Feuille d'exercices numéro 1

Tribus.

Exercice 1 Vrai ou Faux?

- (1) N^6 est dénombrable.
- (2) $N \times R$ est dénombrable.
- (3) Soit E un ensemble. Alors $A \subset E \iff A \in \mathscr{P}(E)$.
- (4) \mathcal{T} est une tribu sur E si et seulement si les conditions suivantes sont vérifiées :
- $-\emptyset\in\mathscr{T}.$
- $A \in \mathscr{T} \Rightarrow A^c \in \mathscr{T}$.
- $(\forall n \in \mathbf{N}, A_n \in \mathscr{T}) \Rightarrow \bigcap A_n \in \mathscr{T}.$
- (5) Soit (E, \mathcal{T}) un espace mesurable. Alors $E \in \mathcal{T}$.
- (6) Si E est dénombrable et \mathscr{T} est une tribu sur E, alors \mathscr{T} est dénombrable.

Exercice 2 Soit $X = \{1, 2, 3\}$. Montrer que $\mathcal{T} = \{\emptyset, X, \{1\}, \{2, 3\}\}$ est une tribu.

Exercice 3 Combien y a-t-il de tribus différentes sur un ensemble à 3 éléments? Sur un ensemble à 4 éléments?

Exercice 4 Soit (X, \mathcal{T}) un espace mesurable et A, B des éléments de \mathcal{T} . Montrer que $A \cap B \in \mathcal{T}$ et $A \Delta B \in \mathcal{T}$.

Exercice 5 Les classes suivantes sont-elles des tribus?

- (a) $\mathcal{F}_1 = \{ A \in \mathscr{P}(X) \text{ t.q. } A \text{ est finie } \}.$
- (b) $\mathcal{F}_2 = \{ A \in \mathscr{P}(X) \text{ t.q. } A \text{ est finie ou } A^c \text{ est finie } \}.$
- (c) $\mathcal{F}_3 = \{A \in \mathcal{P}(X) \text{ t.q. } A \text{ est au plus dénombrable ou } A^c \text{ est au plus dénombrable } \}.$

Exercice 6 Soient $X = \mathbf{N}$ et $\mathscr{A} = \{\{n\}; n \in \mathbf{N}\}$. Montrer que $\sigma(\mathscr{A}) = \mathscr{P}(\mathbf{N})$.

Exercice 7 Soit $\mathscr{A} \subset \mathscr{P}(X)$. Déterminer la tribu engendrée $\sigma(\mathscr{A})$ dans les cas suivants :

- (a) $\mathscr{A} = \{A\}$, où A est une partie fixe de X.
- (b) $\mathscr{A} = \{\{x\}, x \in X\}$. On séparara le cas où X est fini ou dénombrable et le cas où X n'est pas au plus dénombrable.
- (c) $\mathscr{A} = \{A \in \mathscr{P}(X) \text{ t.q. } A_0 \subset A\}$, où A_0 est une partie fixe de X.

Exercice 8 Montrer que si \mathscr{A} et \mathscr{B} sont deux classes de parties de X telles que $\mathscr{A} \subset \mathscr{B}$, alors $\sigma(\mathscr{A}) \subset \sigma(\mathscr{B})$. Montrer ensuite que $\sigma(\sigma(\mathscr{A})) = \sigma(\mathscr{A})$.

Exercice 9 Soit $f: X \to Y$ une fonction entre deux ensembles.

- (a) Soit \mathscr{B} une tribu sur Y. Monter que l'ensemble $f^{-1}[\mathscr{B}] := \{f^{-1}(B), B \in \mathscr{B}\}$ est une tribu sur X. Montrer que si $\mathscr{B} = \sigma(\mathscr{E})$ alors $f^{-1}[\mathscr{B}] = \sigma(\{f^{-1}(B), B \in \mathscr{E}\})$.
- (b) Soit \mathscr{A} une tribu sur X. Donner un exemple montrant que $\{f(A), A \in \mathscr{A}\}$ n'est pas nécessairement une tribu sur Y. Montrer qu'en revanche $\{B \in \mathscr{P}(Y) \text{ t.q. } f^{-1}(B) \in \mathscr{A}\}$ est une tribu sur Y.

Exercice 10 Tribu engendrée par une partition. Soit $\pi = \{A_i\}_{i \in I}$ une partition de X. Déterminer $\sigma(\pi)$:

- (a) Lorsque I est au plus dénombrable.
- (b) Lorsque I n'est pas au plus dénombrable.

Exercice 11 Tribu trace.

- (1) Soit X un ensemble, $\mathscr T$ une tribu dans X et $A \in \mathscr T$ une partie fixée. On note $\mathscr T_A$ la trace de $\mathscr T$ sur A, définie par $\mathscr T_A = \{B \cap A, B \in \mathscr T\}$. Montrer que $\mathscr T_A = \{D \in \mathscr P(X) \text{ t.q. } D \in \mathscr T \text{ et } D \subset A \}$.
- (2) On suppose de plus que $\mathscr{T} = \sigma(\mathscr{A})$, où \mathscr{A} est une classe de parties de X, telle que $A \in \mathscr{A}$. On note $\mathscr{A}_A = \{B \cap A, B \in \mathscr{A}\}$. Montrer que $\mathscr{T}_A = \sigma(\mathscr{A}_A)$. Que peut-on en déduire concernant la tribu borélienne de [0,1]?

Exercice 12 La tribu borélienne de R. On munit R de la métrique usuelle et on note $\mathscr{B}_{\mathbf{R}}$ la tribu borélienne de R.

- (1) Montrer que tout ouvert, tout fermé et tout intervalle de R sont des boréliens.
- (2) On note $\mathcal{I} = \{[a, b[, a \in \mathbf{R}, b \in \mathbf{R}\} \text{ et } \mathcal{D} = \{] \infty, x], x \in \mathbf{R}\}$. Montrer que $\mathscr{B}_{\mathbf{R}} = \sigma(\mathcal{I}) = \sigma(\mathcal{D})$.
- (3) Montrer que $\mathscr{B}_{\mathbf{R}}$ est engendrée par une classe dénombrable.
- (4) Montrer que $\mathscr{B}_{\mathbf{R}}$ n'est pas engendrée par une partition de \mathbf{R} .
- (5) Soit $a \in \mathbf{R}$ et $\mathcal{F}_a = \{B \in \mathscr{B}_{\mathbf{R}} \text{ t.q. } B + a \in \mathscr{B}_{\mathbf{R}} \}$. Montrer que \mathcal{F}_a est une tribu. En déduire que $\forall B \in \mathscr{B}_{\mathbf{R}}, B + a \in \mathscr{B}_{\mathbf{R}}$. On dit que la tribu borélienne est invariante par translation.
- (6) Soit $\mathscr{B}_{\mathbf{R}}^s = \{B \in \mathscr{B}_R \text{ t.q. } B = -B\}$. Montrer que $\mathscr{B}_{\mathbf{R}}^s$ est une tribu, que l'on appelle tribu des boréliens symétriques.

Exercice 13 On travaille sur l'ensemble $X = \mathbf{N}$.

- (1) Pour $n \in \mathbb{N}$, on note $\mathscr{A}_n = \{[0,n], \{n+1\}, \{n+2\}, \cdots\}$ et $\mathscr{T}_n = \sigma(\mathscr{A}_n)$. Montrer que la suite (\mathscr{T}_n)
- est une suite décroissante. On note ensuite $\mathscr{T} = \bigcap_{n \in \mathbb{N}} \mathscr{T}_n$. Montrer que $\mathscr{T} = \{\emptyset, \mathbb{N}\}$. (2) Pour $n \in \mathbb{N}$, on note $\mathscr{A}'_n = \{\{0\}, \{1\}, \cdots, \{n-1\}, [n, +\infty[\} \text{ et } \mathscr{T}'_n = \sigma(\mathscr{A}'_n).$ Montrer que la suite (\mathscr{T}'_n) est croissante. Montrer que $\bigcup_{n\in \mathbf{N}} \mathscr{T}'_n$ n'est pas une tribu.
- **Exercice 14** (*) On travaille sur l'ensemble $X = \mathbf{N}^*$. Pour $n \ge 1$, on note $n\mathbf{N}^*$ l'ensemble des multiples non nuls de n. Soit les classes $\mathscr{A} = \{n\mathbf{N}^*, n \geq 1\}$ et $\mathscr{A}' = \{p\mathbf{N}^*, p \geq 1, p \text{ premier}\}$. Montrer que $\sigma(\mathscr{A}) = \mathscr{P}(X)$, mais que $\sigma(\mathscr{A}') \neq \mathscr{P}(X)$.
- **Exercice 15** Soit X un ensemble et $\mathscr{A} \subset \mathscr{P}(X)$ une classe de parties de X. Montrer que pour chaque ensemble $C \in \sigma(\mathscr{A})$, il existe une sous-classe au plus dénombrable $\mathscr{A}_C \subset \mathscr{A}$ telle que $C \in \sigma(\mathscr{A}_C)$.
- Exercice 16 Soient X et Y deux ensembles au plus dénombrables. Montrer que le produit des tribus complètes est la tribu complète du prosuit cartésien, c'est-à-dire que $\mathscr{P}(X)\otimes\mathscr{P}(Y)=\mathscr{P}(X\times Y)$.
- Exercice 17 (**) Existe-t-il une tribu infinie dénombrable?