). An example: f(w) =
% for all w € Q[i]. Here, the limiting distribution is an atom at 0, and the
function ‘sgn’ is discontinuous at 0.

2c9 Lemma. (a) Let f : Qall] — R be a coarse random variable, and
¢ : R — R a continuous function. Then ¢ o f : Qall] — R is a coarse
random variable.

(b) The same as (a) but ¢ may be discontinuous at points of a set Z C R,
negligible w.r.t. the limiting distribution of f.

Proof. If f is a linear combination of indicators, then ¢ o f is another linear
combination of the same indicators. A straightforward approximation gives
(a) for uniformly continuous . In general, for every e there exists a com-
pact set K C R\ Z of probability > 1 — ¢ w.r.t. the limiting distribution,
and also w.r.t. the distribution of f[i] for all ¢ (since all these distributions
are a compact set of distributions). The restriction of f to K is uniformly
continuous. The limit for ¢ — 0 is uniform in %. O

For a given Polish space S we may define a coarse S-valued random vari-
able as a map f : Q[all] — S such that (usual) random variables f[i] : Q[i] —
S converge in distribution (for ¢ — o0o), and f~'(B) € A for every B C S
such that the boundary of B is negligible w.r.t. the limiting distribution of
f.

For S = R the new definition conforms with the old one.

A coarse o-field generated by a given sequence of sets (coarse events) was
defined after Often it is convenient to generate a coarse o-field by a
sequence of functions (coarse random variables). A function f : Qlall] — R
is coarsely A-measurable if and only if A contains sets f~*((—oc,z)) for all
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xr € R except for atoms (if any) of the limiting distribution of f. A dense
countable subset of these z is enough. So, a coarse o-field generated by a finite
or countable set of functions f is nothing but the coarse o-field generated by
a countable set of sets of the form f _1((—00, x)) More generally, S-valued
(coarse) random variables may be used; they are reduced to the real-valued
case by composing with appropriate continuous functions S — R.

2c10 Lemma. A sequence of functions f, : Qfalll — R generates a
coarse o-field if and only if for every n, n-dimensional random variables
(filil, ..., fuli]) : Q[i] — R™ converge in distribution (for i — c0).

Proof. The ‘only if " part. Let f1,..., f, be coarsely measurable (w.r.t. some
coarse o-field), then they have a limiting joint distribution.

The ‘if’ part. For each m we choose a dense countable set @), C R
negligible w.r.t. the limiting distribution of f,. We apply to the set
A; of coarse events of the form {fi(:) < q1,...,[n(:) < ¢.} where ¢ €

Ql?"'aanQnanzl,Q,--- ]
2c11 Remark. The same holds for an arbitrary Polish space instead of R.

2c12 Remark. Comparing and ([bJ) we see that every joint com-
pactification of € W Qs W ... (in the sense of [, assuming ([b8)) may be
downgraded to a coarse probability space. Namely, we take a sequence of
functions fj that generates C' and consider the coarse o-field A generated by
(fx). Every f € C is a coarse random variable, since Ly(A) is closed under
all operations used in (IL3), (ILA), or {IR7)."* Therefore A does not depend
on the choice of (f%).

3 Scaling Limit and Independence

3a Product of coarse probability spaces

Having two coarse probability spaces ((Q[i], F1[i], Pi[i])2,, A1) and ((Q:]d],
Foli], Poli])21, As), we define their product as the coarse probability space
((d], F[1], Pli])32,, A) where for each 1,

(QL], F[il, Plil) = (Suli], Fafil, Pufi]) x (2[i], Foli], Puli])

is the usual product of probability spaces, and A is the smallest coarse o-field
that contains {A; x Ay 1 Ay € Ay, Ay € Ay}, where Ay x Ay C QJall] is defined
by Vi (A; x As)[i] = Aqli] x Ag[i]. Existence of such A is ensured by
We write A = A; ® A,.

130f course, Lo(A) usually contains no sequence dense in the uniform topology.
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3al Lemma. The refinement of the product of two coarse probability spaces
is (canonically isomorphic to) the product of their refinements.

Proof. Denote these refinements by (Qq,F1, P1), (Qa, Fo, P») and (Q, F, P).
Both MALG(Qy, F1, Py) and MALG(Qy, F,, P») are naturally embedded into
MALG(Q, F, P) as independent subalgebras. They generate MALG(S2, F, P)
due to

[

Given an arbitrary coarse o-field A on the product coarse sample space
((u[a], F1li], Pili]) x (Qa[i], Foli], Pali]))52,, we may ask whether A is a prod-
uct, that is, A = A;®A, for some A;, Ay, or not. No need to check all Ay, As.
Rather, we have to check

Alz{A12A1XQQEA}, AQZ{A2291XA2€A};

of course, Ay x Qy C Q[all] is defined by Vi (A; x Q)[i] = Ay[i] x Qufi]. If
{A; X Ay : A) € Ay, Ay € Ay} generates A, then A is a product; otherwise,
it is not.

The refinement F of A contains two sub-o-fields F; = {(A; x )[o0] :
Ay € A1}, Fo = {(21 x Ay)[oo] : Ay € Ay}, They are independent:

P(ANB)=P(A)P(B) for Ae Fi, B€ F;.
3a2 Lemma. A is a product if and only if F;, F, generate F.
Proof. We apply Ecllto {A; x Ay : Ay € Ay, As € As}. d

3a3 Remark. It is well-known that a generating pair of independent sub-
o-fields means that (92, F, P) is (isomorphic to) the product of two proba-
bility spaces. So, a coarse probability space is a product if and only if its
refinement is a product. (Assuming, of course, that the coarse sample space
is a product.)

Let A= A; ® Ay. Consider Hilbert spaces Hi[i] = Lo($[i], Fi[i], Pi[d]),
Hsli] = Lo([d], Foli], P2[i]), HI[i| = Lo(2[d], Fli], P[i]). For each i, the
space Hi] is (canonically isomorphic to) H;[i|® Hs[i]. Indeed, for z; € Hl[ ],
Ty € Hyli] we define 1y ® xo € HIi] by (21 ® 23)(w1,ws2) = x1(w1)za(ws);
then (x1 ® xa,y1 ® y2) = (x1,41)(x2,y2), and factorizable vectors (of the
form z; ® x2) span the space H[i]. We know (see Ecd) that the refinement
H[OO] of ((H[ ])Z_I’LQ(A)) is LQ(Q,f, P) AlSO, Hl[OO] = LQ(Ql,fl, Pl) and
HQ[OO] = LQ(QQ,fQ, PQ) USil’lg BE]WG get H[OO] = Hl[OO] X HQ[OO] In that
sense,

Lim(H[i] ® Hs[i]) = (Lim H;[i]) ® (Lim H,|i]) .
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If € Ly(A1), y € La(Az), we define x @ y by (x ® y)[i] = z[i] ® y[i] for all
i. We get x @ y € Ly(A) and (2 ® y)[oo] = z[oo] @ y[oo], that is,

(3a4) Lim(z[i] ® y[i]) = (Limz[i]) ® (Limyld]) ,

since it holds for (linear combinations of) indicators of coarse events. Note
also that linear combinations of factorizable vectors are dense in Lo(A).

Assume that Ry[i] : Hy[i] — Hili], Roli] : Hali] — Hs[i] are linear op-
erators, possessing limits R;[oo] = Lim R;[i], Ry[oo] = Lim Rs[i]. Consider
linear operators R;[i] ® Ry[i] = R[i] : H[i] — H][i]. (It means that R[i|z[i] =
Ry [i]x1[i] ® Rali]xs[i] whenever x[z] = x1[i] ® wo[i].) If sup; ||Ri[i]]] < oo,
sup, || Ra[i]|| < oo, then Lim R[i] = Ry[0o] ® Ry[oc], that is,

(3a5) Lim (R;[i] ® Ro[i]) = (Lim Ry [i]) ® (Lim Ryli]) .
Proof: We have to check that
Lim (R, [i] ® Ry[i])x[i] = (Lim Ry [i] ® Lim Ry[i]) (Lim x[i])
for all x € Ly(A). We may assume that x is factorizable, x = x1 ® x5; then

Lim (R [i] ® Ro[i]) (21[i] ® a[i]) =
= le(Rl[z]xl[Z] ® Ryli]asi]) =
= (Lim R, [i]z1[i]) @ (Lim Ry[i]zs[i]) =
(le Ry 1] )(le x1[i ) (le Ry Z]) (le Toli )
= (Lim R, [1] ® Lim Ry[i]) (Lim z; [i] ® Lim x,]i]) .

Especially, let Ry[i] be the orthogonal projection to the one-dimensional
subspace of constants (basically, the expectation), and Rl[] be the unit
(identity) operator. Then (Ri[i] ® Roli]) (z[i]) = E (z[i] | Fili]), since it
holds for factorizable vectors. Further, Ry[oc] = Lim Rg[z'] is the expecta-
tion on (€29, F2, P5), since convergence of vectors implies convergence of one-
dimensional projections, and constant functions on y[all] belong to Ls(A).

So,
(3a6) LimE (z[i] | Fi[i]) = E (Limald | 71 )

for all z € Ly(A).
All the same holds for the product of any finite number of spaces (not
just two).
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3b Dyadic case

Let (Q[i], F[i], P[i]) be the space of all maps +Z — {—1,+1} with the usual
product measure. That is, we have independent random signs 73/ for all
integers k;'* each random sign takes on two values 41 with probabilities
50%, 50%. The coarse sample space (Q[i], Fi], P[i])22; will be called the
dyadic coarse sample space.’ Let A be a coarse o-field on the dyadic coarse
sample space. What about decomposing it, say, into the past and the future
w.r.t. a given instant?

Let us define a coarse instant as a sequence ¢ = (t[i])2, such that t[i] € 1Z
(that is, it[i] € Z) for all i, and there exists t[oo] € R (call it the refinement of
the coarse instant) such that ¢[i] — t[oo] for i — co. A coarse time interval is
a pair (s,t) of coarse instants s,t such that s < ¢ in the sense that s[i] < ¢[7]
for all 4.

For every coarse time interval (s,t) we define the coarse probability space
(e[t Foeld], Pszli])2, As) as follows. First, Q,,[t] is the space of all maps
1z [sli], tld])) — {—1,+1}." Second, F,[i] and P,,[i] are defined natu-

rally, and we have the canonical measure preserving map (2[¢], F[i], P[i]) —
(Qg.1[4], Fsplt], Psyli]). Third, each A C € [all] has its inverse image in Q[all];
if the inverse image of A belongs to A then (and only then) A belongs to
A, which is the definition of A,;. It is easy to see that A, is a coarse
o-field.

Given coarse time intervals (r,s) and (s, t), we have

(Qr,t[i]a fr,t[i]a Pr,t[i]) - (Qr,s[i]a fr,s[i]u Pr,s[i]) X (Qs,t[i]a Fs,t[i]u Ps,t[i]) )
and we may ask whether A, ; is a product, that is, A,; = A, s ® A, or not.

3b1 Definition. A dyadic coarse factorization is a coarse probability space
((d], F[i], Pli])2, A) such that (Q[i], F[i], P[i])32, is the dyadic coarse
sample space;

Ar,t = Ar,s ® As,t

whenever r, s,t are coarse instants such that r[i] < s[i] < t[i] for all ¢; and

A is generated by U A,
(s,t)

where the union is taken over all coarse time intervals (s, t).

MRigorously, I should denote it by 7%[i], but 7/, is more expressive. Though 756 is not
the same as 71,3, hopefully, it does not harm.

15Sometimes a subsequence is used; say, i € {2,4,8,16,...} only; or equivalently, 2[]
is the space of maps 27'Z — {—1,+1}; see BRQ

167t may happen that s[i] = ¢[i], then Qg [i] contains a single point.
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3b2 Example. A single function f : Qlall] — R, defined by f(w) = 79/ (w)
for w € QJi], generates a coarse o-field A. However, the coarse probabil-
ity space ((Qd], Fli], P[i])2,A) is not a dyadic coarse factorization. The
equality A,; = A, ® A, is violated when s[i] converges to 0 from both
sides; say, s[i] = (—1)?/i. It means that a single point of the time continuum

should not carry a random sign. See also BhIH3LTTl

Every family (As;)s<¢ of coarse o-fields Ag; on coarse sample spaces
(Qs,6[4], Field], Pszli])52,, indexed by all coarse time intervals (s,¢) and satis-
fying A,; = A, s ® As; whenever r < s < t, corresponds to a dyadic coarse
factorization.

3b3 Example. Given a coarse time interval (s, t), we consider f, : Q[all] —

R’ 1
for(w) = — Z Tii(w)  for w e Qi .

Vi k:s[i] <k /i<t[i]

Only s[oo], t[oo] matter, in the sense that

Pl = S0
(364 L i g 4 =

it f = fs4, and f= J5. is such a function built for a different coarse time inter-
val (8, 1) satisfying 3[oo] = s[o0], £[oc] = t[oo]. Moreover, || f[i]— f[i]|| L, — 0
for i — co. We choose a sequence of coarse time intervals, (s,,t,)5 |, such
that the sequence of their refinements, (s,[00],t,[00]) is dense among all
(usual, not coarse) intervals. The sequence ( fsn’tn);f:l satisfies the condition
of and therefore it generates a coarse o-field A. It is easy to see that
A does not depend on the choice of (s, t,). Clearly, the refinement of f;; is
the increment B(t[oo]) — B(s[oco]) of the usual Brownian motion B(-).
Given three coarse instants r < s < t, we have

fr,t = fr,s + fs,t‘

It shows that f,; is coarsely measurable w.r.t. the product of two coarse
o-fields A, s ® A, which implies A,; = A, s ® As;. So, we have a dyadic
coarse factorization. We may call it the Brownian coarse factorization.

3b5 Example. Let f;,(w) be the same as in Bb3 and in addition,

gsu(w) = % Z (—=1)*7y/i(w)  for w € Qi].

b kssli) <k fi<t]i]
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In the scaling limit we get two independent Brownian motions By, By; the
refinement of f;; is By (t[oo]) — Bi(s][o0]), the refinement of g ; is Ba(t[oo]) —
Bs(s[oc]). By the way, (—1)F cannot be replaced with (—1)*=¢l; it would
violate the condition of 2T

We may also consider

n 1 k :
fs,(,t)(w) = 7 E exp (27r15)7k/i(w) for w € Qi
k:s[i)|<k/i<t[i]

for n = 1,2,3,... (here i = {/—1, while 7 is an integer). In the scaling
limit we get two real-valued Brownian motions Bj, By and infinitely many

complex-valued Brownian motion Bs, By, ... All B, are independent.
Another construction of that kind:
1 k
fs(,’;) (w) =— Z exp (27ri)\—_)7k/i(w) for w € Qi) .
\/Z k:s[i)|<k/i<t[i] \/Z

In the scaling limit, each A € (0, 00) gives a complex-valued Brownian motion
By. Any finite or countable set of numbers A may be used, and leads to inde-
pendent Brownian motions. Note that we cannot use more than a countable
set of A, since separability is stipulated by the definition of a coarse proba-
bility space.

3b6 Example. For n =1,2,... we introduce

fs(,nt)(w) = i Z H Tlhtm)i(w)  for w € Q] .

\/7_' k:s[i|<k/i<(k+n)/i<t[i] m=1

In the scaling limit we get independent Brownian motions B,,.
Another construction of that kind:

1 entier(\V/7)
A .
fs(,t) (W) =—= Z H Thtm)i(w)  for w € Qi

k:s[i]| <k /i<(k+AVE) fi<tl] M=l

any finite or countable set of numbers A € (0, 00) may be used, and leads to
independent Brownian motions Bj.

Note that we cannot take the product over m = 1,..., entier(\i); that
would destroy factorizability.

3b7 Example. Here we restrict ourselves to i € {2,4,8,16,...}, thus vio-
lating a little of our framework. We let for w € Q[i], 1 = 2",
n—1
Z 1+ 735(w) H L — T(hymy/i(w)
5 )

st (W) ==
k:s[i|<k/i<(k+n—1)/i<t[q] m=1
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That is, gs; : Q[all] — {0,1,2,...} counts combinations ‘+ — ... —" of one
plus sign and (n — 1) minus signs in succession. In the scaling limit we get
the Poisson process.

3b8 Example. Let f,; be as in (Brownian), while g,; is as in Bb7
(Poisson). Taken together, they generate a coarse o-field. The corresponding
scaling limit consists of two independent processes, Brownian and Poisson.

Let ((Q[i], Fli], P[i])2,, A) be a dyadic coarse factorization. Being a
coarse probability space, it has a refinement (£, F, P). For every coarse time

interval (s,t) we have a coarse sub-o-field A,; C A and its refinement, a
sub-o-field F;,[oc] C F. By Ball

Friloo] = Frs[oo] @ Fsi[oo]  whenever r < s <t.

3b9 Lemma. If s[oo] = t[oo] then Fj,[oo] is degenerate (that is, contains
sets of probability 0 or 1 only).

Proof. Consider the coarse instant r,

_ sli]  for i even,
rlif =19, .
tls] for ¢ odd.

For every A € A,,,

P(A[oo]) = lim P[i](Ali]) = lim P[2i](A[2i]) € {0,1},
since As,[2i] is degenerate. So, F;,.[oo] is degenerate. Similarly, F, ;[oo] is
degenerate. However, F; ;[oo] = Fj,[00] ® F;.¢[00]. O

3b10 Lemma. F; [co] depends only on s[oo], t[oo].

Proof. Let (u,v) be another coarse time interval such that u[oo] = s[oo]
and v[oo] = t[oo]; we have to prove that F; [oo] = F,n[00]. Assume that
s[oo] < t[oo] (otherwise both Fj¢[oo] and F, ,[oc0] are degenerate). Assume
also that s[i] < v[i] and uli] < t[i] for all ¢ (otherwise we correct them on a
finite set of indices 7).

Further, we may assume that s < u < v < t; otherwise we turn to s Au <
sVu<tAv <tVo, where (s Au)fi] = s[i] Auli] = min(s[i], uli]), etc. Both
Fii[oo] and F, ,[00] are sandwiched between Fpy pvy[00] and Feyu tan[00].

Finally, F; :[o0] = Fsu[o0o] @ Fuploo] @ Fpi[oo] = Fuuu[o0], since F ,[00]
and F, ;[oo] are degenerate by BRI O
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So, a sub-o-field F,; C F is well-defined for every interval (s,t) C R
(rather than a coarse time interval), and

Fri=Frs ®Fsy whenever —oo <r <s<t<+00.
3b11l Lemma. The union of sub-o-fields Fy;. ;. over € > 0 generates F ;.

Proof. Consider F. ;. We have to prove that E (z ‘ F.1) converges to z (in
Ly (), for ¢ — 0+) for every x € Lo(Fop 1), or for z[oo] where x € Ly(Ag1).
Assume the contrary. Then

IE (@loo] | Fou )|l < e < |lzfoc]]
for all € small enough, and some constant c. We know that
E (z[oo] | Fer) = LimE (afi] | Foali])
for each .1 Therefore

I (o] Fonli] )| — 1B (foc] | 7o) < c.

We choose a sequence e[i] —— 0 such that ||IE( ‘.7-"5[1] 1le )|| < ¢ for
all ¢ large enough. However, leE }.7: ) = IE( ‘.7:5[00},1) =
E (z[oo] | Fo. ) = z[oc]; a contradlctlon O

3c Scaling limit of Fourier-Walsh coefficients

We still consider a dyadic coarse factorization. The Hilbert space Lo[i] =
Ly (Q[d], F[i], Pi]) consists of all functions of random signs 7, m € 1Z. The
well-known Fourier-Walsh orthonormal basis of Ls[i] consists of products

T = H Tm, M €Cli], C[@']:{Mc%Z:Misﬁnite}.

Every f € Lyli] is of the form

f ZfMTM = f@ + Z f{m}Tm Z ]E{ml,mg}Tmleg +...3

me = Z ml,mQE%Z,ml <mz

coefficients fM are called Fourier-Walsh coefficients of f. We define the spec-
tral measure 1y on the countable set C[i] b

- .
ppM) =Y |ful® for M CC[i];
MeM
170r rather, an appropriate coarse instant is meant in F 1 [i].
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it is a finite positive measure,

prCL) =117 mp({0}) = (B )" pg(CLE]\ {0}) = Var(f).

Let (s,t) be a coarse time interval. We have

0 otherwise;
1B (f | Forli])IIP = ns({M € Cla) - M C [s]a], tl])}) -

We apply it to f = z[i] for an arbitrary x € Ly(A) and arbitrary i;
becomes i, or p,[i]; by (Badl),

E (7ar | Fudli]) = {TM if M < [sil, i),

pali]({M € Cli) - M C [s[i], ti])}) = B ([i] | Feli]) ||2
— |[E ([oo] | Fyeloo] )17

17— 00

For every € > 0 we can choose s, so that ||z[oo]||>— ||E ( z[oc] | Fy.[o] )||> <
e, and moreover,

(3cl) po[i]({M € C[i) - M C [s[i], t[i])}) <e foralli.

We consider each 11,[i] as a measure on the space C[oo] of all compact subsets
of R, equipped with the Hausdorff metric; the metric is

(3¢2) dist(My, My) = sup

z€eR

min |z —y| — mln |z —y|
yeM;

for nonempty M, Mo, and dist(, M) = 1 for M # (). Clearly, C[i] C C[o0]
for each #; thus, a measure on C[i] is also a measure on C[oo].'® The set
{M € Cl|oo] : M C [u,v]} is well-known to be compact, for every [u,v] C R.
Thus, (Bcdl) shows that the sequence of measures p,[i] on Cloo] is tight.

Let (s1,t1) and (s2,%2) be two coarse time intervals, s; < t; < s9 < ts.
Sub-o-fields Fy, 4, [i] and Fs, 4, [i] are independent; they generate a sub-o-field
that may be denoted by

‘F(Sl,tl)u(327t2)[2.] = fslytl [2] ® fsz,tz [2] .

180ne may turn (C[i])$2; into a coarse Polish space, and identify its refinement with
C[oo]. It leads to a joint compactification of all C[i] and C|[oo], which is a suitable framework
for weak convergence of measures on C[i] to a measure on C[co]. However, it is simpler to
use natural embeddings, C[i] C C[oo].
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We have

0 otherwise;
I (f [ Fosranotseanli] ) I* = py ({M € Cli) : M C [s1[d], tala]) U [s2i], £2[i])}) 5
p[))({M € Cla] - M C [s1[i], ta[i]) U [sald], tali])}) =
= HE (x[z] } ‘,'E.(Sl,tl)U(Sziz)[i] )H2 ——O: HE (33[00] ‘ f(51,t1)U(52,t2)[OO] ) ||2 )

i—

E (7o | Flsr )i i) = {TM if M C [s1[i], ta[i]) U [s2[1], 22[2]),

where f(sl,tl)u(327t2)[oo] = f317t1 [OO] ® '7:82,152 [OO] = fsl[oo]ﬂfl[oo] & FS2[00]¢2[00}‘
A generalization of ([Bafl) to the product of more than two spaces was used
here.

The same holds for more than two coarse time intervals:

(3¢3) ,um[z]({M €Cli] : M C [s1]i], t1[i]) U ... U [Sn[’é],tn[l])})
- HE (x[oo] ‘f(sl,tl)u- U(sn,tn)[OO])

We have convergence of spectral measures on a special class of subsets of
C[oo]. Note that the intersection of two such subsets is again such a subset.
Therefore, the convergence holds on the algebra of subsets generated by the
class. A generic element of the algebra is the union of a finite number of

‘cells’ of the form
(3cd) {M € Cloo] : M C Up_,[sk,tx) and MN[sy, tx) # 0 for k=1,...,n};

here [sg,tr) C R are usual (rather than coarse) time intervals. (Endpoints
may be neglected, as we will see soon.) The diameter of the cell Bcd) (w.r.t.
the metric (Bc)) does not exceed maxy, (¢, — si). Thus, we get weak conver-
gence of measures, which proves the following result.

3c5 Theorem. For every dyadic coarse factorization ((Q[i], F[i], P[i]):2;, A)
and every = € Ly(A), the sequence (p,[i])52; of spectral measures converges
weakly to a (finite, positive) measure i, [occ] on the Polish space C[oo].

Convergence of measures ji,[i] on a ‘cell’ of the form Bc3) (or (Bcd))
does not ensure that the limit is 1, [0o] on the ‘cell’.!® Rather, the limit lies
between i, [oo]-measures of the interior and the closure of the cell,

(3¢6)  piz[o0] ({M € Cloo] : M C (s1,t1) U... U (S, 1n)})

< HE (x[oo] ‘ ‘7:(81,151)U~~U(Sn7tn) ) ||2
< pigoo] ({M € Cloo] : M C [s1, 1] U ... U sy, t,]}) -

19Think for example about an atom at the point 1 of R, and ‘cells’ of the form (z,y].
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3c7 Lemma. For every t € R,
piz[oo] ({M € Cloo] : M 3 t}) =0.
Proof. Lemma BbITl gives us

HE (x[oo] “7:(—00,—6)U(6,+00))||2 : Hx[OO]HQa

therefore

piz[00] ({M € Cloo] : M C (—00,e] U [g, +00)}) — pg[00] (C[o0]) .

e—0

O

Applying Fubini’s theorem we see that p,[00] is concentrated on (the set
of all) compact sets M of Lebesgue measure 0 (therefore, nowhere dense).

Due to Bl we see that the boundary of a ‘cell’ is negligible (of measure
0); inequalities (Bch) are, in fact, equalities. So,

(3c8) f1z[00]({M € Cloo] : M C E}) = ||E (z[oo] | Fe )1?,

where E C R is an arbitrary elementary set, that is, a finite union of intervals
(treated modulo finite sets), E = (s1,t1) U ... U (Sp,tn), and Fg = Fs, 1y, @
e ® fsn,tn‘

For a finite 4, the Fourier-Walsh basis decomposes Ls[i] into one-dimensional
subspaces indexed by M € Cli], and each subset M C C[i] leads to a sub-
space H g of Ls[i] spanned by 7, M € M. In particular, for a subset of the
form Mg ={M € Cli] : M C E} we have Hq,, = Lo(2[i], Fgli], P[i]).

Similarly, for the limiting object, the subspace Haq,, = Lo(Q2, Fg, P) of
Ly [o0] corresponds to the set Mp = {M € C[oo] : M C E}. InBdla subspace
Hp C Lafoo] will be defined for every Borel set M C Cloo].

3d The limiting object

3d1 Definition. A continuous factorization (of probability spaces, over R)
consists of a probability space (€2, F, P) and a two-parameter family (F;;)s<:
of sub-o-fields F,; C F such that?

(a) Fri =Frs @ Fsy whenever r <s <t
(that is, F,. s and F;; are independent, and together generate F, ),

(b) U Fotet—e generates F,, whenever s < t,
e>0

20Here r, s,t are real numbers; coarse instants are not used in Bdl
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and
() U F_nn generates F .
n=1

The refinement of any dyadic coarse factorization is a continuous factor-
ization (as was shown in BH).

3d2 Definition. Let ((Q, F, P), (Fs1)s<t) be a continuous factorization, and
x € Ly(Q, F, P). The spectral measure p,, of  is the (finite, positive) measure
on the space C = C[oo] of compact subsets of R such that

p({M €C: M C E}) =|E(z|Fg)|
for all elementary sets £ C R.

Uniqueness of p, is checked easily. Existence of pu, is proven in Bd by
discrete approximation, assuming that the continuous factorization is the
refinement of a dyadic coarse factorization. Another proof, without approx-
imation, will be given by Bd9

The spectral measure is concentrated on (the set of all) nowhere dense
compact sets, and

(3d3) pe({MeC:M>t})=0 foreachteR,

which follows from for s = ¢, since Fyy = Fry @ Fiy is degenerate.

3d4 Example. The refinement of the Brownian coarse factorization (see
Bb3) is the Brownian continuous factorization,

Fi+ is generated by {B(v) — B(u) : s <u <wv <t},

where B(+) is the usual Brownian motion. Every x € Ly admits [td’s decom-
position into multiple stochastic integrals,

x = i(0) + /ge({tl})dB(tl) +//@({tl,tg})dB(tl)dB(tg) v

:ni::/---/i({tl,...,tn})dB(tl)...dB(tn),

where & € La(Chnite), Crnite being the space of all finite subsets of R, equipped
with the natural (Lebesgue) measure, making the transform z < & unitary,

37



according to the formula

E|2f? = [#(0) + / a({t )2 de + / () bty +

t1<to
_ /.../|j({t1,,..,tn})|2dt1...dtn.
=0} <oty

The spectral measure i, of x is

() =3 // B({h b2 dt .

n=0
t1<"'<tn7{t17"'7tn}eA

This is an important property of the Brownian continuous factorization: the
spectral measure (of any random variable) is concentrated on the subset
Chnite C C, and absolutely continuous w.r.t. the Lebesgue measure on Cgpite.

In particular, for z = exp (i\/XB (t)) the measure i, is just the distribu-
tion of the Poisson process of rate A on (0,%). Indeed,

exp(iﬁB(t)):e—Wf:A"/? // dB(t,)...dB(t,).

0<ty < <tn<t

3d5 Example. Recall the process Y. of [a3
Y.(t) = exp(iB(Int) — iB(In¢)) .

We define F,; as the o-field generated by ‘multiplicative increments’
Y.(v)/Yo(u) for all (u,v) C (s,t), that is, by (usual) Brownian increments
on (Ins,Int). The spectral measure py. is the distribution of a non-
homogeneous Poisson process on (e, t), the image of the usual Poisson process
(of rate 1) on (Ing,Int) under the time change u +— e*. The rate of the non-
homogeneous Poisson process is A(s) = 1/s.

The limiting process Y was discussed in It may be treated as the
refinement of Y, for ¢ — 0 (I leave the details to the reader). The spec-
tral measure p1y(;) should be the distribution of a non-homogeneous Poisson
process on (0,t), at the rate A\(s) = 1/s. Random points accumulate to
0; we add 0 to the random set, making it compact. However, the equality
pw({M : M > 0}) = 1 does not conform to Bcl It happens because the
limiting object is not a continuous factorization. Denote by Fy, ; the o-field
generated by U.soF. 1. Every Y (1)/Y (¢) for ¢t > 0 is Fo; ;-measurable, but
Y (1) is not. The global phase is missing. Of course, for every ¢t > 0, there
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exists an independent complement of Fo, ; in F_..; (for example, the o-field
generated by Y (t)). However, we cannot choose a single complement (to be
denoted by F_ o+) for all ¢t > 0, since the tail o-field N> F_o0 s is degener-
ate.

3d6 Lemma. For every continuous factorization (€, F, P), (Fsy)s<¢) and
every s < t,

fs,t = ﬂ fs—a,t—i—a .

e>0

Proof. The o-field N.50Fo is degenerate by Kolmogorov’s zero-one law ap-
plied to Fi o, Fi/2,1, Fi/3,1/2, - - - Further, F_ . = F_ 0 ® Fo, — F_so0-

Though the equality lim(A V B,) = A V (lim B,) does not hold in general,
it does hold for independent A and By (B; D By D ...), which is a rather
trivial part of Weizsécker’s criteria [27]. The rest of the proof is left to the

reader.
O

The theory of direct integrals of Hilbert spaces may be used on the way
to Theorem In fact, I did so in [T8, Th. 2.3]. Here, however, I choose a
self-contained presentation. First, a general result of measure theory, useful
for proving the existence of p, (without dyadic approximation).

3d7 Lemma. Let X be a compact topological space, A an algebra of subsets
of X, and p : A — [0,00) an additive function satisfying the following
regularity condition:

For every A € A and € > 0 there exists B € A such that B C A (here B
is the closure of B) and u(B) > u(A) —«.

Then p has a unique extension to a measure on the o-field generated by

A.

Proof. Due to a well-known theorem, it is enough to prove that u is o-additive
on A. Let Ay D Ay D ..., A, Ay, --- € A, NA; = 0; we have to prove that
u(Ag) — 0. Given € > 0, we can choose Bj, € A such that B, C A, and
w(By) > u(Ag) — 27%¢. Due to compactness, the relation NBj, C NA, = ()
implies B; N ---N B, = 0 for some n. Thus, u(A,) = p(A;N---NA,) <
uw(BiN---NBy)+ (A1 \ By) + -+ p(An \ By) < e. O

3d8 Remark. All A € A such that A and X \ A both satisfy the regularity
condition, are a subalgebra of A. (The proof is left to the reader.) Therefore
it is enough to check the condition for A and X \ A where A runs over a set
that generates the algebra A.
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3d9 Lemma. The spectral measure p, exists for every z € Ly(§2, F, P) and
every continuous factorization (Fj¢)s<i.

Proof. First, compactness. We have |[E (@ | F_pm )||* — [|#]|* for m — oo
by BdIl(c); thus we may restrict ourselves to x measurable w.r.t. F_, ,, for
some m. The corresponding part C,, = {M € C : M C [-m,m]} of C is
compact.

Second, additivity on an algebra. We have an algebra A of subsets of
Crm, generated by ‘cells” of the form (Bcdl). Such a cell leads to a subspace of
Lo(Q, F_rnm, P) spanned by products fi ... f, where each f; is measurable
w.r.t. F, 1., square integrable, and E f; = 0. A partition of the interval
[—m,m] into n subintervals leads to a partition of C,, into 2" parts, and
a decomposition of Ly(§2, F_,, m, P) into 2™ orthogonal subspaces. Thus, x
decomposes into 2" orthogonal vectors; their squared norms give us p, on a
finite subalgebra (of cardinality 22") of A. We see that p, is additive on such
subalgebras. Their union (over all partitions of [—m, m]) is the whole A, and
any two of them are contained in some third; therefore, p, is additive on A.

Third, regularity (required by Bdd). Due to Bd8 regularity may be
checked only for sets Ag = {M € C,, : M C E} and C,, \ Ag. It follows
casily from BdTl(b) and O

3d10 Remark. In the proof of Bd9, an orthogonal decomposition of the
Hilbert space H = Ly(), F, P) over the algebra A is constructed; that is,
a family (Ha)aca of (closed linear) subspaces H4y C H such that Hayp =
H,® Hp (it means that H4 and Hp are orthogonal, and their sum is Hyp)
whenever AN B = (), and He = H. The decomposition satisfies

HME = L2(QaFE‘7P)7

where Mgy = {M € C : M C E}, and is uniquely determined by this
property.

The following general result will help us construct H,, for all Borel sets

M cCC.

3d11 Lemma. Let X be a set, A an algebra of subsets of X, H a Hilbert
space, and (H4)aca an orthogonal decomposition of H over A. Assume
that for every x € H the additive function®® A — | Projy, «[|* on A can
be extended to a measure on the o-field o(A) generated by A. Then the
orthogonal decomposition can be extended to an orthogonal decomposition
(HB)peo(a), o-additive in the sense that** Hpup,.. = Hp, @ Hp, ® ...
whenever By, By, --- € o(A) are pairwise disjoint.

21 Here Projy, is the orthogonal projection H — H 4.
22That is, Hg,up,u... is the closure of the algebraic sum of Hp, .
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Proof. The extension of the additive function p, : A — [0,00), p(A) =
| Projy, ||, to a measure on o(.A) is unique; denote it by u, again. Consider
the set of all B € 0(.A) such that there exists a subspace Hg C H satisfying
| Projy, #||*> = pa(B) for all z € H. The set contains A, and is a monotone
class (that is, closed under the limit of monotone sequences), which is easy
to check. Therefore the set is the whole o(A). 0O

Combining and BdTT] we conclude.

3d12 Theorem. For every continuous factorization ((Q,f, P),(f&t)sgt)
there exists one and only one o-additive orthogonal decomposition (H ) of
the Hilbert space Ly (€2, F, P) over the Borel o-field of the space C (of com-
pact subsets of R) such that Hy, = Lo(Q2, Fg, P) for every elementary set
E C R (that is, a finite union of intervals); here Mgy ={M € C: M C E}.
The orthogonal decomposition is related to spectral measures by

(3d13) I Projp,, fII* = ns(M)

for all f € Ly(2, F, P) and all Borel sets M C C.

3e Time shift; noise

Let ((Q[i], F[i], P[i])2, A) be a dyadic coarse factorization. For each i the
lattice 17 acts on Q[i] by measure preserving transformations oy : Q[i] — Q[i]
(time shift),

1
a(w)(s) =w(s—t) forallse-Z.
i

For each coarse instant ¢ = (¢[i])72; we have a map oy : Qall] — Q[all],

cu(@)[i](s) = wli](s — [i]) for all s € %Z.

Such a; is an automorphism of the dyadic coarse sample space, but the coarse
o-field A need not be invariant under a;. We consider such a condition:

(3el) A is invariant under «; for every coarse instant t.

Dyadic coarse factorizations of Bb3l, BhA, BL7, satisfy (Bell), but that of
does not.

If (Bell) is satisfied, then the refinement a;[oo] = Lim; . 4 a¢[i] is an
automorphism of the refinement (2, F, P) of the dyadic coarse factoriza-
tion. Existence of the limit for every converging sequence t = (t[i]) implies
that ay[oo] depends on t[oo] only (see Bedl below), and we get a one-parameter
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group (ay)ier of automorphisms (that is, invertible measure preserving trans-
formations mod 0) of (2, F, P). The group is continuous in the sense that
P (AL (A) )ﬁ 0 for all A € F, which is ensured by [Bell) (see Bedl again).

3e2 Definition. A noise ((Q,f, P), (Fs.t)s<t, (at)teR) consists of a contin-
uous factorization ((Q, F,P), (f:g,t)sgt) and a one-parameter group of auto-
morphisms «; of (2, F, P) such that

at_l(fr,s):fr—t,s—t forall r,s,t e R, r <s,
P(AAozt_l(A))?—:O forall A e F.

Unfortunately, the latter assumption (continuity of the group action) is
missing in my former publications, which opens the door for pathologies.??

3e3 Remark. Continuity of the factorization follows from other assump-
tions, see [I5, Lemma 2.1]. For arbitrary factorizations, continuity is restric-
tive (recall BdH); waiving it, we get discontinuity points ¢ € R which are a
finite or countable set. For a noise, however, the set is invariant under time
shifts, and therefore, empty.

3e4 Lemma. For every dyadic coarse factorization satisfying (Bell), its re-
finement is a noise.

Proof. Our first argument parallels the proof of BhA Namely, let s,t be two
coarse instants such that s[oo] = t[occ]. We introduce a coarse event r:

il = {3[2] for i even,

t[s] for ¢ odd.
We have
Lim o] = Lim o,[2i] = Lim «,.[2i] = Lim «,.[i] .
Similarly, Lim o4[i] = Lim«,[¢]. Thus, Limag[i] = Lim oy[i], and we may

define a one-parameter group of automorphisms (ay)er on (Q, F, P) by
oo] = Lim Qg [Z]

Our second argument resembles the proof of BbTIl Namely, assume ex-
istence of Ay, € F, € > 0 and t,, — 0 such that P(AOO A a,;l(Aoo)) > ¢
for all n. We choose a coarse event A € A such that Ajoo] = A, and

ZMost results of these former publications do not depend on the (missing) continuity
condition. But anyway, a discontinuous group action is a pathology, no doubt. (In par-
ticular, it cannot be Borel measurable.) The proof of Lemma 2.9 of [I5], based on Weyl’s
relation, depends on the continuity condition.
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coarse instants s, such that s,[occ] = t,, for all n. Taking into account that
Pli](Ali] Ao i) Ali]) — P(AxDoy (Ax)) > € and s,[i] — ¢, when i — oo,
we choose integers iy < iy < ... such that P[i](Afli] A oy i]All]) > ¢/2
and |s,li]] < |ta| + 1/n whenever ¢ > i,. We define a coarse instant r
by r[i] = su[i] whenever i,, < i < i,45. Clearly, r[oo] = 0; therefore
Lim o, '[i]A[i] = o' Afoo] = Aloc], and P[i](A[i] A o, '[i]A[i]) — 0, which
is impossible: these probabilities exceed £/2. The contradiction proves con-
tinuity of the group (ay)er- O

3e5 Question. Is every noise the refinement of some dyadic coarse factoriza-
tion satisfying [Bell)? I do not know; I guess that the answer is negative. It
would be interesting to find some special features of such refinements among
all noises. It is also unclear what happens to the class of such refinements, if
subsequences are permitted (like in BRT).

4 Example: The Noise Made by a Poisson
Snake

This section is based on a paper by J. Warren entitled “The noise made by
a Poisson snake” [23].

4a Three discrete semigroups: algebraic definition

A discrete semigroup (with unit; non-commutative, in general) may be de-
fined by generators and relations.

Two generators f, f_ with two relations f,f =1, f_f, = 1 generate a
semigroup G that is in fact a group, just the cyclic group Z. Indeed,
every word reduces to some ff or f* (or 1).

Two generators f,, f_ with a single relation f, f_ = 1 generate a semi-
group G957 Every word reduces to some f* f1. The composition is

k= kl -+ maX(O, k?Q — l1> i

k1 rly ko rlo\ _ rk rl
(4al) (SRR = 2 [ =1y +max(0,l; — ko).

The canonical homomorphism Ggserete — Gdiserete maps £, to fy, f_ to f_,
and f*fLinto fF71 (if k> 1), fi7F (if k < 1), or 1 (if k = [). Accordingly,
the composition law [Hall) satisfies

L= k= —k)+ (I — k).
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There is a more convenient pair of parameters, a = [ — k, b = k; that is,?*

far =1 frb fora,beZ,b>0,a+b>0;

(4a2) a=ay+as,
fal,blfag,bz = fa,ba

b = max(by, by — ay) .

The canonical homomorphism Gdiserete . Gdiscrete yang £, to f,, where
2 1 s 9

fa € G is f¢ for a > 0, £l for ¢ < 0, and 1 for a = 0.
Three generators f_, f., f. with three relations

(4&3) f-i—f—:la f*f—:1> f*f-i-:f*f*

generate a semigroup G3°°. Every word reduces to some f* fi fr. The
following homomorphism G§iscete — Ggiserete wil] he called canonical: f_ +—
foy fo = fo, for= fr. We have fEfLfm — fF £ which suggests such a
triple of parameters for G35%: ¢ = +m — k, b =k, c = m; that is,
(4ad)

fape = foLe7cfe fora,bc €Z, b>0, 0<c<a+b;

a=a;+az, {a2+01 if01>bQ,

fal,bl,cl fag,bg,cg = fa,b,c s c=

b =max(by,by —ay), o otherwise.

The canonical homomorphism G§iserete — Giserete jg just fo . fap.
Note that G is commutative, but G357 and G35 are not.

4b The three discrete semigroups: representation

By a representation of a semigroup G on a set S we mean a map G x S >
(g,8) — g(s) € S such that

(9192)(s) = 92 (91(8)) and 1(s)=s

for all g1,92 € G, s € S. The representation is called faithful, if

g#gp = 3s€5 (qi(s)# g2(5))

Every G has a faithful representation on itself, S = G, namely, the regular
representation, g(go) = gog. Fortunately, G35 and G have more
economical faithful representations on the set Z, = {0,1,2,...}. Namely,

Z4Parameters a,b of @ad) and a, b, c of [@ad)) are suggested by S. Watanabe.
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discrete
for G§ :

(4b1)
f+ f- .
fr@)=z+1, [-(2)=max(0,z-1), ’..'fab
fap(z) = a + max(z,b), I
b
= Z+. For Ggiscrete’
(4b2)
fil@)=2+1, f(x)=max(0,z—1),
[ T U fora 0 .
T+ or x , P
§ i frle) = {0 for z = 0; Y
for 0 <z < b —
& é} Fune(@) = c or 0 <z <), b
w r+a forx>b.

4c¢ Random walks and stochastic flows in discrete semi-
groups

4c1 Example. The standard random walk on Z may be described by Gdiserete_ya]-
ued random variables

gs,t = gs,s+1£s+1,s+2 cee gt—l,t fOI‘ S,t S Z; S S t7

(4¢2) &i1+1 are independent random variables (t € Z) ;
1
P(&um=/)= 3= P (&1 =f+) foreachteZ.

Note that &, s+ = &+ whenever r < s < {. Everyone knows that

(4¢3) P (§o,t = fa) = %(é)

fora=—t,—t+2,—t+4,..., ¢
In fact, ‘the standard random walk’ is the random process ¢t +— &g ;. Taking
into account that G$*°' is a group, &, may be thought of as an increment,

Eot = &0,5Es -

4c4 Example. Formulas [cZ) work equally well on G§ete. Still, &, &, =
&1 However, G§5°* is not a group, and &, is not an increment; more-
over, it is not a function of {y s and &;. Indeed, knowing a;, b, and a; + as,
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max(by, by — ay) (recall [@ad)) we can find ay but not by. Thus, the two-
parameter family (&;;)s<; of random variables is more than just a random
walk. Let us call such a family an abstract stochastic flow. Why ‘abstract’?
Since G§iserete is an abstract semigroup rather than a semigroup of transfor-
mations (of some set). So, we have the standard abstract flow in Ggiscrete,
In order to get a (usual, not abstract) stochastic flow, we have to choose
a representation of G35 Of course, the regular representation could be
used, but the representation (L)) is more useful. Introducing integer-valued
random variables a(s,t),b(s,t) by

gs,t = fa(s,t),b(s,t)
we express the stochastic flow as
Esi(x) = a(s, t) + max(z, b(s, t)).

Fixing s and z we get a random process called a single-point motion of the
flow. Namely, it is a reflecting random walk. Especially, for s = 0 and x = 0,
the process

t +— &0+(0) = a(0,t) 4+ b(0,t)

is a reflecting random walk. It is easy to see that two processes

t — &4(0) = a(0,t) + b(0,1),

1 1
t 4= —=
are identically distributed. Also,
(4ch)
b(0,t) = — min a(0,s),

5:07 [ARAE]

a(0,£)+5(0,t)

a(0,t) +b(0,t) = max a(s,t), DY

and a(,-) is the standard random walk on G{*** = Z. That is, the canon-
ical homomorphism Ggsorete — Giseete transforms the standard flow on
Gaiserete into the standard flow (or random walk) on G¢see* Using the
reflection principle, one gets

a+2b+1 f!
ot . . '
<%+b+ 1)!(%—6)!

Note that a, b occur only in the combination a + 2b.

(406) P (fo,t = fa,b) =
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4c7 Example. On G357 we have no ‘standard’ random walk or flow;
rather, we introduce a one-parameter family of abstract stochastic flows,
(4c8)

Eot = Esot1&st1,542- - Em1y for st €Z, s <t;

&:1+1 are independent random variables (t € Z) ;

1 1—p P
P (&vtﬂ - f—) oy P (gt,“rl - f+) T o P (ft,t+1 = f*) =5

p € (0,1) is the parameter. The canonical homomorphism G§screte — Ggiscrete
glues together f, and f,, thus eliminating the parameter p and giving the
standard abstract flow on G§°®. Defining a(-, ), b(-, ), c(+,-) by

Ss,t = fa(s,t),b(s,t),c(s,t)

we see that the joint distribution of a(-,-) and b(-,-) is the same as before.
Representation (D) of G turns the abstract flow into a stochastic
flow on Z, . Its single-point motion is a sticky random walk,

t — &0+(0) = ¢(0,1) .

In order to find the conditional distribution of ¢(-, ) given a(-, -) and b(-, -)
we observe that

(4¢9) a(0,t) — ¢(0,t) = min(a 0,¢), min{x : {o(z)0(@)4+1 = f*})
where o(z) = max{s =0,...,t:a(0,s) =z}, —b(0,t) <z <a(0,?).

+ a(0,)

a(0,)—c(0,-)

Therefore the conditional distribution of ¢(0,t) is basically the truncated
geometric distribution. More exactly, it is the (conditional) distribution of
(4¢10) max(0,a(0,t) + b(0,t) — G+ 1), G ~ Geom(p);

here G is a random variable, independent of a(-,-), b(+,-), such that P (G =
g) =p(1 —p)9~! for g = 1,2,... This is the discrete counterpart of a well-
known result of J. Warren [21]. So,

a+2b+1 t! e
> p(1—p)*+
<t+7“+b+1)!<t—7a —b)!

for ¢ > 0; for ¢ = 0 the factor p(1 — p)**°=¢ turns into (1 — p)**®, rather than
p(1 —p)@*® because of truncation.

(4cll) P (50,1& = fa,b,c) =
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4d Three continuous semigroups

The continuous counterpart of the discrete semigroup G{ee* = 7 is the
semigroup G; =R = {f, : a € R}, fu, fo, = fartas- _

The continuous counterpart of the discrete semigroup Ggseet® = {f,; :
a,b € Z,b>0,a+b>0} is the semigroup

ng{f&bia,bGR,620,&+b20},

(4d1) a=ay+as,
fal,blfag,bg - fa,b7

b= max(bl, bQ — al)
(recall ([#aZl)). The canonical homomorphism Gy — G maps f,; to f.
The continuous counterpart of the discrete semigroup Ggsorete = {f ;. :
a,byc € Z,b>0,0<c<a+ b} is the semigroup
(4d2)
Gs ={fapec:0,b,ceR b>0,0<c<a+b},

a=a;+az, as + C1 if61>b2,
fal,bl,clfag,bg,cg = fa,b,ca =

b = max(by, by — ay), Co otherwise

(recall (#adl)). The canonical homomorphism G3 — G maps fup. t0 fop.

Note that Gy is commutative but G, G3 are not. Also, G; and G, are
topological semigroups, but G5 is not (since the composition is discontinuous
at CcT = bg)

There are two one-parameter semigroups in Ga, {f.0 : a € [0,00)} and
{f-pp : b €]0,00)}. They generate G5 according to the relation fyof_pp = 1;
namely, fop = f_ppfarb0-

There are three one-parameter semigroups in Gs, {fa00 : @ € [0,00)},
{f-ppo:b€[0,00)} and {feo.:c € [0,00)}. They generate G5 according to
relations fy00f-660 = 1, foopf-pp0 =1, and feocfa0,0 = feo.cfa0q for ¢ > 0;
namely, fobe = [-b,0 atrb—c00fc0.c-

Here is a faithful representation of Gy on [0, 00) (recall HLI)):

fab

(4d3) fap(z) = a + max(zx,b), ath

z € [0, 00).
Here is a faithful representation of G3 on [0, 00) (recall [@h2)):

for0 <z <b Fbe
(4d4) fape(x) = {C == artb oo /

z+a forxz>b. S —
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All functions are increasing, but f,; are continuous, while f,; . are not.

4e Convolution semigroups in these continuous semi-
groups

4el Example. Everyone knows that the binomial distribution (Ec3]) is asymp-
totically normal. That is, the distribution of \/a(0,t/ec) converges weakly
(for € — 0) to the normal distribution ) = N(0,t). These form a convolu-
tion semigroup, ,ugl) * ,ugl) = ,ugzt.

Note however, that a(s,t) and &, are defined (see (Hc2)) only for integers
s,t. We may extend them, in one way or another, to real s,t. Or alternatively,
we may use coarse instants t = (t[i])52,, t[i] € 17, t[i] — t[oo], introduced
in For every coarse instant ¢, the distribution of i~'/2a(0, it[i]) converges
weakly (for ¢ — 00) to ,ug[lo)o} = N(0, t[o0]).

4e2 Example. The two-dimensional distribution (EcH) on G35 has its
asymptotics. Namely, the joint distribution of i='/2a(0, it[i]) and i~/2b(0, it[i])
)
[

t[o0]

converges weakly (for i — 00) to the measure p,;” , with density (on the rel-

evant domain b > 0, a + b > 0; t means t[oo]):

2) 2

12 (dadb)  2(a + 20) (a + 2b)
4 p— —_— .
(4e3) dadb Vorz P 2

Treating p\” (for t € [0,00)) as a measure on G, we get a convolution
semigroup: ,ugz) * ,u?) = ,ug%zt. Of course, the convolution is taken according

to the composition (EdI).

4e4 Example. What about the three-dimensional distribution (HcITl) on
Ggiserete 7 Tt has a parameter p. In order to get a non-degenerate asymptotics,
we let p depend on 7, namely,

L 0

p=—F—0.

Vi
Then the distribution of i~'/2G, where G' ~ Geom(p) (recall (EcIT)), con-
verges weakly to the exponential distribution Exp(1), and the joint distri-
bution of i~1/2a(0,it[i]), i~Y/2b(0, it[i]) and i~'/2¢(0, it[i]) converges weakly

to a measure ,ut? The measure has an absolutely continuous part and a

singular part (at ¢ = 0), and may be described (somewhat indirectly) as the
joint distribution of three random variables a, b and (a + b — n)*, where

the pair (a,b) is distributed ugz) (see (Hc3)), n is independent of (a,b), and
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n ~ Exp(1). Treating ) (for t € [0,00)) as a measure on G5, we get a con-
volution semigroup: ,ug?’) * ,ug?’) = Mf;’t, the convolution being taken according
to the composition #d2). No need to check the relation ‘by hand’; it follows
from its discrete counterpart. The latter follows from the construction of
Ad (since random variables &y 1,19, ..., &stt—1.s1+ are independent). It may
seem that the limiting procedure does not work, since (G5 is not a topological
semigroup; the composition [@d2) is discontinuous at ¢; = by. However, that
is not an obstacle, since the equality ¢; = by is of zero probability, as far as
triples (ag,b1,¢1) and (ag, be, c2) are independent and distributed MS’), Mf”),
respectively (s,t > 0). The atom of ¢; at 0 does not matter, since by is

nonatomic. The composition is continuous almost everywhere!

4f Getting dyadic

Our flows in G{srete and Ggisre* are dyadic (two equiprobable possibilities

in each step), which cannot be said about G§5°*: here, in each step, we
have three possibilities f_, f1, f.« of probabilities 1/2, (1 — p)/2,p/2. Can a
dyadic model produce the same asymptotic behavior? Yes, it can, at the
expense of using i € {1,4,16,64,...} only (recall BL1); and, of course, the
dyadic model is more complicated.?® Instead of the trap at 0, we design a
trap near 0 as follows:

O

9+ = fo= fion; g-=f" .T_l = fo1mo;

1
P(gt,tﬂ :9—) = 2 :]P)<€t,t+1 :9+)-

The old (small) parameter p disappears, and a new (large) parameter m
appears. We'll see that the two models are asymptotically equivalent, when
p=2""

As before, we may denote

Ss,t = fa(s,t),b(s,t),c(s,t) .

Note, however, that only a(s,t) is the same as before; b(s, ), ¢(s,t) and &
are modified. Formula (cH) for b(0,t) fails, but still,

(4f1) b(0,t) = — min ta(O, s)+O(m),

s=0,1,...,

25Maybe, a still more complicated construction can use all i; I do not know.
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which is asymptotically the same. Formula (EcH) for ¢(0, t) also fails. Instead,

W (0,
7

(4£2) a(0,t) —¢(0,t) =min{zr: o(z +m—1) —o(z) =m — 1},

if such « exists in the set Z N [mingy 4 a(0,-),a(0,t) — m + 1]; otherwise,
¢(0,t) = O(m). (Here o is the same as in ([HcY).)

The conditional distribution of ¢(0,t), given the path a(0,-), is not at all
geometric (unlike (EcIT)), since now ¢(0, t) is uniquely determined by a(0, -).
However, according to #I2), a(0,t)—c(0, t) is determined by small increments
of the process o(+). On the other hand, the large-scale structure of the path
a(0,-) is correlated mostly with large increments of o(-); small increments
are numerous, but contribute little to the sum. Using this argument, one can
show that ¢(0,t) is asymptotically independent of a(0,¢) (and b(0,¢), due to
(ELD).

The unconditional distribution of ¢(0,¢) can be found from (2), taking
into account that increments o(x 4+ 1) — o(z) are independent, and each
increment is equal to 1 with probability 1/2. We have Bernoulli trials, and
we wait for the first block of m — 1 ‘successes’. For large m, the waiting
time is approximately exponential, with the mean 2™.26 Thus, 27" (a(0,¢) —
¢(0,t) — minj 4 a(0,-)) is asymptotically Exp(1), truncated (at ¢ = 0) as in
Bd

Taking the limit i = 22™ — oo, we get for i'/2a(0,it[i]), i~/2b(0, it[i]),

®3)

i~1/2¢(0, 4t[4]) the limiting distribution Hyjn)> the same as in Bd

4g Scaling limit

For any coarse instants s,¢ such that s < ¢, the distribution ,ug? [i] of

i~ 25;32] 1) converges weakly (for i — 00) to the measure MS}’ [o0] = ,ugn) | s[oo]
on G,, for our three models, n = 1,2,3. Of course, multiplication of & by

i~1/2 is understood as multiplication of a(-,-), b(-,-), ¢(-,-) by i~'/2, which is
a homomorphic embedding of G357 into G,,.
Let r,s,t be coarse instants, » < s < t. Due to independence, the joint

distribution z{%[i] ® ,ug?) [i] of random variables i~/ 2@%2} and i~V 2@(:[2] il

i

26Such a block appears, in the mean, after 2™ ~! shorter blocks, of mean length ~ 2
each.
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converges weakly to u(n)[ | ® ,Ug,?[

tion of three random variables,

oo|. However, we need the joint distribu-

2'—1/261(71)

ir(i),is[i] ?

—1/26 —1/26

is[i),it[e ir(d],it[i

the third being the product of the first and the second in the semigroup G,,.
For n = 1,2 weak convergence for the triple follows immediately from weak
convergence for the pair, since the composition is continuous. For n = 3,
discontinuity of the composition in G3 does not invalidate the argument,
since the composition is continuous almost everywhere w.r.t. the relevant
measure (recall Bd).

Similarly, for every k and all coarse instants t1 < - < tg, the joint
distribution of k(k — 1)/2 random variables i~/ 25 it L S U<m <k,
converges weakly (for i — o00). We choose a sequence (tr)52, of coarse
instants such that the sequence of numbers (t;[00])%2; is dense in R, and use
PcTl, getting a coarse probability space.

The Holder condition, the same as in Zadl holds for all three models. I
mean Holder continuity of a(-,-), b(-,), c(+,-). Indeed, a(-,-) is the same as
in Zad b(-, ) is related to a(+,-) via @cH) or [{LI), and c(-, -) satisfies (on any
interval)

Inax c(0, s) = c(0,1)] < Inax |a(0, s) — a(0, )],
though, for the model of Bl O(m) must be added.

Thus, a joint o-compactification is constructed for all three models (the
third model — in two versions, Ec7 and E)).

4h Noises

4h1 Example. The standard flow in Gt rescaled by i~'/2, gives us a
coarse probability space, identical to that of Bb3l It is a dyadic coarse factor-
ization. Its refinement is the Brownian continuous factorization. Equipped
with the natural time shift, it is a noise.

4h2 Example. The standard flow in G35 rescaled by i~'/2, gives us
another coarse probability space. It is also a dyadic coarse factorization
(the proof is similar to the previous case). Its ‘two-dimensional nature’ is
a delusion; the dyadic coarse factorization is identical to that of BhIl The
second dimension b(-, -) reduces to the first dimension, a(-,), by (EcH).

4h3 Example. The flow in G3, introduced in Ecq, rescaled by i~'/? with
p = i~'/? (vecall Bedl), gives us a coarse probability space. It is not a dyadic
coarse factorization, since it is not dyadic. However, it satisfies a natural
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generalization of BDLIl to the non-dyadic case (the proof is as before). Its
refinement is a continuous factorization, and (with natural time shift), a
noise; it may be called the noise of stickiness.

Once again, the second dimension, b(-, ), reduces to the first dimension,
a(+,-). Indeed, the joint distribution of a(-,-) and b(+, -) is the same as in Eh2l
What about the third dimension, ¢(-,-)?

The conditional distribution of ¢(s, t), given a(s,t) and b(s, t), is basically
truncated exponential. Namely, it is the distribution of (a(s,t)+b(s,t)—n)*
where n ~ Exp(1); see Bedl Moreover, for any r < s < t, the conditional dis-
tribution of ¢(r,t) given a(r, s),b(r,s) and a(s,t),b(s,t), is still the distribu-
tion of (a(r,t)+b(r,t)—n)*. In other words, ¢(r, t) is conditionally indepen-
dent of a(r, s),b(r, s),a(s,t),b(s,t), given a(r,t),b(r,t). That is a property of
the composition Hd2); if ¢; ~ (a1 + b — 7]1)+ and cy ~ (a2 + by — 7]2)+ then
c~(a+b—n)T.

It follows by induction that the conditional distribution of ¢(t1,t,), given all
a(t;, t;) and b(t;,t;), is given by the same formula (a(ty,t,) + b(t1,t,) — n) ™,
n ~ Exp(1), for every n and t; < --- < t,. Therefore, the same holds for
the conditional distribution of ¢(s, t) given all a(u,v) and b(u, v) for u, v such
that s < u < v <t (a well-known result of J. Warren [2I]). We see that
¢(+,+) is not a function of a(-,-) (and b(-,-)).

4h4 Example. Another flow in G§* introduced in E, being rescaled by
i~1/2 with ¢ = 22, gives us a dyadic coarse factorization. Its refinement is
the same continuous factorization (and noise) as in Bh3l

41 The Poisson snake

Formula (Bcd) suggests a description of the sticky flow in G4t by a com-
bination of a simple random walk a(-,-) and a random subset of the set of
its ‘chords’. A chord may be defined as an interval [s, ], s,t € Z, s < t, such
that a(s,t) =0 and a(s,u) > 0 for all u € (s,t) NZ. Or equivalently, a chord
is a horizontal straight segment on the plane that connects points (s, a(0, s))
and (t,a(O,t)) and goes below the graph of a(0,-). The random subset of
chords is very simple: every chord belongs to the subset with probability p,
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independently of others. Note that p = i~'/? is equal to the vertical pitch
(after rescaling a(-,-) by i~'/2). The scaling limit suggests itself: a Poisson
random subset of the set of all chords of the Brownian sample path.

4i1 Definition. A finite chord of a continuous function f : R — R is a set
of the form [s,t] x {z} C R? where s < t, z = f(s) and ¢t = inf{u € (s,00) :
f(u) < x}. An infinite chord of f is a set of the form [s,00) x {z} C R?
where x = f(s) and f(t) > x for all t € (s,00). A chord of f is either a finite
chord of f, or an infinite chord of f.

/Q\ v
a chord

a chord

If f decreases, it has no chords. Otherwise it has a continuum of chords.
The set of chords is, naturally, a standard Borel space,?” due to the one-one
correspondence between a chord and its initial point (s,z) € R?.

4i2 Lemma. For every continuous function f : R — R there exists one and
only one o-finite positive Borel measure?® on the space of all chords of f,
such that the set of chords that intersect a vertical segment {t} x [z,y] is of
measure y — , whenever ¢, z,y are such that inf,c(_o sy f(5) <z <y < f(1).

Al

~ -

The proof is left to the reader. Hint: for every € > 0, the set of chords longer
than ¢ is elementary; on this set, the measure is locally finite.

The map [s,t] x {z} — s (also [s,00) X {x} — s, of course) sends the
measure on the set of chords (described in HiZ) into a measure on R. If f is
of locally finite variation, then the measure on R is just (df)™, the positive
part of the Lebesgue-Stieltjes measure. However, we need the opposite case:
f is of infinite variation on every interval, and the measure is also infinite on
every interval. Nevertheless, it is o-finite (but not locally finite). We denote
it (df)* anyway.

The measure (df )" is concentrated on the set of points of ‘local minimum
from the right’. If f is a Brownian sample path then such points are a set of
Lebesgue measure 0.

2TFor a definition, see [7, Sect. 12.B].
Z8For a definition, see [7, Sect. 17.A].
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So, the set of all chords is a measure space; it carries a natural o-finite
(sometimes, finite) measure. The latter is the intensity measure of a unique
Poisson random measure.? This way, (the distribution of) a random set of
chords is well-defined.

Or equivalently, we may consider a Poisson random subset of R, whose
intensity measure is (df)".

However, it is not so easy to substitute a Brownian sample path B(-) for
f(-). In order to get a (Poisson) random variable, we may ask how many
random points belong to a given Borel set A C R such that (dB)*(A) < co.
Note that for any interval A, (dB)"(A) = oo a.s. We cannot choose an
appropriate A without knowing the path B(-). The set of all countable dense
subsets of R does not carry a natural (non-pathological) Borel structure.

In this aspect, chords are better than points. Chords are parameterized
by three (or two) numbers, and thus, carry a natural Borel structure, irre-
spective of B(-). The random countable set of chords is not dense; rather, it
accumulates toward short chords.

A point (¢, x) belongs to a random chord of B(-) if and only if

x € o, Y(I), thatis, oy(z)cll,
where o,(x) = sup{s € (—o0,t| : B(s) < a} for x € (—o0, B(t))
(recall (D)), and II is the Poisson random subset of R, whose intensity
measure is (dB)*. Do not confuse the inverse image o; *(II) with the image
B(II). True, B(o(z)) = z, but 0¢(B(s)) # s. Sets II and B(II) are dense,
but the set o; '(II) is locally finite. Moreover, o; *(II) is a Poisson random
subset of (—oo, B(t)], its intensity being just 1.

The random countable dense set II itself is bad; we have no measurable
functions of it. However, the pair (B(-), H) of the Brownian path and the
set is good; we have measurable functions of the pair. In particular, we may
use measurable functions of the locally finite set o, '(IT). Especially,

a(0,t) — ¢(0,t) = min(a(0,t), min{z : oy(z) € 1IN (0,00)}) .

4i3 Lemma. The o-field F, of the noise of stickiness (see BL3) is generated
by Brownian increments B(u) — B(s) for u € (s,t) and random sets o, * (ITN
(s,t)) for u € (s,t) (treated as random variables whose values are finite
subsets of R).

The proof is left to the reader.

29See for instance [IT, XII.1.18].
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5 Stability

5a Discrete case

Fourier-Walsh coefficients, introduced in for an arbitrary dyadic coarse
factorization,

f: Z .]EMTM:.]E@+ Z f{m}Tm+ Z f{ml,mQ}Tmle2+"-

MeCld] mE%Z ml,mQE%Z,m1<m2

help us to examine the stability of a function f, as explained below. Imagine
another array of random signs (7,),,c17 (also independent equiprobable £1)

correlated with the array (7,,),,c12,

1
Er,7., =p foreach me -Z;
i

p € [—1,+1] is a parameter. Other correlations vanish. That is, the joint
distribution of all 7,,, and 7, is the product (over m € 1Z) of (copies of) such
a four-atom distribution:

Tm

-1 +1

1+p 1—
—1| e 1=p

/ 4 4
Tm 1 1+
—p p

+1 4 4

Denoting by Q[i] the product of these four-point probability spaces, we have
a natural measure preserving map o : Q[i] — Q[i]; as before, Q[i] is the prod-
uct of two-point probability spaces. In addition, we have another measure
preserving map o : Q[i] — Q[i],

/ /
Tm O =Tp, TnOd =T,

we use the same ‘7,,,” for denoting a coordinate function on Q[i] and Q[i].
For products

=] 7. MeC[], Clil={McizZ:|M|< o}
meM

we have

Erury =™, myoa=ry, myod =1,
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where |M| is the number of elements of M. Therefore
E(foa)(god)=> o™ fugn = (9.0~ f),
M

N Lol < Lofi], pNiry, = pMlpy, Nl = Zp|M\fMTM.
M

The Hermite operator pNl is a function of a self-adjoint operator N[i] defined
by Nli|mas = |M|7ar for M € Cli].

Every bounded function ¢ : C[i] — R acts on Ly[i] by the operator
= Y meen ¢(M) faumu. A commutative operator algebra is isomorphic
to the algebra of functions. The operator pN¥ corresponds to the function
M — pMI_ (In some sense, the unbounded operator N corresponds to the
unbounded function M — |M|.)

A function ¢ : C[i] — {0, 1}, the indicator of a subset of C|i], corresponds
to a projection operator. Say, for the (indicator of) the set {0}, the operator
projects to the one-dimensional space of constants (the expectation). For
the set {M : M C (0,00)}, the operator is the conditional expectation,
E (-] Fooli])-

The function M + [M| is the sum (over m € +Z) of localized functions
M — |M n{m}|. The latter is the indicator of the set {M : M > m},
corresponding to the projection operator 1 — E ( }F%Z\{m} ) Thus,

Nf=> (f=E(f|Frzm)-

The operator pN may be interpreted as the conditional expectation w.r.t.
the sub-o-field a~!(F) generated by 7,,, 0 a, m € 1Z:

E(fod |a(F))=("f)oa for fe L.

We may imagine that our data 7,, are an unreliable copy of the true data 7, ;
each sign 7, is either correct (with probability (1 + p)/2) or inverted (with
probability (1—p)/2). If pis close to 1, our knowledge of 7, is satisfactory for
moderate | M| (when pl™| ~ 1) but very bad for large |[M| (when pM! =~ 0).
The position of a given function f between the two extremes is indicated by
the number || f — pNf]|.

5al Example. In the Brownian coarse factorization (recall Bh3),

sup | 711) = N — 0 for p— 1
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for all f € La(A). This follows easily from convergence of operators (recall

2d and Bd4):

Lim; o pN1T = pNT,

pN[O"]f:Zp”/---/f({tl,...,tn})dB(tl)...dB(tn).

t1 < <tn
Convergence of operators follows from (Zafi). The same holds for BbA

5a2 Example. A very different situation appears in Bb@l. The second Brow-
nian motion By (or rather, its discrete approximation) is not linear but
quadratic in random signs 7,,, m € %Z. It is two times less stable:

NEF2W = 2/20; Limyoe N9 = p2N&

if N[oo] is defined in the same way as in Ball For Bs it is p®N* and so on.
Still, sup, || f[i] — pNE f[]|| — O for p — 1. For By, however, the change is
dramatic. Namely,

N[ilfe7 [i] = entier(\W3) £3[i); Limio pN = 0N

for all p € (—1,41); here OVl = lim,, g pN>l s the orthogonal projection
to the one-dimensional subspace of constants (just the expectation). The
same holds for Bb7

Notions of stability and sensitivity are introduced in [2, Sects. 1.1, 1.4]
for a sequence of two-valued functions of 1,2, 3, ... two-valued variables. For
arbitrary (not just two-valued) functions, a number of equivalent definitions
can be found in [I2, Sect. 1]. They may be adapted to our framework as
follows. We consider a function f : Qall] — R such that 0 < liminf; || f[é]|| <
limsup;, || f[i]]| < co. We say that f is stable, if sup, ||f[i] — pNf[i]|| — 0
when p — 1. We say that f is sensitive, if ||p™Nf[i] — ONU f[4]|| — 0 when
i — oo, for some (therefore, every) p € (0,1). These definitions conform

to [T2] when f[i] depends only on 4 signs 7i/;,...,7;;. In terms of the
two p-correlated arrays (7,), (7,,), stability means that E ((f[i] o o/)(f[i]

a)) — ||fli]||* for p — 1, uniformly in i. Or, equivalently, E (Var (f[z] o
o |a”(F))) — 0 when p — 1, uniformly in 7. Sensitivity means that
E ((f[i]oa’)(f[i] o)) — (E f[i])* when n — oo, for some (therefore, every)
p € (0,1). Or, equivalently, E[E (f[i] o o/ |a(F)) = E f[i]|> — 0 when
n — oo, for some (therefore, every) p € (0,1).

In particular, those definitions can be applied to any f € Ls(.A) such that

1 Floc]l| # 0.
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Example Ball shows that everything is stable in the Brownian coarse fac-
torization. In contrast, everything is sensitive in the coarse factorization
generated by B, in In Bd we will find a reason to rename this ‘stability’
and ‘sensitivity’ as ‘micro-stability’ and ‘micro-sensitivity’.

A sufficient condition for sensitivity is found by Benjamini, Kalai and
Schramm in terms of the influence of a (two-valued) variable on a function,
see [2, Sect. 1.2]. In our framework, the influence of the variable 7, on a
function f[i] : Q[i{] — R may be defined as the expectation of the square root
of the conditional variance,

E\/Vaf(f[’i]\f%m{m}%

here Fig\(my 18 the sub-o-field of F[i] generated by all random signs except
for 7,,. The root of the conditional variance is simply one half of the difference
between two values of the function f[i], one value for 7, = +1, the other
for 7, = —1. Thus, our formula gives two times less than [2, (1.3)], but the
coefficient does not matter. Similarly, for any set M C %Z, the influence of
M (that is, of all variables 7,,, m € M) on f[i] may be defined as

By the way, for a linear function, the squared influence is additive (in M);
indeed, if f[i] = 3, CmTm, then Var ( f[i] ‘f—l.Z\M) =E (3 ers CnTm)? =
Y omeM 2. The sum of squared influences appears in the following remarkable
result (adapted to our framework).

5a3 Theorem (Benjamini, Kalai, Schramm). Let a function f : Q[all] —
{0,1} be such that each f[i| depends on i variables 7;, ..., 7;/; only. If

> (2o (1 ) )

1—00
k=1

then f is sensitive.

See [2, Th. 1.3]. We will return to the point in [6dl

5b Continuous case

We start with the Brownian continuous factorization ((Q, F, P), (Fs)s<t)-
Using the Wiener-It6 decomposition of Ly(€2, F, P),

P23 [ [ R ) B B € LG

TVt <<ty

~
belongs to n-th Wiener chaos
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we can define a self-adjoint operator N : Ly — Lo such that for each n,
Nf = nf for all f of n-th Wiener chaos. Accordingly, pNf = p"f for these
f. Informally, N(dB(ty)...dB(t,)) = ndB(t1) ...dB(t,).

Every bounded Borel function ¢ on Cgpite acts on Lo(£2, F, P) by the
operator R,

(5b1) Rof = /~-~/cp({tl,...,tn})f({tl,...,tn}) AB(L) ... dB(L,) .

t1 < <tn

The operator p™N corresponds to the function M — p/M!. (In some sense, the
unbounded operator N corresponds to the unbounded function M — |[M].)
The decomposition |M| = |MN(—o0,t)|+|MN(t,00) (it holds for ps-almost
all M) leads to the operator decomposition N = N_ ; + N; «. Informally,
N_wot(dB(t1)...dB(t,)) = kdB(t1)...dB(t,) and Ny (dB(t1) ... dB(t,))
= (n—k)dB(t;)...dB(t,) whenever t; < -+ < tp <t < tpp1 < -+ < ty.
Accordingly, pN = pN-et @ pNeo,

A function ¢ : Cpite — {0, 1}, the indicator of a Borel subset M of Cpyite,
corresponds to the orthogonal projection operator onto the corresponding
(recall Theorem BdI2) subspace Hj. Say, for the (indicator of the) set
{0}, the operator projects onto the one-dimensional space of constants (the
expectation). For the set {M : M C (0,00)} the operator is the conditional
expectation, E ( . } Fo.00 )

The function

1 i MN(s,t) £0,
SOs’t(M)_{o it M N (s,t) =0

acts by the operator 1 — E ( ‘f(_m,s)u(tm) )

For a finite set L = {s1,...,8,} C R, s < -+ < s,, the function
orL(M) = @s, 5,(M)+ -+ @s, ,.5,(M) counts intervals (s;, s;4+1) that inter-
sect M. Clearly, ¢ (M) <|M]|, and

o, (M) 1 |M| for us-almost all M

if L1 C Ly C ... are chosen so that their union is dense in R. Accordingly,
NLn T Na
n—1
(5b2) Nisysn} = Z(l —E ( }F(—wvsj)U(SjH,OO) ))
j=1

The operator N is thus expressed in terms of the factorization only, irrespec-
tive of the Wiener-It6 decomposition, which gives us a bridge to arbitrary
continuous factorizations. Operators R, described in the next lemma gener-

alize (BL).
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5b3 Lemma. For every continuous factorization ((Q,F, P), (Fs.)s<:) there
exists one and only one map ¢ — R, from the set of all bounded Borel
functions ¢ : C — R to the set of (bounded linear) operators on Ly(2, F, P)
such that

(a) the map is a homomorphism of algebras; that is, Rq, = aR,, Ryty =
Rgo + Rw, sz, = R¢R¢;

(b) IRl < supyrec [ (M)]:

(¢) R1,, = Projg,, for every Borel set M C C; here 1, is the indicator of
M, and (H ) is the orthogonal decomposition provided by Theorem BdT2.

The map also satisfies the condition

(d) let ¢, 1,9, : C — [0,1] be Borel functions such that ¢, — ¢
pointwise (that is, ¢x(M) p— ©(M) for each M € C); then R,, — R,

strongly (that is, || R,z — Rzl — 0 for every z € Lo(Q, F, P)).

Proof. Uniqueness and existence are easy: Condition (c) and linearity deter-
mine the map on the algebra of Borel functions ¢ : C — R having finite sets
of values; it remains to extend the map by continuity.

For proving Condition (d) we note the equality

(Ryz,2) — / ods,

where p, is the spectral measure of x; it holds for ¢ having finite sets of
values, and therefore, for all . The bounded convergence theorem gives
us not only (R, x,x) — (Ryx,x), but also (R, _s2x, ) — 0. However,

|Rypz — Rypz||? = (Ryy— o, Rpy—p) = (R(py— )2, T). 0O
5b4 Lemma. For every continuous factorization ((€2, F, P), (Fsy)s<t), all
finite sets L1 C Ly C ... whose union is dense in R, and every A € [0, 00),

the limit
Uy = limexp(—ANy,),

where Ny is defined by (Bh2), exists in the strong operator topology, and
does not depend on the choice of Ly, Lo, ... Also,

U\U, =Uyy, forall A\, pe[0,00).

Proof. We have or, = > ¢, 5., and R, , =1 - E ( ‘f(_oo,s)u(tm) ); thus
R,, = Ny. It follows that Rexy(—xrs,) = exp(—ANy). However, exp(—Apyr,) —
©x, where ©\(M) = exp(—A|M]) (and e=> = 0, of course). By Bb3(d),
exp(—ANy,) — R,, = U,. The semigroup relation U\U, = U4, for opera-
tors follows from the corresponding relation ¢ ¢, = @iy, for functions.

]
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In the Brownian factorization we know that U, = exp(—AN), N =

lim, N,. In general, however, the semigroup (Uy)x>o is discontinuous at
A =0 (and N is ill-defined).

5b5 Definition. Let (€2, F, P), (Fy)s<¢) be a continuous factorization, and
f e Ly(QF, P).

(a) f is called stable, if || f — Urf|| — 0 for A — 0, or equivalently, if ¢
is concentrated on Chpite = {M € C : | M| < o0}.

(b) f is called sensitive, if Uyf = 0 for all A > 0, or equivalently, if ps is
concentrated on C \ Canite = {M € C : |M| = o0}.

Of course, Upf = [ anyway. For proving equivalence, apply Bh3(d) to
Uy = R,,, p(M) = e M,

The space Ly(Q2, F, P) decomposes into the direct sum of two subspaces,
stable and sensitive, according to the decomposition of C into the union of
two disjoint subsets, Cnite and C \ Canite-

A continuous factorization is called classical (or stable), if the stable
subspace is the whole Ly(Q2, F, P).

A noise is called classical, if its continuous factorization is classical.

In order to understand probabilistic meaning of Uy, consider first p™NE,
L={s,...,sn}, 51 < <5, Wehave

Q=005 X Qg 55 X - X X Qs 00

Sn—1,5n

or rather, (0, F,P) = (Qco51s F-cos1s Pocos1) X ..., but let me use the
shorter notation. Each w € 2 may be thought of as a sequence (wW_o s, Ws; 595
. Ws, 1.snsWs,.00) Of local portions of data. Imagine another portion of data
Wy, sy € Sy sy, cither equal to wy, ,, (with probability p), or independent of
it (with probability 1 — p). The joint distribution of wy, s, and wj , is a
convex combination of two probability measures on 051,52 = O, 55 X Qg 5,
One measure is concentrated on the diagonal and is the image of P, ,, under
the map Qg 5, D Wsy 50 — (Wsy 50, Wsy.55) € QSI,SQ; this measure occurs with
the coefficient p. The other measure is the product measure P, 5, ® P, 5,; it
occurs with the coefficient 1 — p.

Similarly we introduce 982783, .. '7Q3n—173n and construct O = Qo5 X
931,32 X +-e X anfl,sn X Qs, ~ (the factors being equipped with correspond-
ing measures). It is the same idea as in bal Again, we have two measure

preserving maps «, o’ : Q0 — €. It appears that

E(foa’}a_l(}")) = (pNtf)oa for f € Ly(Q,F,P).
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This is the probabilistic interpretation of p™N~; each portion of data is either
correct (with probability p), or wrong (with probability 1 — p).>° However,
the portions are not small yet. The limit n — oo makes them infinitesimal,
and turns pNt into Uy, where p and \ are related by p = e

The interpretation above motivates the terms ‘stable’ and ‘sensitive’.

Constant functions on () are stable; sensitive functions are of zero mean.
This is a terminological deviation from the discrete case; according to Bal,
constant functions are both stable and sensitive.

Two limiting cases of Uy are projections. Namely, Uy, = limy_ o Uy is
the expectation, and Uy, = limy,_g. U, is the projection onto the stable
subspace. Restricting the ‘%Jerturbation of local data’ to a given interval
(s,t) we get operators Uis’t These correspond to functions C > M +—
exp(—A|M N (s,t)]) and satisfy

U>(\S7t)U;(f’t) _ U)(\iiz : U)(\T,S)U)(\S,t) _ U)(\r,t) ;

(5b6) Uég’t) :]E("f—oo,s@ft,oo);
Uo(i,t) —F ( . ‘ F—oo,s ® fssj:table ® ft,oo) ]

Note that (EL2) may be written as

(5b7) Nisy, o) = (1 _ U(sl,s2)) S (1 _ U(Sn—l,sn)) )

[e.e] (e}

5b8 Lemma. Let ((Q,F,P),(Fs)s<:) be a continuous factorization, f €
Ly(Q2, F,P), and g = no f where n: R — R satisfies |n(z) — n(y)| < |z — y|
for all z,y € R. Then

fg(C\ M) < pp(C\ Mg)
for all elementary sets £ C R; here My ={M €C: M C E}.

Proof. We have (up to isomorphism) = Qg X Qg (the product of proba-
bility spaces is meant). We introduce Q=0x0= (QexQp) X (Qr\g X Qp\g)
and equip the second factor Op\g X Qp\ g with the product measure, while
the first factor Qg x Qg is equipped with the measure concentrated on the

30This time, p € [0, 1] rather than [—1,1]. The relation to the approach of Balis expressed
by the equality

Lo () ge (8 ) - (BT )

AR}
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diagonal, such that (equipping Q with the product of these two measures),
the measure preserving ‘coordinate’ maps a, a’ : Q — §Q satisfy

foa=foa forall Fg-measurable f,

foaand goa' are independent, for all Fg\ g-measurable f, g.
Then

E(fod |a ™ (F))=E(f|Fr)oa forall fe LyQF,P).
Therefore (recall Theorem BdT2)),

E((fod)(goa)) =E(¢E(f|FE&)):
B ((f o a)(f 0a)) = (Projg,, f.f) = 1y (Mp)
SE(f o’ — foa)? = 1y (€) — ug(Mz) = ug(C\ M)

The same holds for g. It remains to note that [goa’ —goal=|no foa’ —
nofoal <|fod — foal everywhere on (. O

We introduce a special set S of Borel functions ¢ : C — [0,1] in three
steps. First, we take all functions of the form 1,,,

1 if M CE,

Lats (M) {0 otherwise,
where £ C R runs over all elementary sets. Second, we consider all (finite)
convex combinations of these 1,,,. Third, we consider the least set .S con-
taining these convex combinations and closed under pointwise convergence
(that is, if ¢ € S and (M) — (M) for each M € C then ¢ € 5).

The set S is convex (since the third step preserves convexity). It is also
closed under multiplication: i € S for all v,y € S. Indeed, multiplicativity
holds in the first step, and is preserved in the second and third steps.

5b9 Lemma. Let ((Q,F,P),(Fs)s<:) be a continuous factorization, f €
Ly(Q2, F, P), and g = no f where n: R — R satisfies |n(z) — n(y)| < |z — y|
for all x,y € R. Then

/(1—<ﬂ)dug§/(1—s&)duf

for all p € S.
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Proof. In the first step, for ¢ = 1, the inequality is stated by Eb8 The
second step evidently preserves the inequality. And the third step preserves
it due to the bounded convergence theorem. O

5b10 Lemma. Let a Borel set M C C be such that its indicator func-
tion 1, belongs to the set S. Then for every continuous factorization
((Q, F,P), (fs,t)sgt), the subspace Hyg = {f : us(C\M) = 0} of Lo(2, F, P)
is of the form

Hy = Lo(Q2, Fuq, P)
where Fy, is a sub-o-field of F.

Proof. The subspace satisfies
f € Hyy implies ‘f| € Hy
(here | f|(M) = |f(M)| for M € C). Indeed,

/(1 = 1ag) dpyp) < /(1 — 1) duy

by BbJ that is, s (C \ M) < pug(C\ M). A subspace satisfying such a
condition is necessarily of the form Ly(€, Fpq, P). O

Recall the decomposition of Ly(€2, F, P) into the sum of two orthogonal
subspaces, stable and sensitive, according to the decomposition of C into the
union of two disjoint subsets, Cnite and C \ Canite-

5b11 Theorem. For every continuous factorization ((Q,f, P),(F&t)ggt)
there exists a sub-o-field Fyape of F such that for all f € Ly($2, F, P)

f is stable if and only if f is Fyaple-measurable;
f is sensitive if and only if E ( f } fstable) =0.

Proof. The second statement (about sensitive functions) follows from the first
(about stable functions). By it is enough to prove that the indicator of
Chnite belongs to S.

For every A € (0,00) the function ¢, : C — [0,1] defined by p\(M) =
exp(—A|M|) belongs to S due to the limiting procedure ¢, = lim exp(—A¢yr,,)
used in the proof of Bh4l  For each n the function exp(—Apr,) =
[T exp(—=Ags,.s,,.) belongs to S, since each exp(—Ayps;) is a convex com-
bination of two indicators, of M(_s s)u(t,00) and of the whole M.

It remains to note that ) converges for A — 0 to the indicator of Cgpite.

U

So, a continuous factorization (or a noise) is classical if and only if
Fstavle = F.
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5c Back to discrete: two kinds of stability

The operator equality Lim pNl = pNI*l holds for some dyadic coarse factor-

izations (recall Ball) but fails for some others (recall GaZl). Nothing like that
happens for spectral measures; p¢[i] — 1 r[oo] always (see Theorem and
Bdl). However, the operator pNI! corresponds to the function C[i] 3 M s pl¥|
treated as an element of L. (f[i]), and the operator pN*l corresponds to
the function C[oo] M +— pM! treated as an element of Lo, (js[0c]). How is
it possible? Where is the origin of the clash between discrete and continuous?

The origin is discontinuity of functions M +— pl™l and M s |M| w.r.t.
the Hausdorff topology on C.

5c1 Example. Return to the equality NJi] fs(?t) [i] = 2 fs(?t) [i] for fs(i) [i] =
iV T Ty (see and BRAl). The spectral measure of fs(?t) [i] is con-
centrated on two-point sets M C %Z, namely, on pairs of two adjacent points
{m,m + (1/i)}. However, fs(?t) [oo] is just a Brownian increment; its spectral
measure is concentrated on single-point sets. Now we see what happens; two
close points merge in the limit! Multiplicity of spectral points eludes the
continuous model.

The effect becomes dramatic for fs(ft‘) [i]; everything is stable in the contin-
uous model (i = 0o), while everything is sensitive (for i — oo) in the discrete
model. A finite spectral set on the continuum hides the infinite multiplicity
of each point.

Conformity between discrete and continuous can be restored by modi-
fying the idea of stability introduced in Bal Instead of inverting each 7,
(with probability (1 — p)/2) independently of others, we may invert blocks
Tsli)s Ts[i]+(1/4) - - - » Tefs) Where coarse instants s, ¢ satisfy ¢[oo] —s[oo] = €. Each
block is inverted with probability (1—p)/2, independently of other blocks. Ul-
timately we let € — 0, but the order of limits is crucial: lim. o lim; .. (...).
This way, we can define (in discrete time setup) block stability and block sen-
sitivity, equivalent to stability and sensitivity (resp.) of the refinement. In
contrast, the approach of bal leads to what may be called micro-stability and
micro-sensitivity (for discrete time only).

The function C 3 M — plM!lis not continuous, but it is upper semicontin-
uous. Therefore, every micro-stable function is block stable, and every block
sensitive function is micro-sensitive.

5c2 Example. The function g, of BD1 is micro-sensitive but block stable.
The same holds for all coarse random variables in that dyadic coarse factor-
ization. It holds also for the second construction of (I mean fs(’;))
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6 Generalizing Wiener Chaos

6a First chaos, decomposable processes, stability

We consider an arbitrary continuous factorization. As was shown in Theorem
and Bb3 Borel functions ¢ : C — R act on Ly(2, F, P) by linear
operators R, and (indicators of) Borel subsets M C C act by orthogonal
projections to subspaces H .

In particular, for the Brownian factorization, only Cgpe is relevant. The
set {M € Chnite : |M| = n} corresponds to the subspace called n-th Wiener
chaos.

In general, we may define n-th chaos as the subspace of Ly(€2, F, P) that
corresponds to {M € C : |M| = n}. These subspaces are orthogonal, and
span the stable subspace — not the whole Ly(Q2, F, P), unless the noise is
classical.

For each t € R the set M; = {M : M > t} is negligible in the sense that
Hy, = {0} (recall Bl and (Bd3))). Neglecting M; we may treat C as the
product,3!

(6&1) C= C—oo,t X Ct,oo;

where C,; is the space of all compact subsets of (a, b); namely, we treat a set
M € C as the pair of sets M N (—oo,t) and M N (¢,00), assuming t ¢ M.

On the other hand, the Hilbert space H = He = Ly(Q, F, P) may be
treated as the tensor product,

H = H—oo,t X Ht,oo 5

of two Hilbert spaces H_o; = He__, = La(Q, Fooy, P) and Hy o = He, . =
Ly(Q, Fi oo, P). Namely, f®g is just the usual product fg of random variables
f € Lo(Q, Fovor, P)and g € Ly(Q2, Fi 0, P); note that f and g are necessarily
independent, therefore E|fg|? = (E|f]?)(E|g|?).

Subspaces Hyy C H_; for Borel subsets M C C_,; are a o-additive
orthogonal decomposition of H_. ;. The same holds for (¢, 00).

6a2 Lemma. Hygwm, = Huy, ® Hyy, for all Borel sets My C C_; and
M2 C Ct,oo-

Proof. The equality holds for the special case M; ={M : M C E1}, My =
{M : M C E,} where E; C (—o0,t) and Ey C (t,00) are elementary sets;

)

31Sorry, the formula ‘C = C_oot X Ctoo’ may be confusing since, on the other hand,
C_w,t CC and Ct oo C C. The same can be said about the next formula, H = H_+ ®
Hi .
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indeed? L2(97fE17P> ® L2(Q7fE27P> - L?(Q7fE1UE27P> Since fEluEg -
Fr, ® Fg,. The general case follows by the monotone class theorem. O

6a3 Theorem. The sub-o-field generated by the first chaos is equal to
Fstable-

Proof. The o-field is evidently included in Fyape. Given a finite set L =
{s1,...,8x} CR, sy <--+ < s,, we consider the set M, of all M € C such
that M C (s1,$,) and each [sy, sx11] contains at most one point of M. The
set M, being the product (over k), BaZlshows that H,, is the tensor product
(over k) of subspaces of Ly(), Fs, s,.,, P); each factor is the first chaos on
(Sk, Sk+1) plus constants. Therefore each function of Hpy, is measurable
w.r.t. the o-field generated by the first chaos. We choose Ly C Ly C ...
whose union is dense in R; then My T Cgpite, and corresponding subspaces

span the stable subspace. O

A random variable X € Ly(Q, F, P) belongs to the first chaos if and only

if

X=E(X|Fouy)+E(X|Fio) forallteR.

For such X, letting X, = E (X } fs,t) we get a decomposable process, that
is, a family (X ;)s<¢ of random variables such that X ; is F, ;-measurable and
Xrs + X5 = X,y whenever r < s < ¢. This way we get decomposable pro-
cesses satisfying E|X,;|* < co and E X ; = 0. Waiving these additional con-
ditions we get a larger set of processes, but the sub-o-field generated by these
processes is still Fyape. We may also consider complex-valued multiplicative
decomposable processes; it means that X,; : @ — C is F;;-measurable and
X, sXst = X, s The generated sub-o-field is Fiaple, again. The same holds
under the restriction | X, =1 a.s. See [20, Th. 1.7].

Dealing with a noise (rather than factorization) we may restrict ourselves
to stationary Brownian and Poisson decomposable processes. ‘Stationary’
means X, ;0 a; = X,_;s . ‘Brownian’ means X,; ~ N(0,f — s). ‘Poisson’
means X, ~ Poisson(A(t — s)) for some A € (0,00). The generated sub-
o-field is still Fyaple. See [15, Lemma 2.9]. (It was written for the Brownian
component, but works also for the Poisson component.)

For a finite set L = {s1,...,8,} C R, s; < -+ < s,, we introduce an
operator @y, on the space LY = {X € Ly(Q, F,P): EX =0} by

Qr=E(|Focs ) +E(|Forsa) + - +E( | Forrsn) +E(+ | Foro ) -

6a4 Theorem. If finite sets L; C Ly C ... are such that their union is
dense in R, then operators (), converge in the strong operator topology to
the orthogonal projection from Ly onto the first chaos.
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Proof. @)y, is the projection onto Hq, , where M is the set of all nonempty
M € C contained in one of the n + 1 intervals. The intersection of subspaces
corresponds to the intersection of subsets. ]

Stochastic analysis gives us another useful tool for calculating the first
chaos, pioneered by Jon Warren [23, Th. 12]. Let (Bs)s<: be a decomposable
Brownian motion, that is, a decomposable process such that B, ; ~ N(0, t—s).
One says that B has the representation property, if every X € Lo(Q, F, P)
such that E X = 0 is equal to a stochastic integral,

+0o0
X - H(t) dBO,t y

where H is a predictable process w.r.t. the filtration (F_oo)ier.

6a5 Lemma. If B has the representation property then the first chaos is
equal to the set of all linear stochastic integrals

—+o00
/ o(t)dBy:, o€ La(R).

o0

Proof. Linear stochastic integrals evidently belong to the first chaos. Let
X belong to the first chaos. Consider martingales B(t) = By, X(t) =
E(X|Fsy) = f_too H(s)dB(s) and their bracket process (X,B), =
ffoo H(s)ds. The two-dimensional process (B(-), X(-)) has independent in-
crements; therefore the bracket process has independent increments as well.
On the other hand, the bracket process is a continuous process of finite varia-

tion. Therefore it is degenerate (non-random), and H () is also non-random.
U

It follows that Fgiapie is generated by B.

6a6 Example. For the noise of stickiness (see Sect. 4), the process (a(s, t)) <
is a decomposable Brownian motion having the representation property.
Therefore it generates Fyaple- On the other hand we know (recall Bh3)) that
a(-,-) does not generate the whole o-field. So, the sticky noise is not classical
(Warren [23]).

The approach of Theorem is also applicable. Let ¢ : G3 — [—1,+1]
be a Borel function, and 0 < t —e¢ < t < 1. We consider ¢(§p1) =
@(fo,t—aft—a,tff,l) (you know, §t—a,t = fa(t—a,t),b(t—a,t),c(t—a,t))a and compare it
with @(go,t—egt—a,tgt,l)a where §_.; = fa(t—a,t),b(t—s,t),O-
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It appears that

||¢(£O,t—a£t—e,t§t,1) - 90(50,1&—6515—6,1%&71)”[/2 - 0(63/4> = O(\/g> )

provided that ¢ is bounded away from 1 (otherwise we get O(e3/4(1 —t)~1/2)
with an absolute constant). Taking into account that ét_e,t is measurable
w.r.t. the o-field generated by a(-, -) we conclude that the projection of ¢ (& 1)
onto the first chaos is measurable w.r.t. the o-field generated by a(-,-). See
[7H for the rest.

6b Higher levels of chaos

We still consider an arbitrary continuous factorization. Any Borel subset
M C C determines a subspace Hyy C Lo(€Q, F, P). However, the subset
Chnite C C is special; the corresponding subspace, being equal to La(Fgtable)
by Theorem BbIT] is of the form Lo(F;) for a sub-o-field F; C F.

Another interesting subset is Ceountable, the set of all at most countable
compact subsets of R. It is not a Borel subset of C [, Th. 27.5] but still,
it is universally measurable [7, Th. 21.10] (that is, measurable w.r.t. every
Borel measure), since its complement is analytic [7, Th. 27.5]. The Cantor-
Bendixson derivative M’ of M € C is, by definition, the set of all limit points
of M. Clearly, M’ € C, M' € M, and M' = () if and only if M is finite. The
iterated Cantor-Bendixson derivative M(® is defined for every ordinal o by
transfinite recursion: M©) = M; M@+ = (M©@); and M@ = Nz ,M®)
if o is a limit ordinal; see [7, Sect. 6.C]. If M ¢ Ceountable then M@ £ () for
all . If M € Coountanie then M@ = () for some finite or countable ordinal
a; the least o such that M(® = ) is called the Cantor-Bendixson rank of
M € Ceountable- It is always of the form 3+ 1, and M (®) is a finite set.

Recall the proof of Theorem BhITE the indicator of Cgpite belongs to the
set S introduced in Bl Here is a more general fact.

6bl Lemma. Let o be an at most countable ordinal, and M, the set of all
M € C such that M@ = (). Then the indicator function of M, belongs to
the set S.
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Proof. Transfinite induction in «. For av = 0 the claim is trivial. Let a be a
limit ordinal. We take ay, T a, oy < «, and note that M, = M,, UM, U. ..
(indeed, M) | M@ and M) are compact). Thus, indicators of M,,
converge to the indicator of M,,.

The transition from o to o + 1 needs the following property of S: for
every ¢ € S and a closed elementary set E, the function M — (M N E)
belongs to S. Proof: In the first step of constructing S, ¢ is the indicator of
some {M : M C E;}; thus M — ¢(M N E) is the indicator of {M : M C
EyU(R\ E)}. The second and third steps preserve the property.

Assume that the indicator function of M, belongs to S; we have to prove
the same for a + 1. The indicator of Ma ; is M +— (M), where ¢
is the indicator of Cgpie. Taking into account that ¢ € S (see the proof
of Theorem BBTTl), we will prove a more general fact: the function M
(M) belongs to S for every ¢ € S (not just the indicator of Cgpite). The
property is evidently preserved by the second and third steps of constructing
S; it remains to prove it in the first step. Here ¢ is the indicator of {M :
M C E} for an elementary E. We have to express the set {M : M@ C E}
as a limit of sets of the form {M : (M N E})® = @} where E; is a closed
elementary set. The indicator of {M : (M N E;)® = @} belongs to S, since
it is 10, (M N Ey). We note that, for e — 0,

{M: (M N (=0c0,e])® =0} 1 {M : M® C (0,00)},
{M: (M N (=00, =) =0} | {M: M c[0,00)},

which does the job for two special cases, F = (0,00) and E = [0, 00), and
shows how to deal with a boundary point, belonging to £ or not. The general
case is left to the reader. O

6b2 Theorem. Let ((Q,f, P), (.7-"57,5)53) be a continuous factorization.

(a) There exists a sub-o-field € of F such that for all f € Ly(Q, F, P), f
is £-measurable if and only if 15 is concentrated on Ceountable-

(b) For every at most countable ordinal « there exists a sub-o-field &,
of F such that for all f € Ly(Q,F,P), f is E,-measurable if and only if
fi; is concentrated on the set of M € C such that M@ = {) (that is, of
Cantor-Bendixson rank less than or equal to «).

Proof. Ttem (a) follows from (b), since &, = E,41 for countable a large
enough (see [0, Th. 6.9]), and pf(Ceountable) = sup, pr{M : M@ = @} (see
[, the proof of Th. 21.10, and Th. 35.23).

Item (b) follows from BRIl ERTO O

Let us concentrate on Item (b) for a = 0,1,2. The case o = 0 is trivial:
only the empty set M, and only constant functions f. The case a = 1 was
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discussed before: finite sets M and stable functions f. The case @ = 2 means
that M’ is finite.

We define the n-th superchaos as the subspace Hyy C Lo(Q2, F, P) cor-
responding to {M € C : |M’'| = n}. These subspaces are orthogonal. The
0-th superchaos is the stable subspace, while for n = 1,2,... the n-th su-
perchaos consists of (some) sensitive functions. By Theorem BEb2|(b), the
subspace spanned by n-th superchaos spaces for all n = 0,1,2,... is of the
form Ly (2, &, P) where & is a sub-o-field of F. Similarly to Theorem [Ba3l
the sub-o-field generated by the first superchaos and Fyapie is equal to &s.

Similarly to (Bb2) and (BEL7) we may ‘count’ points of M’ by the operator

n—1

/{81,...,sn} - Z(l —E ( }‘7:—00’3]' ® fssjiglil @ ‘7:8]'+1,°0 ))

j=1

— (1 . Uéil,w)) 4t (1 N Uéin_l’sn)) ’
or rather its limit N = lim,, N . Further, similarly to Bbdl, we may define
Vi = limexp(—AN], ).

This way, an ordinal hierarchy of operators may be constructed. It corre-
sponds to the Cantor-Bendixson hierarchy of countable compact sets.
Introducing

Qf{sh_,_,sn}X —F (X ‘ f—oo,sl ® fstable) + E (X ‘ fstable ® f817s2 ® fstable)

51,00 —00,81 52,00
to+E(X | F, | @FE) LB (X | @ F, )

n—1,sn —00,8n

for X € Ly(€2, F, P) such that E (X } fstable) = 0, we get such a counterpart
of Theorem [Badl.

6b3 Theorem. If finite sets Ly C Ly C ... are such that their union is dense
in R, then operators ()7 ~converge in the strong operator topology to the
orthogonal projection from the sensitive subspace onto the first superchaos.

Proof. () is the projection onto Hq,, where M is the set of all nonempty
M € C such that M’ is contained in one of the n+1 intervals. The intersection
of subspaces corresponds to the intersection of subsets. O

6b4 Example. For the sticky noise, consider such a random variable X: the
number of random chords [s,¢] x {x} such that s > 0 and ¢ > 1. In other
words (see Hi),

X=Nz:0(z) e lIN(0,00)}.
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The conditional distribution of X given the Brownian path B(-) = a(0,-) is
Poisson(A) with A = a(0,1) 4+ b(0,1) = B(1) — miny  B(-), which is easy
to guess from the discrete counterpart (see (BcIl)). That is a generalization
of a claim from In fact, the conditional distribution of the set {z :
o1(z) € IIN (0,00)}, given the Brownian path, is the Poisson point process
of intensity 1 on [—b(0,1),a(0,1)], which is a result of Warren [23]. Taking
into account that the o-field generated by B(-) is Fyaple (recall Bafl), we get
E (X } fstable) =a(0,1) 4+ 6(0,1). The random variable

Y =X —E(X|Fabte) =X —a(0,1) — b(0,1)

is sensitive, that is, E (Y } .7:stab1e) = 0. I claim that Y belongs to the first
superchaos.

The proof is based on Theorem Given 0 < 51 < -+ < 5, < 1, we
have to check that Y can be decomposed into a sum Yy + - - -+ Y,, such that
each Yj is measurable w.r.t. 5o @ F ®@ Fstable " Here is the needed

35S5+1 Sj+1,1"
decomposition:

Xj =z :o1(z) € IIN(s5, 8541)}
}/j :Xj —E<Xj }fstable) .

We apply a small perturbation on (0, s;) and (s;;1,1) but not on (s;, Sj4+1).
The set I1 N (s;, sj+1) remains unperturbed. The function oy is perturbed,
but only a little; being a function of B(-), it is stable.

So, Y belongs to the first superchaos, and X belongs to the first super-
chaos plus Lo(Fstable). It means that px is concentrated on sets M such that
|M'| < 1.

The same holds for random variables X, = [{z : < u, oy(z) € IIN
(0,00)}|, for any u. They all are measurable w.r.t. the o-field generated by
the first superchaos and Fyapie. The random variable ¢(0, 1) is a (nonlinear!)
function of these X, (recall El). We see that the first superchaos and Fyaple
generate the whole o-field F. Every spectral set (of every random variable)
has only a finite number of limit points.

6b5 Example. Another nonclassical noise, discovered and investigated by
Warren [22], see also Watanabe [25], may be called the noise of splitting. It
is the scaling limit of the model of IdIl see also Spectral measures of
the most interesting random variables are described explicitly! A spectral
set contains a single limit point, and two sequences converging to the point
from the left and from the right.

Again, every spectral set (of every random variable) has only a finite
number of limit points.
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6b6 Question. We have no example of a noise whose spectral sets M are
at most countable, and M’ is not always finite. Can it happen at all? Can it
happen for the refinement of a dyadic coarse factorization satisfying Bell)?

Beyond Ceountable it is natural to use the Hausdorff dimension, dim M, of
compact sets M € C. The set S used in Theorems BbIT] and [ER2 helps again.
First, a general lemma.

6b7 Lemma. For every probability measure p on C the function ¢ : C —
[0, 1] defined by (M) = p{M; € C: M N M; = (0}, belongs to the set S.

Proof. We may restrict ourselves to compact subsets of a bounded interval;
let it be just [0, 1]. For any such set M let M ™ denote the union of intervals
[& 2] (k = 0,...,n—1) that intersect M. The sequence (M) | decreases

and converges to M (in the Hausdorff metric). For every n, the function
on(M) = pu{M; : M N Ml(n) = ()} belongs to S, since it is the convex
combination of indicators of {M : M C E} with coefficients pu{M; : M{™ =
[0,1] \ £}, where E runs over 2" elementary sets. It remains to note that
©n(M) T (M), since M N M; = () if and only if M N Ml(n) = () for some
n. 0

6b8 Lemma. For every a € (0,1) there exists a function ¢ € S such that
@(M) =1 for all M satisfying dim M < «, and (M) = 0 for all M satisfying
dim M > «.

Proof. We may restrict ourselves to the space Cy; of all compact subsets of
(0,1). There exists a probability measure p on Cp; such that the function
©(M) = u{M; : My N M = (} satisfies two conditions: p(M) = 1 for all M
such that dim M < «, and (M) < 1 for all M such that dim M > a. That
is a result of J. Hawkes, see [0 Th. 6], [I0, Lemma 5.1]. By Gh1d ¢ € S. By
multiplicativity (of S), also ¢™ € S for all n. The function lim,, ¢™ satisfies
the required conditions. O

As a by-product we see that the Hausdorff dimension is a Borel function
C — R. (To this end we use an additional limiting procedure, as in the proof
of Theorem [EDhI )

6b9 Theorem. Let ((Q,]—", P), (f:g,t)sgt) be a continuous factorization, and
a € (0,1) a number. Then there exist sub-o-fields &,_, €44 of F such that
for all f € Ly(Q2, F, P),

(a) f is measurable w.r.t. &,_ if and only if us is concentrated on the set
of M € C such that dim M < «;

(b) f is measurable w.r.t. &,y if and only if y1; is concentrated on the set
of M € C such that dim M < a.
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Proof. We choose a3, — «, apply Bb8 for each k, consider the limit ¢ of
corresponding functions ¢y, and use BhI0l The case ay, < « leads to (a), the
case o > « leads to (b). O

A more general notion behind Theorems BbIT], and is an ideal.
Recall that a subset I of C is called an ideal, if

My C My, Myel — M1€I,
Ml,MQEI - (M1UM2)EI.

In particular, Cgpite and Ceountanle are ideals. For every finite or countable
ordinal «, all M € C such that M(®) = ) are an ideal. For every a € (0,1), all
M € C such that dim M < « are an ideal. The same holds for ‘dim M < «/’.
All these ideals are shift-invariant:

Mel = (M+t)el forallt,
M+t={m+t:meM},

but in general, an ideal need not be shift-invariant. Also, all ideals mentioned
above are Borel subsets of C, except for Ceountable; the latter is universally mea-
surable, but not Borel. The following theorem is formulated for Borel ideals,
but holds also for universally measurable ideals. Conditions (a,b,c)
parallel (a,b,c), which means that sub-o-fields &; form a continuous
factorization of the quotient probability space (2, F, P)/E.

6b10 Theorem. Let ((Q, F,P), (.7-"57,5)53) be a continuous factorization, I C
C a Borel ideal, & C F a sub-o-field, and for every f € Lo(Q2,F,P), f
be £-measurable if and only if ;; is concentrated on /. Then sub-o-fields
Esr = €N Fy, satisty the conditions

(a) Ert =& 5® &+ whenever r <s<t,
(b) U Estet—e generates &, whenever s < t,
e>0
(c) U E_,.n generates & .
n=1

Proof. (a) We introduce Borel subsets I,;, = {M € I : M C (s,t)} of C
and the corresponding subspaces Hyy = Hj,, of Ly(2, F, P). The equality
I, = I, x I, (treated according to (Gall)) follows easily from the fact that

I is an ideal. Lemma (or rather, its evident generalization) states that
H,, = H,;® H,;. On the other hand,

Lo(Esyp) = La(ENFoy) = Lo(E) N Lo(Fsy) = Hr N He,, = Hine,, = Hsy .
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So, Ly(&rt) = La(Ers) @ La(Esy), therefore &, = &, s @ Es .

(¢c) Unl_nn = I, therefore U,H;_, . is dense in Hy; that is, U, La(E_,,,)
is dense in Ly(E), therefore U,E_,,,, generates £.

(b): similarly to (c). O

6b11 Remark. If the ideal I is shift-invariant and the given object is a
noise (not only a factorization), then the sub-factorization (&,;) becomes a
sub-noise. In particular, every nonclassical noise has its classical (in other
words, stable) sub-noise.

6b12 Question. Does every Borel ideal correspond to a sub-o-field? (For
an arbitrary continuous factorization, I mean. Though, the question is also
open for noises and shift-invariant ideals.)

6c  An old question of Jacob Feldman

Let ((Q, F,P), (.7:57,5)53) be a continuous factorization. Sub-o-fields Fg cor-
respond to elementary sets £ C R (recall Bdl) and satisfy

(601) FEluEg = fEl X FEQ whenever E1 N E2 = @

It is natural to ask whether or not the map F — Fg can be extended to all
Borel sets £ C R in such a way that (Gcll) is still satisfied and in addition,

(6¢2) Fg, | Fg whenever E, T E.

The answer is positive if and only if the given continuous factorization is clas-
sical (Theorem below, see also [I8]), which solves a question of Feldman
4.

Note that (Bc2) implies

(6¢3) Fe, | Fg whenever E, | E.

Proof: Let E, | E, then Fg\g, T Fr\g by @cd), and so Fg\ g is independent
of NFg,. If Fg is strictly less than NFg,, then Fr ® Fr\g is strictly less
than (NFg,) ® Fr\ g, which cannot happen, since Fg ® Fr\p = F by (Bc).

An extension satisfying (Bc2), (Bc3) is unique (if it exists) by the mono-
tone class theorem. Therefore an extension (of (Fg) to the Borel o-field)

satisfying (BcTl), (Bc2) is unique (if it exists).

6c4 Lemma. If the factorization is classical then an extension satisfying

EBcT), ([BcD) exists.
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Proof. By (slightly generalized) Theorem Ba3l for every elementary E, the
o-field Fp = F5tb is generated by the corresponding portion HY) = Ly(Fgp)N
HW of the first chaos HY. The space HS) corresponds (in the sense of The-
orem BdT)) to the subset Mg) C C of all single-point subsets of E.

Given an arbitrary Borel set £ C R, we define the subset Mg) ccC
as above (that is, all single-point subsets of E), consider the corresponding
subspace HS) c HW, and introduce the sub-o-field Fr C F generated by
HY.

Given f € HW, we denote by fz the orthogonal projection of f to H](;);

here FE is an arbitrary Borel set. If E,, T FE (or E,, | F) then fg, — f in L.
If F is elementary then

Eel/ = (EeifE) (EeifR\E)

due to independence. The monotone class theorem extends the equality to
all Borel sets £/. We conclude that fr and fr\g are independent. Therefore
o-fields Fg and Fr\g are independent for every Borel set E. Taking into
account that Hgl)u B = HY & HSQ) whenever Ey N Ey = () we get (BTl).

1

If E, 1 E then Hy) 1 HY, which ensures (6cZ). 0

Condition (a) of the next lemma is evidently necessary for the exten-
sion to exist. In more topological language, for every open set G C R the
corresponding o-field F¢ is naturally defined by approximation (of G by
elementary sets) from within, while a closed set is approximated from the
outside. The necessary condition, F¢ ® Fr\g = F, appears to be equivalent
to the following (see BcHl(b)): the set M NG is compact, for almost all M € C.

6¢c5 Lemma. For all elementary sets £y C Es C ... the following two
conditions are equivalent:

(a) (\/fEn> ® (/\fR\En> =F;

(b) the set {M € C: Vn M N ((UE,) \ E,) # 0} is negligible w.r.t. the
spectral measure pf for every f € Lo(Q2, F, P).

Proof. Denote F,, = R\ E,, &, = Fg,, Fn = Fr\E,> €0 = Vn&n, Foo = N Fn.
Clearly, £, and F, are independent, and (a) becomes £,V F, = F. Denote
also M, ={M eC:MCE},N,={M¢eC:MCF,}, M, =
UM, ={MeC:InM C E,}, Now =N, N, ={M € C: M C NF,}; then
Hum, = Lo(E,), Hy,, = Lo(Fy). We have M,, T M, and N,, | N; therefore
Ly(E,) = Hpm, 1T Hm,, and Lo(F,) = Hy,, | Hp,. On the other hand,
En T € and F,, | Fuo; therefore Ly(E,) T La(Ex) and Lo(F,) | Lo(Fs). So,

Hu, = Ly(€x), Hyn, = Lao(Fx).
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Denote My V No = {M; UMy : My € My, My € Ny}; the same for
My V Ny ete. We have Haq,yn, = Hyy @ Hy, and My VN, | MV Ny;
thus Ha,un,, = Hay, ® Har,, (note a relation toBaZ). Similarly, Hay, v, =
Hy, ® Hy,. However, M, VN, 1T My V Ny, and we get Hy_un,, =
Hpy, ® Hy, that is,

HMOO\/NOO - LQ(goo) X L2(foo) .

Now (a) becomes Hnq_vn,, = H, which means negligibility of the set C \
(Moo VNL) ={M :¥n M N ((UEy) \ E,) # 0}, that is, (b). O

Every classical factorization satisfies BcH(b), since a finite set M cannot
intersect (UEy) \ E, for all n.

6¢c6 Lemma. If Condition BcHl(b) is satisfied for every (£,,) then the factor-
ization is classical.

Proof. Let the factorization be not classical. Then we can choose a sensitive
[ € Ly(Q,F,P), ||f]| = 1. Assume for convenience that f € Lo(Fp1),
and consider the spectral measure fif; pp-almost all M are infinite subsets
of (0,1). We choose pi,ps,--- € (0,1) such that > p, < 1/3 (say, pr =
27%/3). Integer parameters n; < ny < ... will be chosen later. We introduce
independent random elementary sets By, By, - -+ C [0, 1] as follows:

lh—11 I —1 Ly _
B{mc= () oo () | =
ng  Ng ng Nk

whenever 1 < [ < -+ < I, < ng, m € {0,...,n,}. That is, we have
a two-parameter family of independent events, (lg—kl, nik) C By, where [ €
{1,...,n}, k € {1,2,...}. The probability of such an event is equal to py.
We define E, = By U ---U By; thus Ey C Ey C ... is a (random) increasing
sequence of elementary subsets of [0, 1].

We treat M as a random compact subset of (0, 1), distributed p; and in-
dependent of By, By, ... Let P be the corresponding probability measure (in
fact, product measure) on the space Q of sequences (of sets) (M, By, Ba, ...).
For each £ = 0,1,2,... we define an event A, that is, a measurable subset

of Q, by the following condition on (M, By, Bs, ... ):

M \ E\ is infinite and does not intersect By ;

of course, E, = 0.

We can choose ny,ng, ... such that 3, P(Ax) < 1/3. Proof: P(A) is
a function of nq,...,ng, ngr1 that converges to 0 when ng 1 — oo (while
ni,...,n; are fixed).
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The probability of the event
M \ Ej is infinite for all &

is no less than 1 — Y pp > 2/3. Proof: Each M has a limit point (at least
one), and the point is covered by (the closure of) ByUByU. .. with probability

<> D

So, there is a positive probability (> 1/3) to such an event:
for each k, the set M \ Ej is infinite and intersects B .

However, the conditional probability, given Bj, Bs,... (but not M) of the
event
for each k, the set M \ E} intersects By

must vanish according to BcA(b). O

6¢7 Theorem. A continuous factorization is classical if and only if the map
E — Fg can be extended from the algebra of elementary sets to the Borel

o-field, satisfying (Bc]l) and (B6c2).

Proof. If the factorization is classical then the extension exists by Let
the extension exist; then Bchl(a) is satisfied for all (Ey), therefore BcH(b) is
also satisfied, and the factorization is classical by BcAl. O]

6d Black noise

6d1 Definition. A noise is black, if its stable o-field Fyape is degenerate.
In other words: its first chaos contains only 0.

Why ‘black’? Well, the white noise is called ‘white’ since its spectral
density is constant. It excites harmonic oscillators of all frequencies to the
same extent. For a black noise, however, the response of any linear sensor is
zero!

What could be a physically reasonable nonlinear sensor able to sense a
black noise? Maybe a fluid could do it, which is hinted at by the follow-
ing words of Shnirelman [I3, p. 1263] about the paradoxical motion of an
ideal incompressible fluid: ‘... very strong external forces are present, but
they are infinitely fast oscillating in space and therefore are indistinguishable
from zero in the sense of distributions. The smooth test functions are not
“sensitive” enough to “feel” these forces.’

The very idea of black noises, nonclassical factorizations, etc. was sug-
gested to me by Anatoly Vershik in 1994.
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6d2 Lemma. Let ((Q, F,P), (Fs’t>sgt) be a continuous factorization, a < b,
M a Borel subset of Cop = {M € C: M C (a,b)}, and M = {M € C :
M N (a,b) € M}. If jup(M) = 0 for all f € Ly(Q, F, P) then pup(M) = 0 for
all f € Ly(Q, F, P).

Proof. 1 prove it for (a,b) = (0,00), leaving the general case to the reader.
We have C = C_ 0 X Coo0, M C Cooo and M = C_,.o x M (in the sense
of Ball)). ByBa2 H, = He__,xm = He ., ® Hy. By (BdI3), the space
Hyy is trivial (that is, {0}). Therefore H ; is also trivial; it remains to use

BJdI3) again. O

Recall that a compact set M is called perfect, if it has no isolated points.
(The empty set is also perfect.) The set Cperfect Of all perfect compact subsets
of R is a Borel set in C, see [7, proof of Th. 27.5].

6d3 Theorem. For every continuous factorization ((Q, F,P), (fs,t)sgt) the
following two conditions are equivalent:

(a) the first chaos space is trivial (contains only 0);

(b) for every f € Lo(S2, F, P) the spectral measure s is concentrated on

Cperfect .

Proof. (b) implies (a) evidently (a single-point set cannot be perfect). As-
sume (a). Applying to the set M of all single-point subsets of (a,b) we
see that pp-almost all M € C are such that M N (a,b) is not a single-point
set, for all rational a < b. It means that M is perfect. O

So, a noise is black if and only if spectral measures are concentrated on
(the set of all) perfect sets.

Existence of black noises was proven first by Tsirelson and Vershik [20,
Sect. 5]. A simpler and more natural example is described in the next section.
Another example is found by Watanabe [26].

If all spectral sets are finite or countable (as in B4, BBH), such a noise
cannot contain a black sub-noise.

6d4 Question. If a noise contains no black sub-noise, does it follow that all
spectral sets are at most countable?

Perfect sets may be classified, say, by Hausdorff dimension. For any
a € (0,1), sets M € C of Hausdorff dimension < « are a shift invariant
ideal, corresponding to a sub-noise. Also, all M € C of Hausdorff dimension
« correspond to a ‘chaos subspace number a’. A continuum of such chaos
subspaces (not in a single noise, of course) could occur, describing different
‘levels of sensitivity’. For now, however, I know of perfect spectral sets of
Hausdorff dimension 1/2 only.
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6d5 Question. Can a noise have perfect spectral sets of Hausdorff dimension
other than 1/27 (See also the end of Bd.)

6d6 Question. Can a black noise emerge as the refinement of a dyadic
coarse factorization satisfying (Bell)?

The following results (especially BdT4]) may be treated as continuous-time
counterparts of Theorem (of Benjamini, Kalai and Schramm). Given a
continuous factorization ((Q, F, P), (Fs+)s<:) and afunction f € Ly(2, F, P),
we define

n+1

H(f) = limsup Z < \/Val" (f } FR\(t_1,t0) ) )2 ;

{tl ----- tn}T k=1

here ty = —o0, t,11 = +00, and the ‘limsup’ is taken over all finite sets
L=Aty,....t,} CR, t; <--- < t,, ordered by inclusion. That is, ‘for every
¢ there exists L. such that for all L D L. ...’ and so on. We also introduce
n+1
Hi(f) = dim > Var(E (S| Foa ).
1ye-0y n k:1

This time we may write ‘lim’ (or ‘inf”) instead of ‘lim sup’ due to monotonicity
(w.r.t. inclusion); the more L = {ty,...,%,} the less the sum.

6d7 Lemma. \/Var(E (f ‘ Fsi )) < E \/Var (f } fR\(S,t)) for all f €
Ly(Q, F, P) and s < t.

Proof. The space Ly(2, F,P) = Lo(F) = La(Fsp @ Fr\(sr)) = Lo(Fsp) @
Ly(Fry\(s,)) may also be thought of as the space Lo (fR\(&t), L2(fs,t)) consist-
ing of F\ (s,-measurable square integrable vector-functions, taking on values
in Lo(Fs.). We consider the element f € Ly (fR\(S,t), L, (.7-“37t)) corresponding
to f € Lyo(F) (according to the canonical isomorphism of these two spaces).
The mean value of the vector-function is E f = E ( f } fst) (these two ‘E’

act on different spaces). Convex1ty of the seminorm +/Var(-) on Lo(F;,)

gives 4/ Var(E f ) < E4/Var(f), where Var(f ) means the pointwise variance

(each value of f is a random varlable, the latter has its variance), basically
the same as Var (f ‘ TR\(s,0) ) I

6d8 Corollary. H;(f) < H(f).
6d9 Lemma. H,(f) = ||Q,f|| for all f € Ly(2, F, P); here @ is the or-

thogonal projection onto the first chaos.
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Proof. Follows immediately from Theorem Gadl O

6d10 Corollary. Every f € Lo(§2, F, P) such that H(f) = 0 is orthogonal
to the first chaos.

6d11 Corollary. If a noise is such that H(f) = 0 for all f € Ly(Q, F, P),
then the noise is black.

6d12 Lemma. Let g € Ly(F), h € Loo(Foxo), and f = E(gh‘f_wo).
Then H(/) < |42 H(g).

Proof. 1t is sufficient to prove the inequality for the influence,
E\/Var(f}f]g\(s,t)) < HhHOOIE\/Var(g}]:R\(S,t)) for any (s,t) C
(—00,0). Similarly to the proof of Bdd, we consider § €
L, (.7:07OO,L2(.7:_0070)) corresponding to g € Lo(F_wpo @ Fo). We have
gh € Lg(fom,Lg(]:_oo’O), E(gh) = f. Convexity of the seminorm
E\/Var(- | Fecoon(sy) o0 Lo(F_sp) gives E\/Var(f‘f(—oo,O)\(s,t)) <
EE \/Var(gh‘f(_oo,o)\(&t)), where ‘Var’ and the internal ‘E’ act on
Ly(F_oop), while the outer ‘E’ acts on Ly(Fpe). The right-hand
side is equal to E<|h|E \/Var(g}f(_oo,o)\(&t))) and so, cannot exceed

IIEE \/Var (| Foooonsn) = IhllE y/Var (g | Feyo)-

O

6d13 Lemma. If f € Ly(2, F, P) is such that H(f) = 0, then py is concen-
trated on Cperfect-

Proof. Similarly to the proof of Theorem Bd3 it is sufficient to prove, for
every (a,b) C R, that ps-almost all M € C are such that M N (a,b) is not
a single-point set. Lemma shows that the subspace corresponding to
(M eC:[Mn(ab)| =1} is Hoo® HY) @ Hypo, where H) is the
first chaos intersected with H,;. We have to prove that f is orthogonal to
H .® Hélb) ® Hp 0, that is, to gh for every g € H;lb), he H «q,® Hpoo =
Ly(Fr\(ap)), and we may assume that h € Loo(Fry(ap))-

We have E (fgh) = E (gE ( fh ‘ Fap)). Lemma (slightly general-
ized) shows that H(E ( fh|Fap)) < [[hlZH(f). Thus, H(E ( fh|Fap)) =
0; by 6BdI0, E (gE ( fh | Fap)) = 0. O

6d14 Corollary. Let ((Q,]—", P), (fs,t)sgt) be a continuous factorization. If
f € La(Q, F, P) satisfies H(f) = 0 and E f = 0, then f is sensitive.

Here are counterparts of Bb and Theorem BbITl inspired by the work [9]
of Le Jan and Raimond.
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6d15 Lemma. Let f € Ly(Q), F, P), and g = no f where n : R — R satisfies
In(x) —n(y)| < |z —y| for all z,y € R. Then

H(g) <H(f).

Proof. It is sufficient to prove the inequality for the influence,

E \/Var (g ‘ fR\(&t)) < E \/Var (f } FR\(s,0) ), or a stronger inequality
Var (g‘]:E) < Var (f‘fE) a.s., for an arbitrary elementary set E. It
is a conditional counterpart of the inequality Var(n o X) < Var(X) for any
random variable X. A proof of the latter: Var(noX) = 3E (noX;—noX,)* <
sE (X; — X,)? = Var(X), where X7, X, are independent copies of X.

O

6d16 Theorem. For every continuous factorization ((Q,F,P), (Fss)s<t)
there exists a sub-o-field Fietprack 0of F such that La(€2, Fietblack, ) is the
closure (in Lo(Q, F, P)) of {f € Ly(Q2, F, P) : H(f) = 0}.

Proof. The set {f : H(f) = 0} is closed under linear operations, and also
under the nonlinear operation f +— |f|, therefore its closure is of the form
L2 (ﬂetblack) . 0

6d17 Corollary. L2(fjetblack) C H

Cperfect ‘

6d18 Question. Whether Fjepiack is nontrivial for every black noise, or not?

7 Example: The Brownian Web as a Black
Noise

7a Convolution semigroup of the Brownian web

A one-dimensional array of random signs can produce some classical and
nonclassical noises in the scaling limit, but I still do not know whether it can
produce a black noise, or not (see BdAl).

) .
<
N ST SRU S

(b) @

This is why I turn to a two-dimensional array of random signs (a). It pro-
duces a system of coalescing random walks (b) that converges to the so-called
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Brownian web (c), consisting of infinitely many coalescing Brownian motions
(independent before coalescence).

The Brownian web was investigated by Arratia, Toth, Werner, Soucaliuc,
and recently by Fontes, Isopi, Newman and Ravishankar [5] (other references
may be found therein). The scaling limit may be interpreted in several ways,
depending on the choice of ‘observables’, and may involve delicate points,
because of complicated topological properties of the Brownian web as a ran-
dom geometric configuration on the plane. However, we avoid these delicate
points by treating the Brownian web as a stochastic flow in the sense of
Sect. 4, that is, a two-parameter family of random variables in a semigroup.

In order to keep finite everything that can be kept finite, we consider
Brownian motions in the circle T = R/Z rather than the line R.

It is well-known that a countable dense set of coalescing ‘particles’, given
at the initial instant, becomes finite, due to coalescence, after any positive
time. Moreover, the finite number is of finite expectation. Thus, for any
given ¢t > 0, the Brownian web on the time interval (0,¢) gives us a random
map T — T of the following elementary form (a step function):

Y1,--Yn . T — T
)

X1y °

T < <Xy <2, Y1 <o < yp < y1 (cyclically),

Y1seYn (1‘) = yk+1 fOl" x e (xku xk+1] :

T1,e0y®p

Of course, n is random, as well as x1,...,z, and y1,...,y,. The value at x;
does not matter; we let it be y for convenience, but it could equally well be
Yr+1, or remain undefined. Points xq, ..., x, will be called left critical points
of the map, while y1, ..., y, are right critical points.

We introduce the set G, consisting of all step functions T — T and,
in addition, the identity function. If f,g € G4 then their composition fg
belongs to G.; thus G is a semigroup. It consists of pieces of dimen-
sions 2,4, 6, ... and the identity. Similarly to G (recall @d2)), G is not a
topological semigroup, since the composition is discontinuous.

The distribution of the random map is a probability measure p; on G..
These maps form a convolution semigroup, ps * py = psye. Similarly to
Bd discontinuity of composition does not harm, since the composition is
continuous almost everywhere (w.r.t. s ® ;). Left and right critical points
do not meet.??

32They meet with probability 0, as long as s and ¢ are fixed. Otherwise, delicate points
are involved. . .
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Having the convolution semigroup, we can construct the stochastic flow,
that is, a family of G-valued random variables (s +)s<; such that

fs,t ~ Hi—s,
gr,sgs,t - é-r,t a.s.

whenever —oco < r < s <t < oo, and
&t tar -+ &ty 11, are independent

whenever —oo < t; < --- < t, < .

Indeed, for each 7, we can take independent & ; (x+1)/: : Qi] = G for k €
Z according to the discrete model, and define &, /i 1/ = ki, (k+1)/i - - - Ea-1) /3,13
For any two coarse instants s < ¢, the distribution of {4 converges weakly
(for i — 00) t0 fiy]oo]—s[sc]- The refinement gives us

gst : Q N Goo é-st — fyl(svt)v""yn(s,t)(s7t) .

xl(svt)v--'vxn(s,t) (Svt) !

xk(+,+) and yx(-, -) are continuous a.s. Also,
(7al) En(s,t) < oo.

We consider the sub-o-field F;; generated by all &, ,, for (u,v) C (s,t) and
get a continuous factorization. Time shifts are evidently introduced, and so,
we get a noise — the noise of coalescence.

7b Some general arguments

Probably we could use H and Theorem in order to prove that the noise
of coalescence is black (see also [0]). However, I choose another way (via H;
rather than H).

Random variables of the form (&) for arbitrary s < ¢t and arbitrary
bounded Borel function ¢ : G, — R generate the whole o-field F. Products
of the form 1(&ty) - - - @n(&t, 1 1,) for tg < -+ < t, span Ly (as a closed
subspace); however, we cannot expect that linear combinations of such (s )
are dense in L.

Denote by () the orthogonal projection of Ly(Q2, F, P) onto the first
chaos.

7bl Lemma. Linear combinations of all Q1¢(&;) are dense in the first
chaos.

Proof: Follows easily from the next (quite general) result, or rather, its
evident generalization to n factors.
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7b2 Lemma. Let r < s <t X € Lo(F,5), Y € Ly(Fst). Then Q1(XY) =
Q1X)E (V) + E (X)Q:(Y).

Proof. In terms of operators R, given by Bh3 we have Q1 (XY) = R, ,(XY),
where ¢, : C.; — R is the indicator of {M € C: [M N (r,t)] = 1}. Similarly,
Q1(X) = R, (X), and E(X) = Ry, ,(X), where 1, is the indicator of
{M € C: |Mn(rs)| = 0}. However, ¢,; = @ stst + Uy sps: almost
everywhere on C,; (w.r.t. every spectral measure). O

In order to prove that the noise (of coalescence) is black, it suffices to prove
that Qu(&+) = 0 for all s,t, . We'll prove that Qu(&y 1) = 0; the general
case is similar. According to we have to prove that Hy(¢(£01)) = 0.
Assuming that E ¢(&p1) = 0 we will check the sufficient condition:

IE (@(€0.) | Fioer )| = 0(v/E) fore —0,

uniformly in t. When doing so, we may assume that ¢ is bounded away from
0 and 1. Indeed, ||E (¢(&,.)|Fe1)ll — 0 for ¢ — 1—, due to continuity of
the factorization (recall BAII(b)).

7b3 Lemma. E ((,0(50’1) ‘ ft—e,t) =FE (QO(&)J) } é-t—a,t)'
The proof is left to the reader; a hint:

E (0(ts) | Etartas Etoa ) = // (§12€238348a5) Aptr 1, (E12) A ptrs 1 (€15)
=K (@(Stl,%) } ftz,t4 ) )

7c The key argument

Similarly to Bafl, we consider X = ¢(£01) = @(§os-c&t—ciétn), EX = 0,
|X| < 1 as. We have to prove that |E (X |&_.; )| = o(vE) for e — 0,
uniformly in ¢, when ¢ is bounded away from 0 and 1. Clearly,

E(X|6 .) = / / o(Fah) duea(F)dpa_e(h)

where g = &§_.;.




We choose v € (%, %) and divide the strip (t — e,t) x T into ~ =7 ‘cells’

(t — &, t) X (Zk, Zk—i—l) of helght Zky1 — Rk ™ ev.

E’Y

We want to think of g as consisting of independent cells. Probably it can be
done in continuous time, but we have no such technique for now. Instead,
we retreat to the discrete-time model. The needed inequality for continuous
time results in the scaling limit ¢ — oo provided that in discrete time our
estimations are uniform in i (for i large enough).

So, random signs that produce g are divided into cells. Cells are inde-
pendent and, taken together, they determine g uniquely.

However, a path may cross many cells. This is rather improbable, since
v < 1/2, but it may happen. We enforce locality by a forgery! Namely, if
the path starting at the middle of a cell reaches the bottom or the top edge
of the cell, we replace the whole cell with some other cell (it may be chosen
once and for all) where it does not happen.

W - O

Now cells are ‘local’; a path cannot cross more than two cells, but of course,
the stochastic flow is changed. Namely, ¢ is changed with an exponentially
small (for e — 0) probability, which changes E (X ‘ St_E,t) by o(y/€) (much
less, in fact). Still, cells are independent.

Does a cell (of g) influence the composition, fgh? It depends on f and
h. 1If the left edge {t — e} X [2k, zx11] of the cell contains no right critical
point of f, the cell can influence, since a path starting in an adjacent cell
can cross the boundary between cells. However, if the enlarged left edge
{t—e} x [z — €7, 241 +€7] contains no right critical point of f (in which case
we say ‘the cell is blocked by f7), then the cell cannot influence, because of the
enforced locality. Similarly, if the enlarged right edge {t} x [z — &7, zp 11+ 7]
contains no left critical point of h (in which case we say ‘the cell is blocked
by h’), the cell cannot influence.

The probability of being not blocked by f is the same for all cells, since
the distribution of f is invariant under rotations of T (discretized as needed).
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The sum of these probabilities does not exceed 3En(0,t — ¢) (recall ([all)),
which is O(1) when € — 0. (Here we need ¢ to be bounded away from 0.)
Thus,

P (a given cell is not blocked by f) = O(e?);
P (a given cell is not blocked by i) = O(");
P (a given cell is not blocked ) = O(e*);
PP (at least one cell is not blocked ) = O(e?).
In the latter case we may say that g is not blocked (by f,h).
Denote by A the event “g is not blocked by f,h” (it is determined by f
and h, not g); P (A) = O(g7). Taking into account that
X=X-EX=(X "1,-E(X 1))+ (X-1-14) -E(X-(1-14))),
E(X-(1-14)|g)=E(X -(1-14)),
E(X|g)=E(X-14]|g)-E(X-14),

we have to prove that [|[E (X-14|g)—E (X-14)|| = o(/€). Note that it does
not result from the trivial estimation || X 14| < ||14]] = /P (4) = O(7/?),

v E ( 3 2) Note also that, when g influences X, its influence is usually not
small (irrespective of €) because of the stepwise nature of f and h.
We express the norm in terms of covariance,

IE (X 1a|g) —E(X - 14) :SipCOV<X'1A,¢(9))a

where the supremum is taken over all Borel functions ¢ : G, — R such that
Var(1(g)) < 1. In terms of the correlation coefficient

COV(X lA,¢ )
VVar(X - 14)/Var(¥(g))

Corr(X - 14,%(g)) =

it is enough to prove that
Corr(X - 14,9(g)) = o(e' /%)

since it implies Cov(...) = o(e1=V/2) . ||X - 14]| = o(e1=/27/2) = o(/E).
Instead of o(e1=7)/2) we will get O(£7), which is also enough since v > 1/3.

It remains to apply the quite general lemma given below, interpreting its
Y} as the whole k-th cell (of g), X} as the indicator of the event “the k-th
cell is not blocked” (k =1,...,n), X, as the pair (f,h), and ¢(...) as X -14.
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The lemma is formulated for real-valued random variables Y}, but this does
not matter; the same clearly holds for arbitrary spaces, and in fact, we need
only finite spaces. The product XY} is a trick for ‘blocking’ Y}, when X = 0.
Note that dependence between Xy, X1, ..., X, is allowed.

7cl Lemma. Let (Xo, X3,...,X,) and (Y7,...,Y,) be two independent ran-
dom vectors, V3 : Q@ = R, X} : Q — {0, 1} fork=1,...,n, Xo: Q2 — R, and
random variables Y7, ....,Y,, be independent. Then

k=1,...,m

Corr(go(Xo,XlYl,...,XnYn), w(Yl,...,Yn)) < \/ max P(Xk = 1)

for all Borel functions ¢ : R"™ — R, ¢ : R®™ — R such that the correlation
is well-defined (that is, 0 < Varp(...) < oo, 0 < Vary(...) < 00).

Proof. We may assume that Xi,...,X, are functions of X;. Con-
sider the orthogonal (in Lo(f2)) projection @ from the space of
all random variables of the form (Y3,...,Y,) to the space of
all random variables of the form ¢(Xo, X1Y1,...,X,Y,), that is,
QU(Yy,....Y,) =E(¢(Y1,...,Y,) | Xo, X1Y1,..., X,)Y,, ). We have to prove
that |Qu(Y1,....Yn)|? < (maxpP (X, = 1))[|v(Y,...,Y,)|* whenever
Ey(Y1,...,Y,) = 0. The space of all ¥(Y,...,Y,) is spanned by factor-
izable random variables (Y7, ...,Y,) = ¥1(Y1) ... ¢, (Y,). For such a ¢ we
have

= ( IT Boon)( IT wow);

kaZO kazl

|Qu(¥i, . Vo) 2 = E (E (1Q(¥,.... Ya) | X0) )
=E (( H ‘E¢k(Yk)‘2)( H E|¢k(yk)‘2)>
k:X3,=0 k:Xp=1
I, i additon, E¢r(Yi) = 0 then [Qé(Yi...Y))? <
P(X,=1)|¢(Y1,...,Y,)|% Similarly,

[Qu(Yr, . V)2 < (maxP (Xi = 1) ) [0(Y, .., Vo)

it E¢(Yy,....,Y,) = 0 and, of course, 1 is factorizable, that is,
w(Y1,...,Y,) = v1(Y1) ... ¢n(Y,). The latter assumption cannot be elim-
inated just by saying that factorizable random variables of zero mean span
all random variables of zero mean. Instead, we use two facts.
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The first fact. The space of all random variables ¢(...) has an orthogo-
nal basis consisting of factorizable random variables satisfying an additional
condition: each factor 1y (Y%) is either of zero mean, or equal to 1. (For a
proof, start with an orthogonal basis for functions of Y; only, the first basis
function being constant; do the same for Ys; take all products; and so on.)

The second fact. The operator Q maps orthogonal factorizable ran-
dom variables, satisfying the additional condition, into orthogonal random
variables. Indeed, let ¢(Yy,...,Y,) = v1(Y1) ... ¥n(Yn), ¥'(Y1,...,Yn) =
Pi(Y1) ... (Y,), and each ¢y (Yy) be either of zero mean, or equal to
1; the same for each ¥} (Vy). If E (¢(Vq,..., Y, )¢/ (Y,...,Y,)) = 0 then
E (¢ (Yi)¥y,(Ys)) = 0 for at least one k; let it happen for k = 1. We have
not only E (¢;(Y1)¥](Y1)) = 0 but also (Ev¢y (V1)) (Ev(Y1)) = 0, since ¢y
and v cannot both be equal to 1. Therefore

E(Qu(Yr,....Y.)(Q¥'(V1,....Y,)) =

_E (( [T @uoi) @) ( 11 mmwxm)) ~0,

kaZO kazl

since the first term vanishes whenever X; = 0, and the second term vanishes

whenever X; = 1.
O

Combining all together, we get the conclusion.

7c2 Theorem. The noise of coalescence is black.

7d Remarks

Another proof of Theorem should be possible, by showing that all (zero
mean) random variables are sensitive. To this end, we divide the time axis R
into intervals of small length ¢, and choose a random subset of intervals such
that each interval is chosen with a small probability 1 — p =1 —e™ ~ A,
independently of others. On each chosen interval we replace local random
data with fresh (independent) data.

Consider the path X(-) of the Brownian web, starting at the origin,
X(t) = &4+(0) for ¢t € [0,00); it behaves like a Brownian motion. After the
replacement we get another path Y(-). Their difference, (X (t) — Y (t))/V2,
behaves like another Brownian motion when outside 0, but is somewhat sticky
at 0. Namely, during each chosen (to the random set) time interval, the point
0 has nothing special; however, outside these time intervals, the point 0 is
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absorbing. In this sense, chosen time intervals act like factors f, in the ran-
dom product of factors f_, fi, f. studied in Sect. 4. There, f, occurs with a
small probability 1/(2v/i) — 0 (recall Bedl), which produces a non-degenerate
stickiness in the scaling limit. Here, in contrast, a time interval is chosen
with probability 1 —p ~ X\ that does not tend to 0 when the interval length e
tends to 0. Naturally, stickiness disappears in the limit ¢ — 0 (a proof uses
the idea of (Hcd)). That is, interaction between X () and Y'(-) disappears in
the limit ¢ — 0. They become independent, no matter how small 1 — p is.

Probably, the same argument works for any finite number of paths X (t) =
o.+(zk); they should be asymptotically independent of Yy (-) for e — 0, but I
did not prove it.

The spectral measure px of the random variable X = &;;(0) is written
down explicitly in [I6]. Or rather, its discrete counterpart is found; the
scaling limit follows by (a generalization of) Theorem BcH (see also [I7]). The
measure fx is a probability measure (since || X|| = 1), it may be thought of
as the distribution of a random perfect subset of (0, 1). Note that the random
subset is not at all a function on the probability space (2, F, P) that carries
the Brownian web. There is no sense in speaking about ‘the joint distribution
of the random set and the Brownian web’. In fact, they may be treated as
incompatible (non-commuting) measurements in the framework of quantum
probability, see [TH].

A wonder: px is the distribution of (¢ — M) N (0,1), where M is the
set of zeros of the usual Brownian motion, and 6 is independent of M and
distributed uniformly on (0, 1).

Moreover, the corresponding equality holds exactly (not only asymptot-
ically) in the discrete-time model. Strangely enough, the Brownian motion
(or rather, random walk) does not appear in the calculation of the spec-
tral measure. The relation to Brownian motion is observed at the end, as a
surprise!

7d1 Question. Can pyx (for X = & 1(0)) be found via some natural con-
struction of a Brownian motion whose zeros form the spectral set (after the
transformation x +— 6 — x)? (See [I6, Problem 1.5].)

We see that py (for X = & 1(0)) is concentrated on sets of Hausdorff
dimension 1/2.

7d2 Question. Is px concentrated on sets of Hausdorff dimension 1/2 for
an arbitrary random variable X such that E X = 0 (over the noise of coales-
cence)?

An affirmative answer would probably give us another proof that the noise
is black. A stronger conjecture may be made.
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7d3 Question. Is ux for an arbitrary Fy ;-measurable X (over the noise of
coalescence), satisfying E X = 0, absolutely continuous w.r.t. fig, (o) 7

7e A combinatorial by-product

Consider a Markov chain X = (X)%2, (a half-difference of two independent

simple random walks, or a double-speed simple random walk divided by two):
Xo=0and

1/4 for Az = —1,
P(Xpp1 =X+ Az | X)) =4¢1/2 for Az =0,
1/4 for Az = +1

for each k =0,1,2,...
Let Z be the (random) set of zeros of X, that is,

Z={k=0,1,... : X;=0}.

Given a set S C {0,1,2,...} and a number k£ = 0,1,2,..., we consider the
event ZN[0,k] C k— S, thatis, VI =0,...,k (Z €eZ — k-1le S), and
its probability. We define

n—1

1
pn,S:gZP<Zﬁ[0,k] ck-5);

k=0

of course, only k € S can contribute (since 0 € Z).
On the other hand, we may trap X at 0 on S; that is, given a set S C
{0,1,2, ...}, we introduce another Markov chain X ) = (X,ﬁs’),;“;o such that

Xés) =0 and for each £ =0,1,2,...

1/4 for Az = —1,
P(X,Ei)lzx%—Ax}X;gs):x): 1/2 for Az =0,
1/4 for Ax = +1

except for the case k € S, x =0,
P(X =0[X=0)=1 ifkes.
7el Theorem. p, s = %ZkeSP(X/rgS) = O) for every n = 1,2,... and

Sc{0,1,....,n—1}.
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7e2 Example. Before proving the theorem, consider a special case; namely,
let S consist of just a single number s. Then P (ZN[0,k] Ck—S) =P (Zn
[0,k] C {k: — s} ) vanishes for k # s. For k = s it becomes P (Z N [0,s] =
{0}) = 27@(()) + (7). Therefore py oy = 5277 D((7)) +
(288 2)), assuming s > 2; also, p, 0y = % and p, 1y = % On the other
hand, %Zkesﬂ” (X,ES) = 0) = %IP’ (XS = O) = % -2_23(288). The equality
becomes (*2) + (**,%) = $(*) (for s > 2).

1 s

Proof (sketch). We use the discrete-time counterpart of the Brownian web
(see[[al and [16, Sect. 1]) and consider &;,,(0), the value at time n of the path
starting at the origin. At every instant k ¢ S we replace the corresponding
random signs with fresh (independent) copies, which leads to another random
variable &), (0). We calculate the covariance E (£,,(0)&),,(0)) in two ways,
and compare the results.

The first way. The difference process &.(0) — & (0) is distributed like
the process 2X %) (similarly to [Zd)). Thus

4E (X)? = E (.0(0) = &,,(0))* = 2n — 2E (£,,(0)£5,,(0)) -

On the other hand, 1 — E (X,gﬂ) +E (X)) =1p (X =0)ifk €S,
otherwise 0. Therefore n — QE( ) = pesP ( x¥) = 0). So,

E (.(0)5,(0)) = > P(X

kesS

The second way. In terms of the spectral measure p of the random variable
€0,2(0) we have E (£,,(0)&,,(0)) = u{M : M C S}. However, the probability
measure +4 is equal to the distribution of (§ — Z) N [0, 00); here Z is (as
before) the set of zeros of X, and € is a random variable independent of
Z and distributed uniformly on {0,1,...,n — 1}. (See [I6, Prop. 1.3], see
also [24].) Therefore 1u{M : M C S} = P((0 —Z)Nn[0,00) C ) =
IP’(Zﬂ [0, 0] C@—S) = Dn.g. S0,

E (£0.0(0)€0,(0)) = 1pn,s -
U

7e3 Question. Is there a simpler proof of Theorem [[e]l? Namely, can we
avoid the spectral measure and its relation to the set of zeros?

A continuous-time counterpart of Theorem [[e]l is left to the reader.
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8 Miscellany

8a Beyond the one-dimensional time

Scaling limits of models driven by two-dimensional arrays of random signs
are evidently important. The best examples appear in percolation theory.
Also the Brownian web is an example and, after all, it may be treated as an
oriented percolation.

In such cases, independent sub-o-fields should correspond to disjoint re-
gions of R%, not only of the form (s,¢) xR. In fact, a rudimentary use of these
can be found in Sect. [ (recall ‘cells’ in[Zd). In general it is unclear what kind
of regions can be used; probably, regions with piecewise smooth boundaries
always fit, while arbitrary open sets do not fit unless the two-dimensional
noise is classical (recall Bd).

In spite of the great and spectacular progress of the percolation theory
(see for instance [I4] and references therein), ‘the noise of percolation’ is still
a dream.

8al Question. For the critical site percolation on the triangular lattice,
invent an appropriate coarse o-field, and check two-dimensional counterparts
of the two conditions of BRIl for an appropriate class of two-dimensional
domains. Is it possible?

8a2 Remark. Hopefully, the answer is affirmative, that is, the two-dimensional
noise of percolation will be defined. Then it should appear to be a (two-
dimensional) black noise, due to (appropriately adapted) BTl 7hIland (most
important) the critical exponent for a small cell of size € x & being pivotal
[T4, Sect. 5, Item 2]. The probability is O(g°/4), therefore o(¢). The sum for
H(f) contains O(1/£?) terms, o(e?) each.??

Sensitivity of percolation events, disclosed in [2], is micro-sensitivity (re-
call bd). Existence of the black noise of percolation would mean a stronger
property: block sensitivity. (See also [2, Problem 5.4].)

It would be the most important example of a black noise!

For the general theory of stability, spectral measures, decomposable pro-
cesses etc., the dimension of the underlying space is of little importance.
Basically, regions must form a Boolean algebra. Such a general approach is
used in [20], [I8].

Nonclassical factorizations appear already in zero-dimensional ‘time’; be
it a Cantor set, or even a convergent sequence with limit point. For Cantor

33Different arguments (especially, [[cll) are used in Sect. [ since an infinite two-
dimensional spectral set could have a finite one-dimensional projection.
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sets, see [20), Sect. 4]; some interesting models of combinatorial nature, with
large symmetry groups (instead of ‘time shifts’ of a noise) are examined there.
For a convergent sequence with limit point, see Chapter 1 here (namely, [all),
and [I8, Appendix].

8b The ‘wave noise’ approach

A completely different way of constructing noises is sketched here.
Consider the linear wave equation in dimension 1+ 1,

0?0
with initial conditions u(z,0) = 0, uy(x,0) = f(x). Its solution is well-known:

x+t
uet) =5 [ f)dy=3Fa@ ) - 3P0,

where F'is defined by F'(x) = f(z). The formula holds in a generalized
sense for nonsmooth F', which covers the following case: F(z) = B(z) =
Brownian motion (combined out of two independent branches, on [0, +00)
and on (—o0,0]); f(z) = B'(x) is the white noise. The random field on
(—OO, OO) X [07 OO),

1 1
u(z,t) = §B(I +t) — §B(x —t), B = Brownian motion,

is continuous, stationary in x, scaling invariant (for any ¢ the random field
u(cx, ct)/+/c has the same distribution as u(z, t)), satisfies the wave equation
(BEI) and the following independence condition:

(8b2)

u‘ , and u} » are independent, !
where L ={(z,t): 2 <—-t <0}, R={(x,t): x>1t>0}. z

The independence is a manifestation of: (1) the independence inherent to the
white noise (its integrals over disjoint segments are independent), and (2) the
hyperbolicity of the wave equation (propagation speed does not exceed 1).

A solution with such properties is essentially unique. That is, if u(x,t) is a
continuous random field on (—oo, 00) x (0, 0), stationary in x, satisfying the
wave equation (BhIl) and the independence condition (Bb2), then necessarily
u(z,t) = po+mt+o(B(x+t)— B(z—t)) for a Brownian motion B. Scaling
invariance forces o = p; = 0.
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It is instructive that a wave equation may be used in a non-traditional
way. Traditionally, a solution is determined by its initial values. In con-
trast, the independence condition (RhZ), combined with some more condi-
tions, determines a random solution with no help of initial conditions! Not
an individual sample function is determined, of course, but its distribution
(a probability measure on the space of solutions of the wave equation).

Somebody with no preexisting idea of white noise or Brownian motion
can, in principle, use the above approach. Observing that u(z,0) = 0 but
uy(x,0) does not exist (in the classical sense), he may investigate u(x,t)/t
for t — 0 as a way toward the white noise.

8b3 Question. Can we construct a nonclassical (especially, black) noise,
using a nonlinear hyperbolic equation?

I once tried the nonlinear wave equation

0?02
(8b4) (ﬁ — @)u(a:, t) = et~ D 2gin (¢~ 2y (2, 1))

¢ being a small positive parameter. The equation is scaling-invariant: if
u(z,t) is a solution, then u(cx, ct)/c1+9)/2 is also a solution. We search for
a random field u(¢, x), continuous, stationary in x, scaling invariant, satis-
fying (Bb4)) and the independence condition (Bb2). Its behavior for ¢ — 0
should give us a new noise. Does such a random field exist? Is it unique (in
distribution)? If the answers are affirmative, then we get a noise,

t

Fry is the o-field generated by {u(z,t) : v+t < z < y—t}, A[A_}

z y

and maybe it is black. However, I did not succeed with it.

A modified ‘waive noise’ approach was used successfully in [20, Sect. 5],
proving, for the first time, the existence of a black noise. The modification is
to keep the auxiliary dimension, but make it discrete rather than continuous:

More specifically, consider a sequence of stationary random processes wuy/(+)
on R such that

o uy is 2ex-dependent (for some €, — 0); it means that uk‘(_oo o] and

U ‘ e too) A€ independent;
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e uy_1(x) is uniquely determined by uk}[x_(ak_l_ak)’w+(€k_1_€k)] .

Such a sequence (uj) determines a noise; namely, F, , is generated by all
ug(z) such that x+¢;, < z < y —e,. White noise can be obtained by a linear
system of Gaussian processes:

+(ek—1—€k)
e () = / Vily — 2)us(y) dy,

—(ex—1—¢€k)

where kernels Vi, concentrated on [—(ex_1 — €x), (k-1 — €x)], are chosen
appropriately. A nonlinear system (of quite non-Gaussian processes) of the

form o :
const TT\Ch—1"%%k
ug—1(z) = 90(7/ ug(y) dy)

Ck=1 7 Ck Ja—(ep_1—2k)

was used for constructing a black noise. But, it is not really a construction of
a specific noise. Existence of (uy) is proven, but uniqueness (in distribution)
is not. True, every such (u;) determines a black noise. However, none of
them is singled out.

8c Groups, semigroups, kernels

A Brownian motion X in a topological group G is defined as a continuous
G-valued random process with stationary independent increments, starting
from the unit of G. For example, if G is the additive group of reals, then the
general form of a Brownian motion in G is X (t) = o0 B(t) 4+ vt, where B(+) is
the standard Brownian motion, o € [0,00) and v € R are parameters. If G is
a Lie group, then Brownian motions X in G correspond to Brownian motions
Y in the tangent space of G (at the unit) via the stochastic differential
equation (dX)- X! =dY (in the sense of Stratonovich).

A noise corresponds to every Brownian motion in a topological group,
just as the white noise corresponds to B(-). If the noise is classical, it is the
white noise of some dimension (0,1,2,... or co). If this is the case for all
Brownian motions in G, we call G a white group. Thus, R is white, and every
Lie group is white. Every commutative topological group is white (see [15]
Th. 1.8]). The group of all unitary operators in ly (equipped with the strong
operator topology) is white (see [I5, Th. 1.6]). Many other groups are white
since they are embeddable into a group known to be white; for example, the
group of diffeomorphisms is white (an old result of Baxendale).

8cl Question. Is the group of all homeomorphisms of (say) [0, 1] white?
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In a topological group, Brownian motions X and continuous abstract
stochastic flows & are basically the same:

X(t) =&oss Eox =X (s)X().

In a semigroup, however, a noise corresponds to a flow, not to a Brownian
motion (see also Hcl).

A nonclassical noise (of stickiness) was constructed in Sect. 4 out of an ab-
stract flow in a 3-dimensional semigroup G3; however, (G3 is not a topological
semigroup, since composition is discontinuous.

8c2 Question. Can a nonclassical noise arise from an abstract stochastic
flow in a finite-dimensional topological semigroup?

The continuous (but not topological) semigroup G5 emerged in Sect. 4
from the discrete semigroup G$5°*® via the scaling limit. Or rather, a flow in
G'3 emerged from a flow in G§5<% via the scaling limit. A similar approach
to the discrete model of [l gives something unexpected. The continuous
semigroup that emerges is G5, the two-dimensional topological semigroup
described in (HdTl). However, its representation is not single-valued:

ha,b

Namely, hqp(z) for x € (=b,b) is +(a + b), that is, either a +b or —(a + b)
with probabilities 0.5,0.5. Such A is not a function, of course. Rather, it
is a kernel, that is, a measurable map from R into the space of probability
measures on R. Composition of kernels is well-defined, thus, a representation
(of a semigroup) by kernels (rather than functions) is also well-defined.

The stochastic flow in Gy, resulting from [d1] via the scaling limit, is iden-
tical to the flow (5;22) of Its noise is the usual (one-dimensional) white
noise. The representation of Gy by kernels turns the abstract flow into a
stochastic flow of kernels as defined by Le Jan and Raimond [§, Def. 1.1.3].
However, a kernel (unlike a function) introduces an additional level of ran-
domness. When the kernel says that h,,(z) = £(a + b), someone has to
choose at random one of the two possibilities. Who makes the decision?

One may treat a point as a macroscopically small collection of many
microscopic atoms, and w € ) as a macroscopic flow (on the whole space-
time); given w, atoms are (conditionally) independent, “which means that
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two points®® thrown initially at the same place separate” [8, p. 4]. No need
to deal explicitly with a continuum of independent choices. “Turbulent evo-
lutions [are represented] by flows of probability kernels obtained by dividing
infinitely the initial point” [8, p. 4].

Alternatively, one can postulate that if two atoms meet at a (macro-
scopic!) point, they must coalesce. In one-dimensional space (and sometimes
in higher dimensions) such a postulate itself prevents a continuum of indepen-
dent choices and leads to a flow of maps (the Brownian web is an example).
A countable dense set of atoms makes decisions; others must obey. A flow
of maps is a (degenerate) special case of a flow of kernels. However, coales-
cence can produce a flow of maps out of a non-degenerate flow of kernels, as
explained in [8, Sect. 2.3].

Conversely, a coalescent flow can produce a non-degenerate flow of kernels
via “filtering by a sub-noise” [8, Sect. 2.3]. In the simplest case (filtering
by a trivial sub-noise), we just retain the one-particle motion of the given
coalescent flow, forget the rest of the flow, and let atoms perform the motion
independently.

A large class of flows on R" (and other homogeneous spaces) is investi-
gated in [§]. Some of these flows are shown to be coalescent and to generate
nonclassical noises (neither white nor black). Flows are homogeneous in
space (and isotropic). Thus, we have a hierarchy of nonclassical models.
First, toy models (recall [a]l, [a3) having a singular time point. Second,
‘simple’” models ([Id, E) homogeneous in time but having a singular spatial
point. Third, ‘serious’ models (the Brownian web, and Le Jan-Raimond’s
isotropic Brownian flows), homogeneous in space and time.

Noises generated by one-dimensional flows (also homogeneous in space
and time) are investigated by Warren and Watanabe [24]. Spectral sets of
Hausdorff dimension other than 0 and 1/2 are found! Roughly, it answers
Question 63 however, these spectral sets are not perfect — they have iso-
lated points.

8d Abstract nonsense of Le Jan-Raimond’s theory

A new semigroup, introduced recently by Le Jan and Raimond [§], is quite
interesting for the theory of stochastic flows and noises. Its definition involves
some technicalities considered here.

A kernel is defined in [§] as a measurable mapping from a compact metric
space M to the (also compact) space P(M) of all probability measures on
M. The space E of all kernels is equipped with the o-field £ generated

340r rather, atoms.
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by evaluations, £ 3 K — K(z) € P(M), at points + € M. Note that
every E-measurable function uses the values of K(z) only for a countable
set of points z, which is scanty, since K(z) is just measurable (rather than
continuous) in z. Thus, (E,€) is not a standard Borel space,® and the
composition of kernels is not a measurable operation, which obscures the
technique and makes proofs more difficult (as noted on page 11 of [§]).

Fortunately, the theory can be reformulated equivalently in terms of Borel
operations on standard Borel spaces, as outlined below. Additional simplifi-
cation comes from disentangling space and time (entangled in Theorem 1.1.4
of [B]) and explicit use of the de Finetti theorem.

The hassle about measurability is another manifestation of the well-
known clash between finite-dimensional distributions and modifications of
a random process. Say, for the usual Poisson process on [0, 00), its finite-
dimensional distributions do not tell us whether sample paths are continuous
from the left (right), or not. A process X = X(t,w) has a lot of modifica-
tions Y (¢, w); these satisfy V¢ P ({w : X(t,w) = Y (¢,w)}) = 1, which does
not imply P ({w : Vt X(t,w) = Y(t,w)}) = 1. If a process admits continu-
ous sample paths (like the Brownian motion), the continuous modification is
preferable. If a process is just continuous in probability (like the Poisson pro-
cess, but also, say, some stationary Gaussian processes, unbounded on every
interval), we are unable to prefer one modification to others, in general.

In order to describe the class of all modifications of a random process,
we have two well-known tools: first, a compatible family of finite-dimensional
distributions, and second, a probability measure on the (non-standard!) Borel
space of all (or only measurable; but definitely, not only continuous) sample
paths, whose o-field is generated by evaluations. Assuming the process to be
continuous in probability, we find the first tool much better; joint distribu-
tions depend on points continuously, and everything is standard.

The same for kernels. These may be thought of as sample paths of a
random process whose ‘time’ runs over M, and ‘values’ belong to P(M).
However, the process will appear (implicitly) only in Theorem Bd3 its finite-
dimensional distributions are v,(x1,...,z,) there.

8d1 Definition. A multikernel from a compact metric space M; to a com-
pact metric space My is a sequence (P,)%°; of continuous maps P, : M} —

35For a definition, see [7, Sect. 12.B] or [I, Def. 7.1].
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P(M3), compatible in the sense that3®

/ gdP,(zq,...,x,) = fdPn (s, xi,,)

My MG

for all n and z4,...,x, € M;, whenever iy, ... 1, are pairwise distinct ele-
ments of {1,...,n}, f: MJ — R is a continuous function, and g : M5 — R

is defined by g(y1, ..., yn) = fWirs -5 ¥i,,) fOr y1,.. .,y € M.
We do not assume 7; < --- < 1,,. For example:
s = 1) — [ 9Pz = [ FaPie);
s = fe) = [ gdPlara) = [ FaPiGe);
9, y2) = fly2,51) = /gdP2(931>£E2) = /fdP2(£E2,931)-

Note also that 1, z9, ... need not be distinct.

8d2 Definition. A multikernel (P,)22, is single-valued, if
/ gdPs(z,z) = fdPi(z) forall z € My,
M2 Mo

whenever g : M2 — R is a continuous function, and f : My — R is defined
by f(y) = g(y,y) for y € M,.

An equivalent definition: (P,)

(e}

o0, is single-valued, if

/ pdPsy(z,z) =0 forall z € My,
M3

where p : M2 — R is the metric, p(y1, y2) = dist(y1, y2).
Another equivalent definition:

sup / pdPy(z1,22) = 0 fore —0.
M3

p(w1,w2)<e

(Compare it with continuity in probability.)

36Here [gdP,(x1,...,2z,) is not an integral in x1,...,z,. Rather, z1,...,z, are pa-
rameters. The integral is taken in other variables (say, y1,...,yn), suppressed in the
notation and running over My.
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My ‘multikernel’ is a time-free counterpart of a ‘compatible family of
Feller semigroups’ of [8]. My ‘single-valued’ corresponds to their (1.7). What
could correspond to their ‘stochastic convolution semigroup’? It is a single-
valued multikernel from M; to P(Myz). Yes, I mean it: maps from M7}
to 77((77(/\/12))") It may look frightening, but think what happens if M;
contains only one point, and My — only two points, say, 0 and 1. Then
a multikernel from M; to My is a law of an exchangeable sequence of
events. A single-valued multikernel from M; to My would mean that all
events coincide, but we need rather a single-valued multikernel from M to
P(My) = [0, 1]; nothing but a probability measure on [0, 1]. The De Finetti
theorem (see [I], for instance) tells us that every exchangeable sequence of
events arises from a probability measure on [0, 1]. Here is a more general
result.

8d3 Theorem. For every multikernel (P,)%; from M; to M, there exists
a single-valued multikernel (1,,)22; from M; to P(Mj) such that

fdPn(xl,...,xn):/ Fdv,(xq,...,2,)
My (P(M2))"

for all n and xq,...,2, € M, whenever f : M} — R is a continuous
function, and F : (P(M2))" — R is defined by F(ui,...,pun) = [ fd(n @
®/’Ln) for Hiyeees n € P(MQ)

Proof. We choose a discrete probability measure py on M; whose support is
the whole M. That is, we choose a countable (or finite) dense set A C My,
and give a positive probability to each point of A. For every n we consider
the following measure @, on (M; x My)™

/f1®91®"'®fn®gndQn
= / (/91®' - ®gn dP,(x1, . .. ,xn)> fi(xy) .. folzn) dpo(zy) - . - dpo(zy) -

In other words, if @), is the distribution of (X1, Y7;...; X}, Y,,), then Xy, ..., X,
are i.i.d. distributed pg each, and the conditional distribution of (Y3,...,Y})
given (Xy,...,X,)is P,(Xy,...,X,). The measure @), is invariant under the
group of n! permutations of n pairs, due to compatibility of the multikernel
(P,)2 ;. For the same reason, @, is the marginal of @,,1. Thus, (@Q,)%,
is the distribution of an exchangeable infinite sequence of M; x Ms-valued
random variables (X,,,Y,).

The De Finetti theorem [I, Th. 3.1 and Prop. 7.4] states that the joint
distribution of all (X,,Y,,) is a mixture of products, in the sense that there
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exists a probability measure v on P(M; x My) such that for every n, the
joint distribution of n pairs (Xi,Y7),. .., (X,,Y,) is the mixture of products
Q" = Q® - ®Q, where Q € P(M; x M) is distributed v. The first
marginal of @ is equal to g (for v-almost every @), since X,, are i.i.d. (po).

Let z1,...,2, € A. The event X; = zq,...,X,, = x, is of positive
probability. Given the event, the conditional distribution P, (z1,...,x,) of
Yy, ..., Y, is the mixture of products @),, ® - - - ® Q.,, where ), is the con-
ditional measure on My, that corresponds to @, and @ € P(M; x Ms)
is distributed v; indeed, v-almost all ) ascribe the same probability to the
event X1 =x1,...,X, =x,.

We define v, (x1,...,2,) for z1,...,x, € A as the joint distribution of
P(My)-valued random variables Q,,, . . ., @, , where @ is distributed v; then

(8d4) / Fdv,(zy,...,2,)
(P(M2))"

_ / ( fdQy ® - ® an)) dv(Q)
P(Mi1xMsz) My

= fdP,(z1, ..., x,)
Mz

whenever f: M3 — R is a continuous function, and F' : (P(M3))" — R is
defined by F(p1,. .. pn) = [ fd(p1 ® -+ @ py,) for py, ..., pu, € P(My).

Till now, v,(x1,...,x,) is defined for zy,...,x, € A (rather than My).
We want to check that [ podve(zy,z2) — 0 for pi(z1,22) — 0; here p; is
a metric on M conforming to its topology, and p, is a metric on P(Ms)
conforming to its weak topology. Due to compactness of P(Ms), it is enough
to check that [ h?dvg(x1,x9) — 0 for py(z1,22) — 0 whenever h : P(My) x
P(My) — Ris of the form h(Q1,Q2) = [ fdQ:1 — [ fdQ, for a continuous
function f : My — R. Consider f : P(My) — R, f(Q) = J fdQ for
Q € P(Myz). We have

/ f® Jngz(xl,ﬁz) = f @ fdPy(xy, ),
(P(M2))? M3

which is a special case of ([8d4). It may also be written as
E f(Qu)f(Qr,) = E(FM)F(Ya) | Xo = 21, Xo = 2)

here @),, and @, are treated as random variables on the probability space
(73(./\/11 X M), V) (thus, the two expectations are taken on different proba-
bility spaces). The right-hand side is a continuous function of z1, x2; denote
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it p(x1,x2). We have

/h2 dl/2(331,5172) =E (f(@:u) - f(@:cz))2

= p(w1,11) — (21, T2) — P(T2, 1) + P12, 72),
which tends to 0 for p;(z1,29) — 0. So,

/ padva(z1, 22) — 0 for pi(21,72) — 0.
(P(M2))?

It follows easily that each v, is uniformly continuous on A™ and, extending
it by continuity to M7, we get a single-valued multikernel. O

Definition may be reformulated as follows.

8d5 Definition. A multikernel from a compact metric space M; to a com-
pact metric space My is a continuous map Py, : M5 — P(M3P), satistying
conditions (1) and (2) below. Here M*® = M x M x ... is the product of
an infinite sequence of copies of M (still a metrizable compact space).

(1) Py intertwines the natural actions of the permutation group of the
index set {1,2,3,...} on M and P(M3°) (via M5°).

(2) For every n, the projection of the measure P, (m) to the product MY
of the first n factors depends only on the first n coordinates mq, ..., m, of
the point (my, ms,...) =m € M5°.

Proof of equivalence between definitions and is left to the reader.

It is well-known that a continuous map M; — P(M;) is basically the
same as a linear operator C'(Msy) — C(M;), positive and preserving the
unit. Thus, a multikernel from M; to My may be thought of as a positive
unit-preserving linear operator C'(M3°) — C(M5°) satisfying two conditions
parallel to RdH(1,2).

Given three compact metric spaces My, Mo, M3, a multikernel from M
to My and a multikernel from My to M3, we may define their composition,
a multikernel from M; to Mj3. In terms of operators it is just the product
of two operators, C(M$5°) — C(M3P) — C(MS).

The set of all multikernels from M to My, treated as operators C'(M3°) —
C(MF°), is a closed (and bounded, but not compact) subset of the operator
space equipped with the strong operator topology. Thus, the set of mul-
tikernels becomes a Polish space (that is, a topological space underlying a
complete separable metric space).

Composition of multikernels, C(M$°) — C(M3) — C(MF°), is a (jointly)
continuous operation. (Indeed, the product of operators is continuous in the
strong operator topology, as far as all operators are of norm < 1.)

So, multikernels from M to M are a Polish semigroup (that is, a topo-
logical semigroup whose topological space is Polish).
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independence, 14
influence of variable, 59

joint compactification, 8
joint o-compactification, 15

limiting distribution, 25

measure algebra, 23
micro-sensitive, 66
micro-stable, 66

Index

noise, 42

noise of coalescence, 85
noise of percolation, 94
noise of stickiness, 53

observable, 5
orthogonal decomposition, 40

Polish space, 20
product
of coarse probability spaces, 26
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of coarse instant, 29
of coarse Polish space, 21
of coarse probability space, 24

sensitive (continuous case), 62

sensitive (discrete case), 58

o-additive orthogonal decomposition, 40
spectral measure (continuous case), 37
spectral measure (discrete case), 33
stable (continuous case), 62

stable (discrete case), 58

sticky random walk, 47

stochastic flow (discrete), 46
superchaos, n-th, 72

white group, 97

Ctinite, space of finite sets, 37

C[i], the set of finite sets, 33

C[oc], space of compact sets, 34
Fli], 18

Fg, sub-o-field, 36

Fstable, Stable o-field, 65

.7:5’15[00], 32

Fs.elt], 29

H pq, subspace, 41

Lo(A), 24

Lim, refinement, 21, 24

iy, spectral measure (discrete), 33
Iz, spectral measure (continuous), 37
Q[i], 18

Qi) 29
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Py4[i], 29

R, operator on Lo, 61



W, disjoint union, 18 for coarse o-fields, 26
@, orthogonal sum of Hilbert spaces, 40

% for Hilbert spaces, 27

for o-fields, 13 | M|, number of elements, 57
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