Feuille d'exercices numéro 6

Fonctions définies par des intégrales.

Exercice 1 Soit μ une mesure sur $(\mathbf{R}^+, \mathscr{B}_{\mathbf{R}^+})$ telle que $\mu(\mathbf{R}^+) = 1$.

- (1) Montrer que pour tout $x \in \mathbf{R}^+$, $t \to \cos(xt)$ est μ -intégrable sur \mathbf{R}^+ . On pose alors pour $x \geqslant 0$, F(x) = $\int_{\mathbf{R}^+} \cos(xt) d\mu(t).$
- $(\bar{2})$ Montrer que F est continue sur \mathbb{R}^+ .
- (3) On suppose que l'application $t \to t^2$ est μ -intégtrable. Déterminer $\lim_{x \to 0} \frac{1 F(x)}{x^2}$. On pourra remarquer et justifier l'inégalité $1 - \cos(u) \leqslant u^2/2$.
- (4) On ne suppose plus que $t \to t^2$ est μ -intégrable, mais on suppose que $\lim_{x \to 0} \frac{1 F(x)}{x^2} = 0$.
- (4a) Soit G définie sur \mathbf{R}^+ par $G(x) = \frac{1 F(x)}{x^2}$. Montrer que G est bornée sur \mathbf{R}^+ .
- (4b) En déduire que $t \to t^2$ est μ -intégrable. On pourra penser au lemme de Fatou.
- (4c) Que peut-on en déduire pour la mesure μ ?

Exercice 2 (Examen janvier 2007)

Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction Lebesgue-intégrable. On pose pour $t \in \mathbf{R}$:

$$\hat{f}(t) = \int_{\mathbf{R}} f(x)e^{-itx}d\lambda_1(x).$$

- (a) Montrer que la fonction \hat{f} est continue et bornée sur \mathbf{R} .
- (b) On pose g(x) = -ixf(x) pour $x \in \mathbf{R}$ et on suppose que la fonction g est Lebesgue-intégrable. Montrer que la fonction \hat{f} est continûment dérivable sur \mathbf{R} et que $\hat{f}'(t) = \hat{g}(t), t \in \mathbf{R}$.

Exercice 3 Pour
$$x \ge 0$$
, on pose $F(x) = \left(\int_0^x \exp(-t^2) dt \right)^2$ et $G(x) = \int_0^1 \frac{\exp(-x^2(1+t^2))}{1+t^2} dt$.

- (1a) Montrer que F et G sont de classe C^1 sur \mathbf{R}^+ .
- (1b) Calculer F'(x) + G'(x) pour $x \ge 0$.
- (2) En déduire la valeur de $I = \int_0^\infty \exp(-t^2) dt$ puis de $J = \int_{\mathbf{R}} \exp(-t^2/2) dt$.

Exercice 4 Pour
$$x \in \mathbf{R}$$
, on pose $F(x) = \int_{\mathbf{R}} e^{ixt} e^{-t^2/2} dt$.

- (1) Montrer que F est continue sur \mathbf{R} .
- (2) Montrer que F est dérivable sur \mathbf{R} .
- (3a) Montrer que F satisfait à une équation différentielle du premier ordre.
- (3b) En déduire la valeur de F(x) pour x réel. On utilisera le résultat de la question 2 de l'exercice 2.

Exercice 5 Pour
$$x \in \mathbf{R}$$
, on pose $F(x) = \int_0^\infty \exp\left(-\frac{1}{2}\left(\frac{x^2}{t^2} + t^2\right)\right) dt$.

- (1) Montrer que F est continue sur \mathbf{R} .
- (2) Montrer que F est dérivable sur \mathbb{R}^* .
- (3) Montrer que pour x > 0, on a F'(x) = -F(x).
- (4) En déduire la valeur de F(x) pour x réel. On utilisera aussi le résultat de la question 2 de l'exercice

Exercice 6 Pour
$$x > 0$$
 et $t > 0$, on pose $f(x,t) = \frac{\exp(-x) - \exp(-tx)}{x}$.

- (1) Montrer que pour tout t > 0, la fonction $x \to f(t,x)$ est λ -intégrable sur \mathbf{R}^+ . Pour t > 0, on pose $F(t) = \int_0^\infty f(t,x) dx$.

 (2a) Montrer que F est continue sur $]0, +\infty[$.
- (2b) Montrer que F est dérivable sur $]0, +\infty[$.
- (2c) Calculer F'(t) et en déduire la valeur de F(t) pour tout t > 0.

Exercice 7 Pour y > 0, soit $F(y) = \int_0^\infty \frac{\exp(-x^2y)}{1+x^2} dx$.

- (1) Montrer que F est continue sur \mathbf{R}^{10} . Calculer F(0) et déterminer $\lim_{y \to +\infty} F(y)$.
- (2a) Montrer que F est dérivable sur \mathbf{R}_{+}^{*} .
- (2b) Montrer que F vérifie sur \mathbf{R}_+^* une équation différentielle du premier ordre s'exprimant à l'aide de $I = \int_0^\infty \exp(-x^2) dx$.
- (2c) En déduire, sous forme intégrale, une expression de F(y) valable pour $y \ge 0$.
- (2d) Retrouver enfin la valeur de I.

Exercice 8 Pour $x \in \mathbf{R}$, on pose $F(x) = \int_0^\infty \frac{\cos(xt)}{1+t^2} dt$ et $G(x) = \int_0^\infty \frac{1-\cos(xt)}{t^2} \frac{dt}{1+t^2}$.

- (1) Montrer que F et G sont continues sur \mathbf{R} . Calculer F(0) et G(0).
- (2) Etablir l'égalité valable pour tout réel x:

$$F(0) - F(x) + G(x) = C|x|$$
, où $C = \int_0^\infty \frac{\sin^2(t)}{t^2}$.

- (3a) Montrer que G est de classe C^2 sur ${\bf R}$ et vérifie G''(x)=F(x) pour tout réel x.
- (3b) En utilisant la question 2, en déduire que F est de classe C^2 sur \mathbf{R}_+^* et vérifie une équation différentielle du second ordre.
- (3c) En déduire l'expression de F(x) pour x>0 (on pourra remarquer qur la fonction F est bornée sur
- **R**). Calculer enfin F(x) pour tout réel x.
- (4) Déduire de tout cela la valeur de la constante C.

Exercice 9

- (1) Montrer que pour tout x > 0, l'application $t \to t^{x-1}e^{-t}$ est λ -intégrable sur \mathbf{R}^+ .
- (2) Pour x > 0, on pose $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$. Montrer que Γ est continue sur \mathbf{R}_+^* . Montrer ensuite que Γ est de classe C^∞ sur \mathbf{R}_+^* .

Exercice 10 Soit $F(x) = \int_0^{+\infty} \frac{\sin t}{t} e^{-xt} dt$.

- 1. Montrer que F est de classe C^1 sur \mathbb{R}_+^* .
- 2. Pour x > 0, calculer F'(x) puis F(x).

Exercice 11 (*) Soit $F(t) = \int_{-\infty}^{+\infty} \frac{\arctan(tx)}{x(1+x^2)} dx$.

- 1. Montrer que F est de classe C^1 sur \mathbb{R} . Calculer F'(t) puis F(t).
- 2. En déduire la valeur de $\int_{-\infty}^{+\infty} \left(\frac{\arctan x}{x} \right)^2 dx$.