Examen du 7 juin 2010 : corrigé succinct

Exercice 2

On a $D = \bigcup_{n \in \mathbb{N}^*} D_n$ où D_n est l'ensemble des réels x tels que $\mu(\{x\}) \geqslant 1/n$. Or D_n contient au plus n éléments distincts. En effet, s'il en contenait n+1, disons x_1, \ldots, x_{n+1} , on aurait

$$\mu(D_n) \geqslant \mu(\{x_1\}) + \dots + \mu(\{x_{n+1}\}) \geqslant \frac{1}{n} + \dots + \frac{1}{n} > 1,$$

contredisant $\mu(\mathbf{R}) = 1$.

Ainsi D s'écrit comme réunion dénombrable d'ensembles finis, donc D est au plus dénombrable.

Exercice 3

On note $f(x,t) = \frac{\ln(1+tx^2)}{1+x^2}$.

- 1. Par « croissances comparées », on a $ln(1+tx^2)=o(\sqrt{x})$ quand x tend vers $+\infty$ (t fixé). Ainsi $f(x,t)=o(1/x^{3/2})$ et l'intégrale est convergente en $+\infty$. La fonction $x\mapsto f(x,t)$ est continue sur \mathbf{R}^+ , et F(t) est donc bien définie.
- 2. On applique le théorème de continuité des intégrales à paramètres pour $t \in [0,T]$. La fonction $t \mapsto f(x,t)$ est continue, la fonction $x \mapsto f(x,t)$ est borélienne (car continue) et on a $|f(x,t)| \leq f(x,T)$. Comme $x \mapsto f(x,T)$ est une fonction intégrable (cf question 1), l'utilisation du théorème est justifiée et f est continue sur \mathbf{R}^+ .
- 3. La fonction $t\mapsto f(x,t)$ est de classe C^1 et $\frac{\partial f}{\partial t}(x,t)=\frac{x^2}{(1+x^2)(1+tx^2)}$. Soit $\varepsilon>0$; lorsque $t\in [\varepsilon,+\infty[$ on a la majoration

$$\left| \frac{\partial f}{\partial t}(x,t) \right| = \frac{x^2}{(1+x^2)(1+\varepsilon x^2)}.$$

La fonction majorante est intégrable sur \mathbf{R}^+ , le théorème de dérivation des intégrales à paramètre implique donc que F est dérivable sur $[\varepsilon, +\infty[$. Comme c'est vrai pour tout $\varepsilon > 0$, F est en fait dérivable sur \mathbf{R}_*^+ .

- 4. On calcule $\frac{x^2}{(1+x^2)(1+tx^2)} = \frac{1}{t-1} \left(\frac{1}{1+x^2} \frac{1}{1+tx^2} \right)$, lorsque $t \neq 1$.
- 5. On a pour $t > 0, t \neq 1$,

$$F'(t) = \int_0^\infty \frac{1}{t-1} \left(\frac{1}{1+x^2} - \frac{1}{1+tx^2} \right) dx = \frac{\pi}{2} \frac{1}{\sqrt{t}(1+\sqrt{t})}.$$

Comme F' est continue sur \mathbf{R}_*^+ , cette expression est aussi valable pour t=1.

6. On intègre : $F(t) = \pi \ln(1 + \sqrt{t}) + cte$ lorsque t > 0. Par continuité, cela est aussi valable pour t = 0. Le cas t = 0 permet de conclure que la constante est nulle.

Exercice 4

Soit $E=]1,4[\times]1,3[$, et $\Phi(x,y)=(xy,x/y)$ et $\Psi(u,v)=(\sqrt{uv},\sqrt{u/v})$. On a $\Phi(D)\subset E, \Psi(E)\subset D, \Phi\circ\Psi=\mathrm{Id}$ et $\Psi\circ\Phi=\mathrm{Id}$. Ainsi Ψ est une bijection de E sur D, et $\Psi=\Phi^{-1}$. De plus Ψ est de classe C^1 . On calcule que le jacobien de Ψ vaut $-\frac{1}{2v}$ et ne s'annule pas, c'est donc un C^1 -difféomorphisme. Par le théorème de changement de variables,

$$I = \int_{E} (uv + u/v) \frac{1}{2v} du dv.$$

L'intégrale se calcule alors à l'aide du théorème de Tonelli, on obtient $I=\frac{1}{2}\int_1^4 u du \cdot \int_1^3 (1+1/v^2) dv=10.$

Exercice 5

1) On a bien $\mu(\emptyset) = \int 0 d\nu = 0$. Si (A_n) est une suite d'éléments de \mathcal{F} deux à deux disjoints, alors

$$\mu\left(\bigcup A_n\right) = \int f \mathbf{1}_{\bigcup A_n} d\nu = \int f \sum \mathbf{1}_{A_n} d\nu.$$

L'échange $\int -\sum$ est justifié car les fonctions sont mesurables positives, donc

$$\mu\left(\bigcup A_n\right) = \sum \int f \mathbf{1}_{A_n} d\nu = \sum \mu(A_n).$$

Ainsi μ est une mesure. De plus, comme $f\mathbf{1}_A \leq \mathbf{1}_A$, on a $\mu(A) \leq \nu(A)$ pour tout $A \in \mathcal{F}$, donc μ est finie et $\mu \leq \nu$.

2a) La fonction g est mesurable comme maximum de deux fonctions mesurables. Soit $B = \{x \text{ t.q. } f_2(x) \ge f_1(x)\}$. Pour tout $A \in \mathcal{F}$, on a

$$\int_{A} g d\nu = \int (g \mathbf{1}_{A \cap B} + g \mathbf{1}_{A \cap B^{c}}) d\nu = \int f_{2} \mathbf{1}_{A \cap B} d\nu + \int f_{1} \mathbf{1}_{A \cap B^{c}} d\nu \leqslant \mu(A \cap B) + \mu(A \cap B^{c}) = \mu(A)$$

2b) Remarquons que $M \leq \nu(X) < +\infty$; de plus H est non vide car il contient la fonction nulle. Par définition de la borne supérieure, pour tout $n \in \mathbb{N}^*$ il existe $f_n \in H$ tel que $\int f_n d\nu \geq M - 1/n$. On pose $g_n = \max(f_1, \ldots, f_n)$. On a $g_n \geq f_n$, donc $\liminf \int g_n d\nu \geq \liminf \int f_n d\nu = M$. De plus $g_n \in H$ d'après la question précédente (par récurrence sur n, le max de n fonctions de H est encore dans H). Ainsi $\int g_n d\nu \leq M$, d'où on tire $\lim \int g_n d\nu = M$. La suite g_n est croissante par construction.

La suite (g_n) converge car elle est croissante est majorée. Pour tout $A \in \mathcal{F}$, on a par le TCM

$$\int_{A} g d\nu = \lim \int_{A} g_n d\nu \leqslant \mu(A),$$

ce qui montre $g \in H$. De plus on a $\int g d\nu = M$ par le TCM.

Remarque : on peut montrer (ce n'est pas facile) que l'on a l'égalité $\mu(A) = \int_A g d\nu$ pour tout $A \in \mathscr{T}$.

3) La réponse est oui. Il faut raisonner comme dans la preuve du théorème d'unicité des mesures.

On note $\mathscr C$ l'ensemble des réunions finies d'intervalles de $\mathbf R$, qui est égal à l'ensemble des réunions finies d'intervalles deux à deux disjoints. Alors $\mathscr C$ est un clan.

On a $\mu(I) \leq \nu(I)$ pour tout intervalle I: on le sait par hypothèse pour les intervalles ouverts, et on utilise le fait que tout intervalle est l'intersection d'une suite décroissante d'intervalles ouverts I_n , et que comme les mesures sont finies on peut écrire $\mu(\bigcap I_n) = \lim \mu(I_n) \leq \lim \nu(I_n) = \nu(\bigcap I_n)$.

Comme la mesure d'une union finie disjointe est la somme des mesures, on conclut que $\mu(A) \leq \nu(A)$ pour tout $A \in \mathcal{C}$.

Soit maintenant $\mathcal{D}=\{A\in\mathscr{B}_{\mathbf{R}}\ \text{t.q. }\mu(A)\leqslant\nu(A)\}$. Alors \mathcal{D} est une classe monotone (c'est une conséquence de la propriété de la mesure d'une union croissante / d'une intersection décroissante ; on utilise à nouveau le fait que les mesures sont finies). De plus \mathcal{D} contient \mathscr{C} , donc aussi la classe monotone engendrée par \mathscr{C} . Par le théorème de la classe monotone, cette dernière coïncide avec la tribu engendrée par \mathscr{C} , qui est la tribu borélienne. Ainsi $\mu\leqslant\nu$.