TD n 005

8 mars 2018

Exercice 1 - Borne de Chernoff pour des variables aléatoires continues

Let X be an arbitrary random variable with $0 \leq X \leq 1$ and $\mathbf{E}\{X\}=p$. Consider the random variable $Y \in\{0,1\}$ with $\mathbf{P}\{Y=1\}=p$.
1.1 Show that for any $\lambda>0, \mathbf{E}\left\{e^{\lambda X}\right\} \leq \mathbf{E}\left\{e^{\lambda Y}\right\}$.
1.2 Using this fact, show that the Chernoff bound we saw in class still holds if we replace the condition $X_{i} \in\{0,1\}$ by $X_{i} \in[0,1]$.

Exercice 2-Sampling in a Rectangle

Let $P \subset \mathbb{Z}^{2}$ of size n. Our objective is to be able to quickly answer queries of the form "what is the fraction of points in P that are in the rectangle $r=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$?" We write $r[P]=\frac{|P \cap r|}{n}$ for this fraction. We consider a simple data structure to approximate $r[P]$ efficiently for any query r. The data structure is just a random subset $S \subset P$ of size m. On query r, the estimate for $r[P]$ we output is $\frac{|S \cap r|}{m}$. The structure S defines an ε-approximation if for all queries r, we have $\left|r[P]-\frac{|S \cap r|}{m}\right| \leq \varepsilon$. What m should we take to obtain an ε-approximation with probability $1-\delta$?

Exercice 3-Pour les plus rapides

We are given a biased coin and we want to know with probability at least $1-\delta$ how biased the coin is.
3.1 First, we want to determine that the bias is at least ε. How many throws do we need?
3.2 Now we are given a second biased coin without the bound on the bias. We want to decide how large the bias is with probability at least $1-\delta$. Let p be the probability that the coin turns up head and \hat{p}_{n} be an estimation on p obtained after n throws.
Find a value t (as a function of n and δ) for which the following relation holds :

$$
\mathbf{P}\left\{p \in\left[\hat{p}_{n}-t, \hat{p}_{n}+t\right]\right\} \geq 1-\delta .
$$

3.3 The interval considered above is valid for a fixed n. Let us slightly modify the procedure by decomposing it in several successive steps. We perform n_{1} throws, then n_{2} throws and so on, having a sequence $\left(n_{j}\right)_{j \in \mathbb{N}}$ (how to choose such a sequence is a concern of the next question). Define

$$
I_{j}=\left[\hat{p}_{n_{j}}-\sqrt{\frac{\ln \left(\frac{2}{\delta / 2^{j}}\right)}{2 n_{j}}}, \hat{p}_{n_{j}}+\sqrt{\frac{\ln \left(\frac{2}{\delta / 2^{j}}\right)}{2 n_{j}}}\right] .
$$

Give a lower-bound of $\mathbf{P}\left\{p \in I_{j}\right\}$ and on $\mathbf{P}\left\{\forall j \in\{1,2, \ldots\} p \in I_{j}\right\}$.
3.4 Explain how you would choose the sequence $\left(n_{j}\right)_{j \in \mathbb{N}}$ and how the procedure terminates.

Exercice 4-Booster un algorithme randomisé générique

Suppose you are given a randomized polynomial-time algorithm \mathcal{A} for deciding whether $x \in$ $\{0,1\}^{*}$ is in the language L or not. Suppose it has the following property. If $x \in L$, then $\mathbf{P}\{\mathcal{A}(x)=0\} \leq 1 / 4$ and if $x \notin L$, then $\mathbf{P}\{\mathcal{A}(x)=1\} \leq 1 / 3$. Note that the probability here is taken over the randomness used by the algorithm \mathcal{A} and not over the input x. Construct a randomized polynomial-time algorithm \mathcal{B} that is allowed to make independent calls to \mathcal{A} such that for all inputs $x \in\{0,1\}^{*}$, we have $\mathbf{P}\left\{\mathcal{B}(x)=\mathbf{1}_{x \in L}\right\} \geq 1-2^{-|x|}$. Here $\mathbf{1}_{x \in L}=1$ if $x \in L$ and 0 otherwise, and $|x|$ denotes the length of the bitstring x.

Exercice 5-Collectionneur de vignettes

Recall the coupon collector problem. Let X be the number of boxes that are bought before having at least one of each coupon. Show that

$$
\mathbf{P}\{X \geq n \ln n+c n\} \leq e^{-c} .
$$

In class we proved a similar bound using Chebychev's inequality. Here you are asked to prove this better bound in an elementary way.

