TD n ${ }^{\circ} 06$

15 mars 2018

Exercice 1 - Pour les plus rapides

We are given a biased coin and want to know how biased it is with probability at least $1-\delta$.
1.1 First, we want to determine that the bias is at least ε. How many throws do we need?
1.2 Now we are given a second biased coin without the bound on the bias. We want to decide how large the bias is with probability at least $1-\delta$. Let p be the probability that the coin turns up head and \hat{p}_{n} be an estimation on p obtained after n throws.
Find a value t (as a function of n and δ) for which the following relation holds :

$$
\mathbf{P}\left\{p \in\left[\hat{p}_{n}-t, \hat{p}_{n}+t\right]\right\} \geq 1-\delta
$$

1.3 The interval considered above is valid for a fixed n. Let us slightly modify the procedure by decomposing it in several successive steps. We perform n_{1} throws, then n_{2} throws and so on, having a sequence $\left(n_{j}\right)_{j \in \mathbb{N}}$ (how to choose such a sequence is a concern of the next question). Define

$$
I_{j}=\left[\hat{p}_{n_{j}}-\sqrt{\frac{\ln \left(\frac{2}{\delta / 2^{j}}\right)}{2 n_{j}}}, \hat{p}_{n_{j}}+\sqrt{\frac{\ln \left(\frac{2}{\delta / 2^{j}}\right)}{2 n_{j}}}\right] .
$$

Give a lower-bound of $\mathbf{P}\left\{p \in I_{j}\right\}$ and on $\mathbf{P}\left\{\forall j \in\{1,2, \ldots\} p \in I_{j}\right\}$.
1.4 Explain how you would choose the sequence $\left(n_{j}\right)_{j \in \mathbb{N}}$ and how the procedure terminates.

Exercice 2 - Booster un algorithme randomisé générique

Suppose you are given a randomized polynomial-time algorithm \mathcal{A} for deciding whether $x \in$ $\{0,1\}^{*}$ is in the language L or not. Suppose it has the following property. If $x \in L$, then $\mathbf{P}\{\mathcal{A}(x)=0\} \leq 1 / 4$ and if $x \notin L$, then $\mathbf{P}\{\mathcal{A}(x)=1\} \leq 1 / 3$. Note that the probability here is taken over the randomness used by the algorithm \mathcal{A} and not over the input x. Construct a randomized polynomial-time algorithm \mathcal{B} that is allowed to make independent calls to \mathcal{A} such that for all inputs $x \in\{0,1\}^{*}$, we have $\mathbf{P}\left\{\mathcal{B}(x)=\mathbf{1}_{x \in L}\right\} \geq 1-2^{-|x|}$. Here $\mathbf{1}_{x \in L}=1$ if $x \in L$ and 0 otherwise, and $|x|$ denotes the length of the bitstring x.

Exercice 3-Collectionneur de vignettes

Recall the coupon collector problem. Let X be the number of boxes that are bought before having at least one of each coupon. Show that

$$
\mathbf{P}\{X \geq n \ln n+c n\} \leq e^{-c}
$$

In class we proved a similar bound using Chebychev's inequality. Here you are asked to prove this better bound in an elementary way.

Exercice 4 - Tri par seaux

Suppose that we have a set of $n=2^{m}$ elements to be sorted and that each element is an integer chosen independently and uniformly at random from the range $\left[0,2^{k}\right)$, where $k \geq m$ and k is assumed to be known. Bucket sort works in two stages. In the first stage (pre-sorting), we place the elements into n buckets according to some rules. In the second stage, we call a simple sorting algorithm (say, insertion sort with quadratic complexity) within each bucket. Finally, we concatenate the sorted lists from each bucket. For the algorithm to be correct, the pre-sorting must be done in such a way that all the elements of the bucket i-th are inferior to all the elements of the bucket j-th for $i<j$.
4.1 Give a way for pre-sorting (stage 1) that satisfies the stated conditions. We want that for any given element x, the decision which bucket x goes to can be made in constant time (assume, arithmetic operations take constant time).
4.2 Let X_{i} be a random variable that counts the number of elements in the i-th bin after pre-sorting. Which distribution do the X_{i} 's follow?
4.3 Show that the expected complexity of Bucket sort is $\mathcal{O}(n)$.

Exercice 5-Approximation de Poisson

Consider the Balls and Bins model once again : we randomly put m balls into n bins. The problem is that random variables X_{i} representing the number of balls in the i-th bin are not independent. We would like to approximate the Balls and Bins model with the Poisson distribution. Here, Y_{1}, \ldots, Y_{n} are independent random variables each following Poisson distribution with parameter (i.e. expected value) $\mu=m / n$ (Y_{i} can be viewed as a simplified version of X_{i}).
5.1 Show that $Y=\sum_{i=1}^{n} Y_{i}$ follows Poisson distribution and determine its parameter.
5.2 Show that the distribution of $\left(Y_{1}, \ldots, Y_{n}\right)$ conditioned on $Y=m$ is the same as the distribution of $\left(X_{1}, \ldots X_{n}\right)$.
Note : One can, in fact, obtain a slightly more general result. If ($X_{1}, \ldots X_{n}$) represents the load (charge) of n bins after throwing k balls at random, and Y_{i} are n independent random variables that follow Poisson distribution with parameter m / n, then the distribution of $\left(Y_{1}, \ldots, Y_{n}\right)$ conditioned on $Y=k$ is the same as the distribution of $\left(X_{1}, \ldots X_{n}\right)$ independent of value m.
5.3 Let f be a function of n variables that takes values in $\mathbb{R}_{+} \cup\{0\}$. Show that

$$
\mathbf{E}\left\{f\left(X_{1}, \ldots, X_{n}\right)\right\} \leq e \sqrt{m} \mathbf{E}\left\{f\left(Y_{1}, \ldots, Y_{n}\right)\right\}
$$

You may use the fact that $m!<e \sqrt{m}\left(\frac{m}{e}\right)^{m}$.
5.4 Call the Poisson case the set of events that occur when the number of balls in the bins are taken to be independent Poisson random variables with mean m / n. Call the Balls and Bins case, the set of events when m balls are thrown into n bins independently at random. Which function f would you apply to the above result to conclude :
Any event that takes place with probability p in the Poisson case takes place with probability at most $p e \sqrt{m}$ in the Balls and Bins case.
5.5 Re-establish the lower-bound on the maximal load in case $m=n$ using Poisson approximation. More precisely, show that if n balls are thrown independently into n bins, the maximal load will be at least $(\ln n) /(\ln \ln n)$ with probability at least $1-1 / n$ for sufficiently large n.

