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Scaling Limit, Noise, Stability

Boris Tsirelson

Abstract

Linear functions of many independent random variables lead to
classical noises (white, Poisson, and their combinations) in the scal-
ing limit. Some singular stochastic flows and some models of oriented
percolation involve very nonlinear functions and lead to nonclassical
noises. Two examples are examined, Warren’s ‘noise made by a Pois-
son snake’ and the author’s ‘Brownian web as a black noise’. Classical
noises are stable, nonclassical are not. A new framework for the scal-
ing limit is proposed. Old and new results are presented about noises,
stability, and spectral measures.
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Introduction

Functions of n independent random variables and limiting procedures for
n→ ∞ are a tenor of probability theory.

Classical limit theorems investigate linear functions, such as f(ξ1, . . . , ξn) =
(ξ1 + · · · + ξn)/

√
n. The well-known limiting procedure (a classical example

of scaling limit) leads to the Brownian motion. Its derivative, the white
noise, is not a continuum of independent random variables, but rather an
infinitely divisible ‘reservoir of independence’, a classical example of a con-
tinuous product of probability spaces.

Percolation theory investigates some very special nonlinear functions of
independent two-valued random variables, either in the limit of an infinite
discrete lattice, or in the scaling limit. The latter is now making spectacu-
lar progress. The corresponding ‘reservoir of independence’ is already con-
structed for oriented percolation (which is much simpler). That is a modern,
nonclassical example of a continuous product of probability spaces.

An essential distinction between classical and nonclassical continuous
products of probability spaces is revealed by the concept of stability/sensitivity,
framed for the discrete case by computer scientists and (in parallel) for the
continuous case by probabilists. Everything is stable if and only if the setup
is classical.

Some readers prefer discrete models, and treat continuous models as a
mean of describing asymptotic behavior. Such readers may skip Sects. 6b,
6c, 8b, 8c, 8d. Other readers are interested only in continuous models. They
may restrict themselves to Sects. 3d, 3e, 4i, 5b, 6, 7, 8.

Scaling limit. A new framework for the scaling limit is proposed in Sects.
1b, 2, 3a–3c.

Noise. The idea of a continuous product of probability spaces is formal-
ized by the notions of ‘continuous factorization’ (Sect. 3d) and ‘noise’ (Sect.
3e). (Some other types of continuous product are considered in [18], [19].)
For two nonclassical examples of noise see Sects. 4, 7.

Stability. Stability (and sensitivity) is studied in Sects. 5, 6a, 6d. For an
interplay between discrete and continuous forms of stability/sensitivity, see
especially Sects. 5c, 6d.

The spectral theory of noises, presented in Sects. 3c, 3d and used in Sects.
5, 6, generalizes both the Fourier transform on the discrete group Zn

2 (the
Fourier-Walsh transform) and the Itô decomposition into multiple stochastic
integrals. For the scaling limit of spectral measures, see Sect. 3c.

Throughout, either by assumption or by construction, all probability
spaces will be Lebesgue-Rokhlin spaces; that is, isomorphic mod 0 to an in-
terval with Lebesgue measure, or a discrete (finite or countable) measure
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space, or a combination of both.

1 A First Look

1a Two toy models

The most interesting thing is a scaling limit as a transition from a lattice
model to a continuous model. A transition from a finite sequence to an
infinite sequence is much simpler, but still nontrivial, as we’ll see on simple
toy models.

Classical theorems about independent increments are exhaustive, but a
small twist may surprise us. I demonstrate the twist on two models, ‘discrete’
and ‘continuous’. The ‘continuous’ model is a Brownian motion on the circle.
The ‘discrete’ model takes on two values ±1 only, and increments are treated
multiplicatively: X(t)/X(s) instead of the usual X(t) − X(s). Or equiva-
lently, the ‘discrete’ process takes on its values in the two-element group Z2;
using additive notation we have Z2 = {0, 1}, 1 + 1 = 0, increments being
X(t) − X(s). In any case, the twist stipulates values in a compact group
(the circle, Z2, etc.), in contrast to the classical theory, where values are in
R (or another linear space). Also, the classical theory assumes continuity (in
probability), while our twist does not. The ‘continuous’ process (in spite of
its name) is discontinuous at a single instant t = 0. The ‘discrete’ process
is discontinuous at t = 1

n
, n = 1, 2, . . . , and also at t = 0; it is constant on

[ 1
n+1

, 1
n
) for every n.

1a1 Example. Introduce an infinite sequence of random signs τ1, τ2, . . . ;
that is,

P
(
τk = −1

)
= P

(
τk = +1

)
=

1

2
for each k,

τ1, τ2, . . . are independent.

For each n we define a stochastic process Xn(·), driven by τ1, . . . , τn, as
follows:

Xn(t) =
∏

k:1/n≤1/k≤t
τk .

b

b

b b b b14 13 12 1a sample path of X4(here �1 = �2 = �4 = �1; �3 = +1)
For n → ∞, finite-dimensional distributions of Xn converge to those of a
process X(·). Namely, X consists of countably many random signs, situated
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on intervals [ 1
k+1

, 1
k
). Almost surely, X has no limit at 0+. We have

(1a2)
X(t)

X(s)
=

∏

k:s<1/k≤t
τk

whenever 0 < s < t < ∞. However, (1a2) does not hold when s <
0 < t. Here, the product contains infinitely many factors and diverges al-
most surely; nevertheless, the increment X(t)/X(s) is well-defined. Each
Xn satisfies (1a2) for all s, t (including s < 0 < t; of course, k ≤ n),
but X does not. Still, X is an independent increment process (multiplica-
tively); that is, X(t2)/X(t1), . . . , X(tn)/X(tn−1) are independent whenever
−∞ < t1 < · · · < tn < ∞. However, we cannot describe the whole X
by a countable collection of its independent increments. The infinite se-
quence of τk = X( 1

k
+)/X( 1

k
−) does not suffice since, say, X(1) is inde-

pendent of (τ1, τ2, . . . ). Indeed, the global sign change x(·) 7→ −x(·) is a
measure-preserving transformation that leaves all τk invariant. The condi-
tional distribution of X(·) given τ1, τ2, . . . is concentrated at two functions
of opposite global sign. It may seem that we should add to (τ1, τ2, . . . )
one more random sign τ∞ independent of (τ1, τ2, . . . ) such that X( 1

k
) is a

measurable function of τk, τk+1, . . . and τ∞. However, it is impossible. In-
deed, X(1) = τ1 . . . τkX( 1

k
). Assuming X( 1

k
) = fk(τk, τk+1, . . . ; τ∞) we get

f1(τ1, τ2, . . . ; τ∞) = τ1 . . . τk−1fk(τk, τk+1, . . . ; τ∞) for all k. It follows that
f1(τ1, τ2, . . . ; τ∞) is orthogonal to all functions of the form g(τ1, . . . , τn)h(τ∞)
for all n, and thus, to a dense (in L2) set of functions of τ1, τ2, . . . ; τ∞; a
contradiction.

So, for each n the process Xn is driven by (τk), but the limiting process
X is not.

1a3 Example. (See also [3].) We turn to the other, the ‘continuous’ model.
For any ε ∈ (0, 1) we introduce a (complex-valued) stochastic process

Yε(t) =

{

exp
(
iB(ln t) − iB(ln ε)

)
for t ≥ ε,

1 otherwise,

where B(·) is the usual Brownian motion; or rather,
(
B(t)

)

t∈[0,∞) and
(
B(−t)

)

t∈[0,∞) are two independent copies of the usual Brownian motion.
Multiplicative increments Yε(t2)/Yε(t1), . . . , Yε(tn)/Yε(tn−1) are independent
whenever −∞ < t1 < · · · < tn < ∞, and the distribution of Yε(t)/Yε(s)
does not depend on ε as far as ε < s < t (in fact, the distribution depends
on t/s only). The distribution of Yε(1) converges for ε → 0 to the uniform
distribution on the circle |z| = 1. The same for each Yε(t). It follows easily
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that, when ε→ 0, finite dimensional distributions of Yε converge to those of
some process Y . For every t > 0, Y (t) is distributed uniformly on the circle;
Y is an independent increment process (multiplicatively), and Y (t) = 1 for
t ≤ 0. Almost surely, Y (·) is continuous on (0,∞), but has no limit at 0+.
We may define B(·) by

Y (t) = Y (1) exp
(
iB(ln t)

)
for t ∈ R ,

B(·) is continuous on R .

Then B is the usual Brownian motion, and

Y (t)

Y (s)
=

exp(iB(ln t))

exp(iB(ln s))
for 0 < s < t <∞ .

However, Y (1) is independent of B(·). Indeed, the global phase change
y(·) 7→ eiαy(·) is a measure preserving transformation that leaves B(·) in-
variant. The conditional distribution of Y (·) given B(·) is concentrated on a
continuum of functions that differ by a global phase (distributed uniformly
on the circle). Similarly to the ‘discrete’ example, we cannot introduce a
random variable B(−∞) independent of B(·), such that Y (t) is a function
of B(−∞) and increments of B(r) for −∞ < r < ln t.

So, for each ε, the process Yε is driven by the Brownian motion, but the
limiting process Y is not.

Both toy models are singular at a given instant t = 0. Interestingly,
continuous stationary processes can demonstrate such strange behavior, dis-
tributed in time! (See Sects. 4, 7).

1b Our limiting procedures

Imagine a sequence of elementary probabilistic models such that the n-th
model is driven by a finite sequence (τ1, . . . , τn) of random signs (independent,
as before). A limiting procedure may lead to a model driven by an infinite
sequence (τ1, τ2, . . . ) of random signs. However, it may also lead to something
else, as shown in 1a. This is an opportunity to ask ourselves: what do we
mean by a limiting procedure?

The n-th model is naturally described by the finite probability space
Ωn = {−1,+1}n with the uniform measure. A prerequisite to any limiting
procedure is some structure able to join these Ωn somehow. It may be a
sequence of ‘observables’, that is, functions on the disjoint union,

fk : (Ω1 ⊎ Ω2 ⊎ . . . ) → R .
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1b1 Example. Let fk(τ1, . . . , τn) = τk for n ≥ k. Though fk is defined
only on Ωk ⊎ Ωk+1 ⊎ . . . , it is enough. For every k, the joint distribution of
f1, . . . , fk on Ωn has a limit for n→ ∞ (moreover, the distribution does not
depend on n, as far as n ≥ k). The limiting procedure should extend each
fk to a new probability space Ω such that the joint distribution of f1, . . . , fk
on Ωn converges for n → ∞ to their joint distribution on Ω. Clearly, we
may take the space of infinite sequences Ω = {−1,+1}∞ with the product
measure, and let fk be the k-th coordinate function.

1b2 Example. Still fk(τ1, . . . , τn) = τk (for n ≥ k ≥ 1), but in addition, the
product f0(τ1, . . . , τn) = τ1 . . . τn is included. For every k, the joint distribu-
tion of f0, f1, . . . , fk on Ωn has a limit for n → ∞; in fact, the distribution
does not depend on n, as far as n > k (this time, not just n ≥ k). Thus,
in the limit, f0, f1, f2, . . . become independent random signs. The functional
dependence f0 = f1f2 . . . holds for each n, but disappears in the limit. We
still may take Ω = {−1,+1}∞, however, f0 becomes a new coordinate.

This is instructive; the limiting model depends on the class of ‘observ-
ables’.

1b3 Example. Let fk(τ1, . . . , τn) = τk . . . τn for n ≥ k ≥ 1. In the limit, fk
become independent random signs. We may define τk in the limiting model
by τk = fk/fk+1; however, we cannot express fk in terms of τk. Clearly, it is
the same as the ‘discrete’ toy model of 1a.

The second and third examples are isomorphic. Indeed, renaming fk of
the third example as gk (and retaining fk of the second example) we have

gk =
f0

f1 . . . fk−1
; fk =

gk
gk+1

for k > 0 , and f0 = g1 ;

these relations hold for every n (provided that the same Ωn = {−1,+1}n is
used for both examples) and naturally, give us an isomorphism between the
two limiting models.

That is also instructive; some changes of the class of ‘observables’ are
essential, some are not.

It means that the sequence (fk) is not really the structure responsible for
the limiting procedure. Rather, fk are generators of the relevant structure.
The second and third examples differ only by the choice of generators for the
same structure. In contrast, the first example uses a different structure. So,
what is the mysterious structure?

I can describe the structure in two equivalent ways. Here is the first
description. In the commutative Banach algebra l∞(Ω1 ⊎ Ω2 ⊎ . . . ) of all
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bounded functions on the disjoint union, we select a subset C (its elements
will be called observables) such that
(1b4)
C is a separable closed subalgebra of l∞(Ω1 ⊎ Ω2 ⊎ . . . ) containing the unit.

In other words,

(1b5)

C contains a sequence dense in the uniform topology;

fn ∈ C, fn → f uniformly =⇒ f ∈ C ;

f, g ∈ C, a, b ∈ R =⇒ af + bg ∈ C ;

1 ∈ C ;

f, g ∈ C =⇒ fg ∈ C

(here 1 stands for the unity, 1(ω) = 1 for all ω). Or equivalently,

(1b6)

C contains a sequence dense in the uniform topology;

fn ∈ C, fn → f uniformly =⇒ f ∈ C ;

f, g ∈ C, ϕ : R2 → R continuous =⇒ ϕ(f, g) ∈ C .

Indeed, on one hand, both af+bg and fg (and 1) are special cases of ϕ(f, g).
On the other hand, every continuous function on a bounded subset of R2 can
be uniformly approximated by polynomials. The same holds for ϕ(f1, . . . , fn)
where f1, . . . , fn ∈ C, and ϕ : Rn → R is a continuous function. Another
equivalent set of conditions is also well-known:

(1b7)

C contains a sequence dense in the uniform topology;

fn ∈ C, fn → f uniformly =⇒ f ∈ C ;

f, g ∈ C, a, b ∈ R =⇒ af + bg ∈ C ;

1 ∈ C ;

f ∈ C =⇒ |f | ∈ C ;

here |f | is the pointwise absolute value, |f |(ω) = |f(ω)|.
The smallest set C satisfying these (equivalent) conditions (1b4)–(1b7)

and containing all given functions fk is, by definition, generated by these fk.
Recall that C consists of functions defined on the disjoint union of finite

probability spaces Ωn; a probability measure Pn is given on each Ωn. The
following condition is relevant:

(1b8) lim
n→∞

∫

Ωn

f dPn exists for every f ∈ C .
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Assume that C is generated by given functions fk. Then the property (1b8)
of C is equivalent to such a property of functions fk:

(1b9)
For each k, the joint distribution of f1, . . . , fk on Ωn

weakly converges, when n→ ∞.

Proof: (1b9) means convergence of
∫
ϕ(f1, . . . , fk) dPn for every continuous

function ϕ : Rk → R. However, functions of the form f = ϕ(f1, . . . , fk) (for
all k, ϕ) belong to C and are dense in C.

We see that (1b9) does not depend on the choice of generators fk of a
given C.

The second (equivalent) description of our structure is the ‘joint com-
pactification’ of Ω1,Ω2, . . . I mean a pair (K,α) such that

(1b10)

K is a metrizable compact topological space,

α : (Ω1 ⊎ Ω2 ⊎ . . . ) → K is a map,

the image α(Ω1 ⊎ Ω2 ⊎ . . . ) is dense in K.

Every joint compactification (K,α) determines a set C satisfying (1b4).
Namely,

C = α−1
(
C(K)

)
;

that is, observables f ∈ C are, by definition, functions of the form

f = g ◦ α, that is, f(ω) = g(α(ω)), g ∈ C(K) .

The Banach algebra C is basically the same as the Banach algebra C(K) of
all continuous functions on K.

Every C satisfying (1b4) corresponds to some joint compactification.
Proof: C is generated by some fk such that |fk(ω)| ≤ 1 for all k, ω. We
introduce

α(ω) =
(
f1(ω), f2(ω), . . .

)
∈ [−1, 1]∞ ,

K is the closure of α(Ω1 ⊎ Ω2 ⊎ . . . ) in [−1, 1]∞ ;

clearly, (K,α) is a joint compactification. Coordinate functions on K gener-
ate C(K), therefore fk generate α−1

(
C(K)

)
, hence α−1

(
C(K)

)
= C.

Finiteness of each Ωn is not essential. The same holds for arbitrary prob-
ability spaces (Ωn,Fn, Pn). Of course, instead of l∞(Ω1 ⊎ Ω2 ⊎ . . . ) we use
L∞(Ω1⊎Ω2⊎ . . . ), and the map α : (Ω1⊎Ω2⊎ . . . ) → K must be measurable.
It sends the given measure Pn on Ωn into a measure α(Pn) (denoted also by
Pn ◦ α−1) on K. If measures α(Pn) weakly converge, we get the limiting
model (Ω, P ) by taking Ω = K and P = limn→∞ α(Pn).
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1c Examples of high symmetry

1c1 Example. Let Ωn be the set of all permutations ω : {1, . . . , n} →
{1, . . . , n}, each permutation having the same probability (1/n!);

f : (Ω1 ⊎ Ω2 ⊎ . . . ) → R is defined by

f(ω) = |{k : ω(k) = k}| ;

that is, the number of fixed points of a random permutation. Though f
is not bounded, which happens quite often, in order to embed it into the
framework of 1b, we make it bounded by some homeomorphism from R to
a bounded interval (say, ω 7→ arctan f(ω)). The distribution of f(·) on Ωn

converges (for n → ∞) to the Poisson distribution P (1). Thus, the limiting
model exists; however, it is scanty: just P (1).

We may enrich the model by introducing

fu(ω) = |{k < un : ω(k) = k}| ;

for instance, f0.5(·) is the number of fixed points among the first half of
{1, . . . , n}. The parameter u could run over [0, 1], but we need a countable
set of functions; thus we restrict u to, say, rational points of [0, 1]. Now the
limiting model is the Poisson process.

Each finite model here is invariant under permutations. Functions fu
seem to break the invariance, but the latter survives in their increments,
and turns in the limit into invariance of the Poisson process (or rather, its
derivative, the point process) under all measure preserving transformations
of [0, 1].

Note also that independent increments in the limit emerge from dependent
increments in finite models.

We feel that all these fu(·) catch only a small part of the information
contained in the permutation. You may think about more information, say,
cycles of length 1, 2, . . . (and what about length n/2 ?)

1c2 Example. Let Ωn be the set of all graphs over {1, . . . , n}. That is, each
ω ∈ Ωn is a subset of the set

({1,...,n}
2

)
of all unordered pairs (treated as edges,

while 1, . . . , n are vertices); the probability of ω is p
|ω|
n (1 − pn)

n(n−1)/2−|ω|,
where |ω| is the number of edges. That is, every edge is present with proba-
bility pn, independently of others. Define f(ω) as the number of isolated
vertices. The limiting model exists if (and only if) there exists a limit
limn n(1 − pn)

n−1 = λ ∈ [0,∞);1 the Poisson distribution P (λ) exhausts
the limiting model.

1Formally, the limiting model exists also for λ = ∞, since the range of f is compactified.
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A Poisson process may be obtained in the same way as before.
You may also count small connected components which are more compli-

cated than single points.
Note that the finite model contains a lot of independence (namely, n(n−

1)/2 independent random variables); the limiting model (Poisson process)
also contains a lot of independence (namely, independent increments). How-
ever, we feel that independence is not inherited; rather, the independence
of finite models is lost in the limiting procedure, and a new independence
emerges.

1c3 Example. Let Ωn = {−1,+1}n with uniform measure, and fn : (Ω1 ⊎
Ω2 ⊎ . . . ) → R be defined by

fu(ω) =
1√
n

∑

k<un

τk(ω) ;

as before, τ1, . . . , τn are the coordinates, that is, ω =
(
τ1(ω), . . . , τn(ω)

)
and

u runs over rational points of [0, 1]. The limiting model is the Brownian
motion, of course.

Similarly to 1c1, each finite model is invariant under permutations. The
invariance survives in increments of functions fk, and in the limit, the white
noise (the derivative of the Brownian motion) is invariant under all measure
preserving transformations of [0, 1].

A general argument of 6c will show that a high symmetry model cannot
lead to a nonclassical scaling limit.

1d Example of low symmetry

Example 1c3 may be rewritten via the composition of random maps

α−, α+ : Z → Z ,

α−(k) = k − 1 , α+(k) = k + 1 ;

αω = ατn(ω) ◦ . . . ατ1(ω) ;
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b�� �+
thus, αω(k) = k + τ1(ω) + · · · + τn(ω), and we may define f1(ω) = 1√

n
αω(0),

which conforms to 1c3. Similarly, fu(ω) = 1√
n
αω,u(0), where αω,u is the

composition of ατk(ω) for k ≤ un. The order does not matter, since α−, α+

commute, that is, α− ◦ α+ = α+ ◦ α−. It is interesting to try a pair of
noncommuting maps.
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1d1 Example. (See Warren [22].) Define

α−, α+ : Z +
1

2
→ Z +

1

2
,

α−(x) = x− 1 ,

α+(x) = x+ 1
for x ∈

(
Z + 1

2

)
∩ (0,∞) ,

α−(−x) = −α−(x) , α+(−x) = −α+(x) .

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b�� �+�3=2�1=21=23=2
These are not invertible functions; α− is not injective, α+ is not surjective.
Well, we do not need to invert them, but need their compositions:

αω = ατn(ω) ◦ · · · ◦ ατ1(ω) .
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b��Æ�+=�(+1;�1) �+Æ��=�(�1;+1)= =
All compositions belong to a two-parameter set of functions ha,b,

αω(x) = ha,b(x) =







x+ a for x ≥ b,

x− a for x ≤ −b,
(−1)b−x(a+ b) for −b ≤ x ≤ b; b

b

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b b b b

b

b

b

b

b

b

b

b xy y = �!(x)
b, a + b ∈

(
Z + 1

2

)
∩ (0,∞) = {1

2
, 3

2
, 5

2
, . . . } .

Indeed, α− = h−1,1.5, α+ = h1,0.5, and ha2,b2 ◦ ha1,b1 = ha,b where a = a1 + a2,
b = max(b1, b2 − a1). Thus, αω = hα(ω),b(ω), and we define

f1 : (Ω1 ⊎ Ω2 ⊎ . . . ) → R2 × {−1,+1} ,

f1(ω) =

(
a(ω)√
n
,
b(ω)√
n
, (−1)b(ω)−0.5

)

.

However, the function is neither bounded nor real-valued; in order to fit
into the framework of 1b we take, say, arctan

(
a(ω)/

√
n
)
, arctan

(
b(ω)/

√
n
)
,

and (−1)b(ω)−0.5. The latter is essential if, say, 1√
n
αω(0.5) is treated as an

‘observable’; indeed, 1√
n
αω(0.5) = (−1)b(ω)−0.5 1√

n
(a(ω) + b(ω)). The limiting

model exists, and is quite interesting. (See also 8c.) As before, a random
process appears by considering the composition over k < un.

Here, finite models are not invariant under permutations of their indepen-
dent random variables (since the maps do not commute), and the limiting
model appears not to be invariant under measure preserving transformations
of [0, 1].
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Independence present in finite models survives in the limit, provided that
the limit is described by a two-parameter random process; we’ll return to
this point in 4c.

1e Trees, not cubes

1e1 Example. A particle moves on the sphere S2. Initially it is at a given
point x0 ∈ S2. Then it jumps by ε in a random direction. That is, X0 = x0,
while the next random variable X1 is distributed uniformly on the circle
{x ∈ S2 : |x0 − x| = ε}. Then it jumps again to X2 such that |X1 −X2| = ε,
and so on. We have a Markov chain (Xk) in discrete time (and continuous
space). Let Ωε be the corresponding probability space; it may be the space
of sequences (x0, x1, x2, . . . ) satisfying |xk−xk+1| = ε, or something else, but
in any case Xk : Ωε → S2. We choose εn → 0 (say, εn = 1/n), take Ωn = Ωεn

and define fu : (Ω1 ⊎ Ω2 ⊎ . . . ) → S2 by

fu(ω) = Xk(ω) for ε2
nk ≤ u < ε2

n(k + 1) , ω ∈ Ωn .

Of course, the limiting model is the Brownian motion on the sphere S2.
In contrast to previous examples, here Ωn is not a product; the n-th

model does not consist of independent random variables. But, though we
can parameterize these Markov transitions by independent random variables,
there is a lot of freedom in doing so; none of the parameterizations may be
called canonical. The same holds for the limiting model. The Brownian
motion on S2 can be driven by the Brownian motion on R2 according to
some stochastic differential equation, but the latter involves a lot of freedom.

1e2 Example. (See [12].) Consider the random walk on such an oriented
graph:

b bb bb

b

bb

bb

b

bb

bb

1i
A particle starts at 0 and chooses at random (with probabilities 1/2, 1/2)
one of the two outgoing edges, and so on (you see, exactly two edges go out
of any vertex). Such (Z0, Z1, . . . ) is known as the simplest spider walk. It is a
complex-valued martingale. The set Ωn of all n-step trajectories contains 2n

elements and carries its natural structure of a binary tree. (It can be mapped
to the binary cube {−1,+1}n in many ways.) We define fu : (Ω1⊎Ω2⊎. . . ) →

12



C by

fu(ω) =
1√
n
Zk(ω) for k ≤ nu < k + 1 , ω ∈ Ωn .

The limiting model is a continuous complex-valued martingale whose values
belong to the union of three rays. 1i
The process is known as Walsh’s Brownian motion, a special case of the
so-called spider martingale.

1f Sub-σ-fields

Every example considered till now follows the pattern of 1b; a joint com-
pactification of probability spaces Ωn, and the limiting Ω. Moreover, Ωn is
usually related to a set Tn (a parameter space, interpreted as time or space),
and Ω to a joint compactification T of these Tn.

Example Tn T
1a1 {1, 1

2
, . . . , 1

n
} {1, 1

2
, 1

3
, . . . } ∪ {0}

1a3 [εn, 1] [0, 1]
1c1, 1c2, 1c3, 1d1, 1e1, 1e2 { 1

n
, 2
n
, . . . , 1} [0, 1]

Examples 1a1, 1a3, 1c3 deal (for a finite n) with independent increment pro-
cesses, taking on their values in a group, namely, 1c3: R (additive); 1a1:
{−1,+1} (multiplicative), 1a3: the circle {z ∈ C : |z| = 1} (multiplica-
tive). Every t ∈ Tn splits the process into two parts, the past and the
future; in order to keep them independent, we define them via increments,
not values.2 In terms of random signs τk (for 1a1, 1c3) it means simply
{−1,+1}n = {−1,+1}k ×{−1,+1}n−k; here k depends on t. The same idea
(of independent parts) is formalized by sub-σ-fields F0,t (the past) and Ft,1

(the future) on our probability space (Ωm or Ω). Say, for the Brownian mo-
tion 1c3, F0,t is generated by Brownian increments on [0, t], while Ft,1 — on
[t, 1]. Similarly we may define Fs,t for s < t, and we have

Fr,s ⊗ Fs,t = Fr,t whenever r < s < t .

2In fact, the process of 1a1 has also independent values (not only increments); but that
is irrelevant.

13



It means two things: first, independence,

P
(
A ∩ B

)
= P

(
A
)
P
(
B
)

whenever A ∈ Fr,s, B ∈ Fs,t ;

and second, Fr,t is generated by Fr,s and Fs,t (that is, Fr,t is the least sub-
σ-field containing both Fr,s and Fs,t). Such a two-parameter family (Fs,t) of
sub-σ-fields is called a factorization (of the given probability space). Some
additional precautions are needed when dealing with semigroups (like 1d1),
and also, with discrete time.

Sub-σ-fields FA can be defined for some subsets A ⊂ T more general than
intervals, getting

FA ⊗ FB = FC whenever A ⊎ B = C .

Models of high symmetry admit arbitrary measurable sets A; models of low
symmetry do not. For some examples (such as 1c1, 1c2), a factorization
emerges after the limiting procedure.3

No factorization at all is given for 1e1, 1e2. Still, the past F0,t = Ft is
defined naturally. However, the future is not defined, since possible continu-
ations depend on the past. Here we deal with a one-parameter family (Ft)
of sub-σ-fields, satisfying only a monotonicity condition

Fs ⊂ Ft whenever s < t ;

such (Ft) is called a filtration.

2 Abstract Nonsense of the Scaling Limit

2a More on our limiting procedures

The joint compactification K of Ω1 ⊎ Ω2 ⊎ . . . , used in 1b, is not quite
satisfactory. Return to 1c3:

(2a1) fu(ω) =
1√
n

∑

k<un

τk(ω) for u ∈ [0, 1] ∩ Q

(Q being the set of rational numbers). The limiting model is the Brownian
motion, restricted to [0, 1]∩Q. What about an irrational point, v ∈ [0, 1]\Q ?
The random variable fv may be defined on Ω as the limit (say, in L2) of fu
for u → v, u ∈ [0, 1] ∩ Q. On the other hand, fv is naturally defined on

3For 1c2, some factorization is naturally defined for Ωn, but is lost in the limiting
procedure, and a new factorization emerges.

14



Ω1 ⊎ Ω2 ⊎ . . . (by the same formula (2a1)). However, fv is not a continuous
function on the compact space K.4 Thus, the weak convergence Pi → P is
relevant to fu but not fv. Something is wrong!

What is wrong is the uniform topology used in (1b4)–(1b7). A right topol-
ogy should take measures Pi into account. We have two ways, ‘moderate’
and ‘radical’.

Here is the ‘moderate’ way. We choose some appropriate subsets Bm ⊂
(Ω1 ⊎ Ω2 ⊎ . . . ), B1 ⊂ B2 ⊂ . . . , such that

inf
i
Pi(Bm ∩ Ωi) ↑ 1 for m→ ∞

and in (1b5)–(1b7) replace the assumption “fn ∈ C, fn → f uniformly =⇒
f ∈ C” with

(2a2) fn ∈ C, fn → f uniformly on each Bm =⇒ f ∈ C .

2a3 Example. Continuing (2a1) we define Bm by

Bm ∩ Ωi =






ω ∈ Ωi : sup

0≤k<l≤i

∣
∣
∣

1√
i

∑l
j=k τj(ω)

∣
∣
∣

(
l−k
i

)1/3
≤ m






;

then5

|fu(ω) − fv(ω)| ≤ m|u− v|1/3 for ω ∈ Bm ∩ Ωi

if i is large enough (namely, 2/i < |u − v|). The set C (satisfying (2a2))
generated by fu for all rational u, also contains fv for all irrational v.

Similarly to 1b, we may translate (2a2) into the topological language. For
each m, the restriction of C to Bm corresponds to a joint compactification
(Km, αm) of Bm∩Ωi. Clearly, Km1 ⊂ Km2 for m1 < m2, and αm1 = αm2 |Km1

.
Thus, we get a joint σ-compactification

α : (Ω1 ⊎ Ω2 ⊎ . . . ) → K∞ = K1 ∪K2 ∪ . . .
4There exist ωn ∈ Ωn such that limn fu(ωn) exists for all u ∈ [0, 1]∩Q, but limn fv(ωn)

does not exist.

b b b

b

b�11 1vv � 1pn v + 1pn
5Of course, |u − v|α for any α ∈ (0, 1/2) may be used, not only |u − v|1/3.
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We do not need a topology on the union K∞ of metrizable compact spaces
K1 ⊂ K2 ⊂ . . . 6 We just define C(K∞) as the set of all functions g : K∞ → R

such that g|Km
is continuous (on Km) for each m. We have

C = α−1
(
C(K∞)

)
,

that is, observables f ∈ C are functions of the form

f = g ◦ α , that is, f(ω) = g(α(ω)), g ∈ C(K∞) .

If measures α(Pi) weakly converge (w.r.t. bounded functions of C(K∞),
recall (1b8), (1b9)), we get the limiting model (Ω, P ) by taking Ω = K∞ and
P = limi→∞ α(Pi).

2a4 Example. Continuing 2a3 we see that the limiting measure P exists,
and the joint distribution of all fu (extended to K∞ by continuity) w.r.t. P
is the Wiener measure. The ‘uniform’ metric on K∞,

dist(x, y) = sup
0≤u≤1

|fu(x) − fu(y)| ,

is continuous on each Km (intersected with the support of P ). Therefore,
every function continuous in the ‘uniform’ metric belongs to C(K∞). Our
joint σ-compactification is another form of the usual weak convergence of
random walks to the Brownian motion.

That was the ‘moderate way’. It requires special subsets Bm ⊂ (Ω1⊎Ω2⊎
. . . ), in contrast to the ‘radical way’; basically, the latter allows the sequence
of sets Bm to depend on a sequence of functions fn, see (2a2). In other words,
instead of uniform (or ‘locally uniform’) convergence, we introduce a weaker
topology by the metric7

(2a5) dist(f, g) = sup
i

∫ |f(ω) − g(ω)|
1 + |f(ω)− g(ω)| dPi(ω) .

6But if you want, K∞ may be equipped with the inductive limit topology; that is,
U ⊂ K∞ is open if and only if for every m, U ∩ Km is open (in Km). However, the
topology usually is not metrizable.

7Alternatively, we may restrict ourselves to bounded functions Ω1⊎Ω2⊎· · · → [−1, +1]
(applying a transformation like arctan) and use, say,

dist(f, g) = sup
i

∫

|f(ω) − g(ω)| dPi(ω) .
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If fn ∈ C(K) and dist(fn, f) → 0 then fn converge in probability w.r.t. P ;
thus, f is naturally defined P -almost everywhere.8

Let C be the closure of C(K) in the metric (2a5). Then
∫

ϕ(f1, . . . , fd) dPi −−−→
i→∞

∫

ϕ(f1, . . . , fd) dP

for every d, every bounded continuous function ϕ : Rd → R, and ev-
ery f1, . . . , fd ∈ C. The joint distribution of f1, . . . , fd w.r.t. Pi converges
(weakly) to that w.r.t. P . So, the weak convergence Pi → P is relevant for
the whole C (not only C(K)). That is the idea of the ‘radical way’, presented
systematically in 2b, 2c.

Returning again to 1c3 we see that fv (for v ∈ [0, 1]) is the limit of fu
(for u ∈ [0, 1] ∩ Q) in the metric (2a5); thus, fv ∈ C for all v ∈ [0, 1].

However, much more can be said. Not only

Limi→∞

(
1√
i

∑

ai<k<bi

τk(ω)

)

=

∫ b

a

dB(t) ,

where ‘Lim’ means the scaling limit (as explained above), but also

Limi→∞

(

i−d/2
∑

ai<k1<···<kd<bi

τk1(ω) . . . τkd
(ω)

)

=

∫

· · ·
∫

a<t1<···<td<b

dB(t1) . . .dB(td) =
1

d!
Hd

(
B(b) −B(a), b− a

)

where Hd is the Hermite polynomial (see for instance [11, IV.3.8]). Taking
finite linear combinations and their closure in the metric (2a5) we get

(2a6) Limi→∞

( ∞∑

d=0

i−d/2
∑

0<k1<···<kd<i

ψd
(
k1
i
, . . . , kd

i

)
τk1(ω) . . . τkd

(ω)

)

=
∞∑

d=0

∫

· · ·
∫

0<t1<···<td<1

ψd(t1, . . . , td) dB(t1) . . .dB(td)

provided that functions ψd are Riemann integrable, and vanish for d large
enough. The right-hand side is well-defined for all ψd ∈ L2 such that

8In fact, every (equivalence class of) P -measurable function can be obtained in that
way provided that, for each i, supports of Pi and P do not intersect. It means that every
random variable on the limiting probability space is the scaling limit of some function on
Ω1 ⊎ Ω2 ⊎ . . . (see also 2c8).
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∑

d ‖ψd‖2
2 < ∞; the scaling limit may be kept by replacing ψd

(
k1
i
, . . . , kd

i

)

with the mean value of ψd on the 1/i-cube centered at
(
k1
i
, . . . , kd

i

)
. Now,

(0, 1) may be replaced with the whole R; ψd is defined on ∆d = {(x1, . . . , xd) ∈
Rd : x1 < · · · < xd}. The right-hand side of (2a6) gives us an isometric lin-
ear correspondence between L2(∆0 ⊎∆1 ⊎∆2 ⊎ . . . ) and L2(Ω,F , P ), where
(Ω,F , P ) is the probability space describing the Brownian motion (on the
whole R).

2b Coarse probability space: definition and simple ex-
ample

2b1 Definition. A coarse probability space
(
(Ω[i],F [i], P [i])∞i=1,A

)
consists

of a sequence of probability spaces (Ω[i],F [i], P [i]) and a set A of subsets
of the disjoint union Ω[all] = Ω(1) ⊎ Ω(2) ⊎ . . . , satisfying the following
conditions:

(a) ∀A ∈ A ∀i (A ∩ Ω[i]) ∈ F [i];

(b) ∀A,B ∈ A
(
A ∩B ∈ A, A ∪ B ∈ A, Ω[all] \ A ∈ A

)
;

(c) A contains every A ⊂ Ω[all] such that ∀i (A ∩ Ω[i]) ∈ F [i] and
P [i]

(
A ∩ Ω[i]

)
→ 0 for i→ ∞;

(d)
(
∪∞
k=1Ak

)
∈ A for every pairwise disjoint A1, A2, · · · ∈ A such that

∑

k supi P [i]
(
Ak ∩ Ω[i]

)
<∞;

(e) limi P [i]
(
A ∩ Ω[i]

)
exists for every A ∈ A;

(f) there exists a finite or countable subset A1 ⊂ A that generates A in
the sense that the least subset of A satisfying (b)–(d) and containing
A1 is the whole A.

A set A satisfying (a)–(f) will be called a coarse σ-field9 (on the coarse
sample space (Ω[i],F [i], P [i])∞i=1). Each set A belonging to the coarse σ-field
A will be called coarsely measurable (w.r.t. A), or a coarse event.

2b2 Remark. Condition 2b1(c) is equivalent to

(c1) ∀i F [i] ⊂ A. That is, if a set A ⊂ Ω[all] is contained in some Ω[i],
and is F [i]-measurable, then A ∈ A.

Also, Condition 2b1(d) is equivalent to each of the following conditions
(d1)–(d4). There, we assume that A ⊂ Ω[all], ∀i

(
A ∩ Ω[i]

)
∈ F [i], and

∀k Ak ∈ A.

(d1) If Ak ↑ A (that is, A1 ⊂ A2 ⊂ . . . andA = ∪kAk) and supi P [i]
(
(A\

Ak) ∩ Ω[i]
)
→ 0 for k → ∞, then A ∈ A.

9It is not a σ-field, unless A contains all sets satisfying 2b1(a).
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(d2) If supi P [i]
(
(A△ Ak) ∩ Ω[i]

)
→ 0 for k → ∞, then A ∈ A. (Here

A△Ak = (A \ Ak) ∪ (Ak \ A).)

(d3) If Ak ↑ A and lim supi P [i]
(
(A \ Ak) ∩ Ω[i]

)
→ 0 for k → ∞, then

A ∈ A.

(d4) If lim supi P [i]
(
(A△ Ak) ∩ Ω[i]

)
→ 0 for k → ∞, then A ∈ A.

So, we have 10 equivalent combinations: (c)&(d), (c1)&(d), (c)&(d1), (c1)&(d1),
(c)&(d2), . . . , (c1)&(d4). (I omit the proof.)

However, “supi” in (d) cannot be replaced with “lim supi”.

2b3 Lemma. Let A1 be a finite or countable set satisfying 2b1(a,e) and
(b1) ∀A,B ∈ A1

(
A ∩B ∈ A1

)
.

Then the least set A containing A1 and satisfying 2b1(b,c,d) is a coarse
σ-field.

Proof. The algebra generated by A1 satisfies (e), since P [i]
(
(A∪B)∩Ω[i]

)
=

P [i](A∩Ω[i])+P [i](B ∩Ω[i])−P [i]
(
(A∩B)∩Ω[i]

)
. We enlarge the algebra

according to (c), which preserves (e), as well as (a), (b). Finally, we enlarge it
according to (d), which preserves (a), (b), (e); (c) and (f) hold trivially.

In such a case we say that the coarse σ-field A is generated by the set A1.

2b4 Example. Let Ω[i] = {0, 1
i
, . . . , i−1

i
}, and P [i] be the uniform distribu-

tion on Ω[i]. Every interval (s, t) ⊂ (0, 1) gives us a set As,t ⊂ Ω[all],

As,t ∩ Ω[i] = (s, t) ∩ Ω[i] .
b b0 1s tb b
b b b

b b b b

b b b b b

b b b b b b

We take a dense countable set of pairs (s, t) (say, rational s, t) and consider
the set A1 of the corresponding As,t. The set A1 satisfies the conditions
of 2b3, therefore it generates a coarse σ-field A. In fact, A consists of all
A = A[1] ⊎ A[2] ⊎ . . . such that sets A[i] + (0, 1/i) ⊂ (0, 1) converge in
probability to some A[∞] ⊂ (0, 1); that is, mes

(
A[∞]△ (A[i]+(0, 1/i))

)
→ 0

for i→ ∞.

b b0 1s tb b
b b b

b b b b

b b b b b

b b b b b b

If A = As,t then, of course, A[∞] = (s, t).

2b5 Example. Continuing 1b1, we take Ω[i] = {−1,+1}i with the uniform
distribution P [i]. Given n and a = (a1, . . . , an) ∈ {−1,+1}n, we consider
Aa ⊂ Ω[all],

Aa ∩ Ω[i] = {(τ1, . . . , τi) : τ1 = a1, . . . , τn = an} for i ≥ n .
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Such sets Aa (for all a and n) are a countable collection A1 satisfying the
conditions of 2b3, therefore it generates a coarse σ-field A. In fact, A consists
of all A = A[1] ⊎ A[2] ⊎ . . . such that sets β−1

i (A) ⊂ (0, 1) converge in
probability to some A[∞] ⊂ (0, 1); here βi : (0, 1) → Ω[i] is such a measure
preserving map:

βi(x) =
(
(−1)c1 , . . . , (−1)ci

)
when x−

(c1
2

+ · · · + ci
2i

)

∈
(

0,
1

2i

)

,

for any c1, . . . , ci ∈ {0, 1}.
You may guess that some limiting procedure produces a (‘true’, not

coarse) probability space out of any given coarse probability space. Indeed,
such a procedure, called ‘refinement’, is described in 2c.

2c Good use of joint compactification

Having a coarse probability space
(
(Ω[i],F [i], P [i])∞i=1,A

)
and its refine-

ment (Ω,F , P ) (to be defined later), we may hope that the Hilbert space
L2[∞] = L2(Ω,F , P ) is in some sense the limit of Hilbert spaces L2[i] =
L2

(
Ω[i],F [i], P [i]

)
. That is indeed the case in the framework of joint com-

pactification, as we’ll see. A bad use of the framework, tried in 1b, is a joint
compactification of given probability spaces. A good use, considered here, is
a joint compactification of metric (Hilbert, . . . ) spaces built over the given
probability spaces.

2c1 Definition. A coarse Polish space is
(
(S[i], ρ[i])∞i=1, c

)
, where each (S[i],

ρ[i]) is a Polish space (that is, a complete separable metric space10), and
c ⊂ S[1] × S[2] × . . . is a set of sequences x =

(
x[1], x[2], . . .

)
satisfying the

following conditions:
(a) if x1, x2 ∈ S[1] × S[2] × . . . are such that ρ[i]

(
x1[i], x2[i]

)
→ 0 (for

i→ ∞), then (x1 ∈ c) ⇐⇒ (x2 ∈ c);
(b) if x, x1, x2, · · · ∈ S[1]×S[2]×. . . are such that supi ρ[i]

(
xk[i], x[i]

)
→ 0

(for k → ∞), then
(
∀k xk ∈ c

)
=⇒

(
x ∈ c

)
;

(c) limi ρ[i]
(
x1[i], x2[i]

)
exists for every x1, x2 ∈ c;

(d) there exists a finite or countable subset c1 ⊂ c that generates c in the
sense that the least subset of c satisfying (a), (b) and containing c1 is the
whole c.

2c2 Remark. Condition 2c1(d) does not change if ‘satisfying (a), (b)’ is
replaced with ‘satisfying (b)’. That is, 2c1(d) is just separability of c in the
metric x1, x2 7→ supi ρ[i]

(
x1[i], x2[i]

)
.

10Many authors define a Polish space as a metrizable topological space admitting a
complete separable metric. However, I assume that a metric is given.
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The refinement of a coarse Polish space
(
(S[i], ρ[i])∞i=1, c

)
is basically the

metric space
(
c, ρ̃
)
, where

ρ̃(x1, x2) = lim
i
ρ[i]
(
x1[i], x2[i]

)
.

However, ρ̃ is a pseudometric (semimetric); it may vanish for some x1 6= x2.
The equivalence class, denoted by x[∞], of a sequence x ∈ c consists of all
x1 ∈ c such that ρ[i]

(
x1[i], x[i]

)
→ 0. On the set S[∞] of all equivalence

classes we introduce a metric ρ[∞],

ρ[∞]
(
x1[∞], x2[∞]

)
= lim

i→∞
ρ[i]
(
x1[i], x2[i]

)
;

thus,
(
S[∞], ρ[∞]

)
is a metric space. We write

(
S[∞], ρ[∞]

)
= Limi→∞,c

(
S[i], ρ[i]

)

and call
(
S[∞], ρ[∞]

)
the refinement of the coarse Polish space

(
(S[i], ρ[i])∞i=1,

c
)
. Also, for every x = (x[1], x[2], . . . ) ∈ c we denote its equivalence class

x[∞] ∈ S[∞] by
x[∞] = Limi→∞,c x[i] ,

and call it the refinement of x.

2c3 Lemma. For every coarse Polish space, its refinement (S, ρ) is a Polish
space.

Proof. Separability follows from 2c1(d); completeness is to be proven. Let
x1, x2, . . . be a Cauchy sequence in (S, ρ); we have to find x ∈ S such that
ρ(xk, x) → 0. We may assume that

∑

k ρ(xk, xk+1) < ∞. Each xk is an
equivalence class; using (a) we choose for each k = 1, 2, 3, . . . a representative
sk ∈ S[1] × S[2] × . . . of xk such that supi ρ[i]

(
sk[i], sk+1[i]

)
≤ 2ρ(xk, xk+1).

Completeness of
(
S[i], ρ[i]

)
ensures existence of s∞[i] = limk sk[i]. Condition

(b) ensures s∞ ∈ c. The equivalence class x ∈ S of s∞ satisfies ρ(xk, x) ≤
supi ρ[i]

(
sk[i], s∞[i]

)
→ 0 for k → ∞.

Let (S[i], ρ[i])∞i=1, c
)

be a coarse Polish space, and (S, ρ) its refinement.
On the disjoint union

(
S[1]⊎S[2]⊎ . . .

)
⊎S we introduce a topology, namely,

the weakest topology making continuous the following functions fs :
(
S[1] ⊎

S[2] ⊎ . . .
)
⊎ S → [0,∞) for s ∈ c,

fs(x) = ρ[i]
(
x, s[i]

)
for x ∈ S[i] ,

fs(x) = ρ(x, s[∞]) for x ∈ S ,
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and an additional function f0 :
(
S[1] ⊎ S[2] ⊎ . . .

)
⊎ S → [0,∞), f0(x) = 1/i

for x ∈ S[i], f0(x) = 0 for x ∈ S. On every S[i] separately (and also on S),
the new topology coincides with the old topology, given by ρ[i] (or ρ).

We may choose a sequence (sk) dense in c; the topology is generated by
functions fsk

(and f0), therefore it is a metrizable topology. Moreover, the

sequence of functions
( fsk

(·)
1+fsk

(·)
)∞
k=1 (and f0) maps the disjoint union into the

metrizable compact space [0, 1]∞, and is a homeomorphic embedding. Thus,
we have a joint compactification of all S[i] and S; and so, we treat them as
subsets of a compact metrizable space K;

S[i] ⊂ K , S ⊂ K .

2c4 Lemma. Let s∞ ∈ S, s1 ∈ S[1], s2 ∈ S[2], . . . Then si → s∞ in K if
and only if s = (s1, s2, . . . ) ∈ c and Limi→∞,c si = s∞.

Proof. The ‘if ’ part. The needed relation, fk(si) → fk(s∞) for i → ∞, is
ensured by 2c1(c).

The ‘only if ’ part. We choose x ∈ c such that x[∞] = s∞; then ρ[i]
(
si, x[i]

)
→

ρ
(
s∞, x[∞]

)
= 0, thus s ∈ c by 2c1(a).

The assumption ‘s∞ ∈ S’ is essential. Other limiting points (not be-
longing to S) may exist; corresponding sequences converge in K but do not
belong to c. And, of course, sets S, S[1], S[2], . . . are not closed in K, unless
they are compact.

2c5 Lemma. A set c1 ⊂ c generates c if and only if the set of refinements
{x[∞] : x ∈ c1} is dense in S[∞].

Proof. The ‘only if ’ part follows from a simple argument: if S ′ is a closed
subset of S then the set c′ of all x ∈ c such that x[∞] ∈ S ′ satisfies 2c1(a,b).

The ‘if ’ part. Let {x[∞] : x ∈ c1} be dense in S[∞] and s ∈ c. We
choose xk ∈ c1 such that xk[∞] → s. Similarly to the proof of 2c3, we
construct yk ∈ c1 such that ρ[i]

(
sk[i], yk[i]

)
→ 0 when i → ∞ for each k,

and supi ρ[i]
(
yk[i], s[i]

)
→ 0 when k → ∞. The subset of c generated by c1

contains all yk by 2c1(a). Thus, it contains s by 2c1(b).

Given continuous functions f [i] : S[i] → R, f [∞] : S[∞] → R, we
write f [∞] = Limi→∞,c f [i] if f [i](x[i]) → f [∞](x[∞]) whenever x[∞] =
Limi→∞,c x[i]. If functions f [i] are equicontinuous (say, |f [i](x) − f [i](y)| ≤
ρ[i](x, y) for all i and x, y ∈ S[i]), then it is enough to check that f [i](xk[i]) →
f [∞](xk[∞]) for some sequence (xk)

∞
k=1, xk ∈ c, such that the sequence

(xk[∞])∞k=1 is dense in S[∞].
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Given continuous maps f [i] : S[i] → S[i], f [∞] : S → S, we write
f [∞] = Limi→∞,c f [i] if Limi→∞,c f [i](x[i]) = f [∞](x[∞]) whenever x[∞] =
Limi→∞,c x[i]. That is, Lim

(
f [i](x[i])

)
=
(
Lim f [i]

)(
Lim x[i]

)
. If maps f [i]

are equicontinuous then, again, convergence may be checked on xk such that
xk[∞] are dense.

Given continuous maps f [i] : S[∞] → S[i], we may ask whether
Limi→∞,c f [i](x) = x for all x ∈ S[∞], or not. If maps f [i] are equicon-
tinuous then, still, convergence may be checked for a dense subset of S[∞].

If every S[i] is not only a metric space but also a Hilbert (or Banach)
space, and c is linear (that is, closed under linear operations), then the re-
finement S is also a Hilbert (or Banach) space, and linear operations are
continuous on

(
S[1] ∪ S[2] ∪ . . .

)
∪ S ⊂ K in the sense that

Limi→∞,c(as1[i] + bs2[i]) = aLimi→∞,c s1[i] + bLimi→∞,c s2[i]

for all s1, s2 ∈ c.
Consider the case of Hilbert spaces S[i] = H [i], S = H . Given linear11

operators R[i] : H [i] → H [i], we may ask about LimR[i]. If it exists, we get

Lim
(
R[i]x[i]

)
=
(
LimR[i]

)(
Lim x[i]

)
.

If supi ‖R[i]‖ < ∞, then R[i] are equicontinuous, and convergence may be
checked on a sequence xk such that vectors xk[∞] span H (that is, their linear
combinations are dense in H). For example, one-dimensional orthogonal
projections; if x[∞] = Lim x[i] then Projx[∞] = Lim Projx[i].

Given linear operatorsR[i] : H → H [i], we may ask whether LimR[i](x) =
x for all x ∈ H , or not. If supi ‖R[i]‖ <∞ then convergence may be checked
on a sequence that spans H . Such R[i] always exist; moreover, ‖R[i]‖ ≤ 1
may be ensured. Proof: we take xk such that xk[∞] are an orthonormal
basis of H . After some correction, xk[i] become orthogonal (for each i), and
‖xk(i)‖ ≤ 1.12 Now we let R[i]xk[∞] = xk[i].

We return to coarse probability spaces.
Let

(
(Ω[i],F [i], P [i])∞i=1,A

)
be a coarse probability space. For each i

the pseudometric A,B 7→ P [i](A △ B) on F [i] gives us the metric space
MALG[i] = MALG

(
Ω[i],F [i], P [i]

)
of all equivalence classes of measurable

sets. It is not only a metric space but also a Boolean algebra, and moreover,
a separable measure algebra (as defined in [7, 17.44]). Treating every coarse
event A ∈ A as a sequence of A[1] ∈ MALG[1], A[2] ∈ MALG[2], . . . we get
a coarse Polish space

(
(MALG[i])∞i=1,A

)
. Its refinement is a metric space

11Continuous, of course.
12Of course, ‖xk[i]‖ → 1 for i → ∞, but in general we cannot ensure ‖xk[i]‖ = 1. It

may happen that dimH [i] < ∞ but dim H = ∞.
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MALG[∞]. The set A is closed under Boolean operations (union, intersec-
tion, complement). Therefore MALG[∞] is not only a metric space but also
a Boolean algebra. Using 2c3 it is easy to check that MALG[∞] is a sepa-
rable measure algebra. Therefore [7, 17.44] it is (up to isomorphism) of the
form

MALG[∞] = MALG(Ω,F , P )

for some probability space (Ω,F , P ). In the nonatomic case we may take
(Ω,F , P ) = (0, 1) with Lebesgue measure; in general, we may take a shorter
(maybe, empty) interval plus a finite (maybe, empty) or countable set of
atoms. Such a probability space (Ω.F , P ) (unique up to isomorphism) will be
called the refinement of the coarse probability space

(
(Ω[i],F [i], P [i])∞i=1,A

)
,

and we write
(Ω,F , P ) = Limi→∞,A

(
Ω[i],F [i], P [i]

)

(in practice, sometimes I omit “i→ ∞” or “A” or both under the “Lim”).
Every sequence A = (A[1], A[2], . . . ) ∈ A has its refinement

Limi→∞,AA[i] = A[∞] ∈ MALG(Ω,F , P ) .

2c6 Lemma. A subset A1 of a coarse σ-field A generates A if and only if the
refinement F of A is generated (mod 0) by refinements A[∞] of all A ∈ A1.

Proof. We apply 2c5 to the algebra generated by A1.

In order to define L2(A) as a set of functions on Ω[all], we start with
indicators 1A for A ∈ A, form their linear combinations, and take their
completion in the metric

‖f‖L2(A) = sup
i

‖f [i]‖L2[i] ,

where L2[i] = L2

(
Ω[i],F [i], P [i]

)
; the completion is a Banach (not Hilbert)

space L2(A). Each element f of the completion is evidently identified with
a sequence of f [i] ∈ L2[i], or a function on Ω[all]. We have a coarse Polish
space

(
(L2[i])

∞
i=1, L2(A)

)
. It has its refinement, L2[∞].

2c7 Lemma. The refinement L2[∞] of
(
(L2[i])

∞
i=1, L2(A)

)
is (canonically

isomorphic to) L2(Ω,F , P ), where (Ω,F , P ) is the refinement of
(
(Ω[i],F [i],

P [i])∞i=1,A
)
.

Proof. We define the canonical map L2(A) → L2(Ω,F , P ) first on indicators
by 1A 7→ 1A[∞], and extend it by linearity and continuity to the whole L2(A).
We note that the image of f ∈ L2(A) in L2(Ω,F , P ) depends only on the
refinement f [∞] ∈ L2[∞] of f , and their norms are equal (both are equal to
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limi ‖f [i]‖). We have a linear isometric embedding L2[∞] → L2(Ω,F , P ). Its
image is closed (since L2[∞] is complete by 2c3), and contains indicators 1B
for all B ∈ MALG(Ω,F , P ); therefore the image is the whole L2(Ω,F , P ).

2c8 Remark. The same holds for Lp for each p ∈ (0,∞), and for the space
L0 of all random variables (equipped with the topology of convergence in
probability). Elements of L0(A) will be called coarsely measurable (w.r.t.
A) functions (on Ω[all]), or coarse random variables; elements of L2(A) —
square integrable coarse random variables.

Let f be a coarse random variable. Then (usual) random variables f [i] :
Ω[i] → R converge in distribution (for i→ ∞) to the refinement f [∞] : Ω →
R. The distribution of f [∞] will be called the limiting distribution of f .

It may happen that f ∈ L2(A) but (sgnf) /∈ L2(A). An example: f(ω) =
(−1)i

i
for all ω ∈ Ω[i]. Here, the limiting distribution is an atom at 0, and the

function ‘sgn’ is discontinuous at 0.

2c9 Lemma. (a) Let f : Ω[all] → R be a coarse random variable, and
ϕ : R → R a continuous function. Then ϕ ◦ f : Ω[all] → R is a coarse
random variable.

(b) The same as (a) but ϕ may be discontinuous at points of a set Z ⊂ R,
negligible w.r.t. the limiting distribution of f .

Proof. If f is a linear combination of indicators, then ϕ ◦ f is another linear
combination of the same indicators. A straightforward approximation gives
(a) for uniformly continuous ϕ. In general, for every ε there exists a com-
pact set K ⊂ R \ Z of probability ≥ 1 − ε w.r.t. the limiting distribution,
and also w.r.t. the distribution of f [i] for all i (since all these distributions
are a compact set of distributions). The restriction of f to K is uniformly
continuous. The limit for ε → 0 is uniform in i.

For a given Polish space S we may define a coarse S-valued random vari-
able as a map f : Ω[all] → S such that (usual) random variables f [i] : Ω[i] →
S converge in distribution (for i → ∞), and f−1(B) ∈ A for every B ⊂ S
such that the boundary of B is negligible w.r.t. the limiting distribution of
f .

For S = R the new definition conforms with the old one.
A coarse σ-field generated by a given sequence of sets (coarse events) was

defined after 2b3. Often it is convenient to generate a coarse σ-field by a
sequence of functions (coarse random variables). A function f : Ω[all] → R

is coarsely A-measurable if and only if A contains sets f−1
(
(−∞, x)

)
for all
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x ∈ R except for atoms (if any) of the limiting distribution of f . A dense
countable subset of these x is enough. So, a coarse σ-field generated by a finite
or countable set of functions f is nothing but the coarse σ-field generated by
a countable set of sets of the form f−1

(
(−∞, x)

)
. More generally, S-valued

(coarse) random variables may be used; they are reduced to the real-valued
case by composing with appropriate continuous functions S → R.

2c10 Lemma. A sequence of functions fk : Ω[all] → R generates a
coarse σ-field if and only if for every n, n-dimensional random variables
(
f1[i], . . . , fn[i]

)
: Ω[i] → Rn converge in distribution (for i→ ∞).

Proof. The ‘only if ’ part. Let f1, . . . , fn be coarsely measurable (w.r.t. some
coarse σ-field), then they have a limiting joint distribution.

The ‘if ’ part. For each n we choose a dense countable set Qn ⊂ R

negligible w.r.t. the limiting distribution of fn. We apply 2b3 to the set
A1 of coarse events of the form {f1(·) ≤ q1, . . . , fn(·) ≤ qn} where q1 ∈
Q1, . . . , qn ∈ Qn, n = 1, 2, . . .

2c11 Remark. The same holds for an arbitrary Polish space instead of R.

2c12 Remark. Comparing 2c10 and (1b9) we see that every joint com-
pactification of Ω1 ⊎ Ω2 ⊎ . . . (in the sense of 1b, assuming (1b8)) may be
downgraded to a coarse probability space. Namely, we take a sequence of
functions fk that generates C and consider the coarse σ-field A generated by
(fk). Every f ∈ C is a coarse random variable, since L0(A) is closed under
all operations used in (1b5), (1b6), or (1b7).13 Therefore A does not depend
on the choice of (fk).

3 Scaling Limit and Independence

3a Product of coarse probability spaces

Having two coarse probability spaces
(
(Ω1[i],F1[i], P1[i])

∞
i=1,A1

)
and

(
(Ω2[i],

F2[i], P2[i])
∞
i=1,A2

)
, we define their product as the coarse probability space

(
(Ω[i],F [i], P [i])∞i=1,A

)
where for each i,

(Ω[i],F [i], P [i]) = (Ω1[i],F1[i], P1[i]) × (Ω2[i],F2[i], P2[i])

is the usual product of probability spaces, and A is the smallest coarse σ-field
that contains {A1×A2 : A1 ∈ A1, A2 ∈ A2}, where A1×A2 ⊂ Ω[all] is defined
by ∀i (A1 × A2)[i] = A1[i] × A2[i]. Existence of such A is ensured by 2b3.
We write A = A1 ⊗A2.

13Of course, L0(A) usually contains no sequence dense in the uniform topology.
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3a1 Lemma. The refinement of the product of two coarse probability spaces
is (canonically isomorphic to) the product of their refinements.

Proof. Denote these refinements by (Ω1,F1, P1), (Ω2,F2, P2) and (Ω,F , P ).
Both MALG(Ω1,F1, P1) and MALG(Ω2,F2, P2) are naturally embedded into
MALG(Ω,F , P ) as independent subalgebras. They generate MALG(Ω,F , P )
due to 2c6.

Given an arbitrary coarse σ-field A on the product coarse sample space
(
(Ω1[i],F1[i], P1[i])×(Ω2[i],F2[i], P2[i])

)∞
i=1, we may ask whether A is a prod-

uct, that is, A = A1⊗A2 for some A1,A2, or not. No need to check all A1,A2.
Rather, we have to check

A1 = {A1 : A1 × Ω2 ∈ A} , A2 = {A2 : Ω1 × A2 ∈ A} ;

of course, A1 × Ω2 ⊂ Ω[all] is defined by ∀i (A1 × Ω2)[i] = A1[i] × Ω2[i]. If
{A1 × A2 : A1 ∈ A1, A2 ∈ A2} generates A, then A is a product; otherwise,
it is not.

The refinement F of A contains two sub-σ-fields F1 = {(A1 × Ω2)[∞] :
A1 ∈ A1}, F2 = {(Ω1 × A2)[∞] : A2 ∈ A2}. They are independent:

P (A ∩ B) = P (A)P (B) for A ∈ F1, B ∈ F2 .

3a2 Lemma. A is a product if and only if F1,F2 generate F .

Proof. We apply 2c6 to {A1 × A2 : A1 ∈ A1, A2 ∈ A2}.

3a3 Remark. It is well-known that a generating pair of independent sub-
σ-fields means that (Ω,F , P ) is (isomorphic to) the product of two proba-
bility spaces. So, a coarse probability space is a product if and only if its
refinement is a product. (Assuming, of course, that the coarse sample space
is a product.)

Let A = A1 ⊗A2. Consider Hilbert spaces H1[i] = L2(Ω1[i],F1[i], P1[i]),
H2[i] = L2(Ω2[i],F2[i], P2[i]), H [i] = L2(Ω[i],F [i], P [i]). For each i, the
space H [i] is (canonically isomorphic to) H1[i]⊗H2[i]. Indeed, for x1 ∈ H1[i],
x2 ∈ H2[i] we define x1 ⊗ x2 ∈ H [i] by (x1 ⊗ x2)(ω1, ω2) = x1(ω1)x2(ω2);
then 〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉〈x2, y2〉, and factorizable vectors (of the
form x1 ⊗ x2) span the space H [i]. We know (see 2c7) that the refinement
H [∞] of

(
(H [i])∞i=1, L2(A)

)
is L2(Ω,F , P ). Also, H1[∞] = L2(Ω1,F1, P1) and

H2[∞] = L2(Ω2,F2, P2). Using 3a1 we get H [∞] = H1[∞] ⊗H2[∞]. In that
sense,

Lim
(
H1[i] ⊗H2[i]

)
=
(
LimH1[i]

)
⊗
(
LimH2[i]

)
.
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If x ∈ L2(A1), y ∈ L2(A2), we define x ⊗ y by (x⊗ y)[i] = x[i] ⊗ y[i] for all
i. We get x⊗ y ∈ L2(A) and (x⊗ y)[∞] = x[∞] ⊗ y[∞], that is,

(3a4) Lim
(
x[i] ⊗ y[i]

)
=
(
Lim x[i]

)
⊗
(
Lim y[i]

)
,

since it holds for (linear combinations of) indicators of coarse events. Note
also that linear combinations of factorizable vectors are dense in L2(A).

Assume that R1[i] : H1[i] → H1[i], R2[i] : H2[i] → H2[i] are linear op-
erators, possessing limits R1[∞] = LimR1[i], R2[∞] = LimR2[i]. Consider
linear operators R1[i] ⊗R2[i] = R[i] : H [i] → H [i]. (It means that R[i]x[i] =
R1[i]x1[i] ⊗ R2[i]x2[i] whenever x[i] = x1[i] ⊗ x2[i].) If supi ‖R1[i]‖ < ∞,
supi ‖R2[i]‖ <∞, then LimR[i] = R1[∞] ⊗R2[∞], that is,

(3a5) Lim
(
R1[i] ⊗ R2[i]

)
=
(
LimR1[i]

)
⊗
(
LimR2[i]

)
.

Proof: We have to check that

Lim
(
R1[i] ⊗ R2[i]

)
x[i] =

(
LimR1[i] ⊗ LimR2[i]

)(
Lim x[i]

)

for all x ∈ L2(A). We may assume that x is factorizable, x = x1 ⊗ x2; then

Lim
(
R1[i] ⊗ R2[i]

)(
x1[i] ⊗ x2[i]

)
=

= Lim
(
R1[i]x1[i] ⊗ R2[i]x2[i]

)
=

=
(
LimR1[i]x1[i]

)
⊗
(
LimR2[i]x2[i]

)
=

=
(
LimR1[i]

)(
Lim x1[i]

)
⊗
(
LimR2[i]

)(
Lim x2[i]

)
=

=
(
LimR1[i] ⊗ LimR2[i]

)(
Limx1[i] ⊗ Limx2[i]

)
.

Especially, let R2[i] be the orthogonal projection to the one-dimensional
subspace of constants (basically, the expectation), and R1[i] be the unit
(identity) operator. Then

(
R1[i] ⊗ R2[i]

)(
x[i]
)

= E
(
x[i]

∣
∣F1[i]

)
, since it

holds for factorizable vectors. Further, R2[∞] = LimR2[i] is the expecta-
tion on (Ω2,F2, P2), since convergence of vectors implies convergence of one-
dimensional projections, and constant functions on Ω2[all] belong to L2(A).
So,

(3a6) Lim E
(
x[i]

∣
∣F1[i]

)
= E

(
Lim x[i]

∣
∣F1

)

for all x ∈ L2(A).
All the same holds for the product of any finite number of spaces (not

just two).
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3b Dyadic case

Let (Ω[i],F [i], P [i]) be the space of all maps 1
i
Z → {−1,+1} with the usual

product measure. That is, we have independent random signs τk/i for all
integers k;14 each random sign takes on two values ±1 with probabilities
50%, 50%. The coarse sample space (Ω[i],F [i], P [i])∞i=1 will be called the
dyadic coarse sample space.15 Let A be a coarse σ-field on the dyadic coarse
sample space. What about decomposing it, say, into the past and the future
w.r.t. a given instant?

Let us define a coarse instant as a sequence t =
(
t[i])∞i=1 such that t[i] ∈ 1

i
Z

(that is, it[i] ∈ Z) for all i, and there exists t[∞] ∈ R (call it the refinement of
the coarse instant) such that t[i] → t[∞] for i→ ∞. A coarse time interval is
a pair (s, t) of coarse instants s, t such that s ≤ t in the sense that s[i] ≤ t[i]
for all i.

For every coarse time interval (s, t) we define the coarse probability space
(
(Ωs,t[i],Fs,t[i], Ps,t[i])

∞
i=1,As,t

)
as follows. First, Ωs,t[i] is the space of all maps

(
1
i
Z ∩ [s[i], t[i])

)
→ {−1,+1}.16 Second, Fs,t[i] and Ps,t[i] are defined natu-

rally, and we have the canonical measure preserving map (Ω[i],F [i], P [i]) →
(Ωs,t[i],Fs,t[i], Ps,t[i]). Third, each A ⊂ Ωs,t[all] has its inverse image in Ω[all];
if the inverse image of A belongs to A then (and only then) A belongs to
As,t, which is the definition of As,t. It is easy to see that As,t is a coarse
σ-field.

Given coarse time intervals (r, s) and (s, t), we have

(
Ωr,t[i],Fr,t[i], Pr,t[i]

)
=
(
Ωr,s[i],Fr,s[i], Pr,s[i]

)
×
(
Ωs,t[i],Fs,t[i], Ps,t[i]

)
,

and we may ask whether Ar,t is a product, that is, Ar,t = Ar,s⊗As,t, or not.

3b1 Definition. A dyadic coarse factorization is a coarse probability space
(
(Ω[i],F [i], P [i])∞i=1,A

)
such that (Ω[i],F [i], P [i])∞i=1 is the dyadic coarse

sample space;
Ar,t = Ar,s ⊗As,t

whenever r, s, t are coarse instants such that r[i] ≤ s[i] ≤ t[i] for all i; and

A is generated by
⋃

(s,t)

As,t ,

where the union is taken over all coarse time intervals (s, t).

14Rigorously, I should denote it by τk[i], but τk/i is more expressive. Though τ2/6 is not
the same as τ1/3, hopefully, it does not harm.

15Sometimes a subsequence is used; say, i ∈ {2, 4, 8, 16, . . .} only; or equivalently, Ω[i]
is the space of maps 2−iZ → {−1, +1}; see 3b7, 3b8.

16It may happen that s[i] = t[i], then Ωs,t[i] contains a single point.
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3b2 Example. A single function f : Ω[all] → R, defined by f(ω) = τ0/i(ω)
for ω ∈ Ω[i], generates a coarse σ-field A. However, the coarse probabil-
ity space

(
(Ω[i],F [i], P [i])∞i=1,A

)
is not a dyadic coarse factorization. The

equality Ar,t = Ar,s ⊗ As,t is violated when s[i] converges to 0 from both
sides; say, s[i] = (−1)i/i. It means that a single point of the time continuum
should not carry a random sign. See also 3b9–3b11.

Every family (As,t)s≤t of coarse σ-fields As,t on coarse sample spaces
(
Ωs,t[i],Fs,t[i], Ps,t[i]

)∞
i=1, indexed by all coarse time intervals (s, t) and satis-

fying Ar,t = Ar,s ⊗As,t whenever r ≤ s ≤ t, corresponds to a dyadic coarse
factorization.

3b3 Example. Given a coarse time interval (s, t), we consider fs,t : Ω[all] →
R,

fs,t(ω) =
1√
i

∑

k:s[i]≤k/i<t[i]
τk/i(ω) for ω ∈ Ω[i] .

Only s[∞], t[∞] matter, in the sense that

(3b4)

∫

Ω[i]

|f̃ [i] − f [i]|
1 + |f̃ [i] − f [i]|

dP [i] −−−→
i→∞

0

if f = fs,t, and f̃ = fs̃,t̃ is such a function built for a different coarse time inter-

val (s̃, t̃) satisfying s̃[∞] = s[∞], t̃[∞] = t[∞]. Moreover, ‖f̃ [i]−f [i]‖L2[i] → 0
for i → ∞. We choose a sequence of coarse time intervals, (sn, tn)

∞
n=1, such

that the sequence of their refinements, (sn[∞], tn[∞]) is dense among all
(usual, not coarse) intervals. The sequence

(
fsn,tn

)∞
n=1 satisfies the condition

of 2c10 and therefore it generates a coarse σ-field A. It is easy to see that
A does not depend on the choice of (sn, tn). Clearly, the refinement of fs,t is
the increment B(t[∞]) − B(s[∞]) of the usual Brownian motion B(·).

Given three coarse instants r ≤ s ≤ t, we have

fr,t = fr,s + fs,t .

It shows that fr,t is coarsely measurable w.r.t. the product of two coarse
σ-fields Ar,s ⊗ As,t, which implies Ar,t = Ar,s ⊗ As,t. So, we have a dyadic
coarse factorization. We may call it the Brownian coarse factorization.

3b5 Example. Let fs,t(ω) be the same as in 3b3 and in addition,

gs,t(ω) =
1√
i

∑

k:s[i]≤k/i<t[i]
(−1)kτk/i(ω) for ω ∈ Ω[i] .
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In the scaling limit we get two independent Brownian motions B1, B2; the
refinement of fs,t is B1(t[∞])−B1(s[∞]), the refinement of gs,t is B2(t[∞])−
B2(s[∞]). By the way, (−1)k cannot be replaced with (−1)k−s[i]; it would
violate the condition of 2c10.

We may also consider

f
(n)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i<t[i]
exp

(

2πi
k

n

)

τk/i(ω) for ω ∈ Ω[i]

for n = 1, 2, 3, . . . (here i =
√
−1, while i is an integer). In the scaling

limit we get two real-valued Brownian motions B1, B2 and infinitely many
complex-valued Brownian motion B3, B4, . . . All Bn are independent.

Another construction of that kind:

f
(λ)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i<t[i]
exp

(

2πiλ
k√
i

)

τk/i(ω) for ω ∈ Ω[i] .

In the scaling limit, each λ ∈ (0,∞) gives a complex-valued Brownian motion
Bλ. Any finite or countable set of numbers λ may be used, and leads to inde-
pendent Brownian motions. Note that we cannot use more than a countable
set of λ, since separability is stipulated by the definition of a coarse proba-
bility space.

3b6 Example. For n = 1, 2, . . . we introduce

f
(n)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i≤(k+n)/i<t[i]

n∏

m=1

τ(k+m)/i(ω) for ω ∈ Ω[i] .

In the scaling limit we get independent Brownian motions Bn.
Another construction of that kind:

f
(λ)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i≤(k+λ
√
i)/i<t[i]

entier(λ
√
i)

∏

m=1

τ(k+m)/i(ω) for ω ∈ Ω[i] ;

any finite or countable set of numbers λ ∈ (0,∞) may be used, and leads to
independent Brownian motions Bλ.

Note that we cannot take the product over m = 1, . . . , entier(λi); that
would destroy factorizability.

3b7 Example. Here we restrict ourselves to i ∈ {2, 4, 8, 16, . . .}, thus vio-
lating a little of our framework. We let for ω ∈ Ω[i], i = 2n,

gs,t(ω) =
∑

k:s[i]≤k/i<(k+n−1)/i<t[i]

1 + τk/i(ω)

2

n−1∏

m=1

1 − τ(k+m)/i(ω)

2
.
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That is, gs,t : Ω[all] → {0, 1, 2, . . .} counts combinations ‘+ − . . .−’ of one
plus sign and (n − 1) minus signs in succession. In the scaling limit we get
the Poisson process.

3b8 Example. Let fs,t be as in 3b3 (Brownian), while gs,t is as in 3b7
(Poisson). Taken together, they generate a coarse σ-field. The corresponding
scaling limit consists of two independent processes, Brownian and Poisson.

Let
(
(Ω[i],F [i], P [i])∞i=1,A

)
be a dyadic coarse factorization. Being a

coarse probability space, it has a refinement (Ω,F , P ). For every coarse time
interval (s, t) we have a coarse sub-σ-field As,t ⊂ A and its refinement, a
sub-σ-field Fs,t[∞] ⊂ F . By 3a1,

Fr,t[∞] = Fr,s[∞] ⊗ Fs,t[∞] whenever r ≤ s ≤ t .

3b9 Lemma. If s[∞] = t[∞] then Fs,t[∞] is degenerate (that is, contains
sets of probability 0 or 1 only).

Proof. Consider the coarse instant r,

r[i] =

{

s[i] for i even,

t[i] for i odd.

For every A ∈ As,r,

P (A[∞]) = lim
i→∞

P [i]
(
A[i]

)
= lim

i→∞
P [2i]

(
A[2i]

)
∈ {0, 1} ,

since As,r[2i] is degenerate. So, Fs,r[∞] is degenerate. Similarly, Fr,t[∞] is
degenerate. However, Fs,t[∞] = Fs,r[∞] ⊗ Fr,t[∞].

3b10 Lemma. Fs,t[∞] depends only on s[∞], t[∞].

Proof. Let (u, v) be another coarse time interval such that u[∞] = s[∞]
and v[∞] = t[∞]; we have to prove that Fs,t[∞] = Fu,v[∞]. Assume that
s[∞] < t[∞] (otherwise both Fs,t[∞] and Fu,v[∞] are degenerate). Assume
also that s[i] ≤ v[i] and u[i] ≤ t[i] for all i (otherwise we correct them on a
finite set of indices i).

Further, we may assume that s ≤ u ≤ v ≤ t; otherwise we turn to s∧u ≤
s∨ u ≤ t∧ v ≤ t∨ v, where (s∧ u)[i] = s[i]∧ u[i] = min

(
s[i], u[i]

)
, etc. Both

Fs,t[∞] and Fu,v[∞] are sandwiched between Fs∧u,t∨v[∞] and Fs∨u,t∧v[∞].
Finally, Fs,t[∞] = Fs,u[∞] ⊗ Fu,v[∞] ⊗ Fv,t[∞] = Fu,v[∞], since Fs,u[∞]

and Fv,t[∞] are degenerate by 3b9.
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So, a sub-σ-field Fs,t ⊂ F is well-defined for every interval (s, t) ⊂ R

(rather than a coarse time interval), and

Fr,t = Fr,s ⊗Fs,t whenever −∞ < r ≤ s ≤ t < +∞ .

3b11 Lemma. The union of sub-σ-fields Fs+ε,t−ε over ε > 0 generates Fs,t.

Proof. Consider Fε,1. We have to prove that E
(
x
∣
∣Fε,1

)
converges to x (in

L2(Ω), for ε → 0+) for every x ∈ L2(F0,1), or for x[∞] where x ∈ L2(A0,1).
Assume the contrary. Then

‖E
(
x[∞]

∣
∣Fε,1

)
‖ < c < ‖x[∞]‖

for all ε small enough, and some constant c. We know that

E
(
x[∞]

∣
∣Fε,1

)
= Lim E

(
x[i]

∣
∣Fε,1[i]

)

for each ε.17 Therefore

‖E
(
x[i]

∣
∣Fε,1[i]

)
‖ −−−→

i→∞
‖E
(
x[∞]

∣
∣Fε,1

)
‖ < c .

We choose a sequence ε[i] −−−→
i→∞

0 such that ‖E
(
x[i]

∣
∣Fε[i],1[i]

)
‖ < c for

all i large enough. However, Lim E
(
x[i]

∣
∣Fε[i],1[i]

)
= E

(
x[∞]

∣
∣Fε[∞],1

)
=

E
(
x[∞]

∣
∣F0,1

)
= x[∞]; a contradiction.

3c Scaling limit of Fourier-Walsh coefficients

We still consider a dyadic coarse factorization. The Hilbert space L2[i] =
L2

(
Ω[i],F [i], P [i]

)
consists of all functions of random signs τm, m ∈ 1

i
Z. The

well-known Fourier-Walsh orthonormal basis of L2[i] consists of products

τM =
∏

m∈M
τm , M ∈ C[i] , C[i] = {M ⊂ 1

i
Z : M is finite} .

Every f ∈ L2[i] is of the form

f =
∑

M

f̂MτM = f̂∅ +
∑

m∈ 1
i
Z

f̂{m}τm +
∑

m1,m2∈ 1
i
Z,m1<m2

f̂{m1,m2}τm1τm2 + . . . ;

coefficients f̂M are called Fourier-Walsh coefficients of f . We define the spec-
tral measure µf on the countable set C[i] by

µf (M) =
∑

M∈M
|f̂M |2 for M ⊂ C[i] ;

17Or rather, an appropriate coarse instant is meant in Fε,1[i].
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it is a finite positive measure,

µf(C[i]) = ‖f‖2 ; µf({∅}) = (E f)2 ; µf(C[i] \ {∅}) = Var(f) .

Let (s, t) be a coarse time interval. We have

E
(
τM
∣
∣Fs,t[i]

)
=

{

τM if M ⊂ [s[i], t[i]),

0 otherwise;

‖E
(
f
∣
∣Fs,t[i]

)
‖2 = µf

(
{M ∈ C[i] : M ⊂ [s[i], t[i])}

)
.

We apply it to f = x[i] for an arbitrary x ∈ L2(A) and arbitrary i; µf
becomes µx[i] or µx[i]; by (3a6),

µx[i]
(
{M ∈ C[i] : M ⊂ [s[i], t[i])}

)
= ‖E

(
x[i]

∣
∣Fs,t[i]

)
‖2

−−−→
i→∞

‖E
(
x[∞]

∣
∣Fs,t[∞]

)
‖2 .

For every ε > 0 we can choose s, t so that ‖x[∞]‖2−‖E
(
x[∞]

∣
∣Fs,t[∞]

)
‖2 ≤

ε, and moreover,

(3c1) µx[i]
(
{M ∈ C[i] : M ⊂ [s[i], t[i])}

)
≤ ε for all i .

We consider each µx[i] as a measure on the space C[∞] of all compact subsets
of R, equipped with the Hausdorff metric; the metric is

(3c2) dist(M1,M2) = sup
x∈R

∣
∣
∣ min
y∈M1

|x− y| − min
y∈M2

|x− y|
∣
∣
∣

for nonempty M1,M2, and dist(∅,M) = 1 for M 6= ∅. Clearly, C[i] ⊂ C[∞]
for each i; thus, a measure on C[i] is also a measure on C[∞].18 The set
{M ∈ C[∞] : M ⊂ [u, v]} is well-known to be compact, for every [u, v] ⊂ R.
Thus, (3c1) shows that the sequence of measures µx[i] on C[∞] is tight.

Let (s1, t1) and (s2, t2) be two coarse time intervals, s1 ≤ t1 ≤ s2 ≤ t2.
Sub-σ-fields Fs1,t1 [i] and Fs2,t2 [i] are independent; they generate a sub-σ-field
that may be denoted by

F(s1,t1)∪(s2,t2)[i] = Fs1,t1 [i] ⊗ Fs2,t2 [i] .

18One may turn (C[i])∞i=1 into a coarse Polish space, and identify its refinement with
C[∞]. It leads to a joint compactification of all C[i] and C[∞], which is a suitable framework
for weak convergence of measures on C[i] to a measure on C[∞]. However, it is simpler to
use natural embeddings, C[i] ⊂ C[∞].
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We have

E
(
τM
∣
∣F(s1,t1)∪(s2,t2)[i]

)
=

{

τM if M ⊂ [s1[i], t1[i]) ∪ [s2[i], t2[i]),

0 otherwise;

‖E
(
f
∣
∣F(s1,t1)∪(s2,t2)[i]

)
‖2 = µf

(
{M ∈ C[i] : M ⊂ [s1[i], t1[i]) ∪ [s2[i], t2[i])}

)
;

µx[i]
(
{M ∈ C[i] : M ⊂ [s1[i], t1[i]) ∪ [s2[i], t2[i])}

)
=

= ‖E
(
x[i]

∣
∣F(s1,t1)∪(s2,t2)[i]

)
‖2 −−−→

i→∞
‖E
(
x[∞]

∣
∣F(s1,t1)∪(s2,t2)[∞]

)
‖2 ,

where F(s1,t1)∪(s2,t2)[∞] = Fs1,t1[∞] ⊗ Fs2,t2 [∞] = Fs1[∞],t1[∞] ⊗ Fs2[∞],t2[∞].
A generalization of (3a6) to the product of more than two spaces was used
here.

The same holds for more than two coarse time intervals:

(3c3) µx[i]
(
{M ∈ C[i] : M ⊂ [s1[i], t1[i]) ∪ . . . ∪ [sn[i], tn[i])}

)

−−−→
i→∞

‖E
(
x[∞]

∣
∣F(s1,t1)∪...∪(sn,tn)[∞]

)
‖2 .

We have convergence of spectral measures on a special class of subsets of
C[∞]. Note that the intersection of two such subsets is again such a subset.
Therefore, the convergence holds on the algebra of subsets generated by the
class. A generic element of the algebra is the union of a finite number of
‘cells’ of the form

(3c4) {M ∈ C[∞] : M ⊂ ∪nk=1[sk, tk) and M∩[sk, tk) 6= ∅ for k = 1, . . . , n} ;

here [sk, tk) ⊂ R are usual (rather than coarse) time intervals. (Endpoints
may be neglected, as we will see soon.) The diameter of the cell (3c4) (w.r.t.
the metric (3c2)) does not exceed maxk(tk − sk). Thus, we get weak conver-
gence of measures, which proves the following result.

3c5 Theorem. For every dyadic coarse factorization
(
(Ω[i],F [i], P [i])∞i=1,A

)

and every x ∈ L2(A), the sequence
(
µx[i]

)∞
i=1 of spectral measures converges

weakly to a (finite, positive) measure µx[∞] on the Polish space C[∞].

Convergence of measures µx[i] on a ‘cell’ of the form (3c3) (or (3c4))
does not ensure that the limit is µx[∞] on the ‘cell’.19 Rather, the limit lies
between µx[∞]-measures of the interior and the closure of the cell,

(3c6) µx[∞]
(
{M ∈ C[∞] : M ⊂ (s1, t1) ∪ . . . ∪ (sn, tn)}

)

≤ ‖E
(
x[∞]

∣
∣F(s1,t1)∪...∪(sn,tn)

)
‖2

≤ µx[∞]
(
{M ∈ C[∞] : M ⊂ [s1, t1] ∪ . . . ∪ [sn, tn]}

)
.

19Think for example about an atom at the point 1

n of R, and ‘cells’ of the form (x, y].
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3c7 Lemma. For every t ∈ R,

µx[∞]
(
{M ∈ C[∞] : M ∋ t}

)
= 0 .

Proof. Lemma 3b11 gives us

‖E
(
x[∞]

∣
∣F(−∞,−ε)∪(ε,+∞)

)
‖2 −−→

ε→0
‖x[∞]‖2 ;

therefore

µx[∞]
(
{M ∈ C[∞] : M ⊂ (−∞, ε] ∪ [ε,+∞)}

)
−−→
ε→0

µx[∞]
(
C[∞]

)
.

Applying Fubini’s theorem we see that µx[∞] is concentrated on (the set
of all) compact sets M of Lebesgue measure 0 (therefore, nowhere dense).

Due to 3c7 we see that the boundary of a ‘cell’ is negligible (of measure
0); inequalities (3c6) are, in fact, equalities. So,

(3c8) µx[∞]
(
{M ∈ C[∞] : M ⊂ E}

)
= ‖E

(
x[∞]

∣
∣FE

)
‖2 ,

where E ⊂ R is an arbitrary elementary set, that is, a finite union of intervals
(treated modulo finite sets), E = (s1, t1) ∪ . . . ∪ (sn, tn), and FE = Fs1,t1 ⊗
· · · ⊗ Fsn,tn .

For a finite i, the Fourier-Walsh basis decomposes L2[i] into one-dimensional
subspaces indexed by M ∈ C[i], and each subset M ⊂ C[i] leads to a sub-
space HM of L2[i] spanned by τM , M ∈ M. In particular, for a subset of the
form ME = {M ∈ C[i] : M ⊂ E} we have HME

= L2(Ω[i],FE [i], P [i]).
Similarly, for the limiting object, the subspace HME

= L2(Ω,FE, P ) of
L2[∞] corresponds to the set ME = {M ∈ C[∞] : M ⊂ E}. In 3d a subspace
HM ⊂ L2[∞] will be defined for every Borel set M ⊂ C[∞].

3d The limiting object

3d1 Definition. A continuous factorization (of probability spaces, over R)
consists of a probability space (Ω,F , P ) and a two-parameter family (Fs,t)s≤t
of sub-σ-fields Fs,t ⊂ F such that20

(a) Fr,t = Fr,s ⊗ Fs,t whenever r ≤ s ≤ t

(that is, Fr,s and Fs,t are independent, and together generate Fr,t),

(b)
⋃

ε>0

Fs+ε,t−ε generates Fs,t whenever s < t,

20Here r, s, t are real numbers; coarse instants are not used in 3d, 3e.

36



and

(c)
∞⋃

n=1

F−n,n generates F .

The refinement of any dyadic coarse factorization is a continuous factor-
ization (as was shown in 3b).

3d2 Definition. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, and

x ∈ L2(Ω,F , P ). The spectral measure µx of x is the (finite, positive) measure
on the space C = C[∞] of compact subsets of R such that

µx
(
{M ∈ C : M ⊂ E}

)
= ‖E

(
x
∣
∣FE

)
‖2

for all elementary sets E ⊂ R.

Uniqueness of µx is checked easily. Existence of µx is proven in 3c by
discrete approximation, assuming that the continuous factorization is the
refinement of a dyadic coarse factorization. Another proof, without approx-
imation, will be given by 3d9.

The spectral measure is concentrated on (the set of all) nowhere dense
compact sets, and

(3d3) µx
(
{M ∈ C : M ∋ t}

)
= 0 for each t ∈ R ,

which follows from 3d6 for s = t, since Ft,t = Ft,t ⊗ Ft,t is degenerate.

3d4 Example. The refinement of the Brownian coarse factorization (see
3b3) is the Brownian continuous factorization,

Fs,t is generated by {B(v) − B(u) : s ≤ u ≤ v ≤ t} ,

where B(·) is the usual Brownian motion. Every x ∈ L2 admits Itô’s decom-
position into multiple stochastic integrals,

x = x̂(∅) +

∫

x̂({t1}) dB(t1) +

∫∫

t1<t2

x̂({t1, t2}) dB(t1)dB(t2) + . . .

=

∞∑

n=0

∫

· · ·
∫

t1<···<tn

x̂({t1, . . . , tn}) dB(t1) . . .dB(tn) ,

where x̂ ∈ L2(Cfinite), Cfinite being the space of all finite subsets of R, equipped
with the natural (Lebesgue) measure, making the transform x ↔ x̂ unitary,
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according to the formula

E |x|2 = |x̂(∅)|2 +

∫

|x̂({t1})|2 dt1 +

∫∫

t1<t2

|x̂({t1, t2})|2 dt1dt2 + . . .

=
∞∑

n=0

∫

· · ·
∫

t1<···<tn

|x̂({t1, . . . , tn})|2 dt1 . . .dtn .

The spectral measure µx of x is

µx(A) =
∞∑

n=0

∫

· · ·
∫

t1<···<tn,{t1,...,tn}∈A

|x̂({t1, . . . , tn})|2 dt1 . . .dtn .

This is an important property of the Brownian continuous factorization: the
spectral measure (of any random variable) is concentrated on the subset
Cfinite ⊂ C, and absolutely continuous w.r.t. the Lebesgue measure on Cfinite.

In particular, for x = exp
(
i
√
λB(t)

)
the measure µx is just the distribu-

tion of the Poisson process of rate λ on (0, t). Indeed,

exp
(
i
√
λB(t)

)
= e−λt/2

∞∑

n=0

λn/2
∫

· · ·
∫

0<t1<···<tn<t

dB(t1) . . .dB(tn) .

3d5 Example. Recall the process Yε of 1a3;

Yε(t) = exp
(
iB(ln t) − iB(ln ε)

)
.

We define Fs,t as the σ-field generated by ‘multiplicative increments’
Yε(v)/Yε(u) for all (u, v) ⊂ (s, t), that is, by (usual) Brownian increments
on (ln s, ln t). The spectral measure µYε(t) is the distribution of a non-
homogeneous Poisson process on (ε, t), the image of the usual Poisson process
(of rate 1) on (ln ε, ln t) under the time change u 7→ eu. The rate of the non-
homogeneous Poisson process is λ(s) = 1/s.

The limiting process Y was discussed in 1a3. It may be treated as the
refinement of Yε for ε → 0 (I leave the details to the reader). The spec-
tral measure µY (t) should be the distribution of a non-homogeneous Poisson
process on (0, t), at the rate λ(s) = 1/s. Random points accumulate to
0; we add 0 to the random set, making it compact. However, the equality
µ({M : M ∋ 0}) = 1 does not conform to 3c7! It happens because the
limiting object is not a continuous factorization. Denote by F0+,1 the σ-field
generated by ∪ε>0Fε,1. Every Y (1)/Y (t) for t > 0 is F0+,1-measurable, but
Y (1) is not. The global phase is missing. Of course, for every t > 0, there
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exists an independent complement of F0+,t in F−∞,t (for example, the σ-field
generated by Y (t)). However, we cannot choose a single complement (to be
denoted by F−∞,0+) for all t > 0, since the tail σ-field ∩t>0F−∞,t is degener-
ate.

3d6 Lemma. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
and

every s ≤ t,

Fs,t =
⋂

ε>0

Fs−ε,t+ε .

Proof. The σ-field ∩ε>0F0,ε is degenerate by Kolmogorov’s zero-one law ap-
plied to F1,∞,F1/2,1,F1/3,1/2, . . . Further, F−∞,ε = F−∞,0 ⊗F0,ε −−→

ε→0
F−∞,0.

Though the equality lim(A ∨ Bn) = A ∨ (limBn) does not hold in general,
it does hold for independent A and B1 (B1 ⊃ B2 ⊃ . . . ), which is a rather
trivial part of Weizsäcker’s criteria [27]. The rest of the proof is left to the
reader.

The theory of direct integrals of Hilbert spaces may be used on the way
to Theorem 3d12. In fact, I did so in [15, Th. 2.3]. Here, however, I choose a
self-contained presentation. First, a general result of measure theory, useful
for proving the existence of µx (without dyadic approximation).

3d7 Lemma. Let X be a compact topological space, A an algebra of subsets
of X, and µ : A → [0,∞) an additive function satisfying the following
regularity condition:

For every A ∈ A and ε > 0 there exists B ∈ A such that B ⊂ A (here B
is the closure of B) and µ(B) ≥ µ(A) − ε.

Then µ has a unique extension to a measure on the σ-field generated by
A.

Proof. Due to a well-known theorem, it is enough to prove that µ is σ-additive
on A. Let A1 ⊃ A2 ⊃ . . . , A1, A2, · · · ∈ A, ∩Ak = ∅; we have to prove that
µ(Ak) → 0. Given ε > 0, we can choose Bk ∈ A such that Bk ⊂ Ak and
µ(Bk) ≥ µ(Ak) − 2−kε. Due to compactness, the relation ∩Bk ⊂ ∩Ak = ∅
implies B1 ∩ · · · ∩ Bn = ∅ for some n. Thus, µ(An) = µ(A1 ∩ · · · ∩ An) ≤
µ(B1 ∩ · · · ∩Bn) + µ(A1 \B1) + · · · + µ(An \Bn) < ε.

3d8 Remark. All A ∈ A such that A and X \A both satisfy the regularity
condition, are a subalgebra of A. (The proof is left to the reader.) Therefore
it is enough to check the condition for A and X \A where A runs over a set
that generates the algebra A.
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3d9 Lemma. The spectral measure µx exists for every x ∈ L2(Ω,F , P ) and
every continuous factorization (Fs,t)s≤t.

Proof. First, compactness. We have ‖E
(
x
∣
∣F−m,m

)
‖2 → ‖x‖2 for m → ∞

by 3d1(c); thus we may restrict ourselves to x measurable w.r.t. F−m,m for
some m. The corresponding part Cm = {M ∈ C : M ⊂ [−m,m]} of C is
compact.

Second, additivity on an algebra. We have an algebra A of subsets of
Cm, generated by ‘cells’ of the form (3c4). Such a cell leads to a subspace of
L2(Ω,F−m,m, P ) spanned by products f1 . . . fn where each fk is measurable
w.r.t. Fsk,tk , square integrable, and E fk = 0. A partition of the interval
[−m,m] into n subintervals leads to a partition of Cm into 2n parts, and
a decomposition of L2(Ω,F−m,m, P ) into 2n orthogonal subspaces. Thus, x
decomposes into 2n orthogonal vectors; their squared norms give us µx on a
finite subalgebra (of cardinality 22n

) of A. We see that µx is additive on such
subalgebras. Their union (over all partitions of [−m,m]) is the whole A, and
any two of them are contained in some third; therefore, µx is additive on A.

Third, regularity (required by 3d7). Due to 3d8, regularity may be
checked only for sets AE = {M ∈ Cm : M ⊂ E} and Cm \ AE. It follows
easily from 3d1(b) and 3d6.

3d10 Remark. In the proof of 3d9, an orthogonal decomposition of the
Hilbert space H = L2(Ω,F , P ) over the algebra A is constructed; that is,
a family (HA)A∈A of (closed linear) subspaces HA ⊂ H such that HA∪B =
HA⊕HB (it means that HA and HB are orthogonal, and their sum is HA∪B)
whenever A ∩B = ∅, and HC = H . The decomposition satisfies

HME
= L2(Ω,FE, P ) ,

where ME = {M ∈ C : M ⊂ E}, and is uniquely determined by this
property.

The following general result will help us construct HM for all Borel sets
M ⊂ C.

3d11 Lemma. Let X be a set, A an algebra of subsets of X, H a Hilbert
space, and (HA)A∈A an orthogonal decomposition of H over A. Assume
that for every x ∈ H the additive function21 A 7→ ‖ProjHA

x‖2 on A can
be extended to a measure on the σ-field σ(A) generated by A. Then the
orthogonal decomposition can be extended to an orthogonal decomposition
(HB)B∈σ(A), σ-additive in the sense that22 HB1∪B2∪... = HB1 ⊕ HB2 ⊕ . . .
whenever B1, B2, · · · ∈ σ(A) are pairwise disjoint.

21Here ProjHA
is the orthogonal projection H → HA.

22That is, HB1∪B2∪... is the closure of the algebraic sum of HBk
.
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Proof. The extension of the additive function µx : A → [0,∞), µx(A) =
‖ProjHA

x‖2, to a measure on σ(A) is unique; denote it by µx again. Consider
the set of all B ∈ σ(A) such that there exists a subspace HB ⊂ H satisfying
‖ProjHB

x‖2 = µx(B) for all x ∈ H . The set contains A, and is a monotone
class (that is, closed under the limit of monotone sequences), which is easy
to check. Therefore the set is the whole σ(A).

Combining 3d9 and 3d11 we conclude.

3d12 Theorem. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)

there exists one and only one σ-additive orthogonal decomposition (HM) of
the Hilbert space L2(Ω,F , P ) over the Borel σ-field of the space C (of com-
pact subsets of R) such that HME

= L2(Ω,FE, P ) for every elementary set
E ⊂ R (that is, a finite union of intervals); here ME = {M ∈ C : M ⊂ E}.
The orthogonal decomposition is related to spectral measures by

(3d13) ‖ProjHM
f‖2 = µf (M)

for all f ∈ L2(Ω,F , P ) and all Borel sets M ⊂ C.

3e Time shift; noise

Let
(
(Ω[i],F [i], P [i])∞i=1,A

)
be a dyadic coarse factorization. For each i the

lattice 1
i
Z acts on Ω[i] by measure preserving transformations αt : Ω[i] → Ω[i]

(time shift),

αt(ω)(s) = ω(s− t) for all s ∈ 1

i
Z .

For each coarse instant t = (t[i])∞i=1 we have a map αt : Ω[all] → Ω[all],

αt(ω)[i](s) = ω[i](s− t[i]) for all s ∈ 1

i
Z .

Such αt is an automorphism of the dyadic coarse sample space, but the coarse
σ-field A need not be invariant under αt. We consider such a condition:

(3e1) A is invariant under αt for every coarse instant t.

Dyadic coarse factorizations of 3b3, 3b6, 3b7, 3b8 satisfy (3e1), but that of
3b5 does not.

If (3e1) is satisfied, then the refinement αt[∞] = Limi→∞,A αt[i] is an
automorphism of the refinement (Ω,F , P ) of the dyadic coarse factoriza-
tion. Existence of the limit for every converging sequence t = (t[i]) implies
that αt[∞] depends on t[∞] only (see 3e4 below), and we get a one-parameter
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group (αt)t∈R of automorphisms (that is, invertible measure preserving trans-
formations mod 0) of (Ω,F , P ). The group is continuous in the sense that
P
(
A△αt(A)

)
−−→
t→0

0 for all A ∈ F , which is ensured by (3e1) (see 3e4 again).

3e2 Definition. A noise
(
(Ω,F , P ), (Fs,t)s≤t, (αt)t∈R

)
consists of a contin-

uous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
and a one-parameter group of auto-

morphisms αt of (Ω,F , P ) such that

α−1
t (Fr,s) = Fr−t,s−t for all r, s, t ∈ R, r ≤ s ,

P
(
A△ α−1

t (A)
)
−−→
t→0

0 for all A ∈ F .

Unfortunately, the latter assumption (continuity of the group action) is
missing in my former publications, which opens the door for pathologies.23

3e3 Remark. Continuity of the factorization follows from other assump-
tions, see [15, Lemma 2.1]. For arbitrary factorizations, continuity is restric-
tive (recall 3d5); waiving it, we get discontinuity points t ∈ R which are a
finite or countable set. For a noise, however, the set is invariant under time
shifts, and therefore, empty.

3e4 Lemma. For every dyadic coarse factorization satisfying (3e1), its re-
finement is a noise.

Proof. Our first argument parallels the proof of 3b9. Namely, let s, t be two
coarse instants such that s[∞] = t[∞]. We introduce a coarse event r:

r[i] =

{

s[i] for i even,

t[i] for i odd.

We have
Limαs[i] = Limαs[2i] = Limαr[2i] = Limαr[i] .

Similarly, Limαt[i] = Limαr[i]. Thus, Limαs[i] = Limαt[i], and we may
define a one-parameter group of automorphisms (αt)t∈R on (Ω,F , P ) by
αt[∞] = Limαt[i].

Our second argument resembles the proof of 3b11. Namely, assume ex-
istence of A∞ ∈ F , ε > 0 and tn → 0 such that P

(
A∞ △ α−1

tn (A∞)
)
≥ ε

for all n. We choose a coarse event A ∈ A such that A[∞] = A∞, and

23Most results of these former publications do not depend on the (missing) continuity
condition. But anyway, a discontinuous group action is a pathology, no doubt. (In par-
ticular, it cannot be Borel measurable.) The proof of Lemma 2.9 of [15], based on Weyl’s
relation, depends on the continuity condition.

42



coarse instants sn such that sn[∞] = tn for all n. Taking into account that
P [i]

(
A[i]△α−1

sn
[i]A[i]

)
→ P

(
A∞△α−1

tn (A∞)
)
≥ ε and sn[i] → tn when i→ ∞,

we choose integers i1 < i2 < . . . such that P [i]
(
A[i] △ α−1

sn
[i]A[i]

)
≥ ε/2

and |sn[i]| ≤ |tn| + 1/n whenever i ≥ in. We define a coarse instant r
by r[i] = sn[i] whenever in ≤ i < in+1. Clearly, r[∞] = 0; therefore
Limα−1

r [i]A[i] = α−1
0 A[∞] = A[∞], and P [i]

(
A[i] △ α−1

r [i]A[i]
)
→ 0, which

is impossible: these probabilities exceed ε/2. The contradiction proves con-
tinuity of the group (αt)t∈R.

3e5 Question. Is every noise the refinement of some dyadic coarse factoriza-
tion satisfying (3e1)? I do not know; I guess that the answer is negative. It
would be interesting to find some special features of such refinements among
all noises. It is also unclear what happens to the class of such refinements, if
subsequences are permitted (like in 3b7).

4 Example: The Noise Made by a Poisson

Snake

This section is based on a paper by J. Warren entitled “The noise made by
a Poisson snake” [23].

4a Three discrete semigroups: algebraic definition

A discrete semigroup (with unit; non-commutative, in general) may be de-
fined by generators and relations.

Two generators f+, f− with two relations f+f− = 1, f−f+ = 1 generate a
semigroup Gdiscrete

1 that is in fact a group, just the cyclic group Z. Indeed,
every word reduces to some fk+ or fk− (or 1).

Two generators f+, f− with a single relation f+f− = 1 generate a semi-
group Gdiscrete

2 . Every word reduces to some fk−f
l
+. The composition is

(4a1) (fk1− f
l1
+ )(fk2− f

l2
+ ) = fk−f

l
+ ,

k = k1 + max(0, k2 − l1) ,

l = l2 + max(0, l1 − k2) .

The canonical homomorphism Gdiscrete
2 → Gdiscrete

1 maps f+ to f+, f− to f−,
and fk−f

l
+ into fk−l− (if k > l), f l−k+ (if k < l), or 1 (if k = l). Accordingly,

the composition law (4a1) satisfies

l − k = (l1 − k1) + (l2 − k2) .
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There is a more convenient pair of parameters, a = l − k, b = k; that is,24

(4a2)

fa,b = f b−f
a+b
+ for a, b ∈ Z, b ≥ 0, a+ b ≥ 0 ;

fa1,b1fa2,b2 = fa,b ,
a = a1 + a2 ,

b = max(b1, b2 − a1) .

The canonical homomorphism Gdiscrete
2 → Gdiscrete

1 maps fa,b to fa, where

fa ∈ Gdiscrete
1 is fa+ for a > 0, f

|a|
− for a < 0, and 1 for a = 0.

Three generators f−, f+, f∗ with three relations

(4a3) f+f− = 1 , f∗f− = 1 , f∗f+ = f∗f∗

generate a semigroup Gdiscrete
3 . Every word reduces to some fk−f

l
+f

m
∗ . The

following homomorphism Gdiscrete
3 → Gdiscrete

2 will be called canonical: f− 7→
f−, f+ 7→ f+, f∗ 7→ f+. We have fk−f

l
+f

m
∗ 7→ fk−f

l+m
+ , which suggests such a

triple of parameters for Gdiscrete
3 : a = l +m− k, b = k, c = m; that is,

(4a4)
fa,b,c = f b−f

a+b−c
+ f c∗ for a, b, c ∈ Z, b ≥ 0, 0 ≤ c ≤ a+ b ;

fa1,b1,c1fa2,b2,c2 = fa,b,c ,
a = a1 + a2 ,

b = max(b1, b2 − a1) ,
c =

{

a2 + c1 if c1 > b2,

c2 otherwise.

The canonical homomorphism Gdiscrete
3 → Gdiscrete

2 is just fa,b,c 7→ fa,b.
Note that Gdiscrete

1 is commutative, but Gdiscrete
2 and Gdiscrete

3 are not.

4b The three discrete semigroups: representation

By a representation of a semigroup G on a set S we mean a map G × S ∋
(g, s) 7→ g(s) ∈ S such that

(g1g2)(s) = g2

(
g1(s)

)
and 1(s) = s

for all g1, g2 ∈ G, s ∈ S. The representation is called faithful, if

g1 6= g2 =⇒ ∃s ∈ S
(
g1(s) 6= g2(s)

)
.

Every G has a faithful representation on itself, S = G, namely, the regular
representation, g(g0) = g0g. Fortunately, Gdiscrete

2 and Gdiscrete
3 have more

economical faithful representations on the set Z+ = {0, 1, 2, . . .}. Namely,

24Parameters a, b of (4a2) and a, b, c of (4a4) are suggested by S. Watanabe.
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for Gdiscrete
2 ,

(4b1)

b

b

b

b

b

b

b b

f�f+
f+(x) = x+ 1 , f−(x) = max(0, x− 1) ,

fa,b(x) = a+ max(x, b) ,
b b b b

b

bba+b fa;b
x ∈ Z+. For Gdiscrete

3 ,
(4b2)

b

b

b

b

b

b

f�
b

b

b

b

b

b

f+
b

b

b

b

b

b

b

f� f∗(x) = x+ 1 , f−(x) = max(0, x− 1) ,

f+(x) =

{

x+ 1 for x > 0,

0 for x = 0;

fa,b,c(x) =

{

c for 0 ≤ x ≤ b,

x+ a for x > b.

b b b b

b

bba+b
 fa;b;

4c Random walks and stochastic flows in discrete semi-

groups

4c1 Example. The standard random walk on Z may be described byGdiscrete
1 -val-

ued random variables

(4c2)

ξs,t = ξs,s+1ξs+1,s+2 . . . ξt−1,t for s, t ∈ Z, s ≤ t ;

ξt,t+1 are independent random variables (t ∈ Z) ;

P
(
ξt,t+1 = f−

)
=

1

2
= P

(
ξt,t+1 = f+

)
for each t ∈ Z .

Note that ξr,sξs,t = ξr,t whenever r ≤ s ≤ t. Everyone knows that

(4c3) P
(
ξ0,t = fa

)
=

1

2t

(
t
t+a
2

)

for a = −t,−t+ 2,−t+ 4, . . . , t.
In fact, ‘the standard random walk’ is the random process t 7→ ξ0,t. Taking

into account that Gdiscrete
1 is a group, ξs,t may be thought of as an increment,

ξs,t = ξ−1
0,sξs,t.

4c4 Example. Formulas (4c2) work equally well on Gdiscrete
2 . Still, ξr,sξs,t =

ξr,t. However, Gdiscrete
2 is not a group, and ξs,t is not an increment; more-

over, it is not a function of ξ0,s and ξ0,t. Indeed, knowing a1, b1 and a1 + a2,
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max(b1, b2 − a1) (recall (4a2)) we can find a2 but not b2. Thus, the two-
parameter family (ξs,t)s≤t of random variables is more than just a random
walk. Let us call such a family an abstract stochastic flow. Why ‘abstract’?
Since Gdiscrete

2 is an abstract semigroup rather than a semigroup of transfor-
mations (of some set). So, we have the standard abstract flow in Gdiscrete

2 .
In order to get a (usual, not abstract) stochastic flow, we have to choose
a representation of Gdiscrete

2 . Of course, the regular representation could be
used, but the representation (4b1) is more useful. Introducing integer-valued
random variables a(s, t), b(s, t) by

ξs,t = fa(s,t),b(s,t)

we express the stochastic flow as

ξs,t(x) = a(s, t) + max(x, b(s, t)) .

Fixing s and x we get a random process called a single-point motion of the
flow. Namely, it is a reflecting random walk. Especially, for s = 0 and x = 0,
the process

t 7→ ξ0,t(0) = a(0, t) + b(0, t)

is a reflecting random walk. It is easy to see that two processes

t 7→ ξ0,t(0) = a(0, t) + b(0, t) ,

t 7→
∣
∣
∣a(0, t) +

1

2

∣
∣
∣− 1

2

b

b

b b

b

b

are identically distributed. Also,
(4c5)

b(0, t) = − min
s=0,1,...,t

a(0, s) ,

a(0, t) + b(0, t) = max
s=0,1,...,t

a(s, t) , 0 tb(0;t) a(0;t)+b(0;t)a(0;�)
and a(·, ·) is the standard random walk on Gdiscrete

1 = Z. That is, the canon-
ical homomorphism Gdiscrete

2 → Gdiscrete
1 transforms the standard flow on

Gdiscrete
2 into the standard flow (or random walk) on Gdiscrete

1 . Using the
reflection principle, one gets

(4c6) P
(
ξ0,t = fa,b

)
=
a+ 2b+ 1

2t
t!

(
t+a
2

+ b+ 1
)

!
(
t−a
2

− b
)

!
.

Note that a, b occur only in the combination a+ 2b.
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4c7 Example. On Gdiscrete
3 , we have no ‘standard’ random walk or flow;

rather, we introduce a one-parameter family of abstract stochastic flows,
(4c8)

ξs,t = ξs,s+1ξs+1,s+2 . . . ξt−1,t for s, t ∈ Z, s ≤ t ;

ξt,t+1 are independent random variables (t ∈ Z) ;

P
(
ξt,t+1 = f−

)
=

1

2
, P

(
ξt,t+1 = f+

)
=

1 − p

2
, P

(
ξt,t+1 = f∗

)
=
p

2
;

p ∈ (0, 1) is the parameter. The canonical homomorphism Gdiscrete
3 → Gdiscrete

2

glues together f+ and f∗, thus eliminating the parameter p and giving the
standard abstract flow on Gdiscrete

2 . Defining a(·, ·), b(·, ·), c(·, ·) by

ξs,t = fa(s,t),b(s,t),c(s,t)

we see that the joint distribution of a(·, ·) and b(·, ·) is the same as before.
Representation (4b2) of Gdiscrete

3 turns the abstract flow into a stochastic
flow on Z+. Its single-point motion is a sticky random walk,

t 7→ ξ0,t(0) = c(0, t) .

In order to find the conditional distribution of c(·, ·) given a(·, ·) and b(·, ·)
we observe that

a(0, t) − c(0, t) = min
(
a(0, t),min{x : ξσ(x),σ(x)+1 = f∗}

)
(4c9)

where σ(x) = max{s = 0, . . . , t : a(0, s) = x} , −b(0, t) ≤ x < a(0, t).

b b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b

b b b b b b b b

b b b b b b b

b b b b b

b b a(0;�)a(0;�)�
(0;�)�++ � ++ � + ��� +
Therefore the conditional distribution of c(0, t) is basically the truncated
geometric distribution. More exactly, it is the (conditional) distribution of

(4c10) max
(
0, a(0, t) + b(0, t) −G+ 1

)
, G ∼ Geom(p) ;

here G is a random variable, independent of a(·, ·), b(·, ·), such that P
(
G =

g
)

= p(1 − p)g−1 for g = 1, 2, . . . This is the discrete counterpart of a well-
known result of J. Warren [21]. So,

(4c11) P
(
ξ0,t = fa,b,c

)
=
a+ 2b+ 1

2t
t!

(
t+a
2

+ b+ 1
)

!
(
t−a
2

− b
)

!
·p(1−p)a+b−c

for c > 0; for c = 0 the factor p(1− p)a+b−c turns into (1− p)a+b, rather than
p(1 − p)a+b, because of truncation.
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4d Three continuous semigroups

The continuous counterpart of the discrete semigroup Gdiscrete
1 = Z is the

semigroup G1 = R = {fa : a ∈ R}, fa1fa2 = fa1+a2 .
The continuous counterpart of the discrete semigroup Gdiscrete

2 = {fa,b :
a, b ∈ Z, b ≥ 0, a+ b ≥ 0} is the semigroup

(4d1)

G2 = {fa,b : a, b ∈ R, b ≥ 0, a + b ≥ 0} ,

fa1,b1fa2,b2 = fa,b ,
a = a1 + a2 ,

b = max(b1, b2 − a1)

(recall (4a2)). The canonical homomorphism G2 → G1 maps fa,b to fa.
The continuous counterpart of the discrete semigroup Gdiscrete

3 = {fa,b,c :
a, b, c ∈ Z, b ≥ 0, 0 ≤ c ≤ a+ b} is the semigroup
(4d2)

G3 = {fa,b,c : a, b, c ∈ R, b ≥ 0, 0 ≤ c ≤ a+ b} ,

fa1,b1,c1fa2,b2,c2 = fa,b,c ,
a = a1 + a2 ,

b = max(b1, b2 − a1) ,
c =

{

a2 + c1 if c1 > b2,

c2 otherwise

(recall (4a4)). The canonical homomorphism G3 → G2 maps fa,b,c to fa,b.
Note that G1 is commutative but G2, G3 are not. Also, G1 and G2 are

topological semigroups, but G3 is not (since the composition is discontinuous
at c1 = b2).

There are two one-parameter semigroups in G2, {fa,0 : a ∈ [0,∞)} and
{f−b,b : b ∈ [0,∞)}. They generate G2 according to the relation fb,0f−b,b = 1;
namely, fa,b = f−b,bfa+b,0.

There are three one-parameter semigroups in G3, {fa,0,0 : a ∈ [0,∞)},
{f−b,b,0 : b ∈ [0,∞)} and {fc,0,c : c ∈ [0,∞)}. They generate G3 according to
relations fb,0,0f−b,b,0 = 1, fb,0,bf−b,b,0 = 1, and fc,0,cfa,0,0 = fc,0,cfa,0,a for c > 0;
namely, fa,b,c = f−b,b,0fa+b−c,0,0fc,0,c.

Here is a faithful representation of G2 on [0,∞) (recall (4b1)):

(4d3) fa,b(x) = a+ max(x, b) , ba+b fa;b
x ∈ [0,∞).

Here is a faithful representation of G3 on [0,∞) (recall (4b2)):

(4d4) fa,b,c(x) =

{

c for 0 ≤ x ≤ b,

x+ a for x > b. xba+b
 fa;b;
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All functions are increasing, but fa,b are continuous, while fa,b,c are not.

4e Convolution semigroups in these continuous semi-
groups

4e1 Example. Everyone knows that the binomial distribution (4c3) is asymp-
totically normal. That is, the distribution of

√
εa(0, t/ε) converges weakly

(for ε → 0) to the normal distribution µ
(1)
t = N(0, t). These form a convolu-

tion semigroup, µ
(1)
s ∗ µ(1)

t = µ
(1)
s+t.

Note however, that a(s, t) and ξs,t are defined (see (4c2)) only for integers
s, t. We may extend them, in one way or another, to real s, t. Or alternatively,
we may use coarse instants t =

(
t[i]
)∞
i=1, t[i] ∈ 1

i
Z, t[i] → t[∞], introduced

in 3b. For every coarse instant t, the distribution of i−1/2a(0, it[i]) converges

weakly (for i→ ∞) to µ
(1)
t[∞] = N(0, t[∞]).

4e2 Example. The two-dimensional distribution (4c6) on Gdiscrete
2 has its

asymptotics. Namely, the joint distribution of i−1/2a(0, it[i]) and i−1/2b(0, it[i])

converges weakly (for i→ ∞) to the measure µ
(2)
t[∞] with density (on the rel-

evant domain b > 0, a + b > 0; t means t[∞]):

(4e3)
µ

(2)
t (dadb)

dadb
=

2(a+ 2b)√
2π t3/2

exp

(

− (a+ 2b)2

2t

)

.

Treating µ
(2)
t (for t ∈ [0,∞)) as a measure on G2, we get a convolution

semigroup: µ
(2)
s ∗ µ(2)

t = µ
(2)
s+t. Of course, the convolution is taken according

to the composition (4d1).

4e4 Example. What about the three-dimensional distribution (4c11) on
Gdiscrete

3 ? It has a parameter p. In order to get a non-degenerate asymptotics,
we let p depend on i, namely,

p =
1√
i
→ 0 .

Then the distribution of i−1/2G, where G ∼ Geom(p) (recall (4c10)), con-
verges weakly to the exponential distribution Exp(1), and the joint distri-
bution of i−1/2a(0, it[i]), i−1/2b(0, it[i]) and i−1/2c(0, it[i]) converges weakly

to a measure µ
(3)
t[∞]. The measure has an absolutely continuous part and a

singular part (at c = 0), and may be described (somewhat indirectly) as the
joint distribution of three random variables a, b and (a + b − η)+, where

the pair (a, b) is distributed µ
(2)
t (see (4e3)), η is independent of (a, b), and
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η ∼ Exp(1). Treating µ
(3)
t (for t ∈ [0,∞)) as a measure on G3, we get a con-

volution semigroup: µ
(3)
s ∗µ(3)

t = µ
(3)
s+t, the convolution being taken according

to the composition (4d2). No need to check the relation ‘by hand’; it follows
from its discrete counterpart. The latter follows from the construction of
4c (since random variables ξ0,1, ξ1,2, . . . , ξs+t−1,s+t are independent). It may
seem that the limiting procedure does not work, since G3 is not a topological
semigroup; the composition (4d2) is discontinuous at c1 = b2. However, that
is not an obstacle, since the equality c1 = b2 is of zero probability, as far as
triples (a1, b1, c1) and (a2, b2, c2) are independent and distributed µ

(3)
s , µ

(3)
t ,

respectively (s, t > 0). The atom of c1 at 0 does not matter, since b2 is
nonatomic. The composition is continuous almost everywhere!

4f Getting dyadic

Our flows in Gdiscrete
1 and Gdiscrete

2 are dyadic (two equiprobable possibilities
in each step), which cannot be said about Gdiscrete

3 ; here, in each step, we
have three possibilities f−, f+, f∗ of probabilities 1/2, (1 − p)/2, p/2. Can a
dyadic model produce the same asymptotic behavior? Yes, it can, at the
expense of using i ∈ {1, 4, 16, 64, . . .} only (recall 3b7); and, of course, the
dyadic model is more complicated.25 Instead of the trap at 0, we design a
trap near 0 as follows:

bbbb b b b

g+ = f∗ = f1,0,1 ; g− = fm− f
m−1
+ = f−1,m,0 ;

P
(
ξt,t+1 = g−

)
=

1

2
= P

(
ξt,t+1 = g+

)
.

The old (small) parameter p disappears, and a new (large) parameter m
appears. We’ll see that the two models are asymptotically equivalent, when
p = 2−m.

As before, we may denote

ξs,t = fa(s,t),b(s,t),c(s,t) .

Note, however, that only a(s, t) is the same as before; b(s, t), c(s, t) and ξs,t
are modified. Formula (4c5) for b(0, t) fails, but still,

(4f1) b(0, t) = − min
s=0,1,...,t

a(0, s) +O(m) ,

25Maybe, a still more complicated construction can use all i; I do not know.
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which is asymptotically the same. Formula (4c9) for c(0, t) also fails. Instead,
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(0;�)
b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b

b b b b

b b

b

b

b

b

a(0;�)a(0;�)�
(0;�)
a(0, t) − c(0, t) = min{x : σ(x+m− 1) − σ(x) = m− 1} ,(4f2)

if such x exists in the set Z ∩ [min[0,t] a(0, ·), a(0, t) − m + 1]; otherwise,
c(0, t) = O(m). (Here σ is the same as in (4c9).)

The conditional distribution of c(0, t), given the path a(0, ·), is not at all
geometric (unlike (4c10)), since now c(0, t) is uniquely determined by a(0, ·).
However, according to (4f2), a(0, t)−c(0, t) is determined by small increments
of the process σ(·). On the other hand, the large-scale structure of the path
a(0, ·) is correlated mostly with large increments of σ(·); small increments
are numerous, but contribute little to the sum. Using this argument, one can
show that c(0, t) is asymptotically independent of a(0, t) (and b(0, t), due to
(4f1)).

The unconditional distribution of c(0, t) can be found from (4f2), taking
into account that increments σ(x + 1) − σ(x) are independent, and each
increment is equal to 1 with probability 1/2. We have Bernoulli trials, and
we wait for the first block of m − 1 ‘successes’. For large m, the waiting
time is approximately exponential, with the mean 2m.26 Thus, 2−m

(
a(0, t)−

c(0, t) − min[0,t] a(0, ·)
)

is asymptotically Exp(1), truncated (at c = 0) as in
4e.

Taking the limit i = 22m → ∞, we get for i−1/2a(0, it[i]), i−1/2b(0, it[i]),

i−1/2c(0, it[i]) the limiting distribution µ
(3)
t[∞], the same as in 4e.

4g Scaling limit

For any coarse instants s, t such that s ≤ t, the distribution µ
(n)
s,t [i] of

i−1/2ξ
(n)
is[i],it[i] converges weakly (for i→ ∞) to the measure µ

(n)
s,t [∞] = µ

(n)
t[∞]−s[∞]

on Gn, for our three models, n = 1, 2, 3. Of course, multiplication of ξ by
i−1/2 is understood as multiplication of a(·, ·), b(·, ·), c(·, ·) by i−1/2, which is
a homomorphic embedding of Gdiscrete

n into Gn.
Let r, s, t be coarse instants, r ≤ s ≤ t. Due to independence, the joint

distribution µ
(n)
r,s [i]⊗µ(n)

s,t [i] of random variables i−1/2ξ
(n)
ir[i],is[i] and i−1/2ξ

(n)
is[i],it[i]

26Such a block appears, in the mean, after 2m−1 shorter blocks, of mean length ≈ 2
each.

51



converges weakly to µ
(n)
r,s [∞]⊗ µ

(n)
s,t [∞]. However, we need the joint distribu-

tion of three random variables,

i−1/2ξ
(n)
ir[i],is[i] , i−1/2ξ

(n)
is[i],it[i] , i−1/2ξ

(n)
ir[i],it[i] ,

the third being the product of the first and the second in the semigroup Gn.
For n = 1, 2 weak convergence for the triple follows immediately from weak
convergence for the pair, since the composition is continuous. For n = 3,
discontinuity of the composition in G3 does not invalidate the argument,
since the composition is continuous almost everywhere w.r.t. the relevant
measure (recall 4e).

Similarly, for every k and all coarse instants t1 ≤ · · · ≤ tk, the joint
distribution of k(k − 1)/2 random variables i−1/2ξ

(n)
itl[i],itm[i], 1 ≤ l < m ≤ k,

converges weakly (for i → ∞). We choose a sequence (tk)
∞
k=1 of coarse

instants such that the sequence of numbers (tk[∞])∞k=1 is dense in R, and use
2c10, getting a coarse probability space.

The Hölder condition, the same as in 2a3, holds for all three models. I
mean Hölder continuity of a(·, ·), b(·, ·), c(·, ·). Indeed, a(·, ·) is the same as
in 2a3; b(·, ·) is related to a(·, ·) via (4c5) or (4f1), and c(·, ·) satisfies (on any
interval)

max
|s−t|≤x

|c(0, s) − c(0, t)| ≤ max
|s−t|≤x

|a(0, s) − a(0, t)| ,

though, for the model of 4f, O(m) must be added.
Thus, a joint σ-compactification is constructed for all three models (the

third model — in two versions, 4c7 and 4f).

4h Noises

4h1 Example. The standard flow in Gdiscrete
1 , rescaled by i−1/2, gives us a

coarse probability space, identical to that of 3b3. It is a dyadic coarse factor-
ization. Its refinement is the Brownian continuous factorization. Equipped
with the natural time shift, it is a noise.

4h2 Example. The standard flow in Gdiscrete
2 , rescaled by i−1/2, gives us

another coarse probability space. It is also a dyadic coarse factorization
(the proof is similar to the previous case). Its ‘two-dimensional nature’ is
a delusion; the dyadic coarse factorization is identical to that of 4h1. The
second dimension b(·, ·) reduces to the first dimension, a(·, ·), by (4c5).

4h3 Example. The flow in G3, introduced in 4c7, rescaled by i−1/2 with
p = i−1/2 (recall 4e4), gives us a coarse probability space. It is not a dyadic
coarse factorization, since it is not dyadic. However, it satisfies a natural
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generalization of 3b1 to the non-dyadic case (the proof is as before). Its
refinement is a continuous factorization, and (with natural time shift), a
noise; it may be called the noise of stickiness.

Once again, the second dimension, b(·, ·), reduces to the first dimension,
a(·, ·). Indeed, the joint distribution of a(·, ·) and b(·, ·) is the same as in 4h2.
What about the third dimension, c(·, ·) ?

The conditional distribution of c(s, t), given a(s, t) and b(s, t), is basically
truncated exponential. Namely, it is the distribution of

(
a(s, t)+b(s, t)−η

)
+

where η ∼ Exp(1); see 4e4. Moreover, for any r < s < t, the conditional dis-
tribution of c(r, t) given a(r, s), b(r, s) and a(s, t), b(s, t), is still the distribu-
tion of

(
a(r, t)+ b(r, t)−η

)
+. In other words, c(r, t) is conditionally indepen-

dent of a(r, s), b(r, s), a(s, t), b(s, t), given a(r, t), b(r, t). That is a property of
the composition (4d2); if c1 ∼

(
a1 + b1 − η1

)
+ and c2 ∼

(
a2 + b2 − η2

)
+ then

c ∼
(
a+ b− η

)
+.

b b b

bb 
 
1
2 a+ba2+b20 a2+b20 a1+b1b20
It follows by induction that the conditional distribution of c(t1, tn), given all
a(ti, tj) and b(ti, tj), is given by the same formula

(
a(t1, tn) + b(t1, tn)− η

)
+,

η ∼ Exp(1), for every n and t1 < · · · < tn. Therefore, the same holds for
the conditional distribution of c(s, t) given all a(u, v) and b(u, v) for u, v such
that s ≤ u ≤ v ≤ t (a well-known result of J. Warren [21]). We see that
c(·, ·) is not a function of a(·, ·) (and b(·, ·)).

4h4 Example. Another flow in Gdiscrete
3 , introduced in 4f, being rescaled by

i−1/2 with i = 22m, gives us a dyadic coarse factorization. Its refinement is
the same continuous factorization (and noise) as in 4h3.

4i The Poisson snake

Formula (4c9) suggests a description of the sticky flow in Gdiscrete
3 by a com-

bination of a simple random walk a(·, ·) and a random subset of the set of
its ‘chords’. A chord may be defined as an interval [s, t], s, t ∈ Z, s < t, such
that a(s, t) = 0 and a(s, u) > 0 for all u ∈ (s, t)∩Z. Or equivalently, a chord
is a horizontal straight segment on the plane that connects points

(
s, a(0, s)

)

and
(
t, a(0, t)

)
and goes below the graph of a(0, ·). The random subset of

chords is very simple: every chord belongs to the subset with probability p,
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independently of others. Note that p = i−1/2 is equal to the vertical pitch
(after rescaling a(·, ·) by i−1/2). The scaling limit suggests itself: a Poisson
random subset of the set of all chords of the Brownian sample path.

4i1 Definition. A finite chord of a continuous function f : R → R is a set
of the form [s, t] × {x} ⊂ R2 where s < t, x = f(s) and t = inf{u ∈ (s,∞) :
f(u) ≤ x}. An infinite chord of f is a set of the form [s,∞) × {x} ⊂ R2

where x = f(s) and f(t) > x for all t ∈ (s,∞). A chord of f is either a finite
chord of f , or an infinite chord of f .fa 
hord fa 
hord

If f decreases, it has no chords. Otherwise it has a continuum of chords.
The set of chords is, naturally, a standard Borel space,27 due to the one-one
correspondence between a chord and its initial point (s, x) ∈ R2.

4i2 Lemma. For every continuous function f : R → R there exists one and
only one σ-finite positive Borel measure28 on the space of all chords of f ,
such that the set of chords that intersect a vertical segment {t} × [x, y] is of
measure y−x, whenever t, x, y are such that infs∈(−∞,t) f(s) ≤ x < y ≤ f(t).xyt
The proof is left to the reader. Hint: for every ε > 0, the set of chords longer
than ε is elementary; on this set, the measure is locally finite.

The map [s, t] × {x} 7→ s (also [s,∞) × {x} 7→ s, of course) sends the
measure on the set of chords (described in 4i2) into a measure on R. If f is
of locally finite variation, then the measure on R is just (df)+, the positive
part of the Lebesgue-Stieltjes measure. However, we need the opposite case:
f is of infinite variation on every interval, and the measure is also infinite on
every interval. Nevertheless, it is σ-finite (but not locally finite). We denote
it (df)+ anyway.

The measure (df)+ is concentrated on the set of points of ‘local minimum
from the right’. If f is a Brownian sample path then such points are a set of
Lebesgue measure 0.

27For a definition, see [7, Sect. 12.B].
28For a definition, see [7, Sect. 17.A].
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So, the set of all chords is a measure space; it carries a natural σ-finite
(sometimes, finite) measure. The latter is the intensity measure of a unique
Poisson random measure.29 This way, (the distribution of) a random set of
chords is well-defined.

Or equivalently, we may consider a Poisson random subset of R, whose
intensity measure is (df)+.

However, it is not so easy to substitute a Brownian sample path B(·) for
f(·). In order to get a (Poisson) random variable, we may ask how many
random points belong to a given Borel set A ⊂ R such that (dB)+(A) <∞.
Note that for any interval A, (dB)+(A) = ∞ a.s. We cannot choose an
appropriate A without knowing the path B(·). The set of all countable dense
subsets of R does not carry a natural (non-pathological) Borel structure.

In this aspect, chords are better than points. Chords are parameterized
by three (or two) numbers, and thus, carry a natural Borel structure, irre-
spective of B(·). The random countable set of chords is not dense; rather, it
accumulates toward short chords.

A point (t, x) belongs to a random chord of B(·) if and only if

x ∈ σ−1
t (Π) , that is, σt(x) ∈ Π ,

where σt(x) = sup{s ∈ (−∞, t] : B(s) ≤ x} for x ∈ (−∞, B(t))

(recall (4c9)), and Π is the Poisson random subset of R, whose intensity
measure is (dB)+. Do not confuse the inverse image σ−1

t (Π) with the image
B(Π). True, B(σt(x)) = x, but σt(B(s)) 6= s. Sets Π and B(Π) are dense,
but the set σ−1

t (Π) is locally finite. Moreover, σ−1
t (Π) is a Poisson random

subset of (−∞, B(t)], its intensity being just 1.
The random countable dense set Π itself is bad; we have no measurable

functions of it. However, the pair
(
B(·),Π

)
of the Brownian path and the

set is good; we have measurable functions of the pair. In particular, we may
use measurable functions of the locally finite set σ−1

t (Π). Especially,

a(0, t) − c(0, t) = min
(
a(0, t),min{x : σt(x) ∈ Π ∩ (0,∞)}

)
.

4i3 Lemma. The σ-field Fs,t of the noise of stickiness (see 4h3) is generated
by Brownian increments B(u)−B(s) for u ∈ (s, t) and random sets σ−1

u

(
Π∩

(s, t)
)

for u ∈ (s, t) (treated as random variables whose values are finite
subsets of R).

The proof is left to the reader.
29See for instance [11, XII.1.18].
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5 Stability

5a Discrete case

Fourier-Walsh coefficients, introduced in 3c for an arbitrary dyadic coarse
factorization,

f =
∑

M∈C[i]

f̂MτM = f̂∅ +
∑

m∈ 1
i
Z

f̂{m}τm +
∑

m1,m2∈ 1
i
Z,m1<m2

f̂{m1,m2}τm1τm2 + . . .

help us to examine the stability of a function f , as explained below. Imagine
another array of random signs (τ ′m)m∈ 1

i
Z

(also independent equiprobable ±1)

correlated with the array (τm)m∈ 1
i
Z
,

E τmτ
′
m = ρ for each m ∈ 1

i
Z ;

ρ ∈ [−1,+1] is a parameter. Other correlations vanish. That is, the joint
distribution of all τm and τ ′m is the product (over m ∈ 1

i
Z) of (copies of) such

a four-atom distribution:

τm
−1 +1

−1 1+ρ
4

1−ρ
4τ ′m

+1 1−ρ
4

1+ρ
4

Denoting by Ω̃[i] the product of these four-point probability spaces, we have
a natural measure preserving map α : Ω̃[i] → Ω[i]; as before, Ω[i] is the prod-
uct of two-point probability spaces. In addition, we have another measure
preserving map α′ : Ω̃[i] → Ω[i],

τm ◦ α = τm , τm ◦ α′ = τ ′m ;

we use the same ‘τm’ for denoting a coordinate function on Ω[i] and Ω̃[i].
For products

τM =
∏

m∈M
τm , M ∈ C[i] , C[i] = {M ⊂ 1

i
Z : |M | <∞}

we have
E τMτ

′
M = ρ|M | , τM ◦ α = τM , τM ◦ α′ = τ ′M ,
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where |M | is the number of elements of M . Therefore

E (f ◦ α)(g ◦ α′) =
∑

M

ρ|M |f̂M ĝM = 〈g, ρN[i]f〉 ,

ρN[i] : L2[i] → L2[i] , ρN[i]τM = ρ|M |τM , ρN[i]f =
∑

M

ρ|M |f̂MτM .

The Hermite operator ρN[i] is a function of a self-adjoint operator N[i] defined
by N[i]τM = |M |τM for M ∈ C[i].

Every bounded function ϕ : C[i] → R acts on L2[i] by the operator
f 7→ ∑

M∈C[i] ϕ(M)f̂MτM . A commutative operator algebra is isomorphic

to the algebra of functions. The operator ρN[i] corresponds to the function
M 7→ ρ|M |. (In some sense, the unbounded operator N corresponds to the
unbounded function M 7→ |M |.)

A function ϕ : C[i] → {0, 1}, the indicator of a subset of C[i], corresponds
to a projection operator. Say, for the (indicator of) the set {∅}, the operator
projects to the one-dimensional space of constants (the expectation). For
the set {M : M ⊂ (0,∞)}, the operator is the conditional expectation,
E
(
·
∣
∣F0,∞[i]

)
.

The function M 7→ |M | is the sum (over m ∈ 1
i
Z) of localized functions

M 7→ |M ∩ {m}|. The latter is the indicator of the set {M : M ∋ m},
corresponding to the projection operator 1 − E

(
·
∣
∣F 1

i
Z\{m}

)
. Thus,

Nf =
∑

m

(
f − E

(
f
∣
∣F 1

i
Z\{m}

)
.

The operator ρN[i] may be interpreted as the conditional expectation w.r.t.
the sub-σ-field α−1(F) generated by τm ◦ α, m ∈ 1

i
Z:

E
(
f ◦ α′ ∣∣α−1(F)

)
= (ρN[i]f) ◦ α for f ∈ L2[i] .

We may imagine that our data τm are an unreliable copy of the true data τ ′m;
each sign τm is either correct (with probability (1 + ρ)/2) or inverted (with
probability (1−ρ)/2). If ρ is close to 1, our knowledge of τ ′M is satisfactory for
moderate |M | (when ρ|M | ≈ 1) but very bad for large |M | (when ρ|M | ≈ 0).
The position of a given function f between the two extremes is indicated by
the number ‖f − ρNf‖.

5a1 Example. In the Brownian coarse factorization (recall 3b3),

sup
i

‖f [i] − ρN[i]f [i]‖ → 0 for ρ→ 1
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for all f ∈ L2(A). This follows easily from convergence of operators (recall
2c and 3d4):

Limi→∞ ρN[i] = ρN[∞] ,

ρN[∞]f =

∞∑

n=0

ρn
∫

· · ·
∫

t1<···<tn

f̂({t1, . . . , tn}) dB(t1) . . .dB(tn) .

Convergence of operators follows from (2a6). The same holds for 3b5.

5a2 Example. A very different situation appears in 3b6. The second Brow-
nian motion B2 (or rather, its discrete approximation) is not linear but
quadratic in random signs τm, m ∈ 1

i
Z. It is two times less stable:

N[i]f
(2)
s,t [i] = 2f

(2)
s,t [i] ; Limi→∞ ρN[i] = ρ2N[∞] ,

if N[∞] is defined in the same way as in 5a1. For B3 it is ρ3N[∞], and so on.
Still, supi ‖f [i] − ρN[i]f [i]‖ → 0 for ρ → 1. For Bλ, however, the change is
dramatic. Namely,

N[i]f
(λ)
s,t [i] = entier(λ

√
i)f

(λ)
s,t [i] ; Limi→∞ ρN[i] = 0N[∞]

for all ρ ∈ (−1,+1); here 0N[∞] = limρ→0 ρ
N[∞] is the orthogonal projection

to the one-dimensional subspace of constants (just the expectation). The
same holds for 3b7.

Notions of stability and sensitivity are introduced in [2, Sects. 1.1, 1.4]
for a sequence of two-valued functions of 1, 2, 3, . . . two-valued variables. For
arbitrary (not just two-valued) functions, a number of equivalent definitions
can be found in [12, Sect. 1]. They may be adapted to our framework as
follows. We consider a function f : Ω[all] → R such that 0 < lim infi ‖f [i]‖ ≤
lim supi ‖f [i]‖ < ∞. We say that f is stable, if supi ‖f [i] − ρN[i]f [i]‖ → 0
when ρ → 1. We say that f is sensitive, if ‖ρN[i]f [i] − 0N[i]f [i]‖ → 0 when
i → ∞, for some (therefore, every) ρ ∈ (0, 1). These definitions conform
to [12] when f [i] depends only on i signs τ1/i, . . . , τi/i. In terms of the
two ρ-correlated arrays (τm), (τ ′m), stability means that E

(
(f [i] ◦ α′)(f [i] ◦

α)
)
→ ‖f [i]‖2 for ρ → 1, uniformly in i. Or, equivalently, E

(
Var

(
f [i] ◦

α′ ∣∣α−1(F)
))

→ 0 when ρ → 1, uniformly in i. Sensitivity means that
E
(
(f [i] ◦ α′)(f [i] ◦ α)

)
→
(
E f [i]

)
2 when n→ ∞, for some (therefore, every)

ρ ∈ (0, 1). Or, equivalently, E
∣
∣E
(
f [i] ◦ α′ ∣∣α−1(F)

)
− E f [i]

∣
∣2 → 0 when

n→ ∞, for some (therefore, every) ρ ∈ (0, 1).
In particular, those definitions can be applied to any f ∈ L2(A) such that

‖f [∞]‖ 6= 0.
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Example 5a1 shows that everything is stable in the Brownian coarse fac-
torization. In contrast, everything is sensitive in the coarse factorization
generated by Bλ in 5a2. In 5c we will find a reason to rename this ‘stability’
and ‘sensitivity’ as ‘micro-stability’ and ‘micro-sensitivity’.

A sufficient condition for sensitivity is found by Benjamini, Kalai and
Schramm in terms of the influence of a (two-valued) variable on a function,
see [2, Sect. 1.2]. In our framework, the influence of the variable τm on a
function f [i] : Ω[i] → R may be defined as the expectation of the square root
of the conditional variance,

E

√

Var
(
f [i]

∣
∣F 1

i
Z\{m}

)
;

here F 1
i
Z\{m} is the sub-σ-field of F [i] generated by all random signs except

for τm. The root of the conditional variance is simply one half of the difference
between two values of the function f [i], one value for τm = +1, the other
for τm = −1. Thus, our formula gives two times less than [2, (1.3)], but the
coefficient does not matter. Similarly, for any set M ⊂ 1

i
Z, the influence of

M (that is, of all variables τm, m ∈M) on f [i] may be defined as

E

√

Var
(
f [i]

∣
∣F 1

i
Z\M

)
.

By the way, for a linear function, the squared influence is additive (in M);
indeed, if f [i] =

∑

m cmτm, then Var
(
f [i]

∣
∣F 1

i
Z\M

)
= E

(∑

m∈M cmτm
)
2 =

∑

m∈M c2m. The sum of squared influences appears in the following remarkable
result (adapted to our framework).

5a3 Theorem (Benjamini, Kalai, Schramm). Let a function f : Ω[all] →
{0, 1} be such that each f [i] depends on i variables τ1/i, . . . , τi/i only. If

i∑

k=1

(

E

√

Var
(
f [i]

∣
∣F 1

i
Z\{k/i}

) )2

−−−→
i→∞

0 ,

then f is sensitive.

See [2, Th. 1.3]. We will return to the point in 6d.

5b Continuous case

We start with the Brownian continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
.

Using the Wiener-Itô decomposition of L2(Ω,F , P ),

f =

∞∑

n=0

∫

· · ·
∫

t1<···<tn

f̂({t1, . . . , tn}) dB(t1) . . .dB(tn)

︸ ︷︷ ︸

belongs to n-th Wiener chaos

, f̂ ∈ L2(Cfinite) ,
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we can define a self-adjoint operator N : L2 → L2 such that for each n,
Nf = nf for all f of n-th Wiener chaos. Accordingly, ρNf = ρnf for these
f . Informally, N(dB(t1) . . .dB(tn)) = ndB(t1) . . .dB(tn).

Every bounded Borel function ϕ on Cfinite acts on L2(Ω,F , P ) by the
operator Rϕ,

(5b1) Rϕf =

∞∑

n=0

∫

· · ·
∫

t1<···<tn

ϕ
(
{t1, . . . , tn}

)
f̂
(
{t1, . . . , tn}

)
dB(t1) . . .dB(tn) .

The operator ρN corresponds to the function M 7→ ρ|M |. (In some sense, the
unbounded operator N corresponds to the unbounded function M 7→ |M |.)
The decomposition |M | = |M ∩(−∞, t)|+ |M∩(t,∞) (it holds for µf -almost
all M) leads to the operator decomposition N = N−∞,t + Nt,∞. Informally,
N−∞,t

(
dB(t1) . . .dB(tn)

)
= kdB(t1) . . .dB(tn) and Nt,∞

(
dB(t1) . . .dB(tn)

)

= (n − k)dB(t1) . . .dB(tn) whenever t1 < · · · < tk < t < tk+1 < · · · < tn.
Accordingly, ρN = ρN−∞,t ⊗ ρNt,∞.

A function ϕ : Cfinite → {0, 1}, the indicator of a Borel subset M of Cfinite,
corresponds to the orthogonal projection operator onto the corresponding
(recall Theorem 3d12) subspace HM. Say, for the (indicator of the) set
{∅}, the operator projects onto the one-dimensional space of constants (the
expectation). For the set {M : M ⊂ (0,∞)} the operator is the conditional
expectation, E

(
·
∣
∣F0,∞

)
.

The function

ϕs,t(M) =

{

1 if M ∩ (s, t) 6= ∅,
0 if M ∩ (s, t) = ∅

acts by the operator 1 − E
(
·
∣
∣F(−∞,s)∪(t,∞)

)
.

For a finite set L = {s1, . . . , sn} ⊂ R, s1 < · · · < sn, the function
ϕL(M) = ϕs1,s2(M) + · · ·+ϕsn−1,sn

(M) counts intervals (sj , sj+1) that inter-
sect M . Clearly, ϕL(M) ≤ |M |, and

ϕLn
(M) ↑ |M | for µf -almost all M

if L1 ⊂ L2 ⊂ . . . are chosen so that their union is dense in R. Accordingly,

NLn
↑ N ,

N{s1,...,sn} =
n−1∑

j=1

(
1 − E

(
·
∣
∣F(−∞,sj)∪(sj+1,∞)

))
.(5b2)

The operator N is thus expressed in terms of the factorization only, irrespec-
tive of the Wiener-Itô decomposition, which gives us a bridge to arbitrary
continuous factorizations. Operators Rϕ described in the next lemma gener-
alize (5b1).
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5b3 Lemma. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
there

exists one and only one map ϕ 7→ Rϕ from the set of all bounded Borel
functions ϕ : C → R to the set of (bounded linear) operators on L2(Ω,F , P )
such that

(a) the map is a homomorphism of algebras; that is, Raϕ = aRϕ, Rϕ+ψ =
Rϕ +Rψ, Rϕψ = RϕRψ;

(b) ‖Rϕ‖ ≤ supM∈C |ϕ(M)|;
(c) R1M

= ProjHM
for every Borel set M ⊂ C; here 1M is the indicator of

M, and (HM) is the orthogonal decomposition provided by Theorem 3d12.
The map also satisfies the condition
(d) let ϕ, ϕ1, ϕ2, · · · : C → [0, 1] be Borel functions such that ϕk → ϕ

pointwise (that is, ϕk(M) −−−→
k→∞

ϕ(M) for each M ∈ C); then Rϕk
→ Rϕ

strongly (that is, ‖Rϕk
x− Rϕx‖ −−−→

k→∞
0 for every x ∈ L2(Ω,F , P )).

Proof. Uniqueness and existence are easy: Condition (c) and linearity deter-
mine the map on the algebra of Borel functions ϕ : C → R having finite sets
of values; it remains to extend the map by continuity.

For proving Condition (d) we note the equality

〈Rϕx, x〉 =

∫

ϕdµx ,

where µx is the spectral measure of x; it holds for ϕ having finite sets of
values, and therefore, for all ϕ. The bounded convergence theorem gives
us not only 〈Rϕk

x, x〉 → 〈Rϕx, x〉, but also 〈R(ϕk−ϕ)2x, x〉 → 0. However,
‖Rϕk

x− Rϕx‖2 = 〈Rϕk−ϕx,Rϕk−ϕx〉 = 〈R(ϕk−ϕ)2x, x〉.
5b4 Lemma. For every continuous factorization

(
(Ω,F , P ), (Fs,t)s≤t

)
, all

finite sets L1 ⊂ L2 ⊂ . . . whose union is dense in R, and every λ ∈ [0,∞),
the limit

Uλ = lim
n

exp(−λNLn
) ,

where NL is defined by (5b2), exists in the strong operator topology, and
does not depend on the choice of L1, L2, . . . Also,

UλUµ = Uλ+µ for all λ, µ ∈ [0,∞) .

Proof. We have ϕL =
∑
ϕsk,sk+1

and Rϕs,t
= 1 − E

(
·
∣
∣F(−∞,s)∪(t,∞)

)
; thus

RϕL
= NL. It follows thatRexp(−λϕL) = exp(−λNL). However, exp(−λϕLn

) →
ϕλ, where ϕλ(M) = exp(−λ|M |) (and e−∞ = 0, of course). By 5b3(d),
exp(−λNLn

) → Rϕλ
= Uλ. The semigroup relation UλUµ = Uλ+µ for opera-

tors follows from the corresponding relation ϕλϕµ = ϕλ+µ for functions.
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In the Brownian factorization we know that Uλ = exp(−λN), N =
limnNLn

. In general, however, the semigroup (Uλ)λ≥0 is discontinuous at
λ = 0 (and N is ill-defined).

5b5 Definition. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, and

f ∈ L2(Ω,F , P ).
(a) f is called stable, if ‖f − Uλf‖ → 0 for λ → 0, or equivalently, if µf

is concentrated on Cfinite = {M ∈ C : |M | <∞}.
(b) f is called sensitive, if Uλf = 0 for all λ > 0, or equivalently, if µf is

concentrated on C \ Cfinite = {M ∈ C : |M | = ∞}.

Of course, U0f = f anyway. For proving equivalence, apply 5b3(d) to
Uλ = Rϕλ

, ϕλ(M) = e−λ|M |.
The space L2(Ω,F , P ) decomposes into the direct sum of two subspaces,

stable and sensitive, according to the decomposition of C into the union of
two disjoint subsets, Cfinite and C \ Cfinite.

A continuous factorization is called classical (or stable), if the stable
subspace is the whole L2(Ω,F , P ).

A noise is called classical, if its continuous factorization is classical.
In order to understand probabilistic meaning of Uλ, consider first ρNL ,

L = {s1, . . . , sn}, s1 < · · · < sn. We have

Ω = Ω−∞,s1 × Ωs1,s2 × · · · × Ωsn−1,sn
× Ωsn,∞

or rather, (Ω,F , P ) = (Ω−∞,s1,F−∞,s1, P−∞,s1) × . . . , but let me use the
shorter notation. Each ω ∈ Ω may be thought of as a sequence (ω−∞,s1, ωs1,s2,
. . . ωsn−1,sn

, ωsn,∞) of local portions of data. Imagine another portion of data
ω′
s1,s2

∈ Ωs1,s2, either equal to ωs1,s2 (with probability ρ), or independent of
it (with probability 1 − ρ). The joint distribution of ωs1,s2 and ω′

s1,s2
is a

convex combination of two probability measures on Ω̃s1,s2 = Ωs1,s2 × Ωs1,s2.
One measure is concentrated on the diagonal and is the image of Ps1,s2 under
the map Ωs1,s2 ∋ ωs1,s2 7→ (ωs1,s2, ωs1,s2) ∈ Ω̃s1,s2; this measure occurs with
the coefficient ρ. The other measure is the product measure Ps1,s2 ⊗Ps1,s2; it
occurs with the coefficient 1 − ρ.

Similarly we introduce Ω̃s2,s3, . . . , Ω̃sn−1,sn
and construct Ω̃ = Ω−∞,s1 ×

Ω̃s1,s2 × · · · × Ω̃sn−1,sn
× Ωsn,∞ (the factors being equipped with correspond-

ing measures). It is the same idea as in 5a. Again, we have two measure
preserving maps α, α′ : Ω̃ → Ω. It appears that

E
(
f ◦ α′ ∣∣α−1(F)

)
= (ρNLf) ◦ α for f ∈ L2(Ω,F , P ) .
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This is the probabilistic interpretation of ρNL ; each portion of data is either
correct (with probability ρ), or wrong (with probability 1 − ρ).30 However,
the portions are not small yet. The limit n → ∞ makes them infinitesimal,
and turns ρNL into Uλ, where ρ and λ are related by ρ = e−λ.

The interpretation above motivates the terms ‘stable’ and ‘sensitive’.
Constant functions on Ω are stable; sensitive functions are of zero mean.

This is a terminological deviation from the discrete case; according to 5a,
constant functions are both stable and sensitive.

Two limiting cases of Uλ are projections. Namely, U∞ = limλ→∞ Uλ is
the expectation, and U0+ = limλ→0+ Uλ is the projection onto the stable
subspace. Restricting the ‘perturbation of local data’ to a given interval
(s, t) we get operators U

(s,t)
λ . These correspond to functions C ∋ M 7→

exp(−λ|M ∩ (s, t)|) and satisfy

(5b6)

U
(s,t)
λ U (s,t)

µ = U
(s,t)
λ+µ ; U

(r,s)
λ U

(s,t)
λ = U

(r,t)
λ ;

U (s,t)
∞ = E

(
·
∣
∣F−∞,s ⊗ Ft,∞

)
;

U
(s,t)
0+ = E

(
·
∣
∣F−∞,s ⊗F stable

s,t ⊗ Ft,∞
)
.

Note that (5b2) may be written as

(5b7) N{s1,...,sn} =
(
1 − U (s1,s2)

∞
)

+ · · · +
(
1 − U (sn−1,sn)

∞
)
.

5b8 Lemma. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, f ∈

L2(Ω,F , P ), and g = η ◦ f where η : R → R satisfies |η(x) − η(y)| ≤ |x− y|
for all x, y ∈ R. Then

µg(C \ME) ≤ µf(C \ME)

for all elementary sets E ⊂ R; here ME = {M ∈ C : M ⊂ E}.

Proof. We have (up to isomorphism) Ω = ΩE ×ΩR\E (the product of proba-

bility spaces is meant). We introduce Ω̃ = Ω×Ω = (ΩE×ΩE)×(ΩR\E×ΩR\E)
and equip the second factor ΩR\E × ΩR\E with the product measure, while
the first factor ΩE × ΩE is equipped with the measure concentrated on the

30This time, ρ ∈ [0, 1] rather than [−1, 1]. The relation to the approach of 5a is expressed
by the equality

1 + ρ

2

(
1/2 0
0 1/2

)

+
1 − ρ

2

(
0 1/2

1/2 0

)

=

(
(1 + ρ)/4 (1 − ρ)/4
(1 − ρ)/4 (1 + ρ)/4

)

= ρ

(
1/2 0
0 1/2

)

+ (1 − ρ)

(
1/4 1/4
1/4 1/4

)

.
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diagonal, such that (equipping Ω̃ with the product of these two measures),
the measure preserving ‘coordinate’ maps α, α′ : Ω̃ → Ω satisfy

f ◦ α = f ◦ α′ for all FE-measurable f,

f ◦ α and g ◦ α′ are independent, for all FR\E-measurable f, g.

Then

E
(
f ◦ α′ ∣∣α−1(F)

)
= E

(
f
∣
∣FE

)
◦ α for all f ∈ L2(Ω,F , P ) .

Therefore (recall Theorem 3d12),

E
(
(f ◦ α′)(g ◦ α)

)
= E

(
gE
(
f
∣
∣FE

))
;

E
(
(f ◦ α′)(f ◦ α)

)
= 〈ProjHME

f, f〉 = µf(ME) ;

1

2
E (f ◦ α′ − f ◦ α)2 = µf(C) − µf(ME) = µf(C \ME) .

The same holds for g. It remains to note that |g ◦ α′ − g ◦ α| = |η ◦ f ◦ α′ −
η ◦ f ◦ α| ≤ |f ◦ α′ − f ◦ α| everywhere on Ω̃.

We introduce a special set S of Borel functions ϕ : C → [0, 1] in three
steps. First, we take all functions of the form 1ME

,

1ME
(M) =

{

1 if M ⊂ E,

0 otherwise,

where E ⊂ R runs over all elementary sets. Second, we consider all (finite)
convex combinations of these 1ME

. Third, we consider the least set S con-
taining these convex combinations and closed under pointwise convergence
(that is, if ϕk ∈ S and ϕk(M) → ϕ(M) for each M ∈ C then ϕ ∈ S).

The set S is convex (since the third step preserves convexity). It is also
closed under multiplication: ϕψ ∈ S for all ϕ, ψ ∈ S. Indeed, multiplicativity
holds in the first step, and is preserved in the second and third steps.

5b9 Lemma. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, f ∈

L2(Ω,F , P ), and g = η ◦ f where η : R → R satisfies |η(x) − η(y)| ≤ |x− y|
for all x, y ∈ R. Then

∫

(1 − ϕ) dµg ≤
∫

(1 − ϕ) dµf

for all ϕ ∈ S.
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Proof. In the first step, for ϕ = 1ME
, the inequality is stated by 5b8. The

second step evidently preserves the inequality. And the third step preserves
it due to the bounded convergence theorem.

5b10 Lemma. Let a Borel set M ⊂ C be such that its indicator func-
tion 1M belongs to the set S. Then for every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
, the subspace HM = {f : µf(C\M) = 0} of L2(Ω,F , P )

is of the form
HM = L2(Ω,FM, P )

where FM is a sub-σ-field of F .

Proof. The subspace satisfies

f ∈ HM implies |f | ∈ HM

(here |f |(M) = |f(M)| for M ∈ C). Indeed,
∫

(1 − 1M) dµ|f | ≤
∫

(1 − 1M) dµf

by 5b9; that is, µ|f |(C \ M) ≤ µf(C \ M). A subspace satisfying such a
condition is necessarily of the form L2(Ω,FM, P ).

Recall the decomposition of L2(Ω,F , P ) into the sum of two orthogonal
subspaces, stable and sensitive, according to the decomposition of C into the
union of two disjoint subsets, Cfinite and C \ Cfinite.

5b11 Theorem. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)

there exists a sub-σ-field Fstable of F such that for all f ∈ L2(Ω,F , P )

f is stable if and only if f is Fstable-measurable;

f is sensitive if and only if E
(
f
∣
∣Fstable

)
= 0 .

Proof. The second statement (about sensitive functions) follows from the first
(about stable functions). By 5b10 it is enough to prove that the indicator of
Cfinite belongs to S.

For every λ ∈ (0,∞) the function ϕλ : C → [0, 1] defined by ϕλ(M) =
exp(−λ|M |) belongs to S due to the limiting procedure ϕλ = lim exp(−λϕLn

)
used in the proof of 5b4. For each n the function exp(−λϕLn

) =
∏

exp(−λϕsk,sk+1
) belongs to S, since each exp(−λϕs,t) is a convex com-

bination of two indicators, of M(−∞,s)∪(t,∞) and of the whole M.
It remains to note that ϕλ converges for λ→ 0 to the indicator of Cfinite.

So, a continuous factorization (or a noise) is classical if and only if
Fstable = F .
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5c Back to discrete: two kinds of stability

The operator equality Lim ρN[i] = ρN[∞] holds for some dyadic coarse factor-
izations (recall 5a1) but fails for some others (recall 5a2). Nothing like that
happens for spectral measures; µf [i] → µf [∞] always (see Theorem 3c5 and
3d). However, the operator ρN[i] corresponds to the function C[i] ∋M 7→ ρ|M |

treated as an element of L∞(µf [i]), and the operator ρN[∞] corresponds to
the function C[∞] ∋M 7→ ρ|M | treated as an element of L∞(µf [∞]). How is
it possible? Where is the origin of the clash between discrete and continuous?

The origin is discontinuity of functions M 7→ ρ|M | and M 7→ |M | w.r.t.
the Hausdorff topology on C.

5c1 Example. Return to the equality N[i]f
(2)
s,t [i] = 2f

(2)
s,t [i] for f

(2)
s,t [i] =

i−1/2
∑
τmτm+(1/i) (see 5a2 and 3b6). The spectral measure of f

(2)
s,t [i] is con-

centrated on two-point sets M ⊂ 1
i
Z, namely, on pairs of two adjacent points

{m,m+ (1/i)}. However, f
(2)
s,t [∞] is just a Brownian increment; its spectral

measure is concentrated on single-point sets. Now we see what happens; two
close points merge in the limit! Multiplicity of spectral points eludes the
continuous model.

The effect becomes dramatic for f
(λ)
s,t [i]; everything is stable in the contin-

uous model (i = ∞), while everything is sensitive (for i→ ∞) in the discrete
model. A finite spectral set on the continuum hides the infinite multiplicity
of each point.

Conformity between discrete and continuous can be restored by modi-
fying the idea of stability introduced in 5a. Instead of inverting each τm
(with probability (1 − ρ)/2) independently of others, we may invert blocks
τs[i], τs[i]+(1/i), . . . , τt[i] where coarse instants s, t satisfy t[∞]−s[∞] = ε. Each
block is inverted with probability (1−ρ)/2, independently of other blocks. Ul-
timately we let ε→ 0, but the order of limits is crucial: limε→0 limi→∞(. . . ).
This way, we can define (in discrete time setup) block stability and block sen-
sitivity, equivalent to stability and sensitivity (resp.) of the refinement. In
contrast, the approach of 5a leads to what may be called micro-stability and
micro-sensitivity (for discrete time only).

The function C ∋M 7→ ρ|M | is not continuous, but it is upper semicontin-
uous. Therefore, every micro-stable function is block stable, and every block
sensitive function is micro-sensitive.

5c2 Example. The function gs,t of 3b7 is micro-sensitive but block stable.
The same holds for all coarse random variables in that dyadic coarse factor-
ization. It holds also for the second construction of 3b6 (I mean f

(λ)
s,t ).
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6 Generalizing Wiener Chaos

6a First chaos, decomposable processes, stability

We consider an arbitrary continuous factorization. As was shown in Theorem
3d12 and 5b3, Borel functions ϕ : C → R act on L2(Ω,F , P ) by linear
operators Rϕ, and (indicators of) Borel subsets M ⊂ C act by orthogonal
projections to subspaces HM.

In particular, for the Brownian factorization, only Cfinite is relevant. The
set {M ∈ Cfinite : |M | = n} corresponds to the subspace called n-th Wiener
chaos.

In general, we may define n-th chaos as the subspace of L2(Ω,F , P ) that
corresponds to {M ∈ C : |M | = n}. These subspaces are orthogonal, and
span the stable subspace — not the whole L2(Ω,F , P ), unless the noise is
classical.

For each t ∈ R the set Mt = {M : M ∋ t} is negligible in the sense that
HMt

= {0} (recall 3c7 and (3d3)). Neglecting Mt we may treat C as the
product,31

(6a1) C = C−∞,t × Ct,∞ ,

where Ca,b is the space of all compact subsets of (a, b); namely, we treat a set
M ∈ C as the pair of sets M ∩ (−∞, t) and M ∩ (t,∞), assuming t /∈M .

On the other hand, the Hilbert space H = HC = L2(Ω,F , P ) may be
treated as the tensor product,

H = H−∞,t ⊗Ht,∞ ,

of two Hilbert spaces H−∞,t = HC−∞,t
= L2(Ω,F−∞,t, P ) and Ht,∞ = HCt,∞ =

L2(Ω,Ft,∞, P ). Namely, f⊗g is just the usual product fg of random variables
f ∈ L2(Ω,F−∞,t, P ) and g ∈ L2(Ω,Ft,∞, P ); note that f and g are necessarily
independent, therefore E |fg|2 =

(
E |f |2

)(
E |g|2

)
.

Subspaces HM ⊂ H−∞,t for Borel subsets M ⊂ C−∞,t are a σ-additive
orthogonal decomposition of H−∞,t. The same holds for (t,∞).

6a2 Lemma. HM1×M2 = HM1 ⊗ HM2 for all Borel sets M1 ⊂ C−∞,t and
M2 ⊂ Ct,∞.

Proof. The equality holds for the special case M1 = {M : M ⊂ E1}, M2 =
{M : M ⊂ E2} where E1 ⊂ (−∞, t) and E2 ⊂ (t,∞) are elementary sets;

31Sorry, the formula ‘C = C−∞,t × Ct,∞’ may be confusing since, on the other hand,
C−∞,t ⊂ C and Ct,∞ ⊂ C. The same can be said about the next formula, H = H−∞,t ⊗
Ht,∞.
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indeed, L2(Ω,FE1 , P ) ⊗ L2(Ω,FE2, P ) = L2(Ω,FE1∪E2, P ) since FE1∪E2 =
FE1 ⊗FE2. The general case follows by the monotone class theorem.

6a3 Theorem. The sub-σ-field generated by the first chaos is equal to
Fstable.

Proof. The σ-field is evidently included in Fstable. Given a finite set L =
{s1, . . . , sn} ⊂ R, s1 < · · · < sn, we consider the set ML of all M ∈ C such
that M ⊂ (s1, sn) and each [sk, sk+1] contains at most one point of M . The
set ML being the product (over k), 6a2 shows thatHML

is the tensor product
(over k) of subspaces of L2(Ω,Fsk,sk+1

, P ); each factor is the first chaos on
(sk, sk+1) plus constants. Therefore each function of HML

is measurable
w.r.t. the σ-field generated by the first chaos. We choose L1 ⊂ L2 ⊂ . . .
whose union is dense in R; then MLn

↑ Cfinite, and corresponding subspaces
span the stable subspace.

A random variable X ∈ L2(Ω,F , P ) belongs to the first chaos if and only
if

X = E
(
X
∣
∣F−∞,t

)
+ E

(
X
∣
∣Ft,∞

)
for all t ∈ R .

For such X, letting Xs,t = E
(
X
∣
∣Fs,t

)
we get a decomposable process, that

is, a family (Xs,t)s≤t of random variables such thatXs,t is Fs,t-measurable and
Xr,s + Xs,t = Xr,t whenever r ≤ s ≤ t. This way we get decomposable pro-
cesses satisfying E |Xs,t|2 <∞ and EXs,t = 0. Waiving these additional con-
ditions we get a larger set of processes, but the sub-σ-field generated by these
processes is still Fstable. We may also consider complex-valued multiplicative
decomposable processes; it means that Xs,t : Ω → C is Fs,t-measurable and
Xr,sXs,t = Xr,t. The generated sub-σ-field is Fstable, again. The same holds
under the restriction |Xs,t| = 1 a.s. See [20, Th. 1.7].

Dealing with a noise (rather than factorization) we may restrict ourselves
to stationary Brownian and Poisson decomposable processes. ‘Stationary’
means Xr,s ◦ αt = Xr−t,s−t. ‘Brownian’ means Xs,t ∼ N(0, t − s). ‘Poisson’
means Xs,t ∼ Poisson(λ(t − s)) for some λ ∈ (0,∞). The generated sub-
σ-field is still Fstable. See [15, Lemma 2.9]. (It was written for the Brownian
component, but works also for the Poisson component.)

For a finite set L = {s1, . . . , sn} ⊂ R, s1 < · · · < sn, we introduce an
operator QL on the space L0

2 = {X ∈ L2(Ω,F , P ) : EX = 0} by

QL = E
(
·
∣
∣F−∞,s1

)
+ E

(
·
∣
∣Fs1,s2

)
+ · · ·+ E

(
·
∣
∣Fsn−1,sn

)
+ E

(
·
∣
∣Fsn,∞

)
.

6a4 Theorem. If finite sets L1 ⊂ L2 ⊂ . . . are such that their union is
dense in R, then operators QLn

converge in the strong operator topology to
the orthogonal projection from L0

2 onto the first chaos.
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Proof. QL is the projection onto HML
, where ML is the set of all nonempty

M ∈ C contained in one of the n+ 1 intervals. The intersection of subspaces
corresponds to the intersection of subsets.

Stochastic analysis gives us another useful tool for calculating the first
chaos, pioneered by Jon Warren [23, Th. 12]. Let (Bs,t)s≤t be a decomposable
Brownian motion, that is, a decomposable process such thatBs,t ∼ N(0, t−s).
One says that B has the representation property, if every X ∈ L2(Ω,F , P )
such that EX = 0 is equal to a stochastic integral,

X =

∫ +∞

−∞
H(t) dB0,t ,

where H is a predictable process w.r.t. the filtration (F−∞,t)t∈R.

6a5 Lemma. If B has the representation property then the first chaos is
equal to the set of all linear stochastic integrals

∫ +∞

−∞
ϕ(t) dB0,t , ϕ ∈ L2(R) .

Proof. Linear stochastic integrals evidently belong to the first chaos. Let
X belong to the first chaos. Consider martingales B(t) = B0,t, X(t) =

E
(
X
∣
∣F−∞,t

)
=
∫ t

−∞H(s) dB(s) and their bracket process 〈X,B〉t =
∫ t

−∞H(s) ds. The two-dimensional process (B(·), X(·)) has independent in-
crements; therefore the bracket process has independent increments as well.
On the other hand, the bracket process is a continuous process of finite varia-
tion. Therefore it is degenerate (non-random), and H(·) is also non-random.

It follows that Fstable is generated by B.

6a6 Example. For the noise of stickiness (see Sect. 4), the process
(
a(s, t)

)

s≤t
is a decomposable Brownian motion having the representation property.
Therefore it generates Fstable. On the other hand we know (recall 4h3) that
a(·, ·) does not generate the whole σ-field. So, the sticky noise is not classical
(Warren [23]).

The approach of Theorem 6a4 is also applicable. Let ϕ : G3 → [−1,+1]
be a Borel function, and 0 < t − ε < t < 1. We consider ϕ(ξ0,1) =
ϕ(ξ0,t−εξt−ε,tξt,1) (you know, ξt−ε,t = fa(t−ε,t),b(t−ε,t),c(t−ε,t)), and compare it

with ϕ(ξ0,t−εξ̃t−ε,tξt,1), where ξ̃t−ε,t = fa(t−ε,t),b(t−ε,t),0.
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b1 
1a1+b1b2 
2a2+b2b3 
3a3+b3s " t
It appears that

‖ϕ(ξ0,t−εξt−ε,tξt,1) − ϕ(ξ0,t−εξ̃t−ε,tξt,1)‖L2 = O(ε3/4) = o(
√
ε) ,

provided that t is bounded away from 1 (otherwise we get O(ε3/4(1− t)−1/2)
with an absolute constant). Taking into account that ξ̃t−ε,t is measurable
w.r.t. the σ-field generated by a(·, ·) we conclude that the projection of ϕ(ξ0,1)
onto the first chaos is measurable w.r.t. the σ-field generated by a(·, ·). See
7b for the rest.

6b Higher levels of chaos

We still consider an arbitrary continuous factorization. Any Borel subset
M ⊂ C determines a subspace HM ⊂ L2(Ω,F , P ). However, the subset
Cfinite ⊂ C is special; the corresponding subspace, being equal to L2(Fstable)
by Theorem 5b11, is of the form L2(F1) for a sub-σ-field F1 ⊂ F .

Another interesting subset is Ccountable, the set of all at most countable
compact subsets of R. It is not a Borel subset of C [7, Th. 27.5] but still,
it is universally measurable [7, Th. 21.10] (that is, measurable w.r.t. every
Borel measure), since its complement is analytic [7, Th. 27.5]. The Cantor-
Bendixson derivative M ′ of M ∈ C is, by definition, the set of all limit points
of M . Clearly, M ′ ∈ C, M ′ ⊂M , and M ′ = ∅ if and only if M is finite. The
iterated Cantor-Bendixson derivative M (α) is defined for every ordinal α by
transfinite recursion: M (0) = M ; M (α+1) = (M (α))′; and M (α) = ∩β<αM (β)

if α is a limit ordinal; see [7, Sect. 6.C]. If M /∈ Ccountable then M (α) 6= ∅ for
all α. If M ∈ Ccountable then M (α) = ∅ for some finite or countable ordinal
α; the least α such that M (α) = ∅ is called the Cantor-Bendixson rank of
M ∈ Ccountable. It is always of the form β + 1, and M (β) is a finite set.

Recall the proof of Theorem 5b11: the indicator of Cfinite belongs to the
set S introduced in 5b. Here is a more general fact.

6b1 Lemma. Let α be an at most countable ordinal, and Mα the set of all
M ∈ C such that M (α) = ∅. Then the indicator function of Mα belongs to
the set S.
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Proof. Transfinite induction in α. For α = 0 the claim is trivial. Let α be a
limit ordinal. We take αk ↑ α, αk < α, and note that Mα = Mα1∪Mα2∪. . .
(indeed, M (αk) ↓ M (α), and M (αk) are compact). Thus, indicators of Mαk

converge to the indicator of Mα.
The transition from α to α + 1 needs the following property of S: for

every ϕ ∈ S and a closed elementary set E, the function M 7→ ϕ(M ∩ E)
belongs to S. Proof: In the first step of constructing S, ϕ is the indicator of
some {M : M ⊂ E1}; thus M 7→ ϕ(M ∩ E) is the indicator of {M : M ⊂
E1 ∪ (R \ E)}. The second and third steps preserve the property.

Assume that the indicator function of Mα belongs to S; we have to prove
the same for α + 1. The indicator of Mα+1 is M 7→ ϕ(M (α)), where ϕ
is the indicator of Cfinite. Taking into account that ϕ ∈ S (see the proof
of Theorem 5b11), we will prove a more general fact: the function M 7→
ϕ(M (α)) belongs to S for every ϕ ∈ S (not just the indicator of Cfinite). The
property is evidently preserved by the second and third steps of constructing
S; it remains to prove it in the first step. Here ϕ is the indicator of {M :
M ⊂ E} for an elementary E. We have to express the set {M : M (α) ⊂ E}
as a limit of sets of the form {M : (M ∩ E1)

(α) = ∅} where E1 is a closed
elementary set. The indicator of {M : (M ∩ E1)

(α) = ∅} belongs to S, since
it is 1Mα

(M ∩ E1). We note that, for ε→ 0,

{M : (M ∩ (−∞, ε])(α) = ∅} ↑ {M : M (α) ⊂ (0,∞)} ,
{M : (M ∩ (−∞,−ε])(α) = ∅} ↓ {M : M (α) ⊂ [0,∞)} ,

which does the job for two special cases, E = (0,∞) and E = [0,∞), and
shows how to deal with a boundary point, belonging to E or not. The general
case is left to the reader.

6b2 Theorem. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization.

(a) There exists a sub-σ-field E of F such that for all f ∈ L2(Ω,F , P ), f
is E-measurable if and only if µf is concentrated on Ccountable.

(b) For every at most countable ordinal α there exists a sub-σ-field Eα
of F such that for all f ∈ L2(Ω,F , P ), f is Eα-measurable if and only if
µf is concentrated on the set of M ∈ C such that M (α) = ∅ (that is, of
Cantor-Bendixson rank less than or equal to α).

Proof. Item (a) follows from (b), since Eα = Eα+1 for countable α large
enough (see [7, Th. 6.9]), and µf(Ccountable) = supα µf{M : M (α) = ∅} (see
[7], the proof of Th. 21.10, and Th. 35.23).

Item (b) follows from 6b1, 5b10.

Let us concentrate on Item (b) for α = 0, 1, 2. The case α = 0 is trivial:
only the empty set M , and only constant functions f . The case α = 1 was
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discussed before: finite sets M and stable functions f . The case α = 2 means
that M ′ is finite.

We define the n-th superchaos as the subspace HM ⊂ L2(Ω,F , P ) cor-
responding to {M ∈ C : |M ′| = n}. These subspaces are orthogonal. The
0-th superchaos is the stable subspace, while for n = 1, 2, . . . the n-th su-
perchaos consists of (some) sensitive functions. By Theorem 6b2(b), the
subspace spanned by n-th superchaos spaces for all n = 0, 1, 2, . . . is of the
form L2(Ω, E2, P ) where E2 is a sub-σ-field of F . Similarly to Theorem 6a3,
the sub-σ-field generated by the first superchaos and Fstable is equal to E2.

Similarly to (5b2) and (5b7) we may ‘count’ points of M ′ by the operator

N′
{s1,...,sn} =

n−1∑

j=1

(
1 − E

(
·
∣
∣F−∞,sj

⊗ F stable
sj ,sj+1

⊗Fsj+1,∞
))

=
(
1 − U

(s1,s2)
0+

)
+ · · ·+

(
1 − U

(sn−1,sn)
0+

)
,

or rather its limit N′ = limn N′
Ln

. Further, similarly to 5b4, we may define

Vλ = lim
n

exp(−λN′
Ln

) .

This way, an ordinal hierarchy of operators may be constructed. It corre-
sponds to the Cantor-Bendixson hierarchy of countable compact sets.

Introducing

Q′
{s1,...,sn}X = E

(
X
∣
∣F−∞,s1 ⊗F stable

s1,∞
)

+ E
(
X
∣
∣F stable

−∞,s1 ⊗Fs1,s2 ⊗F stable
s2,∞

)

+ · · · + E
(
X
∣
∣F stable

−∞,sn−1
⊗Fsn−1,sn

⊗ F stable
sn,∞

)
+ E

(
X
∣
∣F stable

−∞,sn
⊗ Fsn,∞

)

for X ∈ L2(Ω,F , P ) such that E
(
X
∣
∣Fstable

)
= 0, we get such a counterpart

of Theorem 6a4.

6b3 Theorem. If finite sets L1 ⊂ L2 ⊂ . . . are such that their union is dense
in R, then operators Q′

Ln
converge in the strong operator topology to the

orthogonal projection from the sensitive subspace onto the first superchaos.

Proof. Q′
L is the projection onto HML

, where ML is the set of all nonempty
M ∈ C such thatM ′ is contained in one of the n+1 intervals. The intersection
of subspaces corresponds to the intersection of subsets.

6b4 Example. For the sticky noise, consider such a random variable X: the
number of random chords [s, t] × {x} such that s > 0 and t > 1. In other
words (see 4i),

X = |{x : σ1(x) ∈ Π ∩ (0,∞)}| .
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The conditional distribution of X given the Brownian path B(·) = a(0, ·) is
Poisson(λ) with λ = a(0, 1) + b(0, 1) = B(1) − min[0,1]B(·), which is easy
to guess from the discrete counterpart (see (4c10)). That is a generalization
of a claim from 4h3. In fact, the conditional distribution of the set {x :
σ1(x) ∈ Π ∩ (0,∞)}, given the Brownian path, is the Poisson point process
of intensity 1 on [−b(0, 1), a(0, 1)], which is a result of Warren [23]. Taking
into account that the σ-field generated by B(·) is Fstable (recall 6a6), we get
E
(
X
∣
∣Fstable

)
= a(0, 1) + b(0, 1). The random variable

Y = X − E
(
X
∣
∣Fstable

)
= X − a(0, 1) − b(0, 1)

is sensitive, that is, E
(
Y
∣
∣Fstable

)
= 0. I claim that Y belongs to the first

superchaos.
The proof is based on Theorem 6b3. Given 0 < s1 < · · · < sn < 1, we

have to check that Y can be decomposed into a sum Y0 + · · ·+ Yn such that
each Yj is measurable w.r.t. F stable

0,sj
⊗ Fsj ,sj+1

⊗ F stable
sj+1,1

. Here is the needed
decomposition:

Xj = |{x : σ1(x) ∈ Π ∩ (sj , sj+1)}| ,
Yj = Xj − E

(
Xj

∣
∣Fstable

)
.

We apply a small perturbation on (0, sj) and (sj+1, 1) but not on (sj , sj+1).
The set Π ∩ (sj , sj+1) remains unperturbed. The function σ1 is perturbed,
but only a little; being a function of B(·), it is stable.

So, Y belongs to the first superchaos, and X belongs to the first super-
chaos plus L2(Fstable). It means that µX is concentrated on sets M such that
|M ′| ≤ 1.

The same holds for random variables Xu = |{x : x ≤ u, σ1(x) ∈ Π ∩
(0,∞)}|, for any u. They all are measurable w.r.t. the σ-field generated by
the first superchaos and Fstable. The random variable c(0, 1) is a (nonlinear!)
function of these Xu (recall 4i). We see that the first superchaos and Fstable

generate the whole σ-field F . Every spectral set (of every random variable)
has only a finite number of limit points.

6b5 Example. Another nonclassical noise, discovered and investigated by
Warren [22], see also Watanabe [25], may be called the noise of splitting. It
is the scaling limit of the model of 1d1; see also 8c. Spectral measures of
the most interesting random variables are described explicitly! A spectral
set contains a single limit point, and two sequences converging to the point
from the left and from the right.

Again, every spectral set (of every random variable) has only a finite
number of limit points.
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6b6 Question. We have no example of a noise whose spectral sets M are
at most countable, and M ′ is not always finite. Can it happen at all? Can it
happen for the refinement of a dyadic coarse factorization satisfying (3e1)?

Beyond Ccountable it is natural to use the Hausdorff dimension, dimM , of
compact sets M ∈ C. The set S used in Theorems 5b11 and 6b2 helps again.
First, a general lemma.

6b7 Lemma. For every probability measure µ on C the function ϕ : C →
[0, 1] defined by ϕ(M) = µ{M1 ∈ C : M ∩M1 = ∅}, belongs to the set S.

Proof. We may restrict ourselves to compact subsets of a bounded interval;
let it be just [0, 1]. For any such set M let M (n) denote the union of intervals
[ k
n
, k+1

n
] (k = 0, . . . , n−1) that intersectM . The sequence (M (n))∞n=1 decreases

and converges to M (in the Hausdorff metric). For every n, the function

ϕn(M) = µ{M1 : M ∩ M
(n)
1 = ∅} belongs to S, since it is the convex

combination of indicators of {M : M ⊂ E} with coefficients µ{M1 : M
(n)
1 =

[0, 1] \ E}, where E runs over 2n elementary sets. It remains to note that

ϕn(M) ↑ ϕ(M), since M ∩M1 = ∅ if and only if M ∩M
(n)
1 = ∅ for some

n.

6b8 Lemma. For every α ∈ (0, 1) there exists a function ϕ ∈ S such that
ϕ(M) = 1 for all M satisfying dimM < α, and ϕ(M) = 0 for all M satisfying
dimM > α.

Proof. We may restrict ourselves to the space C0,1 of all compact subsets of
(0, 1). There exists a probability measure µ on C0,1 such that the function
ϕ(M) = µ{M1 : M1 ∩M = ∅} satisfies two conditions: ϕ(M) = 1 for all M
such that dimM < α, and ϕ(M) < 1 for all M such that dimM > α. That
is a result of J. Hawkes, see [6, Th. 6], [10, Lemma 5.1]. By 6b7, ϕ ∈ S. By
multiplicativity (of S), also ϕn ∈ S for all n. The function limn ϕ

n satisfies
the required conditions.

As a by-product we see that the Hausdorff dimension is a Borel function
C → R. (To this end we use an additional limiting procedure, as in the proof
of Theorem 6b9.)

6b9 Theorem. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, and

α ∈ (0, 1) a number. Then there exist sub-σ-fields Eα−, Eα+ of F such that
for all f ∈ L2(Ω,F , P ),

(a) f is measurable w.r.t. Eα− if and only if µf is concentrated on the set
of M ∈ C such that dimM < α;

(b) f is measurable w.r.t. Eα+ if and only if µf is concentrated on the set
of M ∈ C such that dimM ≤ α.
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Proof. We choose αk → α, apply 6b8 for each k, consider the limit ϕ of
corresponding functions ϕk, and use 5b10. The case αk < α leads to (a), the
case αk > α leads to (b).

A more general notion behind Theorems 5b11, 6b2 and 6b9 is an ideal.
Recall that a subset I of C is called an ideal, if

M1 ⊂M2, M2 ∈ I =⇒ M1 ∈ I ,

M1,M2 ∈ I =⇒ (M1 ∪M2) ∈ I .

In particular, Cfinite and Ccountable are ideals. For every finite or countable
ordinal α, all M ∈ C such that M (α) = ∅ are an ideal. For every α ∈ (0, 1), all
M ∈ C such that dimM < α are an ideal. The same holds for ‘dimM ≤ α’.
All these ideals are shift-invariant:

M ∈ I =⇒ (M + t) ∈ I for all t ,

M + t = {m+ t : m ∈M} ,

but in general, an ideal need not be shift-invariant. Also, all ideals mentioned
above are Borel subsets of C, except for Ccountable; the latter is universally mea-
surable, but not Borel. The following theorem is formulated for Borel ideals,
but holds also for universally measurable ideals. Conditions 6b10 (a,b,c)
parallel 3d1 (a,b,c), which means that sub-σ-fields Es,t form a continuous
factorization of the quotient probability space (Ω,F , P )/E .

6b10 Theorem. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, I ⊂

C a Borel ideal, E ⊂ F a sub-σ-field, and for every f ∈ L2(Ω,F , P ), f
be E-measurable if and only if µf is concentrated on I. Then sub-σ-fields
Es,t = E ∩ Fs,t satisfy the conditions

Er,t = Er,s ⊗ Es,t whenever r ≤ s ≤ t ,(a)
⋃

ε>0

Es+ε,t−ε generates Es,t whenever s < t,(b)

∞⋃

n=1

E−n,n generates E .(c)

Proof. (a) We introduce Borel subsets Is,t = {M ∈ I : M ⊂ (s, t)} of C
and the corresponding subspaces Hs,t = HIs,t

of L2(Ω,F , P ). The equality
Ir,t = Ir,s × Is,t (treated according to (6a1)) follows easily from the fact that
I is an ideal. Lemma 6a2 (or rather, its evident generalization) states that
Hr,t = Hr,s ⊗Hs,t. On the other hand,

L2(Es,t) = L2(E ∩ Fs,t) = L2(E) ∩ L2(Fs,t) = HI ∩HCs,t
= HI∩Cs,t

= Hs,t .
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So, L2(Er,t) = L2(Er,s) ⊗ L2(Es,t), therefore Er,t = Er,s ⊗ Es,t.
(c) ∪nI−n,n = I, therefore ∪nHI−n,n

is dense in HI ; that is, ∪nL2(E−n,n)
is dense in L2(E), therefore ∪nE−n,n generates E .

(b): similarly to (c).

6b11 Remark. If the ideal I is shift-invariant and the given object is a
noise (not only a factorization), then the sub-factorization (Es,t) becomes a
sub-noise. In particular, every nonclassical noise has its classical (in other
words, stable) sub-noise.

6b12 Question. Does every Borel ideal correspond to a sub-σ-field? (For
an arbitrary continuous factorization, I mean. Though, the question is also
open for noises and shift-invariant ideals.)

6c An old question of Jacob Feldman

Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization. Sub-σ-fields FE cor-

respond to elementary sets E ⊂ R (recall 3d) and satisfy

(6c1) FE1∪E2 = FE1 ⊗FE2 whenever E1 ∩E2 = ∅ .

It is natural to ask whether or not the map E 7→ FE can be extended to all
Borel sets E ⊂ R in such a way that (6c1) is still satisfied and in addition,

(6c2) FEn
↑ FE whenever En ↑ E .

The answer is positive if and only if the given continuous factorization is clas-
sical (Theorem 6c7 below, see also [18]), which solves a question of Feldman
[4].

Note that (6c2) implies

(6c3) FEn
↓ FE whenever En ↓ E .

Proof: Let En ↓ E, then FR\En
↑ FR\E by (6c2), and so FR\E is independent

of ∩FEn
. If FE is strictly less than ∩FEn

, then FE ⊗ FR\E is strictly less
than (∩FEn

) ⊗ FR\E, which cannot happen, since FE ⊗ FR\E = F by (6c1).
An extension satisfying (6c2), (6c3) is unique (if it exists) by the mono-

tone class theorem. Therefore an extension (of (FE) to the Borel σ-field)
satisfying (6c1), (6c2) is unique (if it exists).

6c4 Lemma. If the factorization is classical then an extension satisfying
(6c1), (6c2) exists.
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Proof. By (slightly generalized) Theorem 6a3, for every elementary E, the

σ-field FE = F stable
E is generated by the corresponding portionH

(1)
E = L2(FE)∩

H(1) of the first chaos H(1). The space H
(1)
E corresponds (in the sense of The-

orem 3d12) to the subset M(1)
E ⊂ C of all single-point subsets of E.

Given an arbitrary Borel set E ⊂ R, we define the subset M(1)
E ⊂ C

as above (that is, all single-point subsets of E), consider the corresponding

subspace H
(1)
E ⊂ H(1), and introduce the sub-σ-field FE ⊂ F generated by

H
(1)
E .

Given f ∈ H(1), we denote by fE the orthogonal projection of f to H
(1)
E ;

here E is an arbitrary Borel set. If En ↑ E (or En ↓ E) then fEn
→ f in L2.

If E is elementary then

E eif =
(
E eifE

)(
E eifR\E

)

due to independence. The monotone class theorem extends the equality to
all Borel sets E. We conclude that fE and fR\E are independent. Therefore
σ-fields FE and FR\E are independent for every Borel set E. Taking into

account that H
(1)
E1∪E2

= H
(1)
E1

⊕H
(1)
E2

whenever E1 ∩E2 = ∅ we get (6c1).

If En ↑ E then H
(1)
En

↑ H(1)
E , which ensures (6c2).

Condition (a) of the next lemma is evidently necessary for the exten-
sion to exist. In more topological language, for every open set G ⊂ R the
corresponding σ-field FG is naturally defined by approximation (of G by
elementary sets) from within, while a closed set is approximated from the
outside. The necessary condition, FG ⊗FR\G = F , appears to be equivalent
to the following (see 6c5(b)): the set M∩G is compact, for almost all M ∈ C.

6c5 Lemma. For all elementary sets E1 ⊂ E2 ⊂ . . . the following two
conditions are equivalent:

(a)
(∨

n

FEn

)

⊗
(∧

n

FR\En

)

= F ;

(b) the set {M ∈ C : ∀n M ∩
(
(∪Ek) \ En

)
6= ∅} is negligible w.r.t. the

spectral measure µf for every f ∈ L2(Ω,F , P ).

Proof. Denote Fn = R\En, En = FEn
, Fn = FR\En

, E∞ = ∨nEn, F∞ = ∧nFn.
Clearly, E∞ and F∞ are independent, and (a) becomes E∞∨F∞ = F . Denote
also Mn = {M ∈ C : M ⊂ En}, Nn = {M ∈ C : M ⊂ Fn}, M∞ =
∪nMn = {M ∈ C : ∃nM ⊂ En}, N∞ = ∩nNn = {M ∈ C : M ⊂ ∩Fn}; then
HMn

= L2(En), HNn
= L2(Fn). We have Mn ↑ M∞ and Nn ↓ N∞; therefore

L2(En) = HMn
↑ HM∞ and L2(Fn) = HNn

↓ HN∞. On the other hand,
En ↑ E∞ and Fn ↓ F∞; therefore L2(En) ↑ L2(E∞) and L2(Fn) ↓ L2(F∞). So,

HM∞ = L2(E∞) , HN∞ = L2(F∞) .
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Denote M∞ ∨ N∞ = {M1 ∪ M2 : M1 ∈ M∞,M2 ∈ N∞}; the same for
M1 ∨ N∞ etc. We have HM1∨Nn

= HM1 ⊗HNn
and M1 ∨ Nn ↓ M1 ∨ N∞;

thus HM1∨N∞ = HM1 ⊗HN∞ (note a relation to 6a2). Similarly, HMn∨N∞ =
HMn

⊗ HN∞. However, Mn ∨ N∞ ↑ M∞ ∨ N∞, and we get HM∞∨N∞ =
HM∞ ⊗HN∞, that is,

HM∞∨N∞ = L2(E∞) ⊗ L2(F∞) .

Now (a) becomes HM∞∨N∞ = H , which means negligibility of the set C \
(M∞ ∨N∞) = {M : ∀nM ∩

(
(∪Ek) \ En

)
6= ∅}, that is, (b).

Every classical factorization satisfies 6c5(b), since a finite set M cannot
intersect (∪Ek) \ En for all n.

6c6 Lemma. If Condition 6c5(b) is satisfied for every (En) then the factor-
ization is classical.

Proof. Let the factorization be not classical. Then we can choose a sensitive
f ∈ L2(Ω,F , P ), ‖f‖ = 1. Assume for convenience that f ∈ L2(F0,1),
and consider the spectral measure µf ; µf -almost all M are infinite subsets
of (0, 1). We choose p1, p2, · · · ∈ (0, 1) such that

∑
pk ≤ 1/3 (say, pk =

2−k/3). Integer parameters n1 < n2 < . . . will be chosen later. We introduce
independent random elementary sets B1, B2, · · · ⊂ [0, 1] as follows:

P

{

Bk =
( l1 − 1

nk
,
l1
nk

)

∪ · · · ∪
( lm − 1

nk
,
lm
nk

)}

= pmk (1 − pk)
nk−m

whenever 1 ≤ l1 < · · · < lm ≤ nk, m ∈ {0, . . . , nk}. That is, we have
a two-parameter family of independent events,

(
l−1
nk
, l
nk

)
⊂ Bk, where l ∈

{1, . . . , nk}, k ∈ {1, 2, . . .}. The probability of such an event is equal to pk.
We define Ek = B1 ∪ · · · ∪ Bk; thus E1 ⊂ E2 ⊂ . . . is a (random) increasing
sequence of elementary subsets of [0, 1].

We treat M as a random compact subset of (0, 1), distributed µf and in-
dependent of B1, B2, . . . Let P̃ be the corresponding probability measure (in
fact, product measure) on the space Ω̃ of sequences (of sets) (M,B1, B2, . . . ).
For each k = 0, 1, 2, . . . we define an event Ak, that is, a measurable subset
of Ω̃, by the following condition on (M,B1, B2, . . . ):

M \ Ek is infinite and does not intersect Bk+1 ;

of course, E0 = ∅.
We can choose n1, n2, . . . such that

∑

k P̃ (Ak) ≤ 1/3. Proof: P̃ (Ak) is
a function of n1, . . . , nk, nk+1 that converges to 0 when nk+1 → ∞ (while
n1, . . . , nk are fixed).
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The probability of the event

M \ Ek is infinite for all k

is no less than 1 −∑ pk ≥ 2/3. Proof: Each M has a limit point (at least
one), and the point is covered by (the closure of)B1∪B2∪. . . with probability
≤∑ pk.

So, there is a positive probability (≥ 1/3) to such an event:

for each k, the set M \ Ek is infinite and intersects Bk+1 .

However, the conditional probability, given B1, B2, . . . (but not M) of the
event

for each k, the set M \ Ek intersects Bk+1

must vanish according to 6c5(b).

6c7 Theorem. A continuous factorization is classical if and only if the map
E 7→ FE can be extended from the algebra of elementary sets to the Borel
σ-field, satisfying (6c1) and (6c2).

Proof. If the factorization is classical then the extension exists by 6c4. Let
the extension exist; then 6c5(a) is satisfied for all (Ek), therefore 6c5(b) is
also satisfied, and the factorization is classical by 6c6.

6d Black noise

6d1 Definition. A noise is black, if its stable σ-field Fstable is degenerate.
In other words: its first chaos contains only 0.

Why ‘black’? Well, the white noise is called ‘white’ since its spectral
density is constant. It excites harmonic oscillators of all frequencies to the
same extent. For a black noise, however, the response of any linear sensor is
zero!

What could be a physically reasonable nonlinear sensor able to sense a
black noise? Maybe a fluid could do it, which is hinted at by the follow-
ing words of Shnirelman [13, p. 1263] about the paradoxical motion of an
ideal incompressible fluid: ‘. . . very strong external forces are present, but
they are infinitely fast oscillating in space and therefore are indistinguishable
from zero in the sense of distributions. The smooth test functions are not
“sensitive” enough to “feel” these forces.’

The very idea of black noises, nonclassical factorizations, etc. was sug-
gested to me by Anatoly Vershik in 1994.
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6d2 Lemma. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, a < b,

M a Borel subset of Ca,b = {M ∈ C : M ⊂ (a, b)}, and M̃ = {M ∈ C :
M ∩ (a, b) ∈ M}. If µf(M) = 0 for all f ∈ L2(Ω,F , P ) then µf(M̃) = 0 for
all f ∈ L2(Ω,F , P ).

Proof. I prove it for (a, b) = (0,∞), leaving the general case to the reader.
We have C = C−∞,0 × C0,∞, M ⊂ C0,∞ and M̃ = C−∞,0 ×M (in the sense
of (6a1)). By 6a2, HM̃ = HC−∞,0×M = HC−∞,0 ⊗HM. By (3d13), the space
HM is trivial (that is, {0}). Therefore HM̃ is also trivial; it remains to use
(3d13) again.

Recall that a compact set M is called perfect, if it has no isolated points.
(The empty set is also perfect.) The set Cperfect of all perfect compact subsets
of R is a Borel set in C, see [7, proof of Th. 27.5].

6d3 Theorem. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
the

following two conditions are equivalent:
(a) the first chaos space is trivial (contains only 0);
(b) for every f ∈ L2(Ω,F , P ) the spectral measure µf is concentrated on

Cperfect.

Proof. (b) implies (a) evidently (a single-point set cannot be perfect). As-
sume (a). Applying 6d2 to the set M of all single-point subsets of (a, b) we
see that µf -almost all M ∈ C are such that M ∩ (a, b) is not a single-point
set, for all rational a < b. It means that M is perfect.

So, a noise is black if and only if spectral measures are concentrated on
(the set of all) perfect sets.

Existence of black noises was proven first by Tsirelson and Vershik [20,
Sect. 5]. A simpler and more natural example is described in the next section.
Another example is found by Watanabe [26].

If all spectral sets are finite or countable (as in 6b4, 6b5), such a noise
cannot contain a black sub-noise.

6d4 Question. If a noise contains no black sub-noise, does it follow that all
spectral sets are at most countable?

Perfect sets may be classified, say, by Hausdorff dimension. For any
α ∈ (0, 1), sets M ∈ C of Hausdorff dimension ≤ α are a shift invariant
ideal, corresponding to a sub-noise. Also, all M ∈ C of Hausdorff dimension
α correspond to a ‘chaos subspace number α’. A continuum of such chaos
subspaces (not in a single noise, of course) could occur, describing different
‘levels of sensitivity’. For now, however, I know of perfect spectral sets of
Hausdorff dimension 1/2 only.
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6d5 Question. Can a noise have perfect spectral sets of Hausdorff dimension
other than 1/2 ? (See also the end of 8c.)

6d6 Question. Can a black noise emerge as the refinement of a dyadic
coarse factorization satisfying (3e1)?

The following results (especially 6d14) may be treated as continuous-time
counterparts of Theorem 5a3 (of Benjamini, Kalai and Schramm). Given a
continuous factorization

(
(Ω,F , P ), (Fs,t)s≤t

)
and a function f ∈ L2(Ω,F , P ),

we define

H(f) = lim sup
{t1,...,tn}↑

n+1∑

k=1

(

E

√

Var
(
f
∣
∣FR\(tk−1,tk)

) )2

;

here t0 = −∞, tn+1 = +∞, and the ‘lim sup’ is taken over all finite sets
L = {t1, . . . , tn} ⊂ R, t1 < · · · < tn, ordered by inclusion. That is, ‘for every
ε there exists Lε such that for all L ⊃ Lε . . . ’ and so on. We also introduce

H1(f) = lim
{t1,...,tn}↑

n+1∑

k=1

Var
(
E
(
f
∣
∣Ftk−1,tk

))
.

This time we may write ‘lim’ (or ‘inf’) instead of ‘lim sup’ due to monotonicity
(w.r.t. inclusion); the more L = {t1, . . . , tn} the less the sum.

6d7 Lemma.
√

Var
(
E
(
f
∣
∣Fs,t

))
≤ E

√

Var
(
f
∣
∣FR\(s,t)

)
for all f ∈

L2(Ω,F , P ) and s < t.

Proof. The space L2(Ω,F , P ) = L2(F) = L2(Fs,t ⊗ FR\(s,t)) = L2(Fs,t) ⊗
L2(FR\(s,t)) may also be thought of as the space L2

(
FR\(s,t), L2(Fs,t)

)
consist-

ing of FR\(s,t)-measurable square integrable vector-functions, taking on values

in L2(Fs,t). We consider the element f̃ ∈ L2

(
FR\(s,t), L2(Fs,t)

)
corresponding

to f ∈ L2(F) (according to the canonical isomorphism of these two spaces).
The mean value of the vector-function is E f̃ = E

(
f
∣
∣Fs,t

)
(these two ‘E ’

act on different spaces). Convexity of the seminorm
√

Var(·) on L2(Fs,t)

gives
√

Var(E f̃) ≤ E

√

Var(f̃), where Var(f̃) means the pointwise variance

(each value of f̃ is a random variable; the latter has its variance), basically
the same as Var

(
f
∣
∣FR\(s,t)

)
.

6d8 Corollary. H1(f) ≤ H(f).

6d9 Lemma. H1(f) = ‖Q1f‖ for all f ∈ L2(Ω,F , P ); here Q1 is the or-
thogonal projection onto the first chaos.
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Proof. Follows immediately from Theorem 6a4.

6d10 Corollary. Every f ∈ L2(Ω,F , P ) such that H(f) = 0 is orthogonal
to the first chaos.

6d11 Corollary. If a noise is such that H(f) = 0 for all f ∈ L2(Ω,F , P ),
then the noise is black.

6d12 Lemma. Let g ∈ L2(F), h ∈ L∞(F0,∞), and f = E
(
gh
∣
∣F−∞,0

)
.

Then H(f) ≤ ‖h‖2
∞H(g).

Proof. It is sufficient to prove the inequality for the influence,

E

√

Var
(
f
∣
∣FR\(s,t)

)
≤ ‖h‖∞E

√

Var
(
g
∣
∣FR\(s,t)

)
for any (s, t) ⊂

(−∞, 0). Similarly to the proof of 6d7, we consider g̃ ∈
L2

(
F0,∞, L2(F−∞,0)

)
corresponding to g ∈ L2(F−∞,0 ⊗ F0,∞). We have

g̃h ∈ L2

(
F0,∞, L2(F−∞,0

)
, E (g̃h) = f . Convexity of the seminorm

E

√

Var
(
·
∣
∣F(−∞,0)\(s,t)

)
on L2(F−∞,0) gives E

√

Var
(
f
∣
∣F(−∞,0)\(s,t)

)
≤

E E

√

Var
(
g̃h
∣
∣F(−∞,0)\(s,t)

)
, where ‘Var’ and the internal ‘E ’ act on

L2(F−∞,0), while the outer ‘E ’ acts on L2(F0,∞). The right-hand

side is equal to E

(

|h|E
√

Var
(
g̃
∣
∣F(−∞,0)\(s,t)

))

and so, cannot exceed

‖h‖∞E E

√

Var
(
g̃
∣
∣F(−∞,0)\(s,t)

)
= ‖h‖∞E

√

Var
(
g
∣
∣FR\(s,t)

)
.

6d13 Lemma. If f ∈ L2(Ω,F , P ) is such that H(f) = 0, then µf is concen-
trated on Cperfect.

Proof. Similarly to the proof of Theorem 6d3, it is sufficient to prove, for
every (a, b) ⊂ R, that µf -almost all M ∈ C are such that M ∩ (a, b) is not
a single-point set. Lemma 6a2 shows that the subspace corresponding to
{M ∈ C : |M ∩ (a, b)| = 1} is H−∞,a ⊗ H

(1)
a,b ⊗ Hb,∞, where H

(1)
a,b is the

first chaos intersected with Ha,b. We have to prove that f is orthogonal to

H−∞,a ⊗H
(1)
a,b ⊗Hb,∞, that is, to gh for every g ∈ H

(1)
a,b , h ∈ H−∞,a ⊗Hb,∞ =

L2(FR\(a,b)), and we may assume that h ∈ L∞(FR\(a,b)).
We have E (fgh) = E

(
gE
(
fh
∣
∣Fa,b

))
. Lemma 6d12 (slightly general-

ized) shows that H
(
E
(
fh
∣
∣Fa,b

))
≤ ‖h‖2

∞H(f). Thus, H
(
E
(
fh
∣
∣Fa,b

))
=

0; by 6d10, E
(
gE
(
fh
∣
∣Fa,b

))
= 0.

6d14 Corollary. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization. If

f ∈ L2(Ω,F , P ) satisfies H(f) = 0 and E f = 0, then f is sensitive.

Here are counterparts of 5b8 and Theorem 5b11 inspired by the work [9]
of Le Jan and Raimond.
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6d15 Lemma. Let f ∈ L2(Ω,F , P ), and g = η ◦f where η : R → R satisfies
|η(x) − η(y)| ≤ |x− y| for all x, y ∈ R. Then

H(g) ≤ H(f) .

Proof. It is sufficient to prove the inequality for the influence,

E

√

Var
(
g
∣
∣FR\(s,t)

)
≤ E

√

Var
(
f
∣
∣FR\(s,t)

)
, or a stronger inequality

Var
(
g
∣
∣FE

)
≤ Var

(
f
∣
∣FE

)
a.s., for an arbitrary elementary set E. It

is a conditional counterpart of the inequality Var(η ◦X) ≤ Var(X) for any
random variableX. A proof of the latter: Var(η◦X) = 1

2
E (η◦X1−η◦X2)

2 ≤
1
2
E (X1 −X2)

2 = Var(X), where X1, X2 are independent copies of X.

6d16 Theorem. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)

there exists a sub-σ-field Fjetblack of F such that L2(Ω,Fjetblack, P ) is the
closure (in L2(Ω,F , P )) of {f ∈ L2(Ω,F , P ) : H(f) = 0}.

Proof. The set {f : H(f) = 0} is closed under linear operations, and also
under the nonlinear operation f 7→ |f |, therefore its closure is of the form
L2(Fjetblack).

6d17 Corollary. L2(Fjetblack) ⊂ HCperfect
.

6d18 Question. Whether Fjetblack is nontrivial for every black noise, or not?

7 Example: The Brownian Web as a Black

Noise

7a Convolution semigroup of the Brownian web

A one-dimensional array of random signs can produce some classical and
nonclassical noises in the scaling limit, but I still do not know whether it can
produce a black noise, or not (see 6d6).

+��++�+�+�++��+
(a) (b) (c)

This is why I turn to a two-dimensional array of random signs (a). It pro-
duces a system of coalescing random walks (b) that converges to the so-called
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Brownian web (c), consisting of infinitely many coalescing Brownian motions
(independent before coalescence).

The Brownian web was investigated by Arratia, Toth, Werner, Soucaliuc,
and recently by Fontes, Isopi, Newman and Ravishankar [5] (other references
may be found therein). The scaling limit may be interpreted in several ways,
depending on the choice of ‘observables’, and may involve delicate points,
because of complicated topological properties of the Brownian web as a ran-
dom geometric configuration on the plane. However, we avoid these delicate
points by treating the Brownian web as a stochastic flow in the sense of
Sect. 4, that is, a two-parameter family of random variables in a semigroup.

In order to keep finite everything that can be kept finite, we consider
Brownian motions in the circle T = R/Z rather than the line R.

It is well-known that a countable dense set of coalescing ‘particles’, given
at the initial instant, becomes finite, due to coalescence, after any positive
time. Moreover, the finite number is of finite expectation. Thus, for any
given t > 0, the Brownian web on the time interval (0, t) gives us a random
map T → T of the following elementary form (a step function):

0x1x2:::xn1 y1y2:::yn f y1,...,yn

x1,...,xn
: T → T ,

x1 < · · · < xn < x1, y1 < · · · < yn < y1 (cyclically),

f y1,...,yn
x1,...,xn

(x) = yk+1 for x ∈ (xk, xk+1] .

Of course, n is random, as well as x1, . . . , xn and y1, . . . , yn. The value at xk
does not matter; we let it be yk for convenience, but it could equally well be
yk+1, or remain undefined. Points x1, . . . , xn will be called left critical points
of the map, while y1, . . . , yn are right critical points.

We introduce the set G∞ consisting of all step functions T → T and,
in addition, the identity function. If f, g ∈ G∞ then their composition fg
belongs to G∞; thus G∞ is a semigroup. It consists of pieces of dimen-
sions 2, 4, 6, . . . and the identity. Similarly to G3 (recall (4d2)), G∞ is not a
topological semigroup, since the composition is discontinuous.

The distribution of the random map is a probability measure µt on G∞.
These maps form a convolution semigroup, µs ∗ µt = µs+t. Similarly to
4e, discontinuity of composition does not harm, since the composition is
continuous almost everywhere (w.r.t. µs ⊗ µt). Left and right critical points
do not meet.32

32They meet with probability 0, as long as s and t are fixed. Otherwise, delicate points
are involved. . .
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Having the convolution semigroup, we can construct the stochastic flow,
that is, a family of G∞-valued random variables (ξs,t)s≤t such that

ξs,t ∼ µt−s ,

ξr,sξs,t = ξr,t a.s.

whenever −∞ < r < s < t <∞, and

ξt1,t2 , . . . , ξtn−1,tn are independent

whenever −∞ < t1 < · · · < tn <∞.
Indeed, for each i, we can take independent ξk/i,(k+1)/i : Ω[i] → G∞ for k ∈

Z according to the discrete model, and define ξk/i,l/i = ξk/i,(k+1)/i . . . ξ(l−1)/i,l/i.
For any two coarse instants s ≤ t, the distribution of ξs[i],t[i] converges weakly
(for i→ ∞) to µt[∞]−s[∞]. The refinement gives us

ξs,t : Ω → G∞ , ξs,t = f
y1(s,t),...,yn(s,t)(s,t)

x1(s,t),...,xn(s,t)(s,t)
;

xk(·, ·) and yk(·, ·) are continuous a.s. Also,

(7a1) En(s, t) <∞ .

We consider the sub-σ-field Fs,t generated by all ξu,v for (u, v) ⊂ (s, t) and
get a continuous factorization. Time shifts are evidently introduced, and so,
we get a noise — the noise of coalescence.

7b Some general arguments

Probably we could use H and Theorem 6d16 in order to prove that the noise
of coalescence is black (see also [9]). However, I choose another way (via H1

rather than H).
Random variables of the form ϕ(ξs,t) for arbitrary s < t and arbitrary

bounded Borel function ϕ : G∞ → R generate the whole σ-field F . Products
of the form ϕ1(ξt0,t1) . . . ϕn(ξtn−1,tn) for t0 < · · · < tn span L2 (as a closed
subspace); however, we cannot expect that linear combinations of such ϕ(ξs,t)
are dense in L2.

Denote by Q1 the orthogonal projection of L2(Ω,F , P ) onto the first
chaos.

7b1 Lemma. Linear combinations of all Q1ϕ(ξs,t) are dense in the first
chaos.

Proof: Follows easily from the next (quite general) result, or rather, its
evident generalization to n factors.
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7b2 Lemma. Let r ≤ s ≤ t, X ∈ L2(Fr,s), Y ∈ L2(Fs,t). Then Q1(XY ) =
Q1(X)E (Y ) + E (X)Q1(Y ).

Proof. In terms of operators Rϕ given by 5b3 we have Q1(XY ) = Rϕr,t
(XY ),

where ϕr,t : Cr,t → R is the indicator of {M ∈ C : |M ∩ (r, t)| = 1}. Similarly,
Q1(X) = Rϕr,s

(X), and E (X) = Rψr,s
(X), where ψr,s is the indicator of

{M ∈ C : |M ∩ (r, s)| = 0}. However, ϕr,t = ϕr,sψs,t + ψr,sϕs,t almost
everywhere on Cr,t (w.r.t. every spectral measure).

In order to prove that the noise (of coalescence) is black, it suffices to prove
that Qϕ(ξs,t) = 0 for all s, t, ϕ. We’ll prove that Qϕ(ξ0,1) = 0; the general
case is similar. According to 6d9 we have to prove that H1(ϕ(ξ0,1)) = 0.
Assuming that Eϕ(ξ0,1) = 0 we will check the sufficient condition:

‖E
(
ϕ(ξ0,1)

∣
∣Ft−ε,t

)
‖ = o(

√
ε) for ε → 0 ,

uniformly in t. When doing so, we may assume that t is bounded away from
0 and 1. Indeed, ‖E

(
ϕ(ξ0,1)

∣
∣Ft,1

)
‖ → 0 for t → 1−, due to continuity of

the factorization (recall 3d1(b)).

7b3 Lemma. E
(
ϕ(ξ0,1)

∣
∣Ft−ε,t

)
= E

(
ϕ(ξ0,1)

∣
∣ ξt−ε,t

)
.

The proof is left to the reader; a hint:

E
(
ϕ(ξt1,t5)

∣
∣ ξt2,t3 , ξt3,t4

)
=

∫∫

ϕ(ξ12ξ23ξ34ξ45) dµt2−t1(ξ12)dµt5−t4(ξ45)

= E
(
ϕ(ξt1,t5)

∣
∣ ξt2,t4

)
.

7c The key argument

Similarly to 6a6, we consider X = ϕ(ξ0,1) = ϕ(ξ0,t−εξt−ε,tξt,1), EX = 0,
|X| ≤ 1 a.s. We have to prove that ‖E

(
X
∣
∣ ξt−ε,t

)
‖ = o(

√
ε) for ε → 0,

uniformly in t, when t is bounded away from 0 and 1. Clearly,

E
(
X
∣
∣ ξt−ε,t

)
=

∫∫

ϕ(fgh) dµt−ε(f)dµ1−t(h) ,

where g = ξt−ε,t.

s " t
f g h
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We choose γ ∈
(

1
3
, 1

2

)
and divide the strip (t − ε, t) × T into ∼ ε−γ ‘cells’

(t− ε, t) × (zk, zk+1) of height zk+1 − zk ∼ εγ.

" "

We want to think of g as consisting of independent cells. Probably it can be
done in continuous time, but we have no such technique for now. Instead,
we retreat to the discrete-time model. The needed inequality for continuous
time results in the scaling limit i → ∞ provided that in discrete time our
estimations are uniform in i (for i large enough).

So, random signs that produce g are divided into cells. Cells are inde-
pendent and, taken together, they determine g uniquely.

However, a path may cross many cells. This is rather improbable, since
γ < 1/2, but it may happen. We enforce locality by a forgery! Namely, if
the path starting at the middle of a cell reaches the bottom or the top edge
of the cell, we replace the whole cell with some other cell (it may be chosen
once and for all) where it does not happen.

b

b

7→ b b

Now cells are ‘local’; a path cannot cross more than two cells, but of course,
the stochastic flow is changed. Namely, g is changed with an exponentially
small (for ε → 0) probability, which changes E

(
X
∣
∣ ξt−ε,t

)
by o(

√
ε) (much

less, in fact). Still, cells are independent.
Does a cell (of g) influence the composition, fgh ? It depends on f and

h. If the left edge {t − ε} × [zk, zk+1] of the cell contains no right critical
point of f , the cell can influence, since a path starting in an adjacent cell
can cross the boundary between cells. However, if the enlarged left edge
{t−ε}× [zk−εγ , zk+1+εγ] contains no right critical point of f (in which case
we say ‘the cell is blocked by f ’), then the cell cannot influence, because of the
enforced locality. Similarly, if the enlarged right edge {t}× [zk−εγ, zk+1 +εγ]
contains no left critical point of h (in which case we say ‘the cell is blocked
by h’), the cell cannot influence.

The probability of being not blocked by f is the same for all cells, since
the distribution of f is invariant under rotations of T (discretized as needed).
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The sum of these probabilities does not exceed 3En(0, t − ε) (recall (7a1)),
which is O(1) when ε → 0. (Here we need t to be bounded away from 0.)
Thus,

P
(
a given cell is not blocked by f

)
= O(εγ) ;

P
(
a given cell is not blocked by h

)
= O(εγ) ;

P
(
a given cell is not blocked

)
= O(ε2γ) ;

P
(
at least one cell is not blocked

)
= O(εγ) .

In the latter case we may say that g is not blocked (by f, h).
Denote by A the event “g is not blocked by f, h” (it is determined by f

and h, not g); P
(
A
)

= O(εγ). Taking into account that

X = X − EX =
(
X · 1A − E (X · 1A)

)
+
(
X · (1 − 1A) − E (X · (1 − 1A))

)
,

E
(
X · (1 − 1A)

∣
∣ g
)

= E (X · (1 − 1A)) ,

E
(
X
∣
∣ g
)

= E
(
X · 1A

∣
∣ g
)
− E (X · 1A) ,

we have to prove that ‖E
(
X ·1A

∣
∣ g
)
−E (X ·1A)‖ = o(

√
ε). Note that it does

not result from the trivial estimation ‖X ·1A‖ ≤ ‖1A‖ =
√

P
(
A
)

= O(εγ/2),

γ ∈
(

1
3
, 1

2

)
. Note also that, when g influences X, its influence is usually not

small (irrespective of ε) because of the stepwise nature of f and h.
We express the norm in terms of covariance,

‖E
(
X · 1A

∣
∣ g
)
− E (X · 1A)‖ = sup

ψ
Cov

(
X · 1A, ψ(g)

)
,

where the supremum is taken over all Borel functions ψ : G∞ → R such that
Var
(
ψ(g)

)
≤ 1. In terms of the correlation coefficient

Corr
(
X · 1A, ψ(g)

)
=

Cov
(
X · 1A, ψ(g)

)

√

Var(X · 1A)
√

Var(ψ(g))
,

it is enough to prove that

Corr
(
X · 1A, ψ(g)

)
= o(ε(1−γ)/2) ,

since it implies Cov(. . . ) = o(ε(1−γ)/2) · ‖X · 1A‖ = o(ε(1−γ)/2εγ/2) = o(
√
ε).

Instead of o(ε(1−γ)/2) we will get O(εγ), which is also enough since γ > 1/3.
It remains to apply the quite general lemma given below, interpreting its

Yk as the whole k-th cell (of g), Xk as the indicator of the event “the k-th
cell is not blocked” (k = 1, . . . , n), X0 as the pair (f, h), and ϕ(. . . ) as X ·1A.
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The lemma is formulated for real-valued random variables Yk, but this does
not matter; the same clearly holds for arbitrary spaces, and in fact, we need
only finite spaces. The productXkYk is a trick for ‘blocking’ Yk when Xk = 0.
Note that dependence between X0, X1, . . . , Xn is allowed.

7c1 Lemma. Let (X0, X1, . . . , Xn) and (Y1, . . . , Yn) be two independent ran-
dom vectors, Yk : Ω → R, Xk : Ω → {0, 1} for k = 1, . . . , n, X0 : Ω → R, and
random variables Y1, . . . , Yn be independent. Then

Corr
(
ϕ(X0, X1Y1, . . . , XnYn), ψ(Y1, . . . , Yn)

)
≤
√

max
k=1,...,n

P
(
Xk = 1

)

for all Borel functions ϕ : Rn+1 → R, ψ : Rn → R such that the correlation
is well-defined (that is, 0 < Varϕ(. . . ) <∞, 0 < Varψ(. . . ) <∞).

Proof. We may assume that X1, . . . , Xn are functions of X0. Con-
sider the orthogonal (in L2(Ω)) projection Q from the space of
all random variables of the form ψ(Y1, . . . , Yn) to the space of
all random variables of the form ϕ(X0, X1Y1, . . . , XnYn), that is,
Qψ(Y1, . . . , Yn) = E

(
ψ(Y1, . . . , Yn)

∣
∣X0, X1Y1, . . . , XnYn

)
. We have to prove

that ‖Qψ(Y1, . . . , Yn)‖2 ≤
(
maxk P

(
Xk = 1

))
‖ψ(Y1, . . . , Yn)‖2 whenever

Eψ(Y1, . . . , Yn) = 0. The space of all ψ(Y1, . . . , Yn) is spanned by factor-
izable random variables ψ(Y1, . . . , Yn) = ψ1(Y1) . . . ψn(Yn). For such a ψ we
have

Qψ(Y1, . . . , Yn) = E
(
ψ1(Y1) . . . ψn(Yn)

∣
∣X0, X1Y1, . . . , XnYn

)

=

(
∏

k:Xk=0

Eψk(Yk)

)(
∏

k:Xk=1

ψk(Yk)

)

;

‖Qψ(Y1, . . . , Yn)‖2 = E

(

E
(
|Qψ(Y1, . . . , Yn)|2

∣
∣X0

))

= E

((
∏

k:Xk=0

|Eψk(Yk)|2
)(

∏

k:Xk=1

E |ψk(Yk)|2
))

.

If, in addition, Eψ1(Y1) = 0 then ‖Qψ(Y1, . . . , Yn)‖2 ≤
P
(
X1 = 1

)
‖ψ(Y1, . . . , Yn)‖2. Similarly,

‖Qψ(Y1, . . . , Yn)‖2 ≤
(

max
k

P
(
Xk = 1

))

‖ψ(Y1, . . . , Yn)‖2

if Eψ(Y1, . . . , Yn) = 0 and, of course, ψ is factorizable, that is,
ψ(Y1, . . . , Yn) = ψ1(Y1) . . . ψn(Yn). The latter assumption cannot be elim-
inated just by saying that factorizable random variables of zero mean span
all random variables of zero mean. Instead, we use two facts.
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The first fact. The space of all random variables ψ(. . . ) has an orthogo-
nal basis consisting of factorizable random variables satisfying an additional
condition: each factor ψk(Yk) is either of zero mean, or equal to 1. (For a
proof, start with an orthogonal basis for functions of Y1 only, the first basis
function being constant; do the same for Y2; take all products; and so on.)

The second fact. The operator Q maps orthogonal factorizable ran-
dom variables, satisfying the additional condition, into orthogonal random
variables. Indeed, let ψ(Y1, . . . , Yn) = ψ1(Y1) . . . ψn(Yn), ψ

′(Y1, . . . , Yn) =
ψ′

1(Y1) . . . ψ
′
n(Yn), and each ψk(Yk) be either of zero mean, or equal to

1; the same for each ψ′
k(Yk). If E

(
ψ(Y1, . . . , Yn)ψ

′(Y1, . . . , Yn)
)

= 0 then
E
(
ψk(Yk)ψ

′
k(Yk)

)
= 0 for at least one k; let it happen for k = 1. We have

not only E
(
ψ1(Y1)ψ

′
1(Y1)

)
= 0 but also

(
Eψ1(Y1)

)(
Eψ′

1(Y1)
)

= 0, since ψ1

and ψ′
1 cannot both be equal to 1. Therefore

E
(
Qψ(Y1, . . . , Yn)

)(
Qψ′(Y1, . . . , Yn)

)
=

= E

((
∏

k:Xk=0

(
Eψk(Yk)

)(
Eψ′

k(Yk)
)
)(

∏

k:Xk=1

ψk(Yk)ψ
′
k(Yk)

))

= 0 ,

since the first term vanishes whenever X1 = 0, and the second term vanishes
whenever X1 = 1.

Combining all together, we get the conclusion.

7c2 Theorem. The noise of coalescence is black.

7d Remarks

Another proof of Theorem 7c2 should be possible, by showing that all (zero
mean) random variables are sensitive. To this end, we divide the time axis R

into intervals of small length ε, and choose a random subset of intervals such
that each interval is chosen with a small probability 1 − ρ = 1 − e−λ ∼ λ,
independently of others. On each chosen interval we replace local random
data with fresh (independent) data.

Consider the path X(·) of the Brownian web, starting at the origin,
X(t) = ξ0,t(0) for t ∈ [0,∞); it behaves like a Brownian motion. After the
replacement we get another path Y (·). Their difference,

(
X(t) − Y (t)

)
/
√

2,
behaves like another Brownian motion when outside 0, but is somewhat sticky
at 0. Namely, during each chosen (to the random set) time interval, the point
0 has nothing special; however, outside these time intervals, the point 0 is
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absorbing. In this sense, chosen time intervals act like factors f∗ in the ran-
dom product of factors f−, f+, f∗ studied in Sect. 4. There, f∗ occurs with a
small probability 1/(2

√
i) → 0 (recall 4e4), which produces a non-degenerate

stickiness in the scaling limit. Here, in contrast, a time interval is chosen
with probability 1−ρ ∼ λ that does not tend to 0 when the interval length ε
tends to 0. Naturally, stickiness disappears in the limit ε → 0 (a proof uses
the idea of (4c9)). That is, interaction between X(·) and Y (·) disappears in
the limit ε → 0. They become independent, no matter how small 1 − ρ is.

Probably, the same argument works for any finite number of pathsXk(t) =
ξ0,t(xk); they should be asymptotically independent of Yk(·) for ε → 0, but I
did not prove it.

The spectral measure µX of the random variable X = ξ0,1(0) is written
down explicitly in [16]. Or rather, its discrete counterpart is found; the
scaling limit follows by (a generalization of) Theorem 3c5 (see also [17]). The
measure µX is a probability measure (since ‖X‖ = 1), it may be thought of
as the distribution of a random perfect subset of (0, 1). Note that the random
subset is not at all a function on the probability space (Ω,F , P ) that carries
the Brownian web. There is no sense in speaking about ‘the joint distribution
of the random set and the Brownian web’. In fact, they may be treated as
incompatible (non-commuting) measurements in the framework of quantum
probability, see [15].

A wonder: µX is the distribution of (θ − M) ∩ (0, 1), where M is the
set of zeros of the usual Brownian motion, and θ is independent of M and
distributed uniformly on (0, 1).

Moreover, the corresponding equality holds exactly (not only asymptot-
ically) in the discrete-time model. Strangely enough, the Brownian motion
(or rather, random walk) does not appear in the calculation of the spec-
tral measure. The relation to Brownian motion is observed at the end, as a
surprise!

7d1 Question. Can µX (for X = ξ0,1(0)) be found via some natural con-
struction of a Brownian motion whose zeros form the spectral set (after the
transformation x 7→ θ − x)? (See [16, Problem 1.5].)

We see that µX (for X = ξ0,1(0)) is concentrated on sets of Hausdorff
dimension 1/2.

7d2 Question. Is µX concentrated on sets of Hausdorff dimension 1/2 for
an arbitrary random variable X such that EX = 0 (over the noise of coales-
cence)?

An affirmative answer would probably give us another proof that the noise
is black. A stronger conjecture may be made.
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7d3 Question. Is µX for an arbitrary F0,1-measurable X (over the noise of
coalescence), satisfying EX = 0, absolutely continuous w.r.t. µξ0,1(0) ?

7e A combinatorial by-product

Consider a Markov chain X = (Xk)
∞
k=0 (a half-difference of two independent

simple random walks, or a double-speed simple random walk divided by two):
X0 = 0 and

P
(
Xk+1 = Xk + ∆x

∣
∣Xk

)
=







1/4 for ∆x = −1,

1/2 for ∆x = 0,

1/4 for ∆x = +1

for each k = 0, 1, 2, . . .
Let Z be the (random) set of zeros of X, that is,

Z = {k = 0, 1, . . . : Xk = 0} .

Given a set S ⊂ {0, 1, 2, . . .} and a number k = 0, 1, 2, . . . , we consider the
event Z ∩ [0, k] ⊂ k − S, that is, ∀l = 0, . . . , k

(
l ∈ Z =⇒ k − l ∈ S

)
, and

its probability. We define

pn,S =
1

n

n−1∑

k=0

P
(
Z ∩ [0, k] ⊂ k − S

)
;

of course, only k ∈ S can contribute (since 0 ∈ Z).
On the other hand, we may trap X at 0 on S; that is, given a set S ⊂

{0, 1, 2, . . .}, we introduce another Markov chain X(S) =
(
X

(S)
k

)∞
k=0 such that

X
(S)
0 = 0 and for each k = 0, 1, 2, . . .

P
(
X

(S)
k+1 = x+ ∆x

∣
∣X

(S)
k = x

)
=







1/4 for ∆x = −1,

1/2 for ∆x = 0,

1/4 for ∆x = +1

except for the case k ∈ S, x = 0,

P
(
X

(S)
k+1 = 0

∣
∣X

(S)
k = 0

)
= 1 if k ∈ S .

7e1 Theorem. pn,S = 1
n

∑

k∈S P
(
X

(S)
k = 0

)
for every n = 1, 2, . . . and

S ⊂ {0, 1, . . . , n− 1}.
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7e2 Example. Before proving the theorem, consider a special case; namely,
let S consist of just a single number s. Then P

(
Z∩ [0, k] ⊂ k−S

)
= P

(
Z∩

[0, k] ⊂ {k − s}
)

vanishes for k 6= s. For k = s it becomes P
(
Z ∩ [0, s] =

{0}
)

= 2−(2s−1)
((

2s−2
s−1

)
+
(
2s−2
s

))
. Therefore pn,{s} = 1

n
2−(2s−1)

((
2s−2
s−1

)
+

(
2s−2
s

))
, assuming s ≥ 2; also, pn,{0} = 1

n
and pn,{1} = 1

2n
. On the other

hand, 1
n

∑

k∈S P
(
X

(S)
k = 0

)
= 1

n
P
(
Xs = 0

)
= 1

n
· 2−2s

(
2s
s

)
. The equality

becomes
(
2s−2
s−1

)
+
(
2s−2
s

)
= 1

2

(
2s
s

)
(for s ≥ 2).

Proof (sketch). We use the discrete-time counterpart of the Brownian web
(see 7a and [16, Sect. 1]) and consider ξ0,n(0), the value at time n of the path
starting at the origin. At every instant k /∈ S we replace the corresponding
random signs with fresh (independent) copies, which leads to another random
variable ξ′0,n(0). We calculate the covariance E

(
ξ0,n(0)ξ′0,n(0)

)
in two ways,

and compare the results.
The first way. The difference process ξ0,·(0) − ξ′0,·(0) is distributed like

the process 2X(S) (similarly to 7d). Thus

4E
(
X(S)
n

)
2 = E

(
ξ0,n(0) − ξ′0,n(0)

)
2 = 2n− 2E

(
ξ0,n(0)ξ′0,n(0)

)
.

On the other hand, 1
2
− E

(
X

(S)
k+1

)
2 + E

(
X

(S)
k

)
2 = 1

2
P
(
X

(S)
k = 0

)
if k ∈ S,

otherwise 0. Therefore n− 2E
(
X

(S)
n

)
2 =

∑

k∈S P
(
X

(S)
k = 0

)
. So,

E
(
ξ0,n(0)ξ′0,n(0)

)
=
∑

k∈S
P
(
X

(S)
k = 0

)
.

The second way. In terms of the spectral measure µ of the random variable
ξ0,n(0) we have E

(
ξ0,n(0)ξ′0,n(0)

)
= µ{M : M ⊂ S}. However, the probability

measure 1
n
µ is equal to the distribution of (θ − Z) ∩ [0,∞); here Z is (as

before) the set of zeros of X, and θ is a random variable independent of
Z and distributed uniformly on {0, 1, . . . , n − 1}. (See [16, Prop. 1.3], see
also [24].) Therefore 1

n
µ{M : M ⊂ S} = P

(
(θ − Z) ∩ [0,∞) ⊂ S

)
=

P
(
Z ∩ [0, θ] ⊂ θ − S

)
= pn,S. So,

E
(
ξ0,n(0)ξ′0,n(0)

)
= npn,S .

7e3 Question. Is there a simpler proof of Theorem 7e1? Namely, can we
avoid the spectral measure and its relation to the set of zeros?

A continuous-time counterpart of Theorem 7e1 is left to the reader.
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8 Miscellany

8a Beyond the one-dimensional time

Scaling limits of models driven by two-dimensional arrays of random signs
are evidently important. The best examples appear in percolation theory.
Also the Brownian web is an example and, after all, it may be treated as an
oriented percolation.

In such cases, independent sub-σ-fields should correspond to disjoint re-
gions of R2, not only of the form (s, t)×R. In fact, a rudimentary use of these
can be found in Sect. 7 (recall ‘cells’ in 7c). In general it is unclear what kind
of regions can be used; probably, regions with piecewise smooth boundaries
always fit, while arbitrary open sets do not fit unless the two-dimensional
noise is classical (recall 6c).

In spite of the great and spectacular progress of the percolation theory
(see for instance [14] and references therein), ‘the noise of percolation’ is still
a dream.

8a1 Question. For the critical site percolation on the triangular lattice,
invent an appropriate coarse σ-field, and check two-dimensional counterparts
of the two conditions of 3b1 for an appropriate class of two-dimensional
domains. Is it possible?

8a2 Remark. Hopefully, the answer is affirmative, that is, the two-dimensional
noise of percolation will be defined. Then it should appear to be a (two-
dimensional) black noise, due to (appropriately adapted) 6d11, 7b1 and (most
important) the critical exponent for a small cell of size ε × ε being pivotal
[14, Sect. 5, Item 2]. The probability is O(ε5/4), therefore o(ε). The sum for
H(f) contains O(1/ε2) terms, o(ε2) each.33

Sensitivity of percolation events, disclosed in [2], is micro-sensitivity (re-
call 5c). Existence of the black noise of percolation would mean a stronger
property: block sensitivity. (See also [2, Problem 5.4].)

It would be the most important example of a black noise!

For the general theory of stability, spectral measures, decomposable pro-
cesses etc., the dimension of the underlying space is of little importance.
Basically, regions must form a Boolean algebra. Such a general approach is
used in [20], [18].

Nonclassical factorizations appear already in zero-dimensional ‘time’, be
it a Cantor set, or even a convergent sequence with limit point. For Cantor

33Different arguments (especially, 7c1) are used in Sect. 7, since an infinite two-
dimensional spectral set could have a finite one-dimensional projection.
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sets, see [20, Sect. 4]; some interesting models of combinatorial nature, with
large symmetry groups (instead of ‘time shifts’ of a noise) are examined there.
For a convergent sequence with limit point, see Chapter 1 here (namely, 1a1),
and [18, Appendix].

8b The ‘wave noise’ approach

A completely different way of constructing noises is sketched here.
Consider the linear wave equation in dimension 1 + 1,

(8b1)

(
∂2

∂t2
− ∂2

∂x2

)

u(x, t) = 0 ,

with initial conditions u(x, 0) = 0, ut(x, 0) = f(x). Its solution is well-known:

u(x, t) =
1

2

∫ x+t

x−t
f(y) dy =

1

2
F (x+ t) − 1

2
F (x− t) ,

where F is defined by F ′(x) = f(x). The formula holds in a generalized
sense for nonsmooth F , which covers the following case: F (x) = B(x) =
Brownian motion (combined out of two independent branches, on [0,+∞)
and on (−∞, 0]); f(x) = B′(x) is the white noise. The random field on
(−∞,∞) × [0,∞),

u(x, t) =
1

2
B(x+ t) − 1

2
B(x− t) , B = Brownian motion,

is continuous, stationary in x, scaling invariant (for any c the random field
u(cx, ct)/

√
c has the same distribution as u(x, t)), satisfies the wave equation

(8b1) and the following independence condition:
(8b2)

u
∣
∣
L

and u
∣
∣
R

are independent,

where L = {(x, t) : x < −t < 0}, R = {(x, t) : x > t > 0}. xtL R
The independence is a manifestation of: (1) the independence inherent to the
white noise (its integrals over disjoint segments are independent), and (2) the
hyperbolicity of the wave equation (propagation speed does not exceed 1).

A solution with such properties is essentially unique. That is, if u(x, t) is a
continuous random field on (−∞,∞)× (0,∞), stationary in x, satisfying the
wave equation (8b1) and the independence condition (8b2), then necessarily
u(x, t) = µ0 +µ1t+σ

(
B(x+ t)−B(x− t)

)
for a Brownian motion B. Scaling

invariance forces µ0 = µ1 = 0.
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It is instructive that a wave equation may be used in a non-traditional
way. Traditionally, a solution is determined by its initial values. In con-
trast, the independence condition (8b2), combined with some more condi-
tions, determines a random solution with no help of initial conditions! Not
an individual sample function is determined, of course, but its distribution
(a probability measure on the space of solutions of the wave equation).

Somebody with no preexisting idea of white noise or Brownian motion
can, in principle, use the above approach. Observing that u(x, 0) = 0 but
ut(x, 0) does not exist (in the classical sense), he may investigate u(x, t)/t
for t→ 0 as a way toward the white noise.

8b3 Question. Can we construct a nonclassical (especially, black) noise,
using a nonlinear hyperbolic equation?

I once tried the nonlinear wave equation

(8b4)

(
∂2

∂t2
− ∂2

∂x2

)

u(x, t) = εt−(3−ε)/2 sin
(
t−(1+ε)/2u(x, t)

)
,

ε being a small positive parameter. The equation is scaling-invariant: if
u(x, t) is a solution, then u(cx, ct)/c(1+ε)/2 is also a solution. We search for
a random field u(t, x), continuous, stationary in x, scaling invariant, satis-
fying (8b4) and the independence condition (8b2). Its behavior for t → 0
should give us a new noise. Does such a random field exist? Is it unique (in
distribution)? If the answers are affirmative, then we get a noise,

Fx,y is the σ-field generated by {u(z, t) : x+t < z < y−t} , x yt
and maybe it is black. However, I did not succeed with it.

A modified ‘waive noise’ approach was used successfully in [20, Sect. 5],
proving, for the first time, the existence of a black noise. The modification is
to keep the auxiliary dimension, but make it discrete rather than continuous:

More specifically, consider a sequence of stationary random processes uk(·)
on R such that

• uk is 2εk-dependent (for some εk → 0); it means that uk
∣
∣
(−∞,−εk]

and

uk
∣
∣
[εk,+∞)

are independent;
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• uk−1(x) is uniquely determined by uk
∣
∣
[x−(εk−1−εk), x+(εk−1−εk)]

.

Such a sequence (uk) determines a noise; namely, Fx,y is generated by all
uk(z) such that x+ εk ≤ z ≤ y− εk. White noise can be obtained by a linear
system of Gaussian processes:

uk−1(x) =

∫ x+(εk−1−εk)

x−(εk−1−εk)

Vk(y − x)uk(y) dy ,

where kernels Vk, concentrated on [−(εk−1 − εk), (εk−1 − εk)], are chosen
appropriately. A nonlinear system (of quite non-Gaussian processes) of the
form

uk−1(x) = ϕ

(
const

εk−1 − εk

∫ x+(εk−1−εk)

x−(εk−1−εk)

uk(y) dy

)

was used for constructing a black noise. But, it is not really a construction of
a specific noise. Existence of (uk) is proven, but uniqueness (in distribution)
is not. True, every such (uk) determines a black noise. However, none of
them is singled out.

8c Groups, semigroups, kernels

A Brownian motion X in a topological group G is defined as a continuous
G-valued random process with stationary independent increments, starting
from the unit of G. For example, if G is the additive group of reals, then the
general form of a Brownian motion in G is X(t) = σB(t) + vt, where B(·) is
the standard Brownian motion, σ ∈ [0,∞) and v ∈ R are parameters. If G is
a Lie group, then Brownian motions X in G correspond to Brownian motions
Y in the tangent space of G (at the unit) via the stochastic differential
equation (dX) ·X−1 = dY (in the sense of Stratonovich).

A noise corresponds to every Brownian motion in a topological group,
just as the white noise corresponds to B(·). If the noise is classical, it is the
white noise of some dimension (0, 1, 2, . . . or ∞). If this is the case for all
Brownian motions in G, we call G a white group. Thus, R is white, and every
Lie group is white. Every commutative topological group is white (see [15,
Th. 1.8]). The group of all unitary operators in l2 (equipped with the strong
operator topology) is white (see [15, Th. 1.6]). Many other groups are white
since they are embeddable into a group known to be white; for example, the
group of diffeomorphisms is white (an old result of Baxendale).

8c1 Question. Is the group of all homeomorphisms of (say) [0, 1] white?
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In a topological group, Brownian motions X and continuous abstract
stochastic flows ξ are basically the same:

X(t) = ξ0,t ; ξs,t = X−1(s)X(t) .

In a semigroup, however, a noise corresponds to a flow, not to a Brownian
motion (see also 4c4).

A nonclassical noise (of stickiness) was constructed in Sect. 4 out of an ab-
stract flow in a 3-dimensional semigroup G3; however, G3 is not a topological
semigroup, since composition is discontinuous.

8c2 Question. Can a nonclassical noise arise from an abstract stochastic
flow in a finite-dimensional topological semigroup?

The continuous (but not topological) semigroup G3 emerged in Sect. 4
from the discrete semigroup Gdiscrete

3 via the scaling limit. Or rather, a flow in
G3 emerged from a flow in Gdiscrete

3 via the scaling limit. A similar approach
to the discrete model of 1d1 gives something unexpected. The continuous
semigroup that emerges is G2, the two-dimensional topological semigroup
described in (4d1). However, its representation is not single-valued:

b

b

b

b

b

b

b

b

b

b

b

b

b b b b b b b b b b b b

b

b

b

b

b

b

b

b

7→
ha;b

Namely, ha,b(x) for x ∈ (−b, b) is ±(a + b), that is, either a + b or −(a + b)
with probabilities 0.5, 0.5. Such h is not a function, of course. Rather, it
is a kernel, that is, a measurable map from R into the space of probability
measures on R. Composition of kernels is well-defined, thus, a representation
(of a semigroup) by kernels (rather than functions) is also well-defined.

The stochastic flow in G2, resulting from 1d1 via the scaling limit, is iden-
tical to the flow (ξ

(2)
s,t ) of 4g. Its noise is the usual (one-dimensional) white

noise. The representation of G2 by kernels turns the abstract flow into a
stochastic flow of kernels as defined by Le Jan and Raimond [8, Def. 1.1.3].
However, a kernel (unlike a function) introduces an additional level of ran-
domness. When the kernel says that ha,b(x) = ±(a + b), someone has to
choose at random one of the two possibilities. Who makes the decision?

One may treat a point as a macroscopically small collection of many
microscopic atoms, and ω ∈ Ω as a macroscopic flow (on the whole space-
time); given ω, atoms are (conditionally) independent, “which means that
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two points34 thrown initially at the same place separate” [8, p. 4]. No need
to deal explicitly with a continuum of independent choices. “Turbulent evo-
lutions [are represented] by flows of probability kernels obtained by dividing
infinitely the initial point” [8, p. 4].

Alternatively, one can postulate that if two atoms meet at a (macro-
scopic!) point, they must coalesce. In one-dimensional space (and sometimes
in higher dimensions) such a postulate itself prevents a continuum of indepen-
dent choices and leads to a flow of maps (the Brownian web is an example).
A countable dense set of atoms makes decisions; others must obey. A flow
of maps is a (degenerate) special case of a flow of kernels. However, coales-
cence can produce a flow of maps out of a non-degenerate flow of kernels, as
explained in [8, Sect. 2.3].

Conversely, a coalescent flow can produce a non-degenerate flow of kernels
via “filtering by a sub-noise” [8, Sect. 2.3]. In the simplest case (filtering
by a trivial sub-noise), we just retain the one-particle motion of the given
coalescent flow, forget the rest of the flow, and let atoms perform the motion
independently.

A large class of flows on Rn (and other homogeneous spaces) is investi-
gated in [8]. Some of these flows are shown to be coalescent and to generate
nonclassical noises (neither white nor black). Flows are homogeneous in
space (and isotropic). Thus, we have a hierarchy of nonclassical models.
First, toy models (recall 1a1, 1a3) having a singular time point. Second,
‘simple’ models (1d, 4i) homogeneous in time but having a singular spatial
point. Third, ‘serious’ models (the Brownian web, and Le Jan-Raimond’s
isotropic Brownian flows), homogeneous in space and time.

Noises generated by one-dimensional flows (also homogeneous in space
and time) are investigated by Warren and Watanabe [24]. Spectral sets of
Hausdorff dimension other than 0 and 1/2 are found! Roughly, it answers
Question 6d5; however, these spectral sets are not perfect — they have iso-
lated points.

8d Abstract nonsense of Le Jan-Raimond’s theory

A new semigroup, introduced recently by Le Jan and Raimond [8], is quite
interesting for the theory of stochastic flows and noises. Its definition involves
some technicalities considered here.

A kernel is defined in [8] as a measurable mapping from a compact metric
space M to the (also compact) space P(M) of all probability measures on
M. The space E of all kernels is equipped with the σ-field E generated

34Or rather, atoms.
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by evaluations, E ∋ K 7→ K(x) ∈ P(M), at points x ∈ M. Note that
every E-measurable function uses the values of K(x) only for a countable
set of points x, which is scanty, since K(x) is just measurable (rather than
continuous) in x. Thus, (E, E) is not a standard Borel space,35 and the
composition of kernels is not a measurable operation, which obscures the
technique and makes proofs more difficult (as noted on page 11 of [8]).

Fortunately, the theory can be reformulated equivalently in terms of Borel
operations on standard Borel spaces, as outlined below. Additional simplifi-
cation comes from disentangling space and time (entangled in Theorem 1.1.4
of [8]) and explicit use of the de Finetti theorem.

The hassle about measurability is another manifestation of the well-
known clash between finite-dimensional distributions and modifications of
a random process. Say, for the usual Poisson process on [0,∞), its finite-
dimensional distributions do not tell us whether sample paths are continuous
from the left (right), or not. A process X = X(t, ω) has a lot of modifica-
tions Y (t, ω); these satisfy ∀t P

(
{ω : X(t, ω) = Y (t, ω)}

)
= 1, which does

not imply P
(
{ω : ∀t X(t, ω) = Y (t, ω)}

)
= 1. If a process admits continu-

ous sample paths (like the Brownian motion), the continuous modification is
preferable. If a process is just continuous in probability (like the Poisson pro-
cess, but also, say, some stationary Gaussian processes, unbounded on every
interval), we are unable to prefer one modification to others, in general.

In order to describe the class of all modifications of a random process,
we have two well-known tools: first, a compatible family of finite-dimensional
distributions, and second, a probability measure on the (non-standard!) Borel
space of all (or only measurable; but definitely, not only continuous) sample
paths, whose σ-field is generated by evaluations. Assuming the process to be
continuous in probability, we find the first tool much better; joint distribu-
tions depend on points continuously, and everything is standard.

The same for kernels. These may be thought of as sample paths of a
random process whose ‘time’ runs over M, and ‘values’ belong to P(M).
However, the process will appear (implicitly) only in Theorem 8d3; its finite-
dimensional distributions are νn(x1, . . . , xn) there.

8d1 Definition. A multikernel from a compact metric space M1 to a com-
pact metric space M2 is a sequence (Pn)

∞
n=1 of continuous maps Pn : Mn

1 →
35For a definition, see [7, Sect. 12.B] or [1, Def. 7.1].
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P(Mn
2 ), compatible in the sense that36

∫

Mn
2

g dPn(x1, . . . , xn) =

∫

Mm
2

f dPm(xi1 , . . . , xim)

for all n and x1, . . . , xn ∈ M1, whenever i1, . . . im are pairwise distinct ele-
ments of {1, . . . , n}, f : Mm

2 → R is a continuous function, and g : Mn
2 → R

is defined by g(y1, . . . , yn) = f(yi1, . . . , yim) for y1, . . . , yn ∈ M2.

We do not assume i1 < · · · < im. For example:

g(y1, y2) = f(y1) =⇒
∫

g dP2(x1, x2) =

∫

f dP1(x1) ;

g(y1, y2) = f(y2) =⇒
∫

g dP2(x1, x2) =

∫

f dP1(x2) ;

g(y1, y2) = f(y2, y1) =⇒
∫

g dP2(x1, x2) =

∫

f dP2(x2, x1) .

Note also that x1, x2, . . . need not be distinct.

8d2 Definition. A multikernel (Pn)
∞
n=1 is single-valued, if

∫

M2
2

g dP2(x, x) =

∫

M2

f dP1(x) for all x ∈ M1 ,

whenever g : M2
2 → R is a continuous function, and f : M2 → R is defined

by f(y) = g(y, y) for y ∈ M2.

An equivalent definition: (Pn)
∞
n=1 is single-valued, if

∫

M2
2

ρ dP2(x, x) = 0 for all x ∈ M1 ,

where ρ : M2
2 → R is the metric, ρ(y1, y2) = dist(y1, y2).

Another equivalent definition:

sup
ρ(x1,x2)≤ε

∫

M2
2

ρ dP2(x1, x2) → 0 for ε → 0 .

(Compare it with continuity in probability.)

36Here
∫

g dPn(x1, . . . , xn) is not an integral in x1, . . . , xn. Rather, x1, . . . , xn are pa-
rameters. The integral is taken in other variables (say, y1, . . . , yn), suppressed in the
notation and running over M2.
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My ‘multikernel’ is a time-free counterpart of a ‘compatible family of
Feller semigroups’ of [8]. My ‘single-valued’ corresponds to their (1.7). What
could correspond to their ‘stochastic convolution semigroup’? It is a single-
valued multikernel from M1 to P(M2). Yes, I mean it: maps from Mn

1

to P
(
(P(M2))

n
)
. It may look frightening, but think what happens if M1

contains only one point, and M2 — only two points, say, 0 and 1. Then
a multikernel from M1 to M2 is a law of an exchangeable sequence of
events. A single-valued multikernel from M1 to M2 would mean that all
events coincide, but we need rather a single-valued multikernel from M1 to
P(M2) = [0, 1]; nothing but a probability measure on [0, 1]. The De Finetti
theorem (see [1], for instance) tells us that every exchangeable sequence of
events arises from a probability measure on [0, 1]. Here is a more general
result.

8d3 Theorem. For every multikernel (Pn)
∞
n=1 from M1 to M2 there exists

a single-valued multikernel (νn)
∞
n=1 from M1 to P(M2) such that

∫

Mn
2

f dPn(x1, . . . , xn) =

∫

(P(M2))n

F dνn(x1, . . . , xn)

for all n and x1, . . . , xn ∈ M1, whenever f : Mn
2 → R is a continuous

function, and F : (P(M2))
n → R is defined by F (µ1, . . . , µn) =

∫
f d(µ1 ⊗

· · · ⊗ µn) for µ1, . . . , µn ∈ P(M2).

Proof. We choose a discrete probability measure µ0 on M1 whose support is
the whole M1. That is, we choose a countable (or finite) dense set A ⊂ M1,
and give a positive probability to each point of A. For every n we consider
the following measure Qn on (M1 ×M2)

n:

∫

f1 ⊗ g1 ⊗ · · · ⊗ fn ⊗ gn dQn

=

∫ (∫

g1⊗· · ·⊗gn dPn(x1, . . . , xn)
)

f1(x1) . . . fn(xn) dµ0(x1) . . .dµ0(xn) .

In other words, ifQn is the distribution of (X1, Y1; . . . ;Xn, Yn), thenX1, . . . , Xn

are i.i.d. distributed µ0 each, and the conditional distribution of (Y1, . . . , Yn)
given (X1, . . . , Xn) is Pn(X1, . . . , Xn). The measure Qn is invariant under the
group of n! permutations of n pairs, due to compatibility of the multikernel
(Pn)

∞
n=1. For the same reason, Qn is the marginal of Qn+1. Thus, (Qn)

∞
n=1

is the distribution of an exchangeable infinite sequence of M1 ×M2-valued
random variables (Xn, Yn).

The De Finetti theorem [1, Th. 3.1 and Prop. 7.4] states that the joint
distribution of all (Xn, Yn) is a mixture of products, in the sense that there
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exists a probability measure ν on P(M1 × M2) such that for every n, the
joint distribution of n pairs (X1, Y1), . . . , (Xn, Yn) is the mixture of products
Q⊗n = Q ⊗ · · · ⊗ Q, where Q ∈ P(M1 × M2) is distributed ν. The first
marginal of Q is equal to µ0 (for ν-almost every Q), since Xn are i.i.d. (µ0).

Let x1, . . . , xn ∈ A. The event X1 = x1, . . . , Xn = xn is of positive
probability. Given the event, the conditional distribution Pn(x1, . . . , xn) of
Y1, . . . , Yn is the mixture of products Qx1 ⊗ · · · ⊗ Qxn

, where Qx is the con-
ditional measure on M2, that corresponds to Q, and Q ∈ P(M1 × M2)
is distributed ν; indeed, ν-almost all Q ascribe the same probability to the
event X1 = x1, . . . , Xn = xn.

We define νn(x1, . . . , xn) for x1, . . . , xn ∈ A as the joint distribution of
P(M2)-valued random variables Qx1 , . . . , Qxn

, where Q is distributed ν; then

(8d4)

∫

(P(M2))n

F dνn(x1, . . . , xn)

=

∫

P(M1×M2)

(∫

Mn
2

f d(Qx1 ⊗ · · · ⊗Qxn
)

)

dν(Q)

=

∫

Mn
2

f dPn(x1, . . . , xn)

whenever f : Mn
2 → R is a continuous function, and F : (P(M2))

n → R is
defined by F (µ1, . . . , µn) =

∫
f d(µ1 ⊗ · · · ⊗ µn) for µ1, . . . , µn ∈ P(M2).

Till now, νn(x1, . . . , xn) is defined for x1, . . . , xn ∈ A (rather than M1).
We want to check that

∫
ρ̃2 dν2(x1, x2) → 0 for ρ1(x1, x2) → 0; here ρ1 is

a metric on M1 conforming to its topology, and ρ̃2 is a metric on P(M2)
conforming to its weak topology. Due to compactness of P(M2), it is enough
to check that

∫
h2 dν2(x1, x2) → 0 for ρ1(x1, x2) → 0 whenever h : P(M2) ×

P(M2) → R is of the form h(Q1, Q2) =
∫
f dQ1 −

∫
f dQ2 for a continuous

function f : M2 → R. Consider f̃ : P(M2) → R, f̃(Q) =
∫
f dQ for

Q ∈ P(M2). We have

∫

(P(M2))2
f̃ ⊗ f̃ dν2(x1, x2) =

∫

M2
2

f ⊗ f dP2(x1, x2) ,

which is a special case of (8d4). It may also be written as

E f̃(Qx1)f̃(Qx2) = E
(
f(Y1)f(Y2)

∣
∣X1 = x1, X2 = x2

)
;

here Qx1 and Qx2 are treated as random variables on the probability space
(
P(M1 ×M2), ν

)
(thus, the two expectations are taken on different proba-

bility spaces). The right-hand side is a continuous function of x1, x2; denote
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it ϕ(x1, x2). We have
∫

h2 dν2(x1, x2) = E
(
f̃(Qx1) − f̃(Qx2)

)
2

= ϕ(x1, x1) − ϕ(x1, x2) − ϕ(x2, x1) + ϕ(x2, x2) ,

which tends to 0 for ρ1(x1, x2) → 0. So,
∫

(P(M2))2
ρ̃2 dν2(x1, x2) → 0 for ρ1(x1, x2) → 0 .

It follows easily that each νn is uniformly continuous on An and, extending
it by continuity to Mn

1 , we get a single-valued multikernel.

Definition 8d1 may be reformulated as follows.

8d5 Definition. A multikernel from a compact metric space M1 to a com-
pact metric space M2 is a continuous map P∞ : M∞

1 → P(M∞
2 ), satisfying

conditions (1) and (2) below. Here M∞ = M×M× . . . is the product of
an infinite sequence of copies of M (still a metrizable compact space).

(1) P∞ intertwines the natural actions of the permutation group of the
index set {1, 2, 3, . . .} on M∞

1 and P(M∞
2 ) (via M∞

2 ).
(2) For every n, the projection of the measure P∞(m) to the product Mn

1

of the first n factors depends only on the first n coordinates m1, . . . , mn of
the point (m1, m2, . . . ) = m ∈ M∞

1 .

Proof of equivalence between definitions 8d1 and 8d5 is left to the reader.
It is well-known that a continuous map M1 → P(M2) is basically the

same as a linear operator C(M2) → C(M1), positive and preserving the
unit. Thus, a multikernel from M1 to M2 may be thought of as a positive
unit-preserving linear operator C(M∞

2 ) → C(M∞
1 ) satisfying two conditions

parallel to 8d5(1,2).
Given three compact metric spaces M1,M2,M3, a multikernel from M1

to M2 and a multikernel from M2 to M3, we may define their composition,
a multikernel from M1 to M3. In terms of operators it is just the product
of two operators, C(M∞

3 ) → C(M∞
2 ) → C(M∞

1 ).
The set of all multikernels from M1 to M2, treated as operators C(M∞

2 ) →
C(M∞

1 ), is a closed (and bounded, but not compact) subset of the operator
space equipped with the strong operator topology. Thus, the set of mul-
tikernels becomes a Polish space (that is, a topological space underlying a
complete separable metric space).

Composition of multikernels, C(M∞
3 ) → C(M∞

2 ) → C(M∞
1 ), is a (jointly)

continuous operation. (Indeed, the product of operators is continuous in the
strong operator topology, as far as all operators are of norm ≤ 1.)

So, multikernels from M to M are a Polish semigroup (that is, a topo-
logical semigroup whose topological space is Polish).
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19:1, 91–100.

106



Index

abstract stochastic flow (discrete), 46

black noise, 79
block sensitive, 66
block stable, 66
Brownian web, 84

chaos, n-th, 67
classical factorization, 62
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S-valued, 25
sample space, 18
σ-field, 18
time interval, 29

coarsely measurable
function, 25
set, 18

continuous factorization, 36
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sticky random walk, 47
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C[i], the set of finite sets, 33
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⊎, disjoint union, 18
⊕, orthogonal sum of Hilbert spaces, 40
⊗

for σ-fields, 13

for coarse σ-fields, 26

for Hilbert spaces, 27

|M |, number of elements, 57
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