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Abstract

This article presents several results establishing connections between Markov
chains and dynamical systems, from the point of view of open systems in physics. We
show how all Markov chains can be understood as the information on one component
that we get from a dynamical system on a product system, when loosing information
on the other component. We show that passing from the deterministic dynamics
to the random one is characterized by the loss of algebra morphism property; it is
also characterized by the loss of reversibility. In the continuous time framework, we
show that the solutions of stochastic differential equations are actually deterministic
dynamical systems on a particular product space. When loosing the information on
one component, we recover the usual associated Markov semigroup.

1 Introduction

This article aims at exploring the theory of Markov chains and Markov processes from a
particular point of view. This point of view is very physical and commonly used in the
theory of open systems. Open systems are physical systems, in classical or in quantum me-
chanics, which are not closed, that is, which are interacting with another system. In general
the system we are interested in is “small” (for example, it has only a finite number of de-
grees of freedom), whereas the outside system is very large (often called the“environment”,
it may be a heat bath typically).

This is now a very active branch of research to study such systems coupled to an
environment. In classical mechanics they are used to study conduction problems (Fourier’s
law for example, see [2], [5]) but more generally out of equilibrium dynamics (see [6], [3]).
In quantum mechanics, open systems appear fundamentally for the study of decoherence
phenomena (see [7]), but also it is the basis of quantum communication (see [8]). Problems
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of dissipation, heat conduction, out of equilibrium dynamics in quantum mechanics (see
[9], [10]) lead to very important problems which are mostly non-understood at the time we
write this article.

The aim of this article is to make clear several ideas and connections between de-
terministic dynamics of closed systems, effective dynamics of open systems and Markov
processes.

Surprisingly enough these ideas are made rather clear in the literature when dealing
with the quantum systems, but not that much with classical ones! Indeed, it is common in
quantum mechanics to consider a bipartite system on which one component is not accessible
(it might be an environment which is too complicated to be described, or it might be
Bob who is sharing the photons of a correlated pair with Alice, in Quantum Information
Theory, ...). It is well-known that, tracing out over one component of the system, the
unitary Schrödinger dynamics becomes described by completely positive maps, in discrete
time, or completely positive semigroups, in continuous time.

In [1], for example, the authors show how every discrete time semigroup of completely
positive maps can be described by a realistic physical system, called “Repeated Quantum
Interactions”. They show that in the continuous time limit these Hamiltonian dynamics
spontaneously converge to a dynamics described by a quantum Langevin equation.

In this article we establish many similar results in the context of classical dynamical
systems and Markov chains. The article is structured as follows. In the Section 2, we show
that Markov chains appear from any dynamical system on a product space, when averaging
out one of the two components. This way, Markov chains are interpreted as what remains
on one system when it interacts with some environment but we do not have access to that
environment. The randomness appears directly for the determinism, by the only fact that
we have lost some information. We show that any Markov chain can be obtained this way.
We also show two results which characterize what properties are lost when going from a
deterministic dynamical system to a Markov chain: typically the loss of algebra morphism
property and the loss of reversibility.

In Section 3 we explore the context of classical Markov process in the continuous time
setup. We actually concentrate on stochastic differential equations. Despite of their “ran-
dom character”, we show that stochastic differential equations are actually deterministic
dynamical systems. They correspond to a natural dynamical system which is used to di-
late some Markov processes into a deterministic dynamics. The role of the environment
is played by the canonical probability space (here the Wiener space), the action of the
environment is the noise term in the stochastic differential equation.
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2 Markov Chains and Dynamical Systems

2.1 Basic Definitions

Let us recall some basic definitions concerning dynamical systems and Markov chains.

Let (E, E) be a measurable space. Let T̃ be a measurable application from E to E.

We then say that T̃ is a dynamical system on E. Such a mapping T̃ induces a natural
mapping T on L∞(E, E) defined by

Tf(x) = f(T̃ x) .

Note that this mapping clearly satisfies the following properties (left to the reader).

Proposition 2.1

i) T is a ∗-homomorphism of the ∗-algebra L∞(E, E),

ii) T (1lE) = 1lE,

iii) ‖T‖ = 1.

The dynamical system is actually the associated discrete-time semigroup (T̃ n)n∈N, when
acting on points, or (T n)n∈N, when acting on functions.

When the mapping T̃ is invertible, then so is the associated operator T . The semigroups
(T̃ n)n∈N and (T n)n∈N can then be easily extended into one-parameter groups (T̃ n)n∈Z and
(T n)n∈Z, respectively.

Let us now recall basic definitions concerning Markov chains. Let (E, E) be a measur-
able space. A mapping ν from E × E to [0, 1] is a Markov kernel if

i) x 7→ ν(x,A) is a measurable function, for all A ∈ E ,

ii) A 7→ ν(x,A) is a probability measure, for all x ∈ E.

When E is a finite set, then ν is determined by the quantities

P (i, j) = ν(i, {j})

which form a stochastic matrix, i.e. a square matrix with positive entries and sum of each
line being equal to 1.

In any case, such a Markov kernel ν acts on L∞(E, E) as follows

ν ◦ f(x) =

∫
E

f(y) ν(x, dy) .

A linear operator T on L∞(E, E) which is of the form

Tf(x) =

∫
E

f(y) ν(x, dy) ,
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for some Markov kernel ν, is called a Markov operator.

In a dual way, a Markov kernel ν acts on probability measures on (E, E). Indeed, if P
is a probability measure on (E, E) then so is the measure P ◦ ν defined by

P ◦ ν(A) =

∫
E

ν(x,A) P(dx) .

Finally, Markov kernels can be composed. If ν1 and ν2 are two Markov kernels on (E, E)
then so is

ν1 ◦ ν2(x,A) =

∫
E

ν2(y, A) ν1(x, dy) .

This kernel represents the Markov kernel resulting from making one first step following ν1

and then another step following ν2.

A Markov chain is a discrete-time stochastic process (Xn)n∈N defined on a probability
space (Ω,F ,P) such that

E [f(Xn+1) |X0, X1, . . . , Xn] = E [f(Xn+1) |Xn]

for all bounded function f , all n ∈ N. In particular, if Fn denotes the σ-algebra generated
by X0, X1, . . . , Xn, then the above implies

E [f(Xn+1) | Fn] = Lnf(Xn)

for some function Lnf . The Markov chain is homogeneous if furthermore Ln does not
depend on n. We shall be interested only in this case and we denote by L this unique value
of Ln:

E [f(Xn+1) | Fn] = Lf(Xn) = Lnf(X0) . (1)

If νn(x, dy) denotes the conditional law of Xn+1 knowing Xn = x, which coincides with
the conditional law of X1 knowing X0 = x, then ν is a Markov kernel and one can easily
see that

Lf(x) =

∫
E

f(y) ν(x, dy) .

Hence L is the Markov operator associated to ν.
With our probabilistic interpretation we get easily that ν ◦ f(x) is the expectation of

f(X1) when X0 = x almost surely. The measure P ◦ ν is the distribution of X1 if the
distribution of X0 is P.

We end up this section with the following last definition. A Markov kernel ν is said to
deterministic if for all x ∈ E the measure ν(x, · ) is a Dirac mass. This is to say that there

exists a measurable mapping T̃ : E → E such that

ν(x, dy) = δeT (x)(dy) .

In other words, the Markov chain associated to ν is not random at all, it maps with
probability 1, each point x to T̃ (x): it is a dynamical system.
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2.2 Reduction of Dynamical Systems

Now consider two measurable spaces (E, E) and (F,F), together with a dynamical system

T̃ on E × F . As above, consider the lifted application T acting on L∞(E × F ).
For all bounded function f on E, we consider the bounded function f ⊗ 1l on E × F

defined by
(f ⊗ 1l)(x, y) = f(x) ,

for all x ∈ E, y ∈ F .
Assume that (F,F) is equipped with a probability measure µ. We shall be interested

into the mapping L of L∞(E) defined by

Lf(x) =

∫
F

T (f ⊗ 1l)(x, y) dµ(y) . (2)

In other words, we have a deterministic dynamical system on a product space. We place
ourselves from one component point of view only (we have access to E only). Starting
from a point x ∈ E and a function f on E we want to see how they evolve according to T ,
but seen from the E point of view. The function f on E is naturally lifted into a function
f ⊗ 1l on E × F , that is, it still acts on E only, but it is now part of a “larger world”.
We make f evolve according to the deterministic dynamical system T . Finally, in order to
come back to E we project the result onto E, by taking the average on F according to a
fixed measure µ on F . This is to say that, from the set E, what we see of the action of
the “environment” F is just an average with respect to some measure µ.

Theorem 2.2 The mapping L is a Markov operator on E.

Proof: As T̃ is a mapping from E × F to E × F , there exist two measurable mappings:

X : E × F −→ E and Y : E × F −→ F ,

such that
T̃ (x, y) = (X(x, y), Y (x, y))

for all (x, y) ∈ E × F .
Let us compute the quantity Lf(x), with these notations. We have

Lf(x) =

∫
F

T (f ⊗ 1l)(x, y) dµ(y)

=

∫
F

(f ⊗ 1l)(X(x, y), Y (x, y)) dµ(y)

=

∫
F

f(X(x, y)) dµ(y) .

Denote by ν(x, dz) the (probability) measure on E, image of µ by the application X(x, · )
(which goes from F to E, for each fixed x). By the Transfer Theorem we get

Lf(x) =

∫
E

f(z) ν(x, dz) .
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Hence L acts on L∞(E) as the Markov transition kernel ν(x, dz). �

Note the following important fact: the mapping Y played no role at all in the proof
above.

Note that the Markov kernel ν is given by

ν(x,A) = µ ({y ∈ F ; X(x, y) ∈ A}) .

In particular, when E is finite (or even countable), the transition kernel ν is associated to
a Markovian matrix P whose coefficients are given by

P (i, j) = ν(i, {j}) = µ({k;X(i, k) = j}) .

What we have obtained here is important and deserves more explanations. Mathemat-
ically, we have obtained a commuting diagram:

T
L∞(E × F ) −→ L∞(E × F )

⊗1l
x yµ

L∞(E) −→ L∞(E) .
L

In more physical words, what we have obtained here can be interpreted in two different
ways. If we think of the dynamical system T̃ first, we have emphasized on the fact that
loosing the information of a deterministic dynamics on one the components creates a ran-
dom behavior on the other component. The randomness here appears only as a lack of
knowledge on a deterministic behavior on a larger world. A part of the universe interact-
ing with our system E is inaccessible to us (or at least we see a very small part of it: an
average), then it results a random behavior on E.

In the converse direction, that is, seen from the Markov kernel point of view, what we
have obtained is a dilation of a Markov transition kernel into a dynamical system. Consider
the kernel L on the state space E. It does not represent the dynamics of a closed system,
it is not a dynamical system. In order to see L as coming from a true dynamical system,
we have enlarged the state space E with an additional state space F , which represents the
environment. The dynamical system T̃ represents the true dynamics of the closed system
“E+environment”. Equation (2) exactly says that the effective pseudo-dynamics L that
we had observed on E is simply due to the fact that we are looking only at a subpart of a
true dynamical system and an average of the F part of the dynamics.

These observations would be even more interesting if one could prove the converse:
every Markov transition kernel can be obtained this way. This is what we prove now, with
some small restriction on E.
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We now assume that E is a Lusin space, that is, it is homeomorphic (as a measurable
space) to a compact subset of a Polish space, equipped with its Borel σ-field. This condition
is satisfied for example by all the spaces Rn.

Let ν(x, dz) be a Markov kernel on (E, E). Let F be the set of applications from E to
E. For every finite subset σ = {x1, . . . , xn} ⊂ E, every A1, . . . , An ∈ E consider the set

F (x1, . . . , xn;A1, . . . , An) = {y ∈ F ; y(x1) ∈ A1, . . . , y(xn) ∈ An} .

By Kolmogorov Consistency Theorem (it is here that the hypothesis on E is needed!) there
exists a unique probability measure µ on F such that

µ (F (x1, . . . , xn;A1, . . . , An)) =
n∏
i=1

ν(xi, Ai) .

Indeed, it is easy to check that the above formula defines a consistent family of probability
measures on the finitely-based cylinders of F , then apply Kolmogorov’s Theorem.

Theorem 2.3 With the same notations as above, define the dynamical system

T̃ : E × F −→ E × F
(x, y) 7−→ (y(x), y) .

Then the Markovian kernel associated to T̃ restricted to E is equal to ν.

Proof: With the same notations as in Theorem 2.2, we have here X(x, y) = y(x) and
hence

µ({y ∈ F ;X(x, y) ∈ A}) = µ({y ∈ F ; y(x) ∈ A}) = ν(x,A) .

�

Note that in this dilation of L, the dynamical system T has no reason to be invertible
in general. It is worth noticing that one construct a dilation where T is invertible.

Proposition 2.4 Every Markov kernel ν admits a dilation T̃ which is an invertible dy-
namical system.

Proof: Consider the construction and notations of Theorem 2.3. Consider the space
F ′ = E × F . Let x0 be a fixed element of E, define the mapping T̃ ′ on E × F ′ by

T̃ ′(x, (x0, y)) = (y(x), (x, y)),

T̃ ′(x, (y(x), y)) = (x0, (x, y)),

T̃ ′(x, (z, y)) = (z, (x, y)), if z 6= x0, z 6= y(x) .

It is easy to check that T̃ ′ is a bijection of E ×F ′. Now extend the measure µ on F to the
measure δx0 ⊗ µ on F ′. Now, the dynamical system T̃ ′ is invertible and dilates the same

Markov kernel as T̃ . �
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2.3 Iterating the Dynamical System

We have shown that every dynamical system on a product set gives rise to a Markov kernel
when restricted to one of the sets. We have seen that every Markov kernel can be obtained
this way. But one has to notice that our construction allows the dynamical system T̃ to
dilate the Markov kernel L as a single mapping only. That is, iterations of the dynamical
system T n do not in general dilate the semigroup Ln associated to the Markov process.
Let us check this with a simple counter-example.

Put E = F = {1, 2}. On F define the probability measure P (1) = 1/4 and P (2) = 3/4.

Define the dynamical system T̃ on E × F which is the “anticlockwise rotation”:

T̃ (1, 1) = (2, 1), T̃ (2, 1) = (2, 2), T̃ (2, 2) = (1, 2), T̃ (1, 2) = (1, 1) .

With the same notations as in previous section, we have

X(1, 1) = 2, X(2, 1) = 2, X(2, 2) = 1, X(1, 2) = 1 .

Hence, we get

µ(X(1, · ) = 1) =
3

4
, µ(X(1, · ) = 2) =

1

4
,

µ(X(2, · ) = 1) =
3

4
, µ(X(2, · ) = 2) =

1

4
.

Hence the Markovian matrix associated to the restriction of T̃ to E is

L =

(
3
4

1
4

3
4

1
4

)
.

In particular
L2 = L .

Let us compute T̃ 2. We get

T̃ 2(1, 1) = (2, 2), T̃ 2(2, 1) = (1, 2), T̃ 2(2, 2) = (1, 1), T̃ 2(1, 2) = (2, 1) .

Hence the associated X-mapping, which we shall denote by X2, is given by

X2(1, 1) = 2, X2(2, 1) = 1, X2(2, 2) = 1, X2(1, 2) = 2 .

This gives the Markovian matrix

L2 =

(
0 1

1 0

)
.

Which is clearly not equal to L2.
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It would be very interesting if one could find a dilation of the Markov kernel L by a
dynamical system T̃ such that any power T n would also dilate Ln. We would have realized
the whole Markov chain as a restriction of iterations of a single dynamical system on a
larger space.

This can be performed in the following way (note that this is not the only way, nor

the more economical). Consider the set F̂ = FN∗
, equipped with the usual cylinder σ-field

F⊗N∗
and the product measure µ̂ = µ⊗N∗

. The elements of F̂ are sequences (yn)n∈N∗ in F .
Let T be a dynamical system on E ⊗ F which dilates the Markovian kernel L. Put

S̃ : E × F̂ −→ E × F̂
(x, y) 7−→ (X(x, y1),Θ(y))

where Θ is the usual shift on F̂ : Θ(y) = (yn+1)n∈N∗ .

Then S̃ can be lifted into a morphism S of L∞(E × F̂ ), as previously. Furthermore,

any function f in L∞(E) can be lifted into f ⊗1l on L∞(E× F̂ ), with (f ⊗1l)(x, y) = f(x).

Theorem 2.5 For all n ∈ N∗, all x ∈ E, all f ∈ L∞(E) we have∫
bF S

n(f ⊗ 1l)(x, y) dµ̂(y) = (Lnf)(x) .

Proof: Recall that we noticed in the proof of Theorem 2.2, that the mapping Y
associated to T̃ played no role in the proof of this theorem, only the mapping X was of
importance. In particular this implies that Theorem 2.5 is true for n = 1, for the dynamical
systems T̃ and S̃ share the same X-mapping.

By induction, let us assume that the relation∫
bF S

k(f ⊗ 1l)(x, y) dµ̂(y) = (Lkf)(x)

holds true for all f ∈ L∞(E), all x ∈ E, all k ≤ n. Put F̂[2 to be the set of sequences

(yn)n≥2 in F̂ and µ̂[2 the restriction of µ̂ to F̂[2. We have∫
bFS

n+1(f ⊗ 1l)(x, y) dµ̂(y) =

=

∫
bF S

n(f ⊗ 1l) (X(x, y1),Θ(y)) dµ̂(y)

=

∫
F

∫
bF[2

Sn(f ⊗ 1l) (X(x, y1), y) dµ̂[2(y) dµ(y1) .
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Put x̃ = X(x, y1), the above is equal to∫
F

∫
bF[2

Sn(f ⊗ 1l) (x̃, y) dµ̂[2(y) dµ(y1)

=

∫
F

Ln(f)(x̃) dµ(y1) (by induction hypothesis)

=

∫
F

Ln(f)(X(x, y1)) dµ(y1)

= Ln+1(f)(x) .

�
With this theorem and with Theorem 2.3, we see that every Markov chain on E can

realized as the restriction on a E of the iterations of a deterministic dynamical system T̃
acting on a larger set.

The physical interpretation of the construction above is very interesting. It represents
a scheme of “repeated interactions”. That is, we know that the result of the deterministic
dynamics associated to T̃ on E × F gives rises to the Markov operator L on E. The idea
of the construction above is that the environment is now made of a chain of copies of F ,
each of which is going to interact, one after the other, with E. After, the first interaction
between E and the first copy of F has happened, following the dynamical system T̃ , the
first copy of F stops interacting with E and is replaced by the second copy of F . This copy
now interacts with E following T̃ . And so on, we repeat these interactions. The space E
keeps the memory of the different interactions, while each copy of F arrives independently
in front of E and induces one more step of evolution following T̃ .

As resulting from this procedure, the successive evolutions restricted to E are the one
of the iterations of the Markov operator L. This gives rise to announced behavior: a whole
path of the homogeneous Markov chain with generator L.

2.4 Defect of Determinism and Loss of Invertibility

We end up this section with some algebraic characterizations of determinism for Markov
chains. The point is to characterize what exactly is lost when going from the deterministic
dynamics T on E × F to the Markov operator L on E.

Theorem 2.6 Let (E, E) be a Lusin space. Let (Xn) be a Markov chain with state space
(E, E) and with transition kernel ν. Let T be the Markov operator on L∞(E, E) associated
to ν:

Tf(x) =

∫
E

f(y) ν(x, dy) .

Then the Markov chain (Xn) is deterministic if and only if T is a ∗-homomorphism of the
algebra L∞(E, E).
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Proof: One direction is immediate: if the Markov chain is deterministic, then T is asso-
ciated to a dynamical system and hence it is a ∗-homomorphism.

Conversely, suppose that T is a ∗-homomorphism. We shall first consider the case
where (E, E) is a Polish space together with its Borel σ-field E .

Take any A ∈ E , any x ∈ E and recall that we always have

ν(x,A) = T (1lA)(x) .

The homomorphism property gives

T (1lA)(x) = T (1l2A)(x) = T (1lA)2(x) = ν(x,A)2 .

Hence ν(x,A) satisfies ν(x,A)2 = ν(x,A). This means that ν(x,A) is equal to 0 or 1, for
all x ∈ E, all A ∈ E .

Consider a covering of E with a countable family of balls (Bi)i∈N, each of which with
diameter smaller than 2−n (this always possible as E is separable). From this covering
one can easily extract a partition (Si)i∈N of E with measurable sets, each of which with
diameter smaller than 2−n. We shall denote by Sn this partition.

Let x ∈ E be fixed. As we have
∑

E∈S(n) ν(x,E) = 1 we must have ν(x,E) = 1 for one
and only one E ∈ S(n). Let us denote by E(n)(x) this unique set. Clearly, the sequence
(E(n)(x))n∈N is decreasing (for otherwise there will be more than one set E ∈ S(n) such
that ν(x,E) = 1). Let A = ∩nE(n)(x). The set A satisfies ν(x,A) = 1, hence A is non-
empty. But also, the diameter of A has to be 0, for it is smaller than 2−n for all n. As
a consequence A has to be a singleton {y}, for some y(x) ∈ E. Hence we have proved
that for each x ∈ E there exists a y(x) ∈ E such that n(x, {y(x)}) = 1. This proves the
deterministic character of our chain.

The case where E is a subset of a Polish space is obtained in the same way, by restricting
the σ-field.

The case where E is only homeomorphic to a subset of a polish space is obtained
by transferring on E the partitions Sn of the Polish space, via the homeomorphism (a
bi-continuous bijection). �

The result above is quite amazing. It gives such a clear and net characterization of the
difference between a true Markov operator and a deterministic one! One can even think of
several applications of that characterization, for example one may be able to measure the
“level of randomness” of some Markov operator by evaluating for example

sup{
∥∥T (f 2)− T (f)2

∥∥ ; f ∈ L∞(E, E), ‖f‖ = 1} .

I do not know if such things have already been studied or not. It is not my purpose here
to develop this idea, I just mention it.

Another strong result on determinism of Markov chains is the way it is related to
non-invertibility.
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Theorem 2.7 Let (E, E) be a Lusin space. Let T be a Markov operator on L∞(E, E)
associated to a Markov chain (Xn). If T is invertible in the category of Markov operators
then (Xn) is deterministic.

Proof: Recall that a Markov operator T maps positive functions to positive functions.
Hence, in the same way as one proves Cauchy-Schwarz inequality, we always have

T (f) = T (f) .

and
T (|f |2) ≥ T (f̄)T (f)

(hint: write the positivity of T ((f + λg)(f + λg)) for all λ ∈ C).

Let S be a Markov operator such that ST = TS = I. We have

|f |2 = f̄f = S ◦ T (f̄f) ≥ S(T (f̄)T (f)) ≥ S ◦ T (f̄)S ◦ T (f) = f̄f = |f |2 .

Hence we have equalities everywhere above. In particular

S ◦ T (f̄f) = S(T (f̄)T (f)) .

Applying T to this equality, gives

T (f̄f) = T (f̄)T (f) ,

for all f ∈ L∞(E, E).
By polarization it is easy to prove now that T is a homomorphism. By Theorem 2.6 it

is the Markov operator associated to a deterministic chain. �

The result above is more intuitive than the one of Theorem 2.6, from the point of view
of open systems. If the dynamical system T̃ on the large space E × F is invertible, this
invertibility is always lost when projecting on E. The fact we do not have access to one
component of the coupled system makes that we loose all chance of invertibility.
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3 Continuous Time

We now leave the discrete-time setup to concentrate on continuous-time dynamical systems.
We aim to show that stochastic differential equations are actually some particular kind of
continuous-time dynamical systems. In particular they are “deterministic”. The type of
dynamical system we shall obtain this way is a continuous-time version of the construction
of Theorem 2.5.

3.1 Preliminaries

Let us consider the d-dimensional Brownian motion W on its canonical space (Ω,F ,P).
This is to say that Ω = C0(R+; Rd) is the space of continuous functions on R+ with values
in Rd and which vanish at 0, the σ-field F is the Borel σ-field of Ω, the measure P is the
Wiener measure, that is, the law of a d-dimensional Brownian motion on Ω. The canonical
Brownian motion (Wt) is defined by Wt(ω) = ω(t), for all ω ∈ Ω, all t ∈ R+. This is to say,
coordinate-wise: W i

t (ω) = ωi(t), for i = 1, . . . , d.

We define for all s ∈ R+ the shift θs as an application from Ω to Ω by

θs(ω)(t) = ω(t+ s)− ω(s) .

We extend it as the shift operator Θs on L2(Ω,F ,P) by

Θs(F )(ω) = F (θs(ω)) .

In particular we have Θs(Wt) = Wt+s −Ws .
As the process Yt = Wt+s−Ws, t ∈ R+, is again a d-dimensional Brownian motion, this

implies that the mapping θs preserves the measure P. As a consequence Θs is an isometry
of L2(Ω,F ,P).

Lemma 3.1 If H is a predictable process in Rd, then, for all fixed s ∈ R+, the process
Kt = Θs(Ht−s), t ≥ s is also predictable.

Proof: The process K as a mapping from Ω×R+ to Rd is the composition of H with the
mapping φ(ω, t) = (θs(ω), t− s) from Ω× [s,+∞[ to Ω× R+. We just need to check that
φ is measurable for the predictable σ-algebra P .

Consider a basic predictable set A×]u, v], with u < v and A ∈ Fu, then

φ−1(A×]u, v]) = θ−1
s (A)×]u+ s, v + s] .

We just need to check that θ−1
s (Fu) ⊂ Fu+s. The σ-algebra Fu is generated by events of

the form (W i
t ∈ [a, b]), for t ≤ u and i = 1, . . . , d. The set θ−1

s (W i
t ∈ [a, b]) is equal to

(W i
t+s −W i

s ∈ [a, b]), hence it belongs to Fu+s. �

In the following, the norm ‖·‖2 is the L2((Ω,F ,P); Rd)-norm.
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Lemma 3.2 Let H be a predictable process in Rd such that
∫ t+s

0
‖Hu‖2

2 du <∞. Then we
have

Θs

(∫ t

0

Hu · dWu

)
=

∫ t+s

s

Θs(Hu−s) · dWu . (3)

Proof: If H is an elementary predictable process then the identity (3) is obvious from the
fact that Θs(FG) = Θs(F ) Θs(G). A general stochastic integral

∫ t
0
Hs · dWs is obtained as

a limit in the norm ∥∥∥∥∫ t

0

Hs · dWs

∥∥∥∥2

2

=

∫ t

0

‖Hs‖2
2 ds ,

of stochastic integrals of elementary predictable processes. As Θs is an isometry, it is clear
that Equation (3) holds true for any stochastic integral. �

Here is now the main result of this section.

Theorem 3.3 Let W be a d-dimensional Brownian motion on its canonical space (Ω,F ,P).
Let f be a locally bounded, Lipschitz function from Rn to Rn and let g be a locally bounded,
Lipschitz function from Rn to Mn×d(R). Denote by Xx the unique stochastic process (in
Rn) which is solution of the stochastic differential equation

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu .

Then, for all s, t ∈ R+, we have, for almost all ω ∈ Ω,

X
Xx

s (ω)
t (θs(ω)) = Xx

s+t(ω) .

Proof: Let s be fixed. Define

Y x
u (ω) =


Xx
u(ω) if u ≤ s ,

X
Xx

s (ω)
u−s (θs(ω)) if u > s .
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Then Y x
s+t is solution of

Y x
s+t(ω) = X

Xx
s (ω)

t (θs(ω))

= Xx
s (ω) +

[∫ t

0

f(XXx
s

u ) du

]
(θs(ω)) +

[∫ t

0

g(XXx
s

u ) · dWu

]
(θs(ω))

= x+

[∫ s

0

f(Xx
u) du

]
(ω) +

[∫ s

0

g(Xx
u) · dWu

]
(ω) +

∫ t

0

f(XXx
s

u )(θs(ω)) du+

+

[∫ s+t

s

Θs

(
g(X

Xx
s

u−s)
)
· dWu

]
(ω) (by Lemma 3.2)

= x+

∫ s

0

f(Y x
u )(ω) du+

[∫ s

0

g(Y x
u ) · dWu

]
(ω) +

∫ t

0

f(Y x
u+s)(ω) du+

+

[∫ s+t

s

g(Y x
u ) · dWu

]
(ω)

= x+

[∫ s

0

f(Y x
u ) du+

∫ s

0

g(Y x
u ) · dWu +

∫ s+t

s

f(Y x
u ) du+

+

∫ s+t

s

g(Y x
u ) · dWu

]
(ω)

= x+

[∫ s+t

0

f(Y x
u ) du+

∫ s+t

0

g(Y x
u ) · dWu

]
(ω) .

This shows that Y x is solution of the same stochastic differential equation as Xx. We
conclude easily by uniqueness of the solution. �

3.2 Stochastic Differential Equations and Dynamical Systems

We are now ready to establish a parallel between stochastic differential equations and
dynamical systems. Recall how we defined discrete time dynamical systems T̃ in Section 2
and their associated semigroup (T̃ n). In continuous time the definition extends in the
following way.

A continuous-time dynamical system on a set E is a one-parameter family of appli-
cations (T̃t)t∈R+ on E such that T̃s ◦ T̃t = T̃s+t for all s, t. That is, T̃ is a semigroup of
applications on E.

Each of the mappings T̃t can be lifted into an operator on L∞(E), denoted by Tt and
defined by

Ttf(x) = f(T̃t x) .

The following result is now a direct application of Theorem 3.3.

Corollary 3.4 Let W be a d-dimensional Brownian motion on its canonical space (Ω,F ,P).
Let f be a locally bounded Lipschitz functions from Rn to Rn and let g be a locally bounded
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Lipschitz function from Rn to Mn×d(R). Consider the stochastic differential equation (on
Rn)

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu .

Then the mappings T̃t on Rn × Ω defined by

T̃t(x, ω) = (Xx
t (ω), θt(ω))

define a continuous time dynamical system.

This is to say that a stochastic differential equation is nothing more than a deterministic
dynamical system on a product set Rn×Ω, that is, it is a semigroup of point transformations
of this product set.

We now have a result analogous to the one of Theorem 2.5 when this dynamical system
is restricted to the Rn-component. But before establishing this result, we need few technical
lemmas. In the following Ωt] denotes the space of continuous functions from [0, t] to Rd. For
all ω ∈ Ω we denote by ωt] the restriction of ω to [0, t]. Finally Pt] denotes the restriction
of the measure P to (Ωt] ,Ft).

Lemma 3.5 The image of the measure P under the mapping

Ω → Ωt] × Ω
ω 7→ (ωt] , θt(ω))

is the measure Pt] ⊗ P .

Proof: Recall that ω(s) = Ws(ω) and θt(ω)(s) = Wt+s(ω)−Wt(ω). If A is a finite cylinder
of Ωt] and B a finite cylinder of Ω, then the set

{ω ∈ Ω ; (ωt] , θt(ω)) ∈ A×B}

is of the form

{ω ∈ Ω ; Wt1(ω) ∈ A1, . . . ,Wtn(ω) ∈ An, (Ws1 −Wt)(ω) ∈ B1, . . . , (Wsk
−Wt)(ω) ∈ Bk}

for some t1, . . . , tn ≤ t and some s1, . . . , sk > t. By the independence of the Brownian
motion increments, the probability of the above event is equal to

P({ω ∈ Ωt] ; Wt1(ω) ∈ A1, . . . ,Wtn(ω) ∈ An})×
× P({ω ∈ Ω ; (Ws1 −Wt)(ω) ∈ B1, . . . , (Wsk

−Wt)(ω) ∈ Bk}) .

This is to say,

P({ω ∈ Ω ; (ωt] , θt(ω)) ∈ A×B}) = Pt]({ωt] ∈ Ωt] ; ωt] ∈ A) P({ω ∈ Ω ; θt(ω) ∈ B}) .

This is exactly the claim of the lemma for the cylinder sets. As the measures P and Pt]⊗P
are determined by their values on the cylinder sets, we conclude easily. �
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Lemma 3.6 Let g be a bounded measurable function on Ωt] × Ω. Then we have∫
Ωt]

∫
Ω

g(ω, ω′) dPt](ω) dP (ω′) =

∫
Ω

g(ωt], θt(ω)) dP (ω) .

Proof: This is just the Transfer Theorem for the mapping of Lemma 3.5. �

Theorem 3.7 Let (Ω,F , P ) be the canonical space of a d-dimensional Brownian motion
W . Let f be a locally bounded Lipschitz functions from Rn to Rn and let g be a locally
bounded Lipschitz function from Rn to Mn×d(R). Consider the stochastic differential equa-
tion (on Rn)

Xx
t = x+

∫ t

0

f(Xx
u) du+

∫ t

0

g(Xx
u) · dWu

and the associated dynamical system

T̃t(x, ω) = (Xx
t (ω), θt(ω)) .

For any bounded function h on Rn consider the mapping

Pt h(x) = E [Tt(h⊗ 1l)(x, · )] .

Then (Pt)t∈R+ is a Markov semigroup on Rn with generator

A =
n∑
i=1

fi(x)
∂

∂xi
+

1

2

n∑
i,j=1

d∑
α=1

giα(x)gjα(x)
∂2

∂xi ∂xj
.

Proof: The fact that each Pt is a Markov operator is a consequence of Theorem 2.2. Let
us check that they form a semigroup. By definition we have

Pt(Ps h)(x) = E
[
T̃t(Psh⊗ 1l)(x, · )

]
=

∫
Ω

Psh(Xx
t (ω)) dP (ω)

=

∫
Ω

∫
Ω

h
(
XXx

t (ω)
s

)
(ω′) dP (ω′) dP (ω)

=

∫
Ω

h
(
X
Xx

t (ωt])
s

)
(θt(ω)) dP (ω) (by Lemma 3.6)

=

∫
Ω

h
(
Xx
s+t

)
(ω)) dP (ω) (by Theorem 3.3)

= Ps+th(x) .

We have proved the semigroup property.
The rest of the proof comes from the usual theory of Markov semigroups and their

associated generator. �
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We have proved the continuous time analog of Theorem 2.5. Every Markov semigroup,
with a generator of the form above, can be dilated on a larger set (a product set) into a
deterministic dynamical system. What is maybe more surprising is that the deterministic
dynamical system in question is a stochastic differential equation. Theorem 3.7 and Corol-
lary 3.4 show that a stochastic differential equation can actually be seen as a particular
deterministic dynamical system.

The theorem above means again an open system point of view on Markov processes:
Markov processes are obtained by restriction of certain types of dynamical systems on a
product space, when one is averaging over one inaccessible component. The role of the
environment is now played by the Wiener space and the role of the global dynamics on the
product space is played by the stochastic differential equation.

In this section we have developed the Brownian case only. But it is clear that all this
discussion extends exactly in the same way to the case of the Poisson process. Indeed, the
arguments developed above are mostly only based on the independent increment property.

We said that stochastic differential equations are particular dynamical systems which
are continuous analogues of those of Section 2.3: repeated interactions. In the article
[4], the convergence of discrete-time repeated interactions models to stochastic differential
equations is proved.
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