
Échauffement : deux algorithmes
probabilistes

Les meilleurs algorithmes probabilistes (connus) sont souvent plus simples et/ou plus
efficaces que les meilleurs algorithmes déterministes (connus). On va illustrer ce principe sur
deux exemples, en utilisant le langage probabiliste («indépendance», «probabilité condi-
tionnelle») qui sera introduit rigoureusement dans le prochain chapitre.

0.1 Vérifier la multiplication matricielle

Soient A, B, C trois matrices n×n à coefficients dans le corps F2 = {0, 1}. Le problème
est de déterminer si l’équation AB = C est vraie ou fausse.

Une première idée est de calculer le produit A · B et de vérifier si les coefficients sont
les mêmes que ceux de C. L’algorithme naïf qui utilise la formule

(AB)ij =
∑
k

AikBkj

a une complexité Θ(n3). Des algorithmes plus sophistiqués basés sur une idée de Strassen
améliorent la complexité en Θ(nα) pour 2 < α < 3 (le record actuel est α ≈ 2, 37 et on
conjecture que la valeur optimale est α = 2).

Une autre idée est de vérifier la formule à travers le prisme probabiliste, c’est-à-dire de
vérifier si l’équation

ABx = Cx

est satisfaite pour un vecteur x ∈ Fn
2 choisi au hasard. Une telle vérification s’effectue en

Θ(n2), qui est clairement la complexité optimale de la multiplication matrice × vecteur.
La clé est le lemme suivant.

Lemme. Soit D ∈ Mn(F2) une matrice non nulle et x ∈ Fn
2 choisi uniformément au

hasard. Alors
P(Dx ̸= 0) ⩾ 1/2.

Démonstration. Il existe un coefficient non nul dans la matrice D ; sans perte de généralité
supposons que c’est le coefficient D1n. On a alors

(Dx)1 =
n∑

j=1

d1jxj =
n−1∑
j=1

d1jxj + xn.

On remarque alors que quels que soient (x1, . . . , xn−1) fixés, il y a probabilité 1
2 (sur le

choix de xn) que (Dx)1 ̸= 0.
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Comme conséquence du lemme, on a le résultat suivant : si AB ̸= C et si x ∈ Fn
2 est

choisi au hasard, alors

P(ABx = Cx) ⩽
1

2
.

Si on répète 100 fois cette vérification pour des vecteurs x1, . . . , x100 choisis indépen-
demment, on a

P(ABxi = Cxi pour tout i) ⩽ 2−100 = 0 en pratique

et on obtient donc un algorithme probabiliste qui permet de vérifier la multiplication
matricielle en temps Θ(n2).

Cet argument repose implicitement sur le concept d’indépendance que l’on étudiera
formellement plus tard.

0.2 Coupe minimale dans un graphe

Soit G = (V,E) un graphe non orienté sans boucle, ayant possiblement des arêtes
multiples. On pose n = |V |.

Une coupe de G est un sous-ensemble C ⊂ E tel que (V,E \ C) n’est pas connexe. Le
problème est de déterminer le cardinal minimal d’une coupe de G, que l’on note mincut(G).
Autrement dit, on cherche une partition V = V1∪V2 (avec V1 et V2 non vides) qui minimise
le nombre d’arêtes joignant un sommet de V1 à un sommet de V2. Il existe des algorithmes
déterministes efficaces pour résoudre ce problème. Mais il y a plus simple : l’algorithme
probabiliste de Karger (1993).

L’algorithme de Karger repose sur la notion de contraction d’un graphe selon une
arête. Étant donnée une arête e = {x, y} ∈ E, la contraction de G selon e, notée G/e,
est le graphe obtenu en identifiant les sommets x et y (pour obtenir un nouveau sommet
noté xy), en remplaçant les arêtes {x, z} ou {y, z} par {xy, z} et en effaçant les boucles
éventuellement créées. Une contraction d’un graphe à n sommets peut être implémentée
en temps O(n), par exemple en représentant le graphe par sa matrice d’adjacence.

a b

c d

ab

c d

Figure 1 – Un graphe G (à gauche) et sa contraction G/e pour e = {a, b} (à droite)

Pour toute arête e de G, on a mincut(G) ⩽ mincut(G/e) puisque les coupes de G/e
correspondent aux coupes de G qui n’utilisent pas l’arête e. L’algorithme de Karger
consiste à effectuer des contractions au hasard.

Algorithme (Algorithme de Karger). Tant que G contient > 2 sommets, répéter la
procédure suivante : choisir uniformément au hasard une arête e de G et remplacer G par
G/e. On obtient ainsi un graphe à 2 sommets qui correspond à une partition V = V1 ∪ V2

et donc à une coupe du graphe initial.

Il est important de conserver les arêtes multiples : par exemple, si on l’applique l’al-
gorithme au graphe qui est à droite de la figure 1, l’arête {ab, d} est contractée avec
probabilité 1

5 puisque le graphe comprend 5 arêtes.
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Dans la description de l’algorithme donnée ci-dessus, on considère implicitement que
les différents choix aléatoires effectués par l’algorithme sont indépendants. Cette remarque
vaut pour tous les algorithmes probabilistes étudiés dans ce cours.

Il est clair que l’algorithme termine puisque le nombre de sommets diminue de 1 à
chaque étape. Le lemme-clé est le suivant.

Lemme. La coupe C produite par l’algorithme de Karger vérifie

P(|C| = mincut(G)) ⩾
2

n2
.

Si on répète N = 50n2 fois cet algorithme (tous les choix étant indépendants), et si on
note ki la coupe obtenue à la ième exécution de l’algorithme, alors

P

(
min

1⩽i⩽N
ki ̸= mincut(G)

)
⩽

(
1− 2

n2

)N

⩽ exp

(
−2N

n2

)
= exp(−100) ≈ 0.

On a donc un algorithme probabiliste de complexité O(n2T ) pour trouver la coupe
minimale d’un graphe, où T = O(n2) est la complexité d’une itération.

Preuve du lemme. Soit k = mincut(G) et C une coupe de taille k. Pour 1 ⩽ i ⩽ n − 2,
considérons les événements

Ai = « l’arête choisie à la ième étape est dans C »

et soit Bi l’événement complémentaire de Ai. On a P(A1) =
k
|E| . Mais tout sommet a degré

⩾ k et donc |E| ⩾ kn
2 ; on a donc P(A1) ⩽ 2

n .
Conditionnellement à B1, le graphe obtenu après contraction de la première arête a

aussi une coupe minimale égale à k. Ce graphe a n− 1 sommets et on a donc par le même
argument

P(A2|B1) ⩽
2

n− 1
.

De la même manière, on a

P(A3|B1 ∩B2) ⩽
2

n− 2
...

P(An−2|B1 ∩B2 ∩ . . . Bn−3) ⩽
2

3
On a donc

P(B1 ∩B2 ∩ · · · ∩Bn−2) = P(B1)P(B2|B1)P(B3|B1 ∩B2) . . .P(Bn−2|B1 ∩ · · · ∩Bn−3)

⩾

(
1− 2

n

)(
1− 2

n− 1

)
· · ·
(
1− 2

3

)
=

2

n(n− 1)

⩾
2

n2

Lorsque les événements A1, A2, . . . , An sont réalisés, la coupe produite par l’algorithme
de Karger est la coupe C. Ceci conclut la preuve du lemme.
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Chapitre 1

Événements, probabilités, variables
aléatoires

1.1 Espaces de probabilité

Définition. Un espace de probabilité est la donnée de
— un ensemble Ω,
— une famille F de parties de Ω (c’est-à-dire F ⊂ P(Ω)), l’ensemble des événements,
— une fonction P : F → [0, 1] qui a un événement associe sa probabilité,

qui vérifie les axiomes suivants :
1. La famille F est une tribu (en anglais : σ-algebra), c’est-à-dire telle que

— Ω est un événement,
— Si A est un événement, alors Ω \A est événement,
— si (An)n∈N est une suite d’événements, alors

⋃
An est un événement.

2. P est une mesure de probabilité, c’est-à-dire que
— on a P(Ω) = 1 et P(∅) = 0,
— si (An)n∈N est une suite d’événements deux à deux disjoints (c’est à dire que

Am ∩An = ∅ si m ̸= n), alors

P

( ⋃
n∈N

An

)
=
∑
n∈N

P(An).

Cette propriété s’appelle la σ-additivité.

Dans tout le cours, on suppose donné un espace de probabilité (Ω,F ,P).

Exemple. Si Ω est un ensemble fini, on peut prendre F = P(Ω) et définir pour A ⊂ Ω

P(A) =
|A|
|Ω|

.

On dit que P est la probabilité uniforme sur Ω.

Exemple (généralise le précédent). Si Ω est un ensemble fini ou dénombrable et si (pω)ω∈Ω
est une famille de réels ⩾ 0 vérifiant

∑
pω = 1, on peut prendre F = P(Ω) et définir pour

A ⊂ Ω
P(A) =

∑
ω∈A

pω.

Un espace de probabilité de ce type est appelé un espace de probabilité discret.

4



Remarquons que si A et B sont des événements tels que A ⊂ B, alors P(A) ⩽ P(B).
En effet, par σ-additivité (appliquée à une suite d’événements dont tous sauf deux sont
vides) on a P(B) = P(A) + P(B \ A) ⩾ P(A). Le lemme suivant est à la fois trivial et
fondamental.

Lemme (Borne de l’union). Si (An) est une suite finie ou dénombrable d’événements,
alors

P

(⋃
n

An

)
⩽
∑
n

P(An).

Démonstration. On définit Bn = An \
⋃

k<nAk. On a alors Bn ⊂ An et
⋃
Bn =

⋃
An.

Puisque les événements Bn sont deux à deux disjoints, on a par σ-additivité,

P

(⋃
n

An

)
= P

(⋃
n

Bn

)
=
∑
n

P(Bn) ⩽
∑
n

P(An)

d’où le résultat.

Une question naturelle : pourquoi ne pas toujours prendre F = P(Ω) ? Quel intérêt y
a-t-il a exclure des parties de l’ensemble des événements ? Il y a deux raisons sur lesquelles
on reviendra

— il y a des cas où on ne peut pas, pour des raisons liées à l’infini.
— même dans le cas discret, il y a parfois intérêt à considérer plusieurs tribus diffé-

rentes.

1.2 Événements

Définition. Deux événements A et B sont indépendants (A ⊥⊥ B) si

P(A ∩B) = P(A)P(B).

Si P(B) > 0, la probabilité conditionnelle de A sachant B est définie par P(A|B) =
P(A ∩B)/P(B). On a donc

A ⊥⊥ B ⇐⇒ P(A|B) = P(A)

et donc la probabilité de A «ne dépend pas» de B. Voila un autre lemme trivial.

Lemme. Soit (An) une partition finie ou dénombrable de Ω en événements telle que
P(An) > 0 pour tout n. Alors pour tout événement B

P(B) =
∑
n

P(B ∩An) =
∑
n

P(B|An)P(An).

Définition. Soit (An) une famille finie ou infinie d’événements. On dit que les événements
(An) sont indépendants si pour tout ensemble I fini, on a

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).
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Attention : soient trois événements A1, A2 , A3. On a l’implication

A1, A2, A3 indépendants =⇒ P(A1 ∩A2 ∩A3) = P(A1)P(A2)P(A3)

mais la réciproque est fausse en général, comme on s’en convainc en considérant par exemple
A3 = ∅. De même, si (An) sont des événements, alors

(An) indépendants =⇒ (An) 2 à 2 indépendants

et la réciproque est fausse en général.

Exercice. Montrer que des événements (An) sont indépendants si et seulement si les évé-
nements (Ω \An) sont indépendants.

Exercice. L’indépendance de n événements requiert de vérifier 2n équations. Donner, pour
tout n, un exemple où toutes ces équations sont vérifiées sauf une.

Fin cours # 1 du 12 septembre

1.3 Théorèmes d’existence

Le théorème suivant justifie l’existence de suites finies ou infinies de «bits aléatoires
indépendants», qui sont utilisées dans beaucoup d’algorithmes probabilistes, comme celui
de la multiplication matricielle.

Théorème (Existence de bits aléatoires).
1. Pour tout n, il existe un espace de probabilité (Ωn,Fn,Pn) et n événements A1, . . . , An

indépendants de probabilité 1/2.

2. Il existe un espace de probabilité (Ω,F ,P) et une suite infinie (An)n∈N d’événements
indépendants de probabilité 1/2.

Démonstration. Pour le premier point, on pose Ωn = {0, 1}n, Fn = P(Ωn) et Pn la
probabilité uniforme. On considère pour k ∈ [n]

Ak = {ω ∈ {0, 1}n : ωk = 1}.

On a alors Pn(Ak) =
1
2 , et pour tout I ⊂ [n]

Pn

(⋂
i∈I

Ai

)
=

2n−|I|

2n
=

1

2|I|
=
∏
i∈I

Pn(Ai).

Le second point est un résultat difficile que l’on admet.

Le second point du théorème est équivalent à l’existence d’une probabilité P sur l’en-
semble Ω = {0, 1}N des suites infinies de bits ayant la propriété suivante : pour tout
événement A ⊂ {0, 1}N et pour tout ω ∈ {0, 1}N, on a la propriété d’invariance par
translation

P(A⊕ ω) = P(A),

où A ⊕ ω = {a ⊕ ω : a ∈ A}, le symbole ⊕ désignant l’addition modulo 2 (ou XOR)
coordonnée par coordonnée.

Supposant construite une telle probabilité, les événements (An)n∈N définis par

An = {ω ∈ {0, 1}N : ωn = 1},
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forment une suite d’événements indépendants de probabilité 1/2 (en effet, si I ⊂ N est une
partie finie de cardinal k, on peut partitionner {0, 1}N en 2k translatés de B :=

⋂
i∈I Ai,

ce qui implique P(B) = 2−k).
Une difficulté est que la mesure P ne peut pas être définie sur {0, 1}N. Supposons par

l’absurde qu’elle le soit et considérons la relation d’équivalence sur {0, 1}N donnée par

(un) ∼ (vn) ⇐⇒ {n : un ̸= vn} est fini.

Formons un ensemble B en choisissant un représentant dans chaque classe d’équivalence.
Notons Q ⊂ {0, 1}N l’ensemble (dénombrable) des suites ayant un nombre fini de 1. On a
alors la partition dénombrable

{0, 1}N =
⋃
ω∈Q

B ⊕ ω

et donc, par σ-additivité

1 = P({0, 1}N) =
∑
ω∈Q

P(B ⊕ ω) =
∑
ω∈Q

P(B),

ce qui est absurde car la somme d’une infinité de nombres tous égaux ne peut pas valoir 1.
La définition de l’ensemble B n’est pas constructive car elle utilise l’axiome du choix.
La tribu sur laquelle la probabilité P est définie est la plus petite tribu contenant les
événements An ; l’ensemble B n’en fait pas partie.

L’existence de la probabilité P est équivalente à l’existence de la mesure de Lebesgue
λ, qui est l’unique mesure de probabilité sur [0, 1[= R/Z qui est invariante par translation
(modulo 1) et qui a la propriété que λ([a, b]) = b − a pour tous a < b dans [0, 1[. Le lien
avec l’ensemble {0, 1}N s’obtient en identifiant un réel x ∈ [0, 1[ avec la suite de {0, 1}N
donnée par son développement binaire.

En pratique, l’ensemble des algorithmes probabilistes utilisés par l’humanité n’utilisera
qu’un nombre fini de bits aléatoires, donc la version facile du théorème d’existence suffit.

Fin cours # 1 du 29 janvier

1.4 Variables aléatoires

On note BR la plus petite tribu de R qui contient les intervalles ; la tribu BR s’appelle la
tribu des boréliens de R. Dans la suite on emploiera assez librement les concepts d’ensemble
borélien ou de fonction borélienne. L’existence d’ensembles non boréliens ou de fonctions
non boréliennes ne s’obtient qu’en utilisant l’axiome du choix ou un axiome de nature
similaire ; tout ce qui s’écrit explicitement est borélien.

Définition. Une variable aléatoire (réelle) est une fonction X : Ω → R telle que, pour
tous a < b réels l’ensemble {a ⩽ X ⩽ b} = X−1([a, b]) est un événement (c’est-à-dire est
dans F). On dit aussi que X est F-mesurable.

Si X est une variable aléatoire réelle, on peut montrer que X−1(B) est un événement
pour tout B ∈ BR.

Quand F est la tribu P(Ω), toute fonction de Ω dans R est F-mesurable. Quand F est
la tribu triviale {∅,Ω}, seules les fonctions constantes sont F-mesurables. Toute fonction
continue (ou même continue par morceaux ou plus généralement «borélienne») d’une v.a.
est une v.a.
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On définit une variable aléatoire à valeurs dans Rn (ou vecteur aléatoire) comme un
n-uplet de variables aléatoires. Si E est un ensemble fini, on définit une variable aléatoire
à valeurs dans E comme une fonction X : Ω → E telle que X−1(A) est un événement pour
tout A ⊂ E.

Exemple. Si A est un événement, la fonction indicatrice de A définie pour ω ∈ Ω par

1A(ω) =

{
1 si ω ∈ A

0 sinon

est une variable aléatoire.

Définition. Soit X une variable aléatoire. La loi ou distribution de X est la mesure de
probabilité PX définie sur (R,BR) par

PX(B) = P(X ∈ B)

pour tout borélien B.

Si X et Y sont des v.a., on note X ∼ Y si X et Y ont même loi, c’est-à-dire si
PX = PY . Une idée fondamentale dans l’axiomatisation des probabilités est que seule la
loi d’une variable aléatoire X est importante. L’espace de probabilité Ω sous-jacent ainsi
que la manière dont est définie la fonction X : Ω → R ne sont pas importants.

Exemple. Voici deux manières différentes de modéliser le lancer d’un dé
1. On peut prendre Ω = {1, . . . , 6}, X : Ω → R la fonction définie par X(ω) = ω et P

la probabilité uniforme sur Ω.
2. On peut prendre Ω l’ensemble des conditions initiales (vitesse, force, angle du lancer)

et des paramètres (vent, température, ...) qui interviennent dans les équations phy-
siques qui sous-tendent l’expérience du lancer du dé. La mesure P et la fonction X
sont alors extrêmement compliquées, mais ont la propriété que P(X = k) = 1

6 pour
tout entier k de 1 à 6.

Bien évidemment, les calculs que l’on peut faire sur les statistiques des lancers de dés
donneront les mêmes résultats dans chacune de ces deux modélisations.

On peut aussi illustrer par un exemple informatique l’idée que seule les lois des v.a.
comptent et non les détails de leur implémentation sur un espace de probabilité : quand
un algorithme probabiliste appelle la fonction random pour générer des bits aléatoires
indépendants, il n’est pas nécessaire de connaître les détails de l’implémentation de cette
fonction (sujet par ailleurs passionnant) pour étudier la performance de l’algorithme.

Il y a deux classes importantes de variables aléatoires réelles :
1. Les variables aléatoires discrètes, qui prennent leurs valeurs dans un ensemble fini

ou dénombrable. Soit X est une variable aléatoire à valeurs dans un sous-ensemble
fini ou dénombrable C ⊂ R. Si pour a dans C on pose pa = P(X = a), alors on a∑

a∈C pa = 1.
2. Les variables aléatoires continues. Étant donné une fonction fX : R → R+ continue

par morceaux vérifiant
∫∞
−∞ fX(s) ds = 1, il existe une variable aléatoire X dont la

loi vérifie, pour tout a < b

PX([a, b]) = P(X ∈ [a, b]) =

∫ b

a
fX(s) ds = 1.

On dit que X est une variable aléatoire de densité fX .
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Il existe des variables aléatoires qui ne sont ni discrètes ni continues : par exemple la loi
d’un nombre aléatoire dans [0, 1] obtenu en choisissant à l’aide d’une suite de bits aléatoires
les décimales de son développement en base 10 comme valant soit 3 soit 7.

Si un espace de probabilité admet une suite infinie de bits aléatoires, alors on peut
définir dessus une variable aléatoire ayant n’importe quelle loi prescrite.

Exercice. Définir une variable aléatoire ayant une loi uniforme sur {1, 2, 3} à partir d’une
suite infinie de bits aléatoires. Est-ce possible à partir d’une suite finie ?

Indépendance de variables aléatoires

Définition. On dit que des variables aléatoires (Xi)i∈I sont indépendantes si, quels que
soient les réels (ti)i∈I , les événements {Xi ⩽ ti} sont indépendants.

Remarque. Dans le cas discret (où I est fini et les variables aléatoires sont à valeurs dans
un ensemble E fini ou dénombrable), les variables aléatoires (Xi)i∈I sont indépendantes si
et seulement si la relation

P(∀i ∈ I,Xi = xi) =
∏
i∈I

P(Xi = xi)

est vérifiée pour tous les choix de (xi) dans E.

Lemme (Lemme des coalitions). Soit (Xi)i∈I des variables aléatoires indépendantes, I =⋃
α Iα une partition de I. Alors, si on pose

Yα = fα((Xi)i∈Iα)

(les fonctions fα : RIα → R étant «boréliennes»), les variables aléatoires (Yα) sont indé-
pendantes.

En particulier, si X et Y sont indépendantes, alors des variables aléatoires de la forme
f(X) et g(Y ) sont indépendantes.

Voici un dernier théorème d’existence.

Théorème. Étant donnée une suite (µn) de mesures de probabilités sur R, il existe un
espace de probabilité Ω, et pour tout n une variable aléatoire Xn : Ω → R de loi µn, tels
que les variables aléatoires (Xn) sont indépendantes.

On dira que les variables aléatoires (Xn) sont i.i.d. (indépendantes et identiquement
distribuées) si elles sont indépendantes et de même loi.

1.5 Espérance d’une variable aléatoire

Si X est une variable aléatoire, on veut définir son espérance E[X] comme la valeur
moyenne qu’elle prend.

Dans le cas discret, si X prend les valeurs réelles x1, . . . , xn, on pose

E[X] =
n∑

k=1

xkP(X = xk).

Dans le cas général, on procède en plusieurs étapes.

1. Pour tout événement A, on pose E[1A] = P(A).
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2. On étend cette définition par linéarité : si X =
∑

i λi1Ai (somme finie), on pose

E[X] =
∑

λiP(Ai).

On vérifie que cette définition est cohérente : si on a
∑

λi1Ai =
∑

µj1Bj , alors on a∑
λiP(Ai) =

∑
µjP(Bj). Cette étape permet de définir l’espérance d’une variable

aléatoire prenant un nombre fini de valeurs.
3. Si X est une variable aléatoire positive, on peut l’écrire comme X = limXn où (Xn)

est une suite croissante de variables aléatoires prenant un nombre fini de valeurs, et
on pose alors

E[X] = limE[Xn]

en vérifiant que cette définition ne dépend pas du choix de la suite Xn. Cette limite
existe dans [0,+∞] comme limite d’une suite croissante.

4. Si X est une variable aléatoire telle que E[|X|] < +∞ (une telle variable est dite
intégrable), on écrit X = X+ − X− (où X+ = max(0, X) et X− = max(0,−X)
sont des variables aléatoires positives) et on pose

E[X] = E[X+]−E[X−].

La raison pour laquelle on se restreint aux variables aléatoires intégrables pour définir
l’espérance est qu’on veut éviter d’écrire une forme indéterminée du type (+∞)− (+∞).

Proposition (Linéarité de l’espérance). Si X et Y sont des variables aléatoires intégrables
et c ∈ R, alors

E[X + Y ] = E[X] +E[Y ],

E[cX] = cE[X].

Pour les variables à valeurs dans N, on a la formule suivante.

Proposition. Soit Y une variable aléatoire à valeurs dans N. Alors

E[Y ] =
∞∑
k=1

P(Y ⩾ k).

En effet, P(Y ⩾ k) =
∑∞

n=k P(Y = n) et on inverse les sommes.

Proposition. Si X et Y sont des variables aléatoires indépendantes et intégrables, alors
la variable aléatoire XY est intégrable et

E[XY ] = E[X]E[Y ].

Démonstration. Par approximation, il suffit de traiter le cas où X et Y prennent un nombre
fini de valeurs. Écrivons

X =
∑

λi1Ai , Y =
∑

µj1Bj ,

les événements (Ai) (resp. (Bj)) étant disjoints. Quels que soient les indices i et j, les
événements Ai = X−1(λi) et Bj = Y −1(µj) sont indépendants et donc P(Ai ∩ Bj) =
P(Ai)P(Bj). Puisque

XY =
∑
i,j

λiµj1Ai∩Bj ,

on a

E[XY ] =
∑
i,j

λiµjP(Ai ∩Bj) =

(∑
i

λiP(Ai)

)∑
j

µjP(Bj)

 = E[X]E[Y ],

d’où le résultat.
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Corollaire. Si les variables aléatoires X1, . . . , Xn sont indépendantes, et si f1, . . . , fn sont
des fonctions telles que les variables fi(Xi) sont intégrables, alors

E

[
n∏

i=1

fi(Xi)

]
=

n∏
i=1

E[fi(Xi)].

Enfin, mentionnons comment on calcule l’espérance d’une fonction d’une variable aléa-
toire continue.

Proposition («Formule du transfert»). Soit X une variable aléatoire continue admettant
une densité fX . Pour toute fonction h : R → R, on a

E[h(X)] =

∫ ∞

−∞
h(x)fX(x) dx

dès lors que l’intégrale a un sens.

En particulier, l’espérance d’une variable aléatoire intégrable de densité fX s’obtient
comme

E[X] =

∫ ∞

−∞
xfX(x) dx

Fin cours # 2 du 17 septembre

1.6 Exemple : QuickSort randomisé

Nous allons décrire un exemple qui illustre l’efficacité du principe de linéarité de l’es-
pérance.

Supposons que l’on doive trier une liste S de n nombres que l’on suppose distincts (c’est
le cas le plus dur). L’algorithme récursif QuickSort consiste à choisir un élément x de S,
que l’on compare à tous les autres éléments pour écrire la partition

S = S− ∪ {x} ∪ S+

où S− = {y ∈ S : y < x} et S+ = {y ∈ S : y > x}, puis à trier S− et S+ par des appels
récursifs à QuickSort.

La complexité Cn de l’algorithme (que l’on définit comme le nombre total de compa-
raisons effectuées) dépend du choix des pivots : c’est une variable aléatoire. Dans le pire
cas, le pivot choisi est toujours le plus petit possible et alors

Cn = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2

(toutes les comparaisons possibles ont été effectuées). Dans le meilleur cas, le pivot choisi
est toujours la médiane de l’ensemble considéré et on a

Cn = (n− 1) + C⌈n
2 ⌉ + C⌊n

2 ⌋,

d’où on tire l’estimation Cn = O(n log n) qui est la complexité optimale d’un algorithme
de tri.

L’algorithme Randomized Quicksort est la variante de l’algorithme Quicksort où les
pivots sont choisis au hasard à chaque étape, indépendamment et selon la loi uniforme. On
s’intéresse alors au temps moyen d’exécution E[Cn]. Nous allons voir que le principe de la
linéarité de l’espérance permet un calcul élégant de la complexité moyenne.
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Théorème. Pour Randomized Quicksort, on a E[Cn] ∼ 2n log n quand n → ∞.

Démonstration. Soit S = {x1, . . . , xn} avec x1 < x2 < · · · < xn. Remarquons que chaque
couple d’éléments distincts de S sera comparé 0 ou 1 fois au cours de l’algorithme. Pour
i < j, soit Aij l’événement «les éléments xi et xj ont été comparés au cours de l’exécution
de l’algorithme». On a

E[Cn] = E

∑
i<j

1Aij


=

∑
i<j

P(Aij).

L’observation cruciale est la suivante ; deux éléments xi < xj ont été comparés pendant
l’exécution de l’algorithme si et seulement si, la première fois qu’un pivot est choisi parmi
{xi, xi+1, . . . , xj}, ce pivot est xi ou xj . On a donc P(Aij) =

2
j−i+1 . On a donc

E[Cn] =
∑
i<j

2

j − i+ 1
= 2

n−1∑
k=1

1

k + 1
(n− k) = 2(n+ 1)

n−1∑
k=1

1

k + 1
− 2(n− 1)

d’où le résultat.

1.7 La loi géométrique

Si a est un réel, la mesure de Dirac en a, notée δa est la loi d’une variable aléatoire X
telle que P(X = a) = 1. On dit aussi que X est presque sûrement égale à a.

Soit p ∈ [0, 1]. La loi de Bernoulli de paramètre p, notée B(p) est la loi pδ1+(1−p)δ0.
Une variable aléatoire X a pour loi B(p), ce qu’on note X ∼ B(p), si et seulement si
P(X = 1) = p et P(X = 0) = 1− p. La loi B(12) est la loi d’un bit aléatoire.

Soient (Xn)n⩾1 une suite de variables aléatoires i.i.d. de loi B(p). On considère la
variable aléatoire

Y = min{k ⩾ 1 : Xk = 1}

donnée comme l’indice du premier 1. On a P(Y = k) = (1 − p)k−1p. Si on suppose
0 < p ⩽ 1, alors

∞∑
k=1

(1− p)k−1p = p
∞∑
j=0

(1− p)j = 1

et donc la variable aléatoire Y prend presque sûrement une valeur finie. La loi de Y est
appelée loi géométrique de paramètre p et notée G(p).

Si Y ∼ G(p), alors (par un calcul ou un raisonnement) P(Y > k) = (1− p)k. De plus,
E[Y ] = 1

p .

Proposition (Absence de mémoire de la loi géométrique). Soit Y une variable aléatoire
de loi G(p). Alors pour tous k, n > 0

P(Y = n+ k|Y > k) = P(Y = n).

Autrement dit, la loi conditionnelle de Y − k sachant que Y > k est la même que la loi
de Y .
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Démonstration. Il est équivalent de montrer que P(Y > n+k|Y > k) = P(Y > n) et c’est
immédiat au vu de la formule P(Y > k) = (1− p)k.

Exercice. Soient Y1 ∼ G(p1) et Y2 ∼ G(p2) deux variables aléatoires indépendantes. Quelle
est la loi de min(Y1, Y2) ? (Il est possible répondre sans aucun calcul.)

Voici un exemple important où intervient la loi géométrique : le problème du collec-
tionneur de vignettes.

Soit E un ensemble fini de cardinal N et (Xn)n⩾1 des variables aléatoires i.i.d. de loi
uniforme sur E (penser à une collection d’images Panini). On considère

Y = min{k : {X1, . . . , Xk} = E},

le nombre de vignettes qu’il faut amasser avant d’avoir une collection complète. On veut
calculer E[Y ], la valeur moyenne de Y .

Introduisons pour 1 ⩽ j ⩽ N les variables aléatoires

Tj = min{k : |{X1, . . . , Xk}| = j},

de sorte que Y = TN . On a T1 = 1 et T2 − 1 ∼ G(N−1
N ). Plus généralement, on a

Proposition. Les variables aléatoires Z1, . . . , ZN définies par Z1 = 1 et Zj = Tj − Tj−1

pour 1 < j ⩽ N sont indépendantes. De plus Zj suit la loi G(N+1−j
N ).

Esquisse de démonstration. Nous devons montrer que pour tout choix d’entiers k2, . . . , kN ,
on a

P(Z2 = k2, . . . , ZN = kN ) =

N∏
j=2

[(
j − 1

N

)kj−1(
1− j − 1

N

)]
On peut réécrire le membre de gauche comme

P(Z2 = k2)P(Z3 = k3|Z2 = k2) · · ·P(ZN = kN |Z2 = k2, . . . , ZN−1 = kN−1)

Fixons j et soit x = (x1, . . . , xℓ) ∈ Eℓ tel que |{x1, . . . , xℓ}| = j − 1 et xi ̸= xℓ si i < ℓ. On
considère l’événement H(x) = {X1 = x1, . . . , Xℓ = xℓ}. On a

P(Zj = kj |H(x)) =

(
j − 1

N

)kj−1 N − j + 1

N
.

On en déduit que pour tous k2, . . . , kj−1

P(Zj = kj |Z2 = k2, . . . , Zj−1 = kj−1) =

(
j − 1

N

)kj−1 N − j + 1

N
,

par la propriété élémentaire suivante des probabilités conditionnelles : si (Bi) est une
famille finie d’événements disjoints tels que P(A|Bi) = p pour tout i, alors P(A|

⋃
Bi) = p.

(On utilise le fait que l’événement «Z2 = k2, . . ., Zj = kj» est réunion disjointe de tels
événements H(x)).

On peut donc écrire la variable aléatoire

Y = TN = Z1 + · · ·+ . . . ZN

13



comme une somme de variables aléatoires indépendantes de loi géométrique. Par linéarité
de l’espérance, on en déduit

E[Y ] = E[Z1] + · · ·+E[ZN ]

=
N∑
j=1

N

N + 1− j

= N

N∑
k=1

1

k

∼ N logN
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Chapitre 2

Moments et déviations

On a vu quelques calculs d’espérance, par exemple pour le temps d’exécution de
QuickSort ou pour le problème du collectionneur de vignettes. Mais l’espérance d’une
variable aléatoire ne suffit bien sur pas à déterminer la loi. Par exemple, les deux variables
aléatoires suivantes ont une espérance de 1

1. une variable aléatoire X telle que P(X = 1) = 1,
2. une variable aléatoire Y telle que P(Y = n) = 1

n et P(Y = 0) = n−1
n , où n ≫ 1.

On aimerait savoir a priori qu’une variable aléatoire est souvent proche de son espé-
rance ; c’est le cas de la variable X mais pas de la variable Y .

2.1 Les inégalités de Markov et de Tchebychev

Théorème (Inégalité de Markov). Soit X une variable aléatoire à valeurs ⩾ 0. Alors,
pour tout a > 0,

P(X ⩾ a) ⩽
E[X]

a
.

Démonstration. On a X ⩾ a1X⩾a, et donc E[X] ⩾ aP(X ⩾ a).

En général, la borne donnée par l’inégalité de Markov est trop faible. On peut l’amé-
liorer en remplaçant l’espérance par des « moment plus grands ». Soit k ∈ N. Lorsque
la variable aléatoire Xk est intégrable, on dit que X admet un moment d’ordre k et la
quantité E[Xk] s’appelle le moment d’ordre k de X.

Si une variable aléatoire positive X admet un moment d’ordre k, alors pour tout a > 0,

P(X ⩾ a) ⩽
E[Xk]

ak

comme on le voit en appliquant l’inégalité de Markov à la variable aléatoire Xk.
Les moments de différents ordres sont comparés à l’aide de l’inégalité suivante.

Lemme. Soit 1 ⩽ p ⩽ q. Alors pour toute variable aléatoire X on a

(E[|X|p])1/p ⩽ (E[|X|q])1/q .

Démonstration. Puisque l’inégalité à montrer se réécrit en E[|Y |] ⩽ (E[|Y |r])1/r avec Y =
|X|p et r = q/p, il suffit de traiter le cas où p = 1.

Par homogénéité, on peut également supposer que E[|X|q] = 1. Par convexité de x 7→
xq, on a pour tout x ⩾ 0,

qx ⩽ xq + (q − 1),
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d’où on déduit en prenant l’espérance

qE[|X|] ⩽ E[|X|q] + (q − 1) = q,

puis E[|X|] ⩽ 1.

Si X est une variable aléatoire qui admet un moment d’ordre 2, sa variance est définie
comme

Var[X] = E[(X −E[X])2] = E[X2]− (E[X])2

et son écart-type (en anglais standard deviation) comme

σ(X) =
√
Var[X].

La variance est homogène d’ordre 2, au sens où Var[s+ tX] = t2Var[X].
Si X et Y sont deux variables aléatoire définies sur le même espace de probabilité qui

admettent un moment d’ordre 2, leur covariance est donnée par

Cov(X,Y ) = E[(X −E[X])(Y −E[Y ]).

L’inégalité de Cauchy–Schwarz implique que |Cov(X,Y )| ⩽ σ(X)σ(Y ).
On a également

Var[X + Y ] = Var[X] +Var[Y ] + 2Cov(X,Y ).

On en déduit

Proposition. Si X et Y sont des variables aléatoires indépendantes, alors Var[X + Y ] =
Var[X] +Var[Y ]. Plus généralement, si X1, . . . , Xn sont des variables aléatoires indépen-
dantes, alors

Var[X1 + · · ·+Xn] = Var[X1] + · · ·+Var[Xn].

La version «moment d’ordre 2» de l’inégalité de Markov est connue sous le nom
d’inégalité de Tchebychev. C’est une inégalité de déviations : il est peu probable qu’une
variable aléatoire prenne ses valeurs en dehors d’un intervalle autour de sa moyenne et de
largeur proportionnelle à l’écart-type.

Proposition (Inégalité de Tchebychev). Si une variable aléatoire X admet un moment
d’ordre 2, alors pour tout a > 0,

P(|X −E[X]| ⩾ a) ⩽
Var[X]

a2
.

Démonstration. On écrit P(|X−E[X]| ⩾ a) = P(|X−E[X]|2 ⩾ a2) ⩽ E[(X−E[X])2]/a2

par l’inégalité de Markov.

Revenons enfin sur le problème du collectionneur de vignettes. On avait écrit le temps
T nécessaire pour avoir une collection complète comme

TN = Z1 + · · ·+ ZN

où les variables aléatoires Zi sont indépendantes, et Zi ∼ G( i
N ). Le calcul de l’espérance

E[TN ] ∼ N logN n’a utilisé que la linéarité de l’espérance. On peut exploiter l’indépen-
dance en écrivant

Var[TN ] = Var[Z1] + · · ·+Var[ZN ].
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Si X ∼ G(p), alors Var[X] = 1−p
p2

(exercice) et en particulier Var[X] ⩽ 1
p2

. On a donc

Var[TN ] ⩽
N∑
i=1

(
N

i

)2

⩽ CN2.

On a donc Var[TN ] = o(E[TN ]2) et on peut alors conclure que TN est de l’ordre de
E[TN ] avec grande probabilité : pour tout ε > 0

P(|TN −E[TN ]| > εE[TN ]) ⩽
Var[TN ]

ε2(E[TN ])2
→ 0

Fin cours #3 du 24 septembre

2.2 La loi faible des grands nombres

On dit qu’une suite (Xn) de variables aléatoires converge en probabilité vers une variable
aléatoire X si

∀ε > 0, lim
n→∞

P(|Xn −X| > ε) = 0.

Par exemple, si TN est l’exemple donné précédemment dans le contexte du problème
du collectionneur de coupons, alors la suite (XN ) définie par XN = N

N logN converge en
probabilité vers la v.a. constante égale à 1.

Théorème (Loi faible des grands nombres). Soit (Xn) une suite de variables aléatoires
i.i.d. admettant un moment d’ordre 2. Soit Yn = 1

n(X1+ · · ·+Xn) la suite de ses moyennes
de Cesàro. Alors (Yn) converge en probabilité vers une variable aléatoire constante égale
à E[X1].

Démonstration. Par linéarité de l’espérance on a E[Yn] = E[X1]. Par additivité de la
variance pour des sommes indépendantes, on a Var[Yn] =

1
n Var[X1]. On a donc, pour

tout ε > 0,

P[|Yn −E[X1]| > ε] = P[|Yn −E[Yn]| > ε] ⩽
Var[Yn]

ε2
=

Var[X1]

nε2

qui tend bien vers 0.

Voici une conséquence de la loi des grands nombres. Soit p ∈ (0, 1) et (Xn) une suite
de variables aléatoires i.i.d. de loi de Bernoulli B(p). La loi de la somme

Yn = X1 + · · ·+Xn

s’appelle la loi binomiale de paramètres n et p et se note B(n, p). On calcule E[Yn] =
nE[X1] = np et Var[Yn] = nVar[X1] = np(1 − p). La loi binomiale est décrite plus
explicitement par la formule

P(Yn = k) =

(
n

k

)
pk(1− p)n−k.

Dans le cas particulier important où p = 1
2 , on a alors P(Yn = k) = 2−n

(
n
k

)
. La loi

faible des grands nombres implique alors le résultat suivant : lorsque n ≫ 1, quasiment
toute la masse dans la nème ligne du triangle de Pascal se concentre dans les 1% de
coefficients centraux : ∑

( 1
2
−ε)n⩽k⩽( 1

2
+ε)n

(
n

k

)
= 2n(1− o(1)).
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2.3 Les inégalités de Chernoff

Si X est une variable aléatoire, on appelle fonction génératrice des moments de X la
fonction

MX(t) = E[etX ].

Cette fonction contient toutes les informations sur les moments de X.

Théorème. Soit X une variable aléatoire vérifiant MX(t) < ∞ pour |t| < t0. Alors X
admet des moments de tous les ordres et on a la relation

MX(t) =
∞∑
k=0

E[Xk]
tk

k!

pour tout |t| < t0.

Le théorème s’obtient en écrivant la série entière définissant etX et en justifiant les cal-
culs à l’aide du théorème de convergence dominée : si une suite (Zn) de variables aléatoires
converge vers Z, et s’il existe une variable aléatoire intégrable Y telle que |Zn| ⩽ Y , alors
E[Z] = limE[Zn].

La fonction génératrice des moments permet de calculer les moments. Par exemple, si
X ∼ G(p), alors

E[etX ] =
∞∑
k=1

p(1− p)k−1etk = pet
∞∑
k=0

(et(1− p))k =
pet

1− (1− p)et

dès lors que |t| < | ln(1−p)|. La loi géométrique admet donc des moments de tous les ordres,
que l’on peut calculer à l’aide du développement limité en 0 de la fonction t 7→ pet

1−(1−p)et .

Proposition. Si X et Y sont des variables aléatoires indépendantes, alors MX+Y (t) =
MX(t)MY (t).

Démonstration. On écrit E[et(X+Y ] = E[etX ]E[etY ] par indépendance.

Par exemple, si X suit la loi B(n, p), on a

MX(t) = ((1− p) + pet)n

puisque X a la même loi qui la somme de variables aléatoires i.i.d. de loi B(p).
Voici l’inégalité de déviation la plus importante.

Théorème (Inégalité de Chernoff I). Soit X une variable aléatoire de loi B(n, 12). On
note µ = E[X] = n/2. Pour tout a > 0, on a

P(X ⩾ µ+ a) ⩽ exp(−2a2/n)

P(X ⩽ µ− a) ⩽ exp(−2a2/n)

Voici une version équivalente ou les valeurs 0 et 1 des lois de Bernoulli sont remplacées
par les valeurs −1 et 1.

Théorème (Inégalité de Chernoff I, variante). Soient Y1, . . . , Yn des variables aléatoires
i.i.d. de loi uniforme sur {−1, 1} et Y = Y1 + · · ·+ Yn. Pour tout x > 0, on a

P(Y ⩾ x
√
n) ⩽ exp(−x2/2)

P(Y ⩽ −x
√
n) ⩽ exp(−x2/2)
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Les deux versions sont équivalentes : si les variables Xi et Yi sont reliées par la relation
Yi = 2Xi − 1, alors

X1, . . . , Xn i.i.d. de loi B(1/2) ⇐⇒ Y1, . . . , Yn i.i.d. de loi unforme sur {−1, 1}

Si on pose X = X1 + · · ·+Xn et Y = Y1 + · · ·+ Yn, alors Y = 2X − n et donc

X ⩾ µ+ a ⇐⇒ Y ⩾ 2a

X ⩽ µ− a ⇐⇒ Y ⩽ 2a

et l’on passe d’un énoncé à l’autre par la formule 2a = x
√
n.

Démonstration. Montrons la seconde version. L’idée est d’appliquer l’inégalité de Markov
a une fonction bien choisie de Y . Pour tout réel t > 0, on a

P(Y ⩾ x
√
n) = P(exp(tY ) ⩾ exp(tx

√
n)) ⩽ e−tx

√
nE[etY ] = e−tx

√
nMY (t)

Par ailleurs, on a MY (t) = MY1(t)
n = cosh(t)n. On utilise maintenant le

Lemme. Pour tout réel t, on a cosh(t) ⩽ exp(t2/2).

qui se montre en comparant terme à terme les deux séries entières. On a donc MY (t) ⩽
exp(nt2/2) puis

P(Y ⩾ x
√
n) ⩽ ent

2/2−tx
√
n.

Enfin, on optimise sur t en choisissant la valeur t = x/
√
n, d’où le résultat. La seconde

partie du théorème s’obtient en remarquant que Y ∼ −Y .

Cette majoration est BEAUCOUP plus précise que l’inégalité de Tchebychev. Par
exemple, si X ∼ B(n, 12), on a

P(X ⩾
3

4
n) ⩽

2

3
par l’inégalité de Markov

P(X ⩾
3

4
n) ⩽

4

n
par l’inégalité de Tchebychev

P(X ⩾
3

4
n) ⩽ exp(−n/8) par l’inégalité de Chernoff I

L’inégalité de Chernoff est extrêmement précise. On verra plus tard (par le théorème
central limite) que si Y (n) est une somme de n v.a. i.i.d. de loi uniforme sur {−1, 1} ;

lim
n→∞

P(Y (n) ⩾ x
√
n) =

1√
2π

∫ ∞

x
exp(−u2/2) du

et cette quantité est équivalente à exp(−x2/2)/x
√
2π lorsque x tend vers l’infini : l’exposant

dans l’exponentielle donné par l’inégalité de Chernoff est optimal.
Il existe aussi une inégalité de Chernoff qui couvre le cas général d’une sommes de

variables de Bernoulli indépendantes.

Théorème (Inégalité de Chernoff II). Soient X1, . . . , Xn des variables aléatoires indé-
pendantes, avec Xk ∼ B(pk). On pose X = X1 + · · · + Xn et µ = E[X] = p1 + · · · + pn.
Alors
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1. Pour tout δ > 0, on a

P(X ⩾ (1 + δ)µ) ⩽

(
exp(δ)

(1 + δ)1+δ

)µ

⩽ exp

(
− δ2

2 + δ
µ

)
2. Pour tout R ⩾ 6µ, on a P(X ⩾ R) ⩽ 2−R.
3. Pour tout 0 < δ < 1, on a

P(X ⩽ (1− δ)µ) ⩽

(
exp(−δ)

(1− δ)1−δ

)µ

⩽ exp

(
−δ2

2
µ

)
Démonstration. On applique la même stratégie. Pour t > 0 à déterminer, on a

P(X ⩾ (1 + δ)µ) = P(etX ⩾ et(1+δ)µ) ⩽ e−t(1+δ)µMX(t).

On a MXi(t) = (1− pi)+ pie
t = 1+ pi(e

t− 1) ⩽ exp(pi(e
t− 1)), et donc par indépendance

MX(t) =
∏

MXi(t) ⩽ exp(µ(et − 1)).

On choisit maintenant la valeur t1 = ln(1 + δ) pour obtenir

P(X ⩾ (1 + δ)µ) ⩽ exp(µ(et1 − 1)− (1 + δ)t1µ) =

(
exp(δ)

(1 + δ)1+δ

)µ

.

Pour le dernier point, on écrit pour t < 0 à déterminer

P(X ⩽ (1− δ)µ) = P(etX ⩾ et(1−δ)µ) ⩽ e−t(1−δ)µMX(t).

En choisissant la valeur t2 = ln(1− δ), il vient

P(X ⩽ (1− δ)µ) ⩽

(
exp(−δ)

(1− δ)1−δ

)µ

Les inégalités dans le premier et dernier points découlent des lemmes suivants, qui
peuvent se démontrer par de banales études de fonctions.

Lemme. Pour tout δ > 0, on a δ − (1 + δ) ln(1 + δ) + δ2

2+δ ⩽ 0

Lemme. Pour tout 0 < δ < 1, on a −δ − (1− δ) ln(1− δ) + δ2

2 ⩽ 0.

Il reste à montrer le deuxième point. En écrivant R = (1 + δ)µ, il vient (puisque
1 + δ ⩾ 6)

P(X ⩾ R) ⩽

(
exp(δ)

(1 + δ)1+δ

)µ

⩽

(
e

1 + δ

)(1+δ)µ

⩽ (e/6)R ⩽ 2−R.

Les bornes données par l’inégalité de Chernoff dans la cas général ne vont pas inter-
venir une décroissante sous-gaussienne (en exp(−ct2)) mais plutôt sous-exponentielle (en
exp(−ct)). L’observation remarque suivant montre que c’est inévitable.

On appelle loi de Poisson de paramètre λ > 0 la loi d’une variable aléatoire X à
valeurs entières telle que, pour tout k ∈ N,

P(X = k) =
λk

k!
e−λ.

On vérifie que
∑∞

k=0P(X = k) = 1. Dans ce cas, on note X ∼ P(λ).
La loi de Poisson apparaît dans la limite des événements rares, comme le montre la

proposition suivante.
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Proposition. Soit (Xj) une suite de variables aléatoires, avec X ∼ B(ni, pj), où les para-
mètre nj et pj sont tels que

lim
j→∞

nj = ∞, lim
j→∞

pj = 0, lim
j→∞

njpj = λ ∈]0,∞[.

Soit X une variable aléatoire de loi P(λ). Alors, pour tout k ∈ N,

lim
j→∞

P(Xj = k) = P(X = k).

Démonstration. On a, pour tout k ∈ N,

P(Xj = k) =

(
nj

k

)
pkj (1− pj)

nj−k.

Sous les hypothèses de la proposition, on a les équivalents(
nj

k

)
∼

nk
j

k!
, (1− pj)

−k ∼ 1

et on conclut en utilisant le fait que

lim
j→∞

log[(1− pj)
nj ] = lim

j→∞
nj log(1− pj) = λ

puisque log(1− x) ∼ −x lorsque x tend vers 0.

Dans l’inégalité de Chernoff II, considérons le cas où Xj ∼ B(j, 1/j). On a alors
E[Xj ] = 1 pour tout entier j. Dans ce cas, l’inégalité donnée par le théorème s’écrit

P(Xj ⩾ 1 + δ) ⩽ exp

(
− δ2

2 + δ

)
En choisissant δ = t−1 pour un entier t, on a par la proposition précédente avec X ∼ P(1)

P(Xj ⩾ 1 + δ) ⩾ P(Xj = t)
j→∞→ P(X = t) =

1

t!e
= exp

(
− t log(t)(1 + o(1))

)
Fin cours # 4 du 1er octobre
Concluons avec un dernier résultat de concentration (dont on ne donne pas la preuve)

pour une sommes de variables aléatoires indépendants bornées.

Théorème (Inégalité de Hoeffding). Soient X1, . . . , Xn des variables aléatoires indé-
pendantes, où pour tout i la variable aléatoire Xi est à valeurs dans un intervalle [ai, bi].
On pose X = X1 + · · ·+Xn et µ = E[X]. Alors, pour tout t > 0,

P (|X − µ| ⩾ t) ⩽ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Notons ℓi = bi − ai la longueur de l’intervalle [ai, bi]. L’inégalité de Hoeffding peut
s’interpréter comme suit : alors que l’inégalité triangulaire permet de conclure que toutes
les valeurs prises par X sont contenues dans un intervalle de longueur ℓ1+· · ·+ℓn, l’inégalité
de Hoeffding implique qu’un intervalle de longueur O(

√
ℓ21 + · · ·+ ℓ2n) contient la très

grande majorité des valeurs effectivement prises par X. Dans la plupart des cas d’intérêt,
comme celui où ℓi = 1, on a √∑

ℓ2i ≪
∑

ℓi

et l’inégalité de Hoeffding est donc plus précise.
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2.4 Applications des inégalités de Chernoff

2.5 Partage équilibré

Soit A une matrice n×m à coefficients dans {0, 1}. On cherche un vecteur b ∈ {−1, 1}m
qui minimise la quantité

∥Ab∥∞ = max
1⩽i⩽n

|(Ab)i|.

Voici une interprétation. Chacune des m colonnes de la matrice correspond à un indi-
vidu d’une population et chacune des n lignes de la matrice correspond à une caractéris-
tique. La matrice A est déterminée par la condition

aij = 1 ⇐⇒ l’individu j possède la caractéristique i.

On souhaite diviser la population en deux groupes +1 et −1, de façon aussi équilibrée
que possible pour chacune des caractéristiques. Si on identifie le partage à un vecteur
b ∈ {−1, 1}m, minimiser ∥Ab∥∞ revient à minimiser le déséquilibre de la caractéristique la
plus déséquilibrée.

Une idée naturelle est de faire un partage aléatoire. On a alors

Proposition. Si b est choisi selon la loi uniforme dans {−1, 1}m, alors

P(∥Ab∥∞ ⩾
√

4m log n) ⩽ 2/n.

Démonstration. Par la borne de l’union,

P(∥Ab∥∞ ⩾
√

4m log n) ⩽
n∑

i=1

P(|(Ab)i| ⩾
√
4m log n)

Soit ki le nombre de 1 dans la ligne i de la matrice A, ou encore le nombre d’individus
partageant la caractéristique i. Puisque |(Ab)i| ⩽ ki, lorsque ki <

√
4m log n, on a

P(|(Ab)|i ⩾
√
4m log n) = 0.

Si ki ⩾
√
4m log n, on a en utilisant l’inégalité de Chernoff puis le fait que ki ⩽ m

P(|(Ab)i| ⩾
√
4m log n) ⩽ 2 exp

(
−4m log n

2ki

)
⩽ 2 exp

(
−4m log n

2m

)
=

2

n2
.

2.6 Répartition entre serveurs

Cet exemple est similaire au précédent, avec un partage en plus de 2 groupes. Suppo-
sons que n tâches doivent être attribuées à k serveurs. Lorsque les tâches sont attribuées
au hasard (uniformément, indépendamment), quel est la charge maximale d’un serveur ?
Cette dernière est toujours au moins n/k, mais quelle valeur prend-elle dans une situation
typique ?

Pour 1 ⩽ i ⩽ k, soit Xi le nombre de tâches assignées au serveur i. Chacune des
variables aléatoire Xi suit la loi binomiale B(n, 1/k). On notera que ces variables ne sont
pas indépendantes. On s’intéresse à la charge maximale M = max(X1, . . . , Xk) dans deux
régimes différents : d’abord quand n = k puis quand n ≫ k.

Quand n = k, la charge de chaque serveur est bien approximée par une loi de Poisson
de paramètre 1. On peut montrer que le maximum des n variables aléatoires i.i.d. de loi
P(1) est de l’ordre de logn

log logn avec probabilité tendant vers 1 quand n tend vers l’infini.
Même si les charges entre serveurs ne sont pas indépendantes, cette heuristique est correcte.
On a
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Proposition. Si on note M (n) la charge maximale d’un serveur quand n tâches sont
affectées aléatoirement à n serveurs, alors

lim
n→∞

P

(
M (n) ⩾

e log n

log log n

)
= 0.

La preuve montre en réalité plus (exercice) : pour tout ε > 0, on a

lim
n→∞

P

(
M (n) ⩾

(1 + ε) log n

log log n

)
= 0.

On peut aussi démontrer (nous ne le ferons pas) que

lim
n→∞

P

(
M (n) ⩽

(1− ε) log n

log log n

)
= 0.

Démonstration. Écrivons M (n) = max(X
(n)
1 , . . . , X

(n)
n ) où les variables X

(n)
i suivent la loi

binomiale B(n, 1/n) (et ne sont pas indépendantes). Pour tout entier d, on a par la borne
de l’union

P(M (n) ⩾ d) ⩽ nP(X
(n)
1 ⩾ d) ⩽ n

(
n

d

)(
1

n

)d

.

La seconde inégalité s’explique par le fait que l’événement «X(n)
1 ⩾ d» est la réunion, pour

I ⊂ {1, . . . , n} de cardinal d, des événements «pour tout i ∈ I, la ième tâche a été affectée
au premier serveur». On utilise ensuite les inégalités

(
n
d

)
⩽ nd

d! et dd

d! ⩽ ed pour obtenir

P(M (n) ⩾ d) ⩽ n
(e
d

)d
Pour d =

⌈
e logn
log logn

⌉
, on a donc

P

(
M (n) ⩾

e log n

log logn

)
⩽ n

(
log log n

log n

) e logn
log logn

⩽ exp

(
log n− e log n+ e

log n · log log log n
log log n

)
et cette quantité tend vers 0 car le terme dominant dans l’exponentielle est (1−e) log n.

Dans le régime où n ≫ k, on a par exemple le résultat suivant.

Proposition. Si n ⩾ 9k log k, alors

P
(
M ⩾

n

k
+ 3
√
log k

√
n/k

)
⩽

1

k2

Démonstration. On utilise la borne de l’union et le fait que les variables aléatoires (Xi)
sont identiquement distribuées pour écrire

P
(
M ⩾

n

k
+ 3
√
log k

√
n/k

)
⩽ kP

(
X1 ⩾

n

k
(1 + ε)

)
avec ε = 3

√
log k/

√
n/k. Sous l’hypothèse de la proposition, on a ε ⩽ 1. Par l’inégalité de

Chernoff II, on peut donc écrire

P
(
X1 ⩾

n

k
(1 + ε)

)
⩽ exp

(
−n

k

ε2

3

)
= 1/k3,

d’où le résultat.
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2.7 Graphes aléatoires

Les graphes de la vie réelle (internet, réseaux sociaux...) sont souvent très compliqués
et peuvent être appréhendés par l’étude de graphes aléatoires. On se contera ici du modèle
le plus simple dans lequel tous les sommets jouent un rôle symétrique.

Étant donné deux paramètres n ∈ N et p ∈ [0, 1], le graphe d’Erdős–Rényi est
défini comme suit. On part d’une famille (Xij)1⩽i<j⩽n de variables aléatoires i.i.d. de loi
de Bernoulli B(p) et on considère le graphe G = (V,E) où V = {1, . . . , n} et E est défini
par

{i, j} ∈ E ⇐⇒ Xij = 1.

Le graphe ainsi obtenu est aléatoires (c’est une variable aléatoire à valeurs dans l’ensemble
des graphes possibles) et on note Gn,p sa loi.

Remarquons que Gn,1/2 est la loi uniforme sur l’ensemble de tous les graphes de sommets
{1, . . . , n}. Le nombre d’arêtes |E| est distribué selon la loi B(

(
n
2

)
, p). Le degré de chaque

sommet est distribué selon la loi B(n− 1, p).
On étudie en général le graphe d’Erdős–Rényi dans la limite n → ∞ en distinguant

plusieurs régimes, comme par exemple
— le cas où p est constant ; on a alors un graphe dense qui contient Ω(n2) arêtes avec

grande probabilité (conséquence des inégalités de Chernoff)
— le cas où p = Θ(1/n) ; on a alors un graphe creux où le degré d’un sommet est

approximé par une loi de Poisson.

Théorème. Soit c > 0 fixé et posons p = c log(n)/n et soit Gn un graphe aléatoire de loi
Gn,p. Alors

— Si c < 1, alors
lim
n→∞

P(Gn a un sommet isolé) = 1

— Si c > 1, alors
lim
n→∞

P(Gn a un sommet isolé) = 0

Démonstration. Soit N le nombre de sommets isolés. Par linéarité de l’espérance

E[N ] = n(1− p)n−1 = n exp (n ln(1− p)) /(1− p) ∼ n

1− p
exp(−c lnn) ∼ n1−c

1− p
.

Si c > 1, alors E[N ] → 0 et donc P(N ⩾ 1) ⩽ E[N ] → 0.
Si c < 1, alors E[N ] → ∞ mais cela ne suffit pas à conclure. On peut écrire par

l’inégalité de Tchebycheff

P(N = 0) ⩽ P (|N −E[N ]| ⩾ E[N ]) ⩽
Var(N)

E[N ]2
=

E[N2]

E[N ]2
− 1

et on est ramené à montrer que E[N2] ∼ E[N ]2. On calcule donc

E[N2] = E

∑
i,j

1{i isolé etj isolé.}


= nP(1 isolé) + n(n− 1)P(1 et 2 isolés) = n(1− p)n−1 + n(n− 1)(1− p)2n−3

et donc
E[N2]

E[N ]2
=

1

n(1− p)n−1
+

n− 1

n(1− p)

tend bien vers 1.

24



Fin cours #5 du 8 octobre
On peut en réalité montrer mieux.

Théorème. Sous les hypothèses du théorème précédent, si c > 1

lim
n→∞

P(Gn est connexe) = 1

Démonstration. Remarquons que Gn est non connexe si et seulement si il existe un sous
ensemble S ⊂ V avec |S| ⩽ n/2 sans arête entre S et V \ S. On a donc

P(Gn non connexe) ⩽
⌊n/2⌋∑
k=1

(
n

k

)
(1− p)k(n−k)

Pour simplifier l’analyse on suppose c > 2 (exercice : montrer le résultat sous l’hypothèse
c > 1). On a en écrivant 1− x ⩽ e−x et

(
n
k

)
⩽ nk

P(Gn non connexe) ⩽
⌊n/2⌋∑
k=1

nk exp (−pk(n− k))︸ ︷︷ ︸
α

Comme log(α) ⩽ k log n− c logn
n (n− k) ⩽ k log n(1− c/2), on a

P(Gn non connexe) ⩽
∞∑
k=1

nk(1−c/2) =
n1−c/2

1− n1−c/2
→ 0

d’où le résultat.
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Chapitre 3

Convergence des variables aléatoires
et théorème central limite

3.1 Convergence presque sûre et loi forte des grands nombres

Lorsque (Xn) est une suite de variables aléatoires, il y a plusieurs notions possibles de
convergence de la suite (Xn) vers une variable aléatoire X.

Il y a une notion de convergence déjà rencontrée : la convergence en probabilité. On dit
que (Xn) converge en probabilité vers X si

∀ε > 0, lim
n→∞

P(|Xn −X| > ε) = 0.

Ainsi, lorsque (Xn) est une suite de variables aléatoires i.i.d. ayant un moment d’ordre
2, la loi faible des grands nombres s’énonce en disant que la suite (Sn) des moyennes de
Cesáro converge en probabilité vers la variable aléatoire constante égale à E[X1].

Un autre notion de convergence est la notion de convergence presque sûre. On dit que
(Xn) converge presque sûrement vers X si

P({limXn = X}) = 1.

Proposition. Si (Xn) converge vers X presque sûrement, alors (Xn) converge vers X en
probabilité.

Démonstration. Fixons ε > 0. Pour m ∈ N, on considère l’événement

Am = {∃n ⩾ m : |Xn −X| > ε}

C’est une suite décroissante d’événements ; il découle de la σ-additivité (considérer les
événements complémentaires) que

P

(⋂
m⩾1

Am

)
= lim

m→∞
P(Am).

Mais

P

(⋂
m⩾1

Am

)
⩽ P (la suite (Xn) ne converge pas vers X) = 0.

On a donc P(|Xm −X| > ε) ⩽ P(Am) → 0.
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Pour bien comprendre la différence, voici un exemple de suite qui converge en pro-
babilité mais pas presque sûrement. Soit (Xi) une suite de bits aléatoires, c’est-à-dire de
variables aléatoires i.i.d. de loi B(1/2). On considère l’ensemble {0, 1}∗ des mots finis sur
l’alphabet {0, 1}. C’est un ensemble dénombrable, que l’on écrit comme une suite (wn)
en l’ordonnant de façon arbitraire (pour fixer les idées, on peut l’ordonner par longueur
de mot, puis par ordre lexicographique pour les mots de même longueur). On note Yn la
variable aléatoire à valeurs {0, 1} qui vaut 1 si et seulement si wn est un segment initial de
la suite (Xi).

Alors (Yn) converge en probabilité vers la variable aléatoire constante égale à 0, puisque
pour tout 0 < ε < 1,

P(|Yn| > ε) = P(Yn = 1) =
1

2|wn|

tend vers 0 quand n tend vers l’infini. Mais il n’est pas vrai que (Yn) converge presque
sûrement vers 0 puisque la suite (Yn) admet une sous-suite (aléatoire) dont tous les termes
sont égaux à 1, celle obtenue en prenant comme mots les segments initiaux de la suite (Xi).

Néanmoins, dans le cas de la loi des grands nombres, on a le résultat suivant.

Théorème (Loi forte des grands nombres). Soit (Xn) une suite de variables aléatoires
i.i.d. admettant un moment d’ordre 1. Posons µ = E[X1] et Sn = X1 + · · ·+Xn. Alors la
suite (Sn/n) converge presque sûrement vers la variable aléatoire constante égale à µ.

Figure 3.1 – Loi des grands nombres pour une somme de variables aléatoires de loi de
Bernoulli B(1/2)

La loi des grands nombres est illustrée dans la figure 3.1. La loi faible des grands
nombres affirme que la proportion de simulations qui sont dans la bande délimitée par les
deux lignes pointillées d’ordonnée µ− ε et µ+ ε tend vers 1 quand n tend vers l’infini. La
loi forte des grands nombres affirme que (presque) toute simulation est confinée dans cette
bande pour n assez grand.

On a déjà démontré la loi faible sous l’hypothèse que X1 admet un moment d’ordre 2.
On va maintenant expliquer comment montrer la loi forte.

Lemme. Soient (Xn) et X des variables aléatoires. Alors

Xn
p.s.→ X ⇐⇒ ∀ε > 0, P (|Xn −X| > ε pour une infinité d’indices n) = 0
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Démonstration. L’implication directe est immédiate. Pour la réciproque, on l’applique à
ε = 1/k pour tout k ∈ N∗ et on utilise le fait qu’une union dénombrable d’événements de
mesure nulle est de mesure nulle.

Lemme (Lemme de Borel–Cantelli). Soit (An) une suite d’événements tels que la
série

∑
P(An) converge. Alors

P( une infinité des événements (An) est vraie ) = 0.

Démonstration. Soit E l’événement en question. Alors

P(E) ⩽ P

(⋂
m⩾1

⋃
n⩾m

An

)
= lim

m→∞
P

( ⋃
n⩾m

An

)
⩽

∞∑
n=m

P(An)

qui tend vers 0 comme reste d’une série convergente.

Pour résumer,

1. Si ∀ε > 0 on a P(|Xn − X| > ε) → 0 alors (Xn) converge vers X en probabilité
(c’est la définition)

2. Si ∀ε > 0 on a
∑

P(|Xn − X| > ε) < ∞ alors (Xn) converge vers X presque
sûrement (on peut appliquer le lemme de Borel–Cantelli).

En un sens, la différence entre ces deux notions de convergence est similaire à la diffé-
rence entre le fait qu’une série converge et le fait que son terme général tend vers 0.

Preuve de la loi forte des grands nombres sous l’hypothèse de 4ème moment fini. On peut
(quitte à remplacer Xn par Xn − µ) supposer que µ = 0. On calcule alors

E[S4
n] =

∑
i,j,k,l

E[XiXjXkXl]

En utilisant l’indépendance et le fait que µ = 0, on observe qu’un terme E[XiXjXkXl] est
nul en dehors des cas suivants

— i = j = k = l
— i = j et k = l
— i = k et j = l
— i = l et j = k

On a donc
E[S4

n] = nE[X4
1 ] + 3n(n− 1)E[X2

1 ]
2 ⩽ Cn2

pour une constante C > 0. Ainsi, E[(Sn/n)
2] ⩽ C/n2 et l’inégalité de Markov permet de

conclure que, pour tout ε > 0

∀ε > 0, P(|Sn/n|4 ⩾ ε) ⩽
C

n2ε
.

Puisque la série
∑ C

n2ε
est convergente, on conclut à l’aide du lemme de Borel–Cantelli.

Dans la loi des grands nombres, la limite est une variable aléatoire constante. Voici un
exemple simple de convergence presque sûre vers une variable aléatoire non-constante.
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Soit U une variable aléatoire de loi uniforme sur l’intervalle [0, 1]. On considère une
suite (pn) de réels dans [0, 1] qui converge vers p. Si on considère les variables aléatoires

Xn =

{
1 si U ⩽ pn

0 si U > pn
X =

{
1 si U ⩽ p

0 si U > p

alors (Xn) converge presque sûrement vers X (le seul cas où on peut avoir limXn ̸= X est
le cas où U = p, qui est un événement de probabilité nulle).

3.2 Convergence en distribution et théorème central limite

La convergence en distribution (ou convergence en loi) s’intéresse aux variables aléa-
toires uniquement à travers leur loi.

Définition. Soient (Xn) et X des variables aléatoires. On dit que (Xn) converge vers X
en distribution si, pour tout t point de continuité de t 7→ P(X ⩽ t),

lim
n→∞

P(Xn ⩽ t) = P(X ⩽ t).

Remarquons que pour définir la convergence en distribution, les variables aléatoires
(Xn) et X n’ont pas besoin d’être définies sur le même espace de probabilité. Cette notion
dépend seulement des lois de (Xn) et X. En particulier, si (Xn) converge en distribution
vers X et si X ∼ Y , alors (Xn) converge en distribution vers Y .

Lemme. Si (Xn) converge vers X en probabilité, alors (Xn) converge vers X en distribu-
tion.

Démonstration. On note FX(t) = P(X ⩽ t). Soit t un point de continuité de FX . Pour
tout ε > 0, il existe α > 0 tel que FX(t− α) ⩾ FX(t)− ε et FX(t+ α) ⩽ FX(t) + ε. Pour
n assez grand, on a P(|Xn −X| > α) ⩽ ε, d’où

P(Xn ⩽ t) ⩽ P(X ⩽ t+ α) +P(|Xn −X| > α) ⩽ FX(t) + 2ε

P(Xn ⩽ t) ⩾ P(X ⩽ t− α)−P(|Xn −X| > α) ⩾ FX(t)− 2ε

d’où le résultat.

Théorème (Théorème de Lévy, admis). Soient (Xn) et X des variables aléatoires. On a
l’équivalence entre

1. (Xn) converge vers X en distribution,

2. Pour tout t ∈ R, on a
lim
n→∞

E[eitXn ] = E[eitX ]

La fonction ΦX : t 7→ E[eitX ] s’appelle la fonction caractéristique de X ; c’est l’analogue
de la transformée de Fourier en analyse. Elle partage cette propriétés de la fonction géné-
ratrice des moments, comme l’identité ΦX+Y = ΦXΦY lorsque X et Y sont indépendantes,
mais elle est toujours définie même sans aucune hypothèse d’existence de moments.

Soit (Xn) une suite de variables aléatoires admettant un moment d’ordre 2 et vérifiant
E[X1] = 0. Posons Sn = X1 + · · ·+Xn. Par la loi forte des grands nombres on a presque
sûrement Sn = o(n). Peut-on préciser le développement asymptotique de Sn ? Puisque
Var(Sn) = nVar(X1), on a Var(Sn/

√
n) = Var(X1) et on s’attend à ce que Sn soit de
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l’ordre de
√
n. C’est bien le cas, mais ce terme d’ordre

√
n est aléatoire et fait intervenir

la loi gaussienne.
On appelle loi gaussienne (ou normale) standard ou N(0, 1) la loi de densité

x 7→ 1√
2π

e−x2/2.

Si X ∼ N(0, 1), alors E[X] = 0 et Var[X] = σ2. Plus généralement, étant donnés des réels
m et σ, on note N(m,σ2) ma loi de densité

x 7→ 1

σ
√
2π

e−(x−m)2/2σ2
.

Si X suit la loi N(0, 1), alors la variable aléatoire Y := m+ σX suit loi loi N(m,σ2).
Fin cours #6 du 15 octobre

Théorème (Théorème central limite). Soit (Xn) une suite de variables aléatoires i.i.d.
admettant un moment d’ordre 2. On pose µ = E[X1] et σ =

√
Var(X1), supposé > 0. Soit

Sn = X1 + · · ·+Xn. Alors, la suite (
Sn − µn

σ
√
n

)
converge en distribution vers une variable de loi N(0, 1).

C’est un résultat d’universalité : la limite ne dépend pas de X1 mais uniquement de sa
variance. Remarquons que la condition σ > 0 équivaut à dire que X n’est pas constante.

Si Z suit la loi N(0, 1), alors la fonction

t 7→ P(Z ⩽ t) =

∫ t

−∞
exp(−x2/2)

dx√
2π

est continue. La conclusion du théorème central limite peut donc s’écrire ainsi : pour tout
t ∈ R,

lim
n→∞

P

(
Sn − µn√

n
⩽ t

)
= P(Z ⩽ t)

Un calcul élémentaire montre que la fonction caractéristique d’une variable aléatoire
Z ∼ N(0, 1) est donnée par

ΦZ(t) = e−t2/2

(le plus simple pour le montrer est d’observer que ΦZ est solution de l’équation différentielle
y′(t) = −ty(y) à l’aide d’une intégration par parties).

Démonstration. On peut supposer que µ = 0 et σ = 1, quitte à remplacer Xn par Xn−µ
σ .

On effectue ensuite un développement limité de la fonction caractéristique au voisinage de
0. L’approximation eitX1 = 1+itX1− t2

2 X
2
1+o(t2) implique (cela ce justifie par le théorème

de convergence dominée) que ΦX1(t) = E[eitX1 ] = 1− t2/2 + o(t2).
On a en utilisant l’indépendance des (Xn) que

ΦSn/
√
n(t) = ΦSn(t/

√
n) = ΦX1(t/

√
n)n = (1− t2/2n+ o(1/n))n = exp(−t2/2) + o(1),

puis on conclut à l’aide du théorème de Lévy.
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Chapitre 4

La méthode probabiliste : exemples

La méthode probabiliste montre l’existence d’objets (souvent de nature combinatoire,
mais pas uniquement) en montrant qu’un choix aléatoire convient avec probabilité > 0.
Nous allons illustrer ce principe sur 4 exemples, de complexité croissante.

4.1 Exemple 1 : satisfiabilité

On appelle formule k-SAT une formule booléenne qui est une conjonction de clauses,
chaque clause étant la disjonction de k variables ou leur négation, ces k variables étant 2
à 2 distinctes. Une telle formule est du type

(x1 ∨ x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x8) ∧ . . .

Le problème de satisfiabilité demande s’il existe une affectation des variables booléennes
rendant vraie la formule ci-dessous. C’est un problème NP-difficile pour k ⩾ 3.

Une variante est de demander combien de clauses peuvent être satisfaites. On a alors
le résultat suivant.

Proposition. Soit une formule k-SAT écrite comme la disjonction de m clauses. Il existe
une affectation des variables qui satisfait au moins m(1− 2−k) des clauses.

Pour k = 3, cela montre qu’il est toujours possible de satisfaire une proportion 7/8 des
clauses d’une formule 3-SAT. La preuve est très simple.

Démonstration. On affecte au hasard les valeurs des variables, indépendamment et unifor-
mément sur l’ensemble {vrai, faux}. Pour toute clause Ci, par indépendance, l’événement
«la clause Ci est satisfaite» a probabilité 1− 2−k. On a donc, par linéarité de l’espérance

E[nombre de clauses satisfaites] = m(1− 2−k),

d’où le résultat.

La preuve utilise le principe suivant : si une variable aléatoire X intégrable a pour
espérance µ, alors P(X ⩾ µ) > 0 (dans notre cas, X est le nombre de clauses satisfaites).

4.2 Exemple 2 : nombres de Ramsey

On note R(k, l) l’entier n minimal tel que tout coloriage des arêtes du graphe complet
Kn en deux couleurs (rouge et bleu) contient un sous-graphe Kk dont toutes les arêtes sont
rouges ou un sous-graphe Kl dont toutes les arêtes sont bleues.
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On calcule par exemple que R(2, 2) = 2 et R(3, 3) = 6.

Exercice. Montrer l’inégalité R(k, l) ⩽ R(k− 1, l) +R(k, l− 1) et en déduire que R(k, l) ⩽
2k+l et en particulier R(k, k) ⩽ 4k.

Voici une borne inférieure

Proposition. Si k ⩾ 3, alors R(k, k) > ⌊2k/2⌋

Démonstration. On considère un coloriage aléatoire du graphe complet Kn = (Vn, En) où
chaque arête est coloriée en rouge ou bleu aléatoirement, uniformément et indépendem-
ment.

Si S ⊂ Vn est un sous-ensemble de taille k, alors

P(S est monochromatique) = 2 · 2−(
k
2).

Par la borne de l’union, on en déduit

P(∃S ⊂ Vn monochromatique de taille k) ⩽

(
n

k

)
21−(

k
2)

⩽
nk

k!
2 · 2−

k(k−1)
2

En choisissant n = ⌊2k/2⌋, cette quantité est ⩽ 2·2k/2
k! < 1 pour k ⩾ 3, d’où le résultat : il

existe un coloriage de Kn sans clique monochromatique de taille k.

L’argument précédent peut être réécrit comme un argument de comptage, mais le point
de vue probabiliste est en général plus fructueux.

Un problème ouvert important est de déterminer la limite

ℓ = lim
k→∞

R(k, k)1/k

(il n’est pas clair que la limite existe). La proposition implique ℓ ⩾ 1/2 (Erdős 1947)
et l’exercice ℓ ⩽ 4 (Ramsey 1929). Un progrès remarquable récent (2023) améliore cette
borne en ℓ ⩽ 4− ε avec ε de l’ordre de 2−10.

4.3 Exemple 3 : borne inférieure pour le problème de partage
équilibré

On rappelle qu’on a montré le résultat suivant : étant donnée A une matrice n × n à
coefficients dans {0, 1}, alors si b est choisi uniformément dans {−1, 1}n,

P(∥Ab∥∞ ⩽
√
4n log n) → 1.

Nous allons voir que cette estimation en
√
4n log n pour le meilleur partage équilibré

est essentiellement optimale.

Proposition. Il existe une constante réelle c > 0, un entier n0 et pour tout n ⩾ n0 une
matrice An ∈ {0, 1}n×n telle que

min
b∈{−1,1}n

∥Anb∥∞ ⩾ c
√
n

On va bien sûr choisir An au hasard en prenant pour coefficients des bits aléatoires !
On utilisera le lemme suivant
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Lemme. Il existe une constante réelle c > 0 et un entier n0 tels que, pour tout n ⩾ n0, si
b1, . . . , bn sont dans {−1, 1} (fixés) et X1, . . . , Xn sont i.i.d. de loi B(1/2), alors

P

(∣∣∣∣∣
n∑

i=1

biXi

∣∣∣∣∣ ⩽ c
√
n

)
< 1/2

Preuve de la proposition. Soit A = (aij) une matrice de coefficients i.i.d. de loi B(1/2).
Pour tout b ∈ {−1, 1}n, on a par indépendance des lignes de A

P(∥Ab∥∞ < c
√
n) = P(∀i, |(Ab)i| < c

√
n) < (1/2)n.

Soit N le nombre de b ∈ {−1, 1}n tels que ∥Ab∥∞ < c
√
n. Par linéarité de l’espérance,

E[N ] < 2n(1/2)n = 1

et donc il existe A tel que N = 0, ce qui veut dire que ∥Ab∥∞ ⩾ c
√
n pour tout b ∈

{−1, 1}n.

Preuve du lemme. Posons

Yi = biXi +
1− bi
2

=

{
Xi si bi = 1

1−Xi si bi = −1

et remarquons que les v.a. (Yi) sont i.i.d. de loi B(1/2). Soit Sn = Y1 + · · · + Yn (qui suit
une loi binomiale B(n, 1/2) et x l’entier n

2 − b1+···+bn
2 . On a, pour tout entier ℓ∣∣∣∑ biXi

∣∣∣ ⩽ ℓ ⇐⇒
∣∣∣−x+

∑
Yi

∣∣∣ ⩽ ℓ ⇐⇒ S ∈ [x− ℓ, x+ ℓ]

Puisque la fonction k 7→
(
n
k

)
est croissante pour k ⩽ n

2 et décroissante pour k ⩾ n
2 , la

quantité P(S ∈ [x− ℓ, x+ ℓ]) est maximale pour x = ⌊n/2⌋. Il s’ensuit que

P
(∣∣∣∑ biXi

∣∣∣ ⩽ c
√
n
)
⩽ P

(
|S − ⌊n/2⌋| ⩽ c

√
n
)
=: αn

Par le théorème central limite, on a pour Z de loi N(0, 1)

lim
n→∞

αn = P(|Z| ⩽ c) =

∫ c/2

−c/2
exp(−x2)

dx√
2π

et cette quantité peut être rendue < 1/2 en choisissant la constante c suffisamment petite.
On a donc αn < 1/2 pour n assez grand.

Fin cours #7 du 22 octobre

4.4 Le lemme local de Lovász

Lorsqu’on utilise la méthode probabiliste, on veut prouver que certains événements
«mauvais» A1, . . . , An sont simultanément évités avec probabilité non nulle. Il y a deux
idées simples pour cela

— La borne de l’union : si
∑

P(Ai) < 1 alors P(A1 ∩ · · · ∩An) > 0,
— L’indépendance : si les événements (Ai) sont indépendants et vérifient P(Ai) < 1,

alors P(A1 ∩ · · · ∩An) > 0.
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Le lemme local de Lovász combine de manière astucieuse ces deux situations. Soient
A,A1, . . . , An des événements. On dit que A est indépendant de {A1, . . . , An} si pour tout
I ⊂ {1, . . . , n} tel que P(

⋂
j∈I Aj) > 0, on a

P

A
∣∣∣ ⋂
j∈I

Aj

 = P(A).

Cette condition est satisfaite lorsque les événements A,A1, . . . , An sont indépendants, mais
elle est plus faible : par exemple, elle n’implique pas que A1 et A2 sont indépendants.

Soit (Ai)i∈V une famille d’événements. Un graphe de dépendance est un graphe non
orienté G = (V,E) tel que, pour tout i ∈ V , l’événement Ai est indépendant de {Aj :
(i, j) ̸∈ E}.

Théorème (Lemme Local de Lovász). Soient A1, . . . , An des événements tels que
1. Pour tout i, on a P(Ai) ⩽ p,
2. Les événements (Ai) admettent un graphe de dépendance dans lequel tout sommet

a degré ⩽ d,
3. 4dp ⩽ 1.

Alors P(A1 ∩ · · · ∩An) > 0.

Commençons par donner une application du lemme local de Lovász.

Proposition. Soit k ⩾ 4. Une forme k-SAT où chaque variable apparaît au plus 2k

4k fois
est satisfiable.

L’énoncé est trivial pour k = 4 (une formule où chaque variable n’apparaît qu’une
fois est évidemment satisfiable). Pour k = 8, on obtient qu’une formule 8-SAT où chaque
variable apparaît au plus 8 fois est satisfiable.

Démonstration. Soient C1, . . . , CN les clauses apparaissant dans la formule. On assigne les
valeurs booléennes des variables indépendamment et uniformément. Soit Ai l’événement
«La clause Ci n’est pas satisfaite». On a P(Ai) = 2−k = p.

Considérons le graphe G = (V,E) où V = {1, . . . , N} et (i, j) ∈ E si les clauses Ci et Cj

ont une variable en commun. C’est un graphe de dépendance pour les événements (Ai)1⩽i⩽N
dont le degré est ⩽ k 2k

4k = 2k

4 = d.
Puisque 4pd ⩽ 1, le lemme local de Lovász s’applique et nous pouvons conclure que

P(A1 ∩ · · · ∩AN ) > 0,

d’où le résultat.

La preuve du lemme local de Lovász repose sur une récurrence astucieuse.

Preuve du lemme local de Lovász. Il est commode de noter Bi = Ai et BS =
⋂

i∈S Ai

pour S ⊂ {1, . . . , n}. On montre par récurrence sur s ∈ {0, . . . , n} que si |S| ⩽ s alors

P(BS) > 0 et ∀k ̸∈ S, P(Ak|BS) ⩽ 2p.

Le cas s = 0 est trivialement vrai puisque B∅ = Ω. Supposons la propriété vraie au rang
s− 1 et montrons-la au rang s. Il suffit de le faire pour S = {1, . . . , s}. On a

P(BS) = P(B1)P(B2|B1)P(B3|B{1,2}) . . .P(Bs|B{1,...,s−1}) ⩾ (1− 2p)s > 0
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par hypothèse de récurrence. Soit maintenant k ̸∈ S et considérons la partition S = S1∪S2

où S1 est le sous-ensemble formé des sommets reliés à k dans le graphe de dépendance. Si
S1 = ∅, alors P(Ak|BS) = P(Ak) ⩽ p ⩽ 2p. Sinon, on a |S2| ⩽ s− 1. On écrit (l’hypothèse
de récurrence garantissant que P(BS2) > 0)

P(Ak|BS) =
P(Ak ∩BS)

P(BS)
=

P(Ak ∩BS1 ∩BS2)

P(BS1 ∩BS2)
=

P(Ak ∩BS1 |BS2)

P(BS1 |BS2)
.

On estime séparément le numérateur et le dénominateur.

P(Ak ∩BS1 |BS2) ⩽ P(Ak|BS2) = P(Ak) ⩽ p

P(BS1 |BS2) ⩽
∑
i∈S1

P(Ai|BS2) ⩽ 2p|S1| ⩽ 2pd ⩽
1

2

On a donc P(BS1 |BS2) ⩾
1
2 et donc P(Ak|Bs) ⩽ 2p, concluant la récurrence.

4.5 Application du lemme local de Lovász : routage de pa-
quets

On considère un graphe non orienté (V,E) et un ensemble de paquets p1, . . . , pn. A
chaque paquet pi est associé un itinéraire, formé d’un sommet de départ si, d’un sommet
d’arrivée ti et d’un chemin dans le graphe allant de si à ti. A chaque étape de temps
discret, un paquet peut attendre ou être déplacé vers l’étape suivante de son itinéraire
avec la contrainte qu’une arête ne peut être empruntée à chaque étape que par un seul
paquet. Un planning de durée T est la donnée pour chaque paquet et chaque instant
t ∈ {1, . . . , T} d’une instruction «avance !» ou «attends !». Le planning est valide si chaque
paquet complète son itinéraire et si chaque arête est utilisée par au plus un paquet à chaque
étape. On cherche à minimiser la durée d’un planning valide.

Il y a deux paramètres pertinents : la dilatation

d = max
i

{ longueur de l’itinéraire du paquet pi}

et la congestion

c = max
e

{ nombre d’itinéraires utilisant l’arête e}

Il est évident que tout planning valide nécessite une durée ⩾ max(c, d). Il est clair aussi
qu’il existe un planning valide de durée ⩽ cd.

Théorème. Il existe un planning valide de temps O(max(c, d)).

Posons m = max(c, d). Nous allons montrer à l’aide du lemme local de Lovász une
version plus faible de ce théorème : il existe un planning valide de temps O(mβlog∗(m)) où
β est une constante à déterminer et log∗ est le logarithme itéré (i.e. le nombre d’itérations
de la fonction logarithme nécessaires pour obtenir une valeur < 1).

On donne un algorithme récursif qui consiste à utiliser un planning arbitraire si m < m0,
et si m ⩾ m0 à diviser l’intervalle {1, . . . , βm} en phases de longueur logm. Dans chaque
phase, chaque paquet se voit attribuer un sous-itinéraire de son itinéraire initial, de sorte
qu’on retrouve l’itinéraire initial d’un paquet en mettant bout à bout les sous-itinéraires.
Nous allons voir que pour m ⩾ m0 on peut faire en sorte que la congestion soit ⩽ logm

35



pour chacune des phases. Il est évident que la dilatation dans chacune des phases est
⩽ logm. Si on note T (m) la durée du planning ainsi construit, on a pour m ⩾ m0

T (m) ⩽ T (logm)
βm

logm

et donc T (m) = O(mβlog∗(m)). (La profondeur de la récursion est log∗(m) et chaque appel
récursif multiplie la durée par un facteur β).

On considère un planning du type suivant : chaque paquet pi reçoit l’ordre d’attendre
pendant un temps Xi, puis de faire toutes les étapes de son itinéraire. Posons α = β − 1.
On choisit Xi aléatoirement, indépendamment selon la loi uniforme sur {1, . . . , αm}. Pour
e ∈ E, on note Ae l’événement «il existe une phase où l’arête e apparaît dans > logm
sous-itinéraires». Nous allons montrer que P(

⋂
eAe) > 0, ce qui permettra de conclure.

Lemme. On peut choisir la valeur de α de sorte que P(Ae) ⩽ 1
4m2 pour m assez grand.

Soit Fe ⊂ E la réunion des itinéraires contenant l’arête e. On a |Fe| ⩽ cd ⩽ m2.
L’événement Ae est indépendant de (Af )f ̸∈Fe et donc les événements (Ae)e∈E admettent un
graphe de dépendance de degré ⩽ m2. Le lemme local de Lovász implique que l’événement⋂

eAe est non vide.

Preuve du lemme. Fixons une phase i ∈ {1, . . . , βm
logm} et Ne,i le nombre de sous-itinéraires

utilisant l’arête e au cours de la phase i. La variable aléatoire Ne,i est une somme de v.a.
indépendantes de loi de Bernoulli (chacun des ⩽ d paquets ayant l’arête e dans leur
itinéraire ont probabilité ⩽ logm

αm de l’inclure dans le sous-itinéraire de l’étape i)

E[Ne,i] ⩽ d · log(m)

αm
=

logm

α

On a vu dans la preuve de Chernoff II que si X est une somme de v.a. de Bernoulli
indépendantes avec E[X] ⩽ µ, alors pour tout δ > 0 on a P(X ⩾ (1+ δ)µ) ⩽

(
eδ

(1+δ)1+δ

)µ
.

On a donc, avec µ = logm
α

P(Ne,i > logm) = P(Ne,i > αµ) ⩽

(
eα

αα

)µ

=
( e
α

)logm
=

m

mlogα
.

Par la borne de l’union,

P(Ae) = P(∃i : Ne,i > logm) ⩽
(α+ 1)m

logm

m

mlogα
⩽

1

4m2
,

la dernière inégalité étant vraie pour m et α suffisamment grands.

Fin cours #8 du 12 novembre
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Chapitre 5

Chaînes de Markov

Les chaînes de Markov sont un exemple de suite de variables aléatoires (Xn) non
indépendantes, où la loi de Xn+1 dépend uniquement de Xn. Pour une chaîne de Markov,
«le futur ne dépend du passé qu’à travers le présent».

5.1 Définition

On se donne un ensemble fini ou dénombrable S, appelé l’ensemble des états. On
supposera souvent que S = {1, . . . , n} ou S = N.

Définition. On dit qu’une suite (Xn)n⩾0 de variables aléatoires à valeurs dans S est une
chaîne de Markov s’il existe une fonction Q : S × S → [0, 1] telle que l’on ait

P(Xn = an|X0 = a0, X1 = a1, . . . , Xn−1 = an−1) = Q(an−1, an)

pour tous a0, . . . , an−1 dans S tels que P(X0 = a0, . . . , Xn−1 = an−1) > 0.

On dit que Q est la matrice de transition de la chaîne de Markov. Elle est à valeurs
positives et vérifie la condition ∑

b∈S
Q(a, b) = 1

pour tout a ∈ S (une matrice vérifiant ces conditions est dite stochastique). La loi de (Xn)
est entièrement déterminée par Q et par la donnée de la loi de X0. On a en effet, pour tous
a0, a1, . . . , an dans S

P(X0 = a0, X1 = a1, . . . , Xn = an) = P(X0 = a0)Q(a0, a1)Q(a1, a2) . . . Q(an−1, an)

Dans le cas particulier important où X0 est constante égale à a ∈ S (on parle de «chaîne
de Markov issue de a»), on a,

P(X1 = a1, . . . , Xn = an) = Q(a, a1)Q(a1, a2) . . . Q(an−1, an)

Soit µ0 la loi de X0, vue comme un vecteur ligne, de coefficients µ0(a) = P(X0 = a)
pour a ∈ S. Si µn est la loi de Xn, alors

µ1(b) = P(X1 = b) =
∑
a∈S

P(X1 = b, X0 = a) =
∑
a∈S

Q(a, b)µ0(a)

et on a donc la relation µ1 = µ0Q au sens de la multiplication matricielle. Plus générale-
ment, si µn est la loi de Xn, on a µn = µ0Q

n. La matrice Qn correspond à la matrice de
transition après n pas de la chaîne de Markov.
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Il est utile de représenter la matrice de transition sous forme de graphe orienté éti-
queté de sommets S, dans lequel (x, y) est une arête si et seulement si Q(x, y) > 0. Par
exemple, voici une matrice de transition suivante pour l’espace d’états S = {1, 2, 3} et sa
représentation graphique.  0 1/4 3/4

1/2 1/3 1/6
0 1/2 1/2



1 2 3

1
4

3
4

1
2

1
3

1
6

1
2

1
2

5.2 Un algorithme probabiliste pour 2-SAT

Voici un exemple concret qui illustre l’intérêt des chaînes de Markov pour l’étude des
algorithmes probabilistes. Une formule 2-SAT est du type

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x5) ∧ (x4 ∨ x1) ∧ . . .

Étant donné une formule 2-SAT en n variables, on voudrait déterminer si elle est
satisfiable, c’est-à-dire s’il existe une affectation des variables booléennes x1, . . . , xn qui la
rendre vraie. Ce problème peut résolu par un algorithme déterministe en temps polynomial,
mais on propose l’algorithme probabiliste suivant, en temps polynomial.

1. On initialise avec une affectation arbitraire des variables.

2. Répéter 200n2 fois, en s’arrêtant si la formule est satisfaite

(a) Choisir arbitrairement une clause non satisfaite
(b) Choisir uniformément au hasard une des deux variables apparaissant dans cette

clause, et la remplacer par sa négation.

3. Répondre «la formule est satisfiable» si l’algorithme s’est arrêté au cours de l’étape 2,
et «la formule n’est pas satisfiable» sinon.

Théorème. Cet algorithme a une probabilité d’erreur ⩽ 2−100.

Le seul cas où l’algorithme peut se tromper est si la formule est satisfiable. Traitons
donc ce cas. Soit A une affectation des variables satisfaisant la formule. Pour l’analyse de
l’algorithme, nous allons étudier une modification où la condition d’arrêt dans la boucle
est remplacée par «en s’arrêtant si l’affectation coïncide avec A». Nous allons montrer que
la probabilité que l’algorithme modifié ne s’arrête pas est ⩽ 2−100. Cela implique que la
probabilité que l’algorithme initial ne s’arrête pas est ⩽ 2−100.

On note Xi le nombres des variables ayant la même valeur que dans l’affectation A
après i tours de boucle dans l’algorithme modifié. L’algothime s’arrête au ième tour de
boucle si et seulement si Xi = n. Dans ce cas, on pose Xj = n pour tout j > i.
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Si Xi < n, la variable Xi+1 est égale soit à Xi + 1 soit à Xi − 1, selon que la variable
remplacée par sa négation lors du ième tour de boucle était en désaccord ou non avec S.
On a

P(Xi+1 = 1|Xi = 0) = 1

P(Xi+1 = k + 1|Xi = k) ⩾ 1/2

(puisque toute clause non satisfaite a au moins une variable en désaccord avec S) et donc,
par passage à l’événement complémentaire,

P(Xi+1 = k − 1|Xi = k) ⩽ 1/2

Pour que (Xi) soit défini même après l’arrêt de l’algorithme, on rajoute la condition

P(Xi+1 = n|Xi = n) = 1.

La suite (Xi) de variables aléatoires n’est pas une chaîne de Markov ! Néanmoins, on
peut la comparer à une chaîne de Markov qui serait une version pessimiste de (Xi). Défi-
nissons une chaîne de Markov (Yi) sur l’espace d’états {0, . . . , n} de matrice de transition

Q(0, 1) = Q(n, n) = 1

Q(k, k + 1) = Q(k, k − 1) =
1

2
si 0 < k < n

On peut faire un couplage de (Xi) et (Yi) (c’est-à-dire les définir sur le même espace
de probabilité) de telle sorte que l’on ait Y0 = X0 = k0 et pour tout j l’inégalité Yj ⩽ Xj .
Si on définit les variables aléatoires

T
(n)
k0

= min{j ⩾ 0 : Xj = n}, S
(n)
k0

= min{j ⩾ 0 : Yj = n}

on a alors presque sûrement l’inégalité T
(n)
k0
⩽ S

(n)
k0

.

Lemme. Pour tout k0 ∈ {0, . . . , n}, on a E[T
(n)
k0

] ⩽ n2.

Démonstration. Posons uk = E[S
(n)
k ]. On va montrer que uk ⩽ n2 et le lemme en découlera.

La suite (uk) vérifie la relation de récurrence un = 0, u0 = 1 + u1 et

uk = 1 +
uk+1 + uk−1

2
si 0 < k < n

Cette relation de récurrence admet la solution explicite uk = n2 − k2, d’où le résultat.

Par l’inégalité de Markov, on a donc P(T
(n)
k0

> 2n2) ⩽ 1
2 . Divise les 200n2 itérations

de l’algorithme en 100 blocs de longueur 2n2 et pour 1 ⩽ i ⩽ 100, soit Ai l’événement
«l’algorithme s’arrête au cours du ième bloc». Il découle de l’analyse précédente que

P(A1) ⩾
1

2
, P(A2|A1) ⩾

1

2
, . . . P(Ai|A1 ∩ · · · ∩Ai−1) ⩾

1

2

et donc
P(A1 ∩ · · · ∩A100) ⩽ 2−100
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5.3 Classification des états

On fixe une chaîne de Markov (Xn) de matrice de transition Q et d’ensemble d’états S.
Pour i, j dans S, on dit que j est accessible depuis i et on note i ⇝ j s’il existe un

entier n ⩾ 0 tel que Qn(i, j) > 0. Cela revient à dire qu’il existe un chemin de i vers
j dans le graphe orienté associé. On dit que i et j communiquent si i ⇝ j et j ⇝ i.
Remarquons que si i ⇝ j et j ⇝ k alors i ⇝ k (preuve : si Qm(i, j) > 0 et Qn(j, k) > 0
alors Qm+n(i, k) ⩾ Qm(i, j)Qn(j, k) > 0).

On dit qu’une chaîne de Markov est irréductible si tous ses états communiquent.
Afin d’alléger les notations, pour x ∈ S, on utilisera les notations Px ou Ex pour

signifier que l’on considère la chaîne de Markov (Xn)n⩾0 issue de x, c’est-à-dire telle que
P(X0 = x) = 1.

Dans l’étude du comportement asymptotique d’une chaîne de Markov (Xn), on associe
à chaque état x ∈ S deux variables aléatoires à valeurs entières

— On note Nx le nombre de visites en x, défini comme

Nx =
∑
n⩾0

1{Xn=x}.

— On note Tx le temps d’atteinte de x, ou encore l’instant de première visite en x,
définie comme

Tx = inf{n > 0 : Xn = x}

avec la convention habituelle Tx = ∞ si l’ensemble est vide.
Les états d’une chaîne de Markov se classifient selon la dichotomie suivante
— Un état x est dit récurrent si

Px(Tx < ∞) = 1.

— Un état x est dit transitoire (ou transient) si

Px(Tx < ∞) < 1

.
Si x est récurrent, la chaîne issue de x revisite presque sûrement x au bout d’un temps

fini, puis presque sûrement revisite une seconde fois x au bout d’une temps fini, .... Il
s’ensuit que le nombre de visite en x est presque sûrement infini : Px(Nx = ∞) = 1.

Si x est transitoire, posons p = Px(Tx = ∞) > 0. Pour la chaîne issue de x, le nombre
de visites en x suit alors une loi géométrique de paramètre p et est donc d’espérance finie :
on a Px(Nx = ∞) = 0 et Ex[Nx] =

1
p < ∞.

Les raisonnements ci-dessous utilisent de manière intuitive ce que les mathématiciens
appellent la propriété de Markov : conditionnellement à l’événement {Tx < ∞}, la loi
(XTx+n)n⩾0 est identique à loi de (Xn) sachant X0 = x. Ces considérations peuvent être
rendues rigoureuses mais nous n’introduirons pas le formalisme nécessaire et nous conten-
terons de raisonnements intuitifs.

On peut montrer que deux états qui communiquent ont même nature (ils sont soit
tous deux récurrents, soit tous deux transitoires). On peut aussi montrer qu’une chaîne de
Markov sur un espace d’états fini admet au moins un état récurrent.
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5.4 Probabilités invariantes et convergence des chaînes de
Markov

On considère une chaîne de Markov (Xn) d’espace d’états S et de matrice de transi-
tion Q.

Définition. Une mesure de probabilité π sur S est dite invariante si elle vérifie la relation
π = πQ, c’est-à-dire que pour tout y ∈ S

π(y) =
∑
x∈S

π(x)Q(x, y).

L’interprétation est la suivante : si Xn ∼ π alors Xn+1 ∼ π. On s’intéresse au compor-
tement en temps long des chaînes de Markov à travers la quantité

π̃(x) = lim
n→∞

P(Xn = x).

On remarque que si la limite existe et si π̃ est une mesure de probabilité, alors π̃
est invariante. Dans la situation idéale, il existe une unique probabilité invariante π qui
coïncident avec le π̃ ci-dessus. Mais il y a plusieurs obstructions.

— Une obstruction liée à l’infini : il peut ne pas y avoir de probabilité invariante. C’est
le cas par exemple pour la marche aléatoire sur Z. En effet, une probabilité invariante
vérifie la relation π(k) = π(k+1)/2+π(k− 1)/2. Les fonction π : Z → R solutions
de cette équation sont de la forme π(n) = αn+β, qui ne sont pas compatibles avec
les conditions π ⩾ 0 et π(Z) = 1. On verra le résultat suivant.
Théorème. Une chaîne de Markov à espace d’états fini admet une probabilité
invariante.

— Une obstruction liée à la non-irréductibilité : il peut y avoir plusieurs probabilités
invariantes. C’est le cas par exemple de l’exemple suivant

0 1 2 3

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

La probabilité π définie par π(0) = π(1) = 1
2 et π(2) = π(3) = 0 est invariante,

de même que la probabilité π définie par π(0) = π(1) = 0 et π(2) = π(3) = 1
2 . Plus

généralement, pour tout t dans [0, 1], la probabilité tπ+ (1− t)π est invariante. On
verra le résultat suivant.

— Une obstruction de nature arithmétique : il peut y avoir une unique probabilité
invariante sans que la quantité P(Xn = x) ait une limite quand n tend vers l’infini.
C’est le cas car exemple de la chaîne de Markov suivante

a b

1

1

pour laquelle l’unique probabilité invariante est la loi uniforme sur {a, b}. Si par
exemple X0 vaut a, alors la variable aléatoire X2n est constante égale à a ou b selon
la parité de n. Cette obstruction liée à la parité est évidente sur cet exemple mais se
retrouve dans de nombreuses situations (par exemple considérer la marche aléatoire
d’un cavalier sur un échiquier).

Fin cours #9 du 26 novembre
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Théorème (Existence et unicité de la probabilité invariante). Soit (Xn) une chaîne de
Markov (Xn) irréductible à espace d’états finis S. Alors tous les états sont récurrents ;
elle admet une unique mesure de probabilité invariante π, donnée pour x ∈ S par

π(x) =
1

Ex[Tx]
> 0.

Démonstration. Une mesure de probabilité π est invariante si (identifiée à un vecteur ligne)
elle vérifie l’équation πQ = π, autrement si c’est un vecteur propre à gauche de valeur
propre 1 pour la matrice Q.

Puisque la somme des lignes de Q vaut 1, le vecteur 1 = (1, . . . , 1) est vecteur propre à
droite. Réciproquement, si f = (f(x))x∈S vérifie Qf = f , montrons que f est un multiple
de 1. Soit x ∈ S tel que f(x) est maximal et soit y ̸= x. Par irréductibilité, il existe un
entier n tel que Qn(x, y) > 0. On a alors

f(x) = Qnf(x) =
∑
y∈S

Qn(x, y)f(y) ⩽
∑
y∈S

Qn(x, y)f(x) = f(x)

et donc f(y) = f(x). Ainsi, tout vecteur propre à droite de valeur propre 1 est un multiple
de 1. Comme les espaces propres à droite et à gauche ont même dimension, l’espace propre
à gauche de valeur propre 1 est aussi de dimension 1. On en déduit l’unicité (si existence)
d’une mesure de probabilité invariante. Cet argument d’algèbre linéaire donne l’existence
d’un vecteur non nul π tel que πQ = π, mais il n’est pas clair que ce vecteur soit à
coefficients positifs.

Pour tous x, y dans S, on note nx,y le plus petit entier n > 0 tel que Qn(x, y) > 0 (un
tel n existe par irréductibilité ; c’est la longueur minimale d’un chemin de x à y). On pose
aussi N = max{nx,y : x, y ∈ S}, puis on choisit ε > 0 tel que, pour tous x, y ∈ S on ait
Qn(x, y) ⩾ ε pour un n ∈ {1, . . . , N}.

Fixons x, y dans S et soit l’événement

Ak = « il existe un entier n vérifiant kN ⩽ n < (k + 1)N et Xn = y ».

On a Px(A0) ⩾ ε, Px(A1|A0) ⩾ ε et plus généralement Px(Ak+1|A0 ∩ A1 ∩ · · · ∩ Ak) ⩾ ε
pour tout k. On en déduit que

Px(Ty ⩾ kN) ⩽ (1− ε)k

ce qui implique que Ex[Ty] =
∑

l⩾0Px(Ty > l) ⩽ N
∑∞

k=0(1− ε)k < ∞. Fixons un état z
et définissons µz : S → R+ par la formule

µz(y) = Ez

[
Tz−1∑
k=0

1{Xk=y}

]
=

∞∑
k=0

Pz(Xk = y, Tz ⩾ k + 1).

Autrement dit, µz(y) est le nombre moyen de visites en y entre deux visites en z. Remar-
quons que µz(y) ⩽ Ez[Tz], donc µz est à valeurs finies et tous les états sont récurrents.
Pour tout y ∈ S, on a

(µzQ)(y) =
∑
x∈S

µz(x)Q(x, y) =
∑
x∈S

∞∑
k=0

Pz(Xk = x, Tz ⩾ k + 1)Q(x, y)

Mais on a, pour tout k ⩾ 0, puisque l’événement {Tz ⩾ k+1} peut s’exprimer en fonction
de X0, . . . , Xk,∑

x∈S
Pz(Xk = x, Tz ⩾ k + 1)Q(x, y) = Pz(Xk+1 = y, Tz ⩾ k + 1)
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On a donc, en faisant le changement d’indice k + 1 → k dans la seconde somme,

µz(y)− (µzQ)(y) =
∞∑
k=0

Pz(Xk = y, Tz ⩾ k + 1)−
∞∑
k=1

Pz(Xk = y, Tz ⩾ k)

= Pz(X0 = y)−
∞∑
k=1

Pz(Xk = y, Tz = k)

= 0

car les deux termes de cette différence valent tous deux 1 si y = z et tous deux 0 sinon.
On a donc µzQ = µz. Puisque

∑
y∈S µz(y) = Ez[Tz], on en déduit que l’unique probabilité

invariante est donnée par π(x) = µz(x)
Ez [Tz ]

. Puisque par ailleurs µz(z) = 1, on en déduit que
π(x) = 1

Ex[Tx]
pour tout x ∈ S.

Nous allons maintenant détailler l’obstruction d’ordre arithmétique pour la convergence
en grand temps vers la mesure de probabilité invariante. Pour alléger les notations, on écrira
désormais Qxy ou Qk

xy plutôt que Q(x, y) ou Qk(x, y).

Définition. La période d’un état x est

dx = PGCD{n ⩾ 1 : Qn
xx > 0}

(rappelons que le PGCD d’un ensemble de nombres entiers est leur Plus Grand Commun
Diviseur). Une chaîne de Markov est apériodique si tout état a période 1.

Dans l’exemple suivant, on a dz = 1 puisque Qzz > 0 mais aussi dx = 1 puisque Q3
xx > 0

et Q4
xx > 0 (de même, dy = 1). Remarquons que comme la notion d’irréductibilité, la notion

d’apériodicité de dépend pas de la valeur des étiquettes du graphe.

x y z

1 1

1
2

1
2

Lemme. Dans une chaîne de Markov, deux états qui communiquent ont même période.

Corollaire. Dans une chaîne de Markov irréductible, tous les états ont même période.

Démonstration. Supposons x⇝ y ⇝ x. Il existe donc deux entiers m et n tels que Qm
xy > 0

et Qn
yx > 0. Soient dx et dy les périodes de x et y.

— Puisque Qm+n
xx ⩾ Qm

xyQ
n
yx > 0, l’entier dx divise m+ n.

— Soit p un entier tel que Qp
yy > 0. On a Qm+p+n

xx ⩾ Qm
xyQ

p
yyQn

yx > 0, ce qui fait que
l’entier dx divise m+ p+ n, et donc également p d’après le point précédent.

Puisque dx|p pour tout p tel que Qp
yy > 0, on déduit de la définition du PGCD que dx|dy.

Par symétrie, on a donc dx = dy.

Théorème (Théorème de convergence). Soit (Xn) une chaîne de Markov irréductible
apériodique à espaces d’états finis S, et soit π sa mesure de probabilité invariante. Alors,
pour tous x, y dans S

lim
n→∞

Px(Xn = y) = π(y).
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Lemme. Il existe un entier N tel que l’on ait Qn
xy > 0 pour tout n ⩾ N et x, y ∈ S.

Démonstration. L’espace d’états étant fini, il suffit de voir que pour tout x, y ∈ S, il existe
un entier Nx,y tel que Qn

xy > 0 pour tout n ⩾ Nx,y. Mais ceci est une conséquence directe
du résultat suivant, qui est un exercice d’arithmétique : étant donnés des entiers naturels
n1, . . . , nk tels que PGCD(n1, . . . , nk) = 1, il existe un entier N tel que tout entier n ⩾ N
s’écrit comme n = a1n1 + · · ·+ aknk avec a1, . . . , an dans N.

Preuve du théorème de convergence. Il faut montrer que pour tous x, y dans S, on a

lim
n→∞

Qn
xy = π(y).

On utilise un argument de couplage en définissant une nouvelle chaîne de Markov d’espace
d’états S × S et de matrice de transition Q donnée par

Q(y,z),(y′,z′) = Qy,y′Qz,z′ .

Si (Yn, Zn) est une chaîne de Markov de matrice de transition Q issue de (y, z), alors (Yn)
et (Zn) sont deux chaînes de Markov de matrice de transition Q issues respectivement
de y et z ; de plus (Yn) et (Zn) sont indépendantes.

La chaîne de Markov de matrice de transition Q est irréductible. C’est ici qu’on utilise
l’apériodicité de Q : si N est donné par le lemme, alors pour n ⩾ N

Q
n
(y,z),(y′,z′) = Qn

y,y′Q
n
z,z′ > 0.

En tant que chaîne de Markov irréductible à espaces d’états fini, cette chaîne est récur-
rente. La mesure de probabilité π définie sur S × S par π(y, z) = π(y)π(z) (c’est-à-dire,
c’est la loi d’un couple de deux variables aléatoires indépendantes de loi π) est invariante
pour Q.

Prouvons maintenant le théorème. Fixons (w, x) ∈ S × S et soit (Yn, Zn) la chaîne de
Markov de matrice de transition Q issue de (w, x). Pour alléger les notations, on notera
P∗ = P(w,x)). Fixons un état arbitraire z ∈ S et considérons

τ = inf{n ⩾ 0 : (Yn, Zn) = (z, z)}.

Puisque la chaîne est irréductible et récurrente, on a P∗(τ < ∞) = 1. Pour tout y dans S,
on a ∣∣Qn

wy −Qn
xy

∣∣ = |P∗(Yn = y)−P∗(Zn = y)|

=
∣∣∣ n∑
k=0

P∗(Yn = y, τ = k) +P∗(Yn = y, τ > n)

−
n∑

k=0

P∗(Zn = y, τ = k)−P∗(Zn = y, τ > n)
∣∣∣

Par symétrie (i.e., π(s, t) = π(t, s) pour tous s et t dans S), on a pour tout k ⩽ n l’égalité

P∗(Yn = y, τ = k) = P∗(Zn = y, τ = k).

On en conclut que∣∣Qn
wy −Qn

xy

∣∣ ⩽ |P∗(Yn = y, τ > n)−P∗(Zn = y, τ > n)| ⩽ P(τ > n)
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et donc limn→∞ |Qn
xy −Qn

x′y| = 0. Finalement, on utilise l’égalité πQn = π pour écrire

π(y)−Qn
xy =

(∑
w∈S

π(w)Qn
wy

)
−Qn

xy =
∑
w∈S

π(w)
(
Qn

wy −Qn
xy

)
et cette quantité tend vers 0.

Fin cours #10 du 28 novembre

5.5 Calcul de la probabilité invariante

On se donne une chaîne de Markov irréductible à espace d’états finis, qui admet
donc une unique probabilité invariante. Le calcul de la mesure invariante peut toujours se
ramener à une résolution de système linéaire. Par exemple, pour la chaîne de matrice de
transition

Q =

1/2 0 1/2
1/4 1/2 1/4
1/3 1/6 1/2


la mesure invariante π vérifie l’équation πQ = π, donc est solution du système

π(1) =
1

2
π(1) +

1

4
π(2) +

1

3
π(3)

π(2) = 0π(1) +
1

2
π(2) +

1

6
π(3)

π(3) =
1

2
π(1) +

1

4
π(2) +

1

2
π(3)

Ces trois équations ne sont pas linéairement indépendantes (leur somme donne 1 = 1,
puisque la somme des lignes de Q vaut 1) mais il faut rajouter la condition

π(1) + π(2) + π(3).

La résolution de tels systèmes est vite fastidieuse, et donc on préfère l’éviter si possible.
Une alternative possible est celle de la méthode des coupes, qui se base sur l’équation
suivante : étant donné une partition S = S1 ∪ S2 de l’espace des états, on a l’équation∑

x∈S1

∑
y∈S2

π(x)Q(x, y) =
∑
x∈S1

∑
y∈S2

π(y)Q(y, x).

Cette équation s’interprète ainsi : puisque la probabilité invariante correspond à un état
d’équilibre, le flux sortant de S1 vers S2 (terme de gauche) est égal au flux entrant de S2

vers S1 (terme de droite).
Démontrons l’égalité : on calcule∑

x∈S1,y∈S2

π(x)Qxy =
∑

x∈S1,y∈S
π(x)Qxy −

∑
x∈S1,y∈S1

π(x)Qxy =
∑
x∈S1

π(x)−
∑

x,y∈S1

π(x)Qxy

∑
x∈S1,y∈S2

π(y)Qyx =
∑

x∈S1,y∈S
π(y)Qyx −

∑
x∈S1,y∈S1

π(y)Qyx =
∑
x∈S1

π(x)−
∑

x,y∈S1

π(x)Qxy

où on a utilisé la relation πQ = Q dans la dernière égalité.
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Exemple. Considérons un modèle de file d’attente de longueur maximale L. Étant donné
deux paramètres p, q > 0 tels que p+q ⩽ 1, le système évolue selon la dynamique suivante.
A chaque instant n ∈ N,

1. si la file d’attente est de longueur < L, un nouveau client d’y installe avec probabilité
p,

2. si la file d’attente est de longueur > 0, un client est servi (et quitte la file) avec
probabilité q.

0 1 2 . . . L− 2 L− 1 L

p p p p p p

q q qq q q

1− p

1− p− q

1− p− q 1− p− q

1− p− q

1− q

C’est une chaîne de Markov d’espace d’états S = {0, . . . , L}, donc la matrice de transition
est donnée par Q(i, i+1) = p (si 0 ⩽ i < L), Q(i−i−1) = q (si 0 < i ⩽ L), Q(0, 0) = 1−p,
Q(L,L) = 1 − q et Q(i, i) = 1 − p − q (si 0 < i < L), les autres termes étant nuls. Cette
chaîne est irréductible et apériodique et admet donc une unique probabilité invariante π.
Pour calculer cette dernière, on considère pour chaque sommet 0 ⩽ i < L la partition
S = {0, . . . , i} ∪ {i+ 1, . . . , L}. L’équation de coupe s’écrit alors simplement

π(i)Qi,i+1 = π(i+ 1)Qi+1,i

et donc pπ(i) = qπ(i+1). En posant α = p/q, on a donc π(i+1) = απ(i) puis π(i) = αiπ(0).
Si α = 1, la mesure invariante est la mesure uniforme sur S ; sinon on a

π(i) =
αi∑L

k=1 α
k
=

αi(1− α)

1− αL+1
.

Remarquons que si α < 1, on obtient la loi géométrique de paramètre α dans la limite
L → ∞.

5.6 La marche aléatoire sur un graphe

On se donne un graphe fini G = (V,E) non orienté, sans boucle ni arête multiple. On
suppose de plus qu’aucun sommet n’est isolé. On appelle marche aléatoire sur G la chaîne
de Markov d’espace d’états V et de matrice de transition donnée par

Q(x, y) =

{
1

deg x si x ∼ y

0 sinon.

Remarquons que
— la marche aléatoire sur G est irréductible si et seulement si G est connexe,
— la marche aléatoire sur G est apériodique si et seulement si G est non bipartite.

Pour justifier ce dernier point, remarquons que la période de tout sommet vaut 1 ou 2, et
qu’elle vaut 1 si et seulement si ce sommet est contenue dans un cycle de longueur impaire ;
or les graphes bipartites sont les graphes sans cycle de longueur impaire.

Dans la suite on suppose que le graphe G est connexe et fini. La marche aléatoire sur
G admet donc une unique probabilité invariante.
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Proposition. La probabilité invariante pour la marche aléatoire sur G est donnée par

π(v) =
deg(v)

2|E|
.

Démonstration. C’est bien une probabilité puisque la sommet de tous les degrés vaut 2|E|.
On calcule, pour y ∈ V∑

x∈V
π(x)Q(x, y) =

∑
x∼y

deg x

2|E|
1

deg x
=

deg y

2|E|
= π(y),

ce qui montre que π est invariante.

Corollaire. Pour tout sommet v, on a Ev[Tv] =
2|E|
deg x .

Exercice. Une pièce d’échecs (fou, tour, cavalier, reine ou roi) se déplace aléatoirement sur
un échiquier. Quels choix de pièce et de case de départ maximisent/minimisent le nombre
moyen de déplacements nécessaires pour revenir sur la case de départ ?

On s’intéresse maintenant au temps de recouvrement d’un graphe, qui est défini par

Trec(G) = max
x∈V

Ex

[
max
y∈V

Ty

]
C’est le temps moyen nécessaire, partant du pire point, pour que la marche aléatoire soit
passée par tous les sommets du graphe.

Proposition. Pour un graphe connexe G, on a Trec(G) ⩽ 4|V | · |E|.

On commence par montrer un lemme

Lemme. Si x ∼ y alors Ex[Ty] ⩽ 2|E|.

Démonstration. Soit A l’ensemble des voisins de y. On a

2|E|
deg y

= π(y)−1 = Ey[Ty] = 1 +
∑
x

Qxy Ex[Ty] = 1 +
∑
x∼y

1

deg y
Ex[Ty]

On en tire l’inégalité
∑

x∼y Ex[Ty] ⩽ 2|E| et le lemme en découle puisque les quantités
sommées sont positives.

Preuve de la proposition. Soit n = |V | et fixons x ∈ V . On se donne un arbre couvrant de
G (qui a donc n− 1 arêtes, énuméré selon l’ordre de parcours comme)

x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ x2n−3 ∼ x2n−2 = x.

Soit τ le premier instant où les sommets de l’arbre couvrant ont été visités dans cet ordre,
c’est à dire

τ = inf{N : ∃0 ⩽ t0 < t1 < . . . t2n−2 ⩽ N : Xt0 = x0, Xt1 = x1, . . . , Xt2n−2 = x2n−2}

On a maxy∈V Ty ⩽ τ . En utilisant la propriété de Markov, on a

Ex[τ ] ⩽ Ex[Tx1 ] +Ex1 [Tx2 ] + · · ·+Ex2n−3 [Tx2n−2 ].

Par le lemme, chacun de termes de la somme est majoré par 2|E|. On a donc Trec(G) ⩽
(2n− 2)|E| ⩽ 4|V ||E|
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Il est découle de la proposition que si G est un graphe connexe à n sommets, alors
Trec(G) ⩽ 2n3. Donnons quelques exemples de temps de recouvrement.

1. Le calcul du temps de recouvrement du graphe complet se ramène au problème du
collectionneur de vignettes : on a Trec(Kn) ∼ n log n.

2. Si G = Ln est le graphe linéaire à n sommets (où les seules arêtes sont {i, i + 1},
on a déjà considéré ce problème dans l’étude du problème 2-SAT ; on peut montrer
que Trec(G) = Θ(n2).

3. On peut combiner les exemples précédent pour former le graphe «sucette» obtenu
en recollant Kn et Ln. Le temps de recouvrement est alors Θ(n3), ce qui montre
que la proposition précédente ne peut pas être améliorée.

Comme application de la notion de temps de recouvrement, on donne un algorithme
probabiliste de mauvaise complexité mais extrêmement économe en mémoire pour le pro-
blème suivant. On se donne un graphe G à n sommets, de degré borné. Étant donnés deux
sommets x et y, il faut décider s’ils sont reliés dans le graphe. Ce problème a une solution
déterministe simple de complexité O(n) et de mémoire O(n) qui consiste à effectuer en
parcours du graphe en profondeur (par exemple).

Pour réduire la mémoire utilisée, on suppose qu’on a accès à un oracle qui, interrogé sur
un sommet du graphe, renvoie la liste de ses voisins. On peut alors considérer l’algorithme
probabiliste suivant : on effectue la marche aléatoire sur G issue de x pendant 4n3 étapes.
Si la marche passe par y, on répond que x et y sont reliés dans G (et on ne se trompe pas).
Sinon, on répond que x et y ne sont pas reliés. La probabilité d’erreur est alors majorée
par l’inégalité de Markov

Px(Ty > 4n3) ⩽
Trec(G)

4n3
⩽

1

2

et peut être rendue arbitrairement petite en répétant l’algorithme. La complexité est O(n3)
et l’algorithme nécessite une mémoire O(log n). En effet il suffit de stocker uniquement le
sommet actuellement visité par la marche aléatoire, et cette information peut être encodée
sur log n bits.

5.7 Vitesse de convergence vers la probabilité invariante

Soit S un ensemble fini. On définit la distance en variation totale entre deux probabilités
µ1 et µ2 sur S par

dTV (µ1, µ2) =
1

2

∑
x∈S

|µ1(x)− µ2(x)|.

On a aussi, via la formule min(a, b) = a+b−|a−b|
2 ,

dTV (µ1, µ2) = 1−
∑
x∈S

min(µ1(x), µ2(x)).

Remarquons que dTV (µ1, µ2) = 1 si et seulement si µ1 et µ2 sont à supports disjoints.
Cette quantité s’interprète en termes de couplages de µ1 et µ2.

Proposition. Étant données deux probabilités µ1 et µ2 sur un ensemble fini S, on a

dTV (µ1, µ2) = inf P(X ̸= Y )

où la borne inférieure porte sur l’ensemble des couples (X,Y ) de variables aléatoires, tels
que X ∼ µ1 et Y ∼ µ2.
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Démonstration. Pour tout x dans S, on a

P(X = Y = x) ⩽ min(µ1(x), µ2(x))

et donc en sommant sur x

P(X = y) ⩽
∑
x∈S

min(µ1(x), µ2(x)) = 1− dTV (µ1, µ2)

On a donc l’inégalité dTV (µ1, µ2) ⩽ P(X ̸= Y ). Pour montrer l’inégalité, il suffit de donner
une loi pour (X,Y ) telle que P(X = Y = x) = min(µ1(x), µ2(x)) =: m(x) pour tout x ∈ S.
Le choix

P(X = x, Y = y) =

{
m(x) si x = y
(µ1(x)−m(x))(µ2(y)−m(y))

1−
∑

z m(z) si x ̸= y

répond aux conditions voulues.

Considérons une chaîne de Markov irréductible apériodique (Xn) à espace d’états
finis, de matrice de transition Q et de probabilité invariante π. Pour étudier la convergence
vers l’équilibre, on introduit

∆(n) = max
x∈S

dTV (P
n
x , π)

où Pn
x = (Qn(x, y))y est la loi de Xn sachant X0 = x. On définit aussi le temps de mélange

d’ordre ε > 0 par
tmix(ε) = inf{n : ∆(n) ⩽ ε}

Il découle du théorème de convergence que limn→∞∆(n) = 0. Vérifions d’abord que la
convergence vers l’équilibre est monotone.

Proposition. La suite (∆(n))n est décroissante.

Démonstration. On a

dTV (P
n+1
x , π) =

1

2

∑
z∈S

|Qn+1(x, z)− π(z)|

=
1

2

∑
z∈S

∣∣∣∣∣∣
∑
y∈S

Q(x, y)Qn(y, z)−
∑
y∈S

Q(x, y)π(z)

∣∣∣∣∣∣
⩽
∑
y∈S

Q(x, y) · 1
2

∑
z∈S

|Qn(y, z)− π(z)|

⩽
∑
y∈S

Q(x, y)∆(n) = ∆(n)

et il suffit de prendre la borne supérieure sur x.

Fin cours #11 du 3 décembre
Un couplage pour une chaîne de Markov (Xn) de matrice de transition Q (sur un

espace d’états S) es la donnée d’une chaîne de Markov (Yn, Zn) d’espace d’états S × S
dont la matrice de transition R vérifie

∀y, y′, z
∑
z′∈S

R((y, z), (y′, z′)) = Q(y, y′)
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∀y, z, z′
∑
y′∈S

R((y, z), (y′, z′)) = Q(z, z′)

R((x, x), (y′, z′)) =

{
Q(x, y′) si y′ = z′

0 sinon

Les deux premières conditions peuvent se réécrire comme

P(Yn+1 = y′ | (Yn, Zn) = (y, z)) = Q(y, y′)

P(Zn+1 = z′ | (Yn, Zn) = (y, z)) = Q(z, z′).

La dernière condition revient à demander qu’une fois que les deux coordonnées de la chaîne
de Markov sont égales, elles le demeurent pour tout le futur.

Un exemple de couplage utilisé dans la preuve du théorème de convergence est de faire
évoluer les deux coordonnées indépendamment jusqu’à ce qu’elles se rencontrent. Cela
correspond à demander que lorsque y ̸= z

R((y, z), (y′, z′)) = Q(y, y′)Q(z, z′).

Lemme (Lemme de couplage). Si (Yn, Zn) est un couplage pour la chaîne de Markov
(Xn) tel que

∀y, z,∈ S P(YN ̸= ZN |Y0 = y, Z0 = z) ⩽ ε,

alors ∆(N) ⩽ ε.

Démonstration. Considérons la chaîne avec Y0 = y et Z0 ∼ π. Alors

P(YN ̸= ZN ) =
∑
z

π(z)P(YN ̸= ZN |Y0 = y, Z0 = z) ⩽ ε.

Comme YN ∼ PN
y et ZN ∼ π, on a dTV (P

N
y , π) ⩽ ε, d’où le résultat.

Nous allons montrer que la convergence vers l’équilibre est toujours exponentiellement
rapide.

Proposition. Il existe des constantes C > 0 et α < 1 telles que ∆(n) ⩽ Cαn.

Démonstration. Supposons d’abord que tous les coefficients de la matrice Q soient > 0.
Soit µx la loi de X1 sachant X0 = x. C’est la ligne x de la matrice Q. On a dTV (µy, µz) < 1 ;
posons

α = max
y,z

dTV (µy, µz) < 1

Par un lemme précédent, pour tous y, z dans S, il existe une loi µy,z sur S × S telle que si
(Y, Z) ∼ µy,z,

P(Y ̸= Z) = dTV (µy, µz) ⩽ α

On définit un couplage (Yn, Zn) par

P((Yn+1, Zn+1) = (y′, z′) | (Yn, Zn) = (y, z)) = µy,z(y
′, z′)

de telle sorte que, quels que soient (y, z)

P(Yn+1 ̸= Zn=1 | (Yn, Zn) = (x, y)) ⩽ α

et donc
P(Yn+1 ̸= Zn+1 |Yn ̸= Zn) ⩽ α
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Puisque Yk = Zk implique Yk+1 = Zk+1, on a alors

P(Yn ̸= Zn|Y0 = y, Z0 = z) = P(Yn ̸= Zn, Yn−1 ̸= Zn−1, . . . , Y1 ̸= Z1|Y0 = y, Z0 = z)

= P(Xn ̸= Yn|Xn−1 ̸= Yn−1) · · ·P(X1 ̸= Y1|X0 = x, Y0 = x) ⩽ αn

et donc, par le lemme de couplage, on a ∆(n) ⩽ αn.
Pour le cas général, soit p un entier telle que tous les coefficients de Qp soient > 0 (un

tel entier existe par apériodicité, cf. preuve du théorème de convergence). Le raisonnement
précédent appliqué à Qp montre que

∆(pn) ⩽ αn

et la décroissance de ∆ permet de conclure que

∆(n) ⩽ ∆(p⌊n/p⌋) ⩽ α⌊n/p⌋ ⩽ Cβn

pour β = α1/p et C = 1/α.

Montrons enfin que la valeur de ε n’a pas grande importance lorsqu’on définit le temps
de mélange

Proposition. Pour tout 0 < ε < 1/4, on a

tmix(ε) ⩽ ⌈log2 1/ε⌉tmix(1/4).

Démonstration. Soit N = tmix(1/4). On a alors, pour tout x, y dans S

dTV (P
N
x , PN

y ) ⩽ dTV (P
N
x , π) + dTV (π, P

N
y ) ⩽ 1/2.

On peut donc appliquer l’argument de la proposition précédente à la matrice QN pour
obtenir

∆(kN) ⩽ (1/2)k

d’où le résultat.

5.7.1 Exemple : mélange de cartes

On considère un paquet de N cartes que l’on mélange en itérant l’opération suivante :
on choisit uniformément au hasard une des cartes du paquet, et on la place au-dessus du
paquet. Au bout de combien d’étapes est-ce que le jeu est mélangé ?

On peut voir ce processus comme une chaîne de Markov d’espaces d’états S = SN

et de matrice de transition
Q(σ, τ) =

1

N

si σ = (x1, x2, . . . , xN ) et τ = (xi, x1, . . . , xi−1, xi+1, . . . , xN ) pour i ∈ {1, . . . , N}. La
chaîne de Markov est irréductible et apériodique et la mesure invariante est donnée par
la mesure uniforme sur SN .

Définir un couplage revient à faire la chose suivante : on a deux paquets de N cartes
et on fait une opération qui revient pour chaque paquet à faire un pas de la chaîne de
Markov ci-dessous.

Une idée naïve est de tirer au sort un entier i, et mettre sur le dessus la ième carte du
premier paquet ainsi que la ième carte du second paquet. Ce couplage n’est pas intéressant
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pour étudier la convergence : si on note (Y
(N)
n , Z

(N)
n ) la chaîne de Markov correspondant,

alors on a P(Y
(N)
n+1 = Z

(N)
n+1) = P(Y

(N)
n = Z

(N)
n ).

Une meilleure idée est de tirer au sort un entier i, de mettre sur le dessus la ième carte
du premier paquet, et de mettre sur le dessus du second paquet la carte de même valeur
que celle-ci. Notons (Y (N)

n , Z
(N)
n ) cette chaîne de Markov. C’est bien un couplage (chaque

carte du second paquet a probabilité 1/N d’être choisie). On peur remarquer que les cartes
qui ont été manipulées resteront toujours dans la même position dans les deux paquets. Si
on pose

T (N) = inf{n : toutes les cartes du paquet ont été vues entre les temps 1 et n}

Alors n ⩾ T (N) implique Y
(N)
n = Z

(N)
n et donc

P(Y (N)
n ̸= Z(N)

n ) ⩽ P(T (N) ⩾ n)

L’étude de T (N) se ramène au problème du collectionneur de vignettes, on a vu que

lim
N→∞

P(T (N) ⩾ (1 + α)N logN) = 0

pour tout α > 0 et donc t
(N)
mix(ε) ⩽ (1 + o(1))N logN pour tout ε > 0.

5.7.2 Exemple : marche aléatoire sur l’hypercube

Soit (Xn) la marche aléatoire sur le graphe de l’hypercube GN = (VN , EN ) où VN =
{0, 1}N et où deux sommets sont reliés si et seulement si ils ne diffèrent que d’une coor-
donnée. Comme le graphe de l’hypercube est bipartite, cette chaîne de Markov n’est pas
apériodique. On peut définir une variante, la marche aléatoire paresseuse, qui se déplace
avec probabilité 1/2 selon la marche aléatoire et ne se déplace pas avec probabilité 1/2.
C’est la chaîne de Markov donnée par la matrice de transition

Q(x, y) =


1
2 si x = y
1
2N si x ∼ y

0 sinon

Elle est irréductible et apériodique. La probabilité invariante est la probabilité uniforme
sur VN .

Pour estimer le temps de mélange de cette chaîne de Markov, on définit un couplage
(Yn, Zn) de la façon suivante. A chaque étape de temps, on choisit in ∈ {1, . . . , N} et
εn = {0, 1} indépendemment et uniformément, et on définit Yn+1 (resp. Zn+1) en effaçant
la coordonnée in de Yn (resp. de Zn) et en la remplaçant par εn. C’est bien un couplage.
Comme précédemment, si on note

T = inf{n : card{i1, . . . , in} = N}

alors l’événement {T > n} est inclus dans l’événement {Yn = Zn}. On se ramène à nouveau
au problème de collectionneur de vignettes et donc tmix(ε) ⩽ (1 + o(1))N logN .
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Chapitre 6

Statistiques et compléments sur les
gaussiennes

6.1 Estimation de paramètres

En statistiques, on suppose qu’observe souvent des variables aléatoires i.i.d. (Xn) dont
on ne connaît pas la loi, mais qu’on aimerait essayer d’identifier.

On se donne en général une famille paramétrée de mesures de probabilités (soit dis-
crètes, soit continues) (µθ)θ∈Θ. Par exemple :

1. Les variables Xn sont à valeurs dans {0, 1}. Dans ce cas, la famille paramétrée est
la famille des lois de Bernoulli (B(θ))θ∈[0,1].

2. On fait l’hypothèse que les variables Xn suivent une loi géométrique. Dans ce cas,
la famille paramétrée est la famille (G(θ))θ∈]0,1].

3. On fait l’hypothèse que les variables Xn suivent une loi gaussienne. Dans ce cas, la
famille paramétrée est la famille N(m,σ2)m∈R,σ⩾0

On appelle échantillons une suite de variables aléatoires (Xn) i.i.d. de loi inconnue
parmi une famille (µθ)θ∈Θ, discrètes ou continues ; on notera Pθ la mesure de probabilité
correspondant au cas où la loi est µθ. Dans le cas continu, on note fθ la densité de la loi µθ.
Un problème fondamental est le problème d’estimation de paramètres : on souhaite définir
une pour tout n une fonction Fn : Rn → Θ de sorte que la variable aléatoire

θ̂ = Fn(X1, . . . , Xn)

soit aussi proche de θ que possible. On dit que la variable aléatoire θ̂ est un estimateur.
Un principe général pour définir des estimateurs est le maximum de vraisemblance. La

vraisemblance (en anglais : likelihood) d’un paramètre θ connaissant les échantillons est
dans le cas discret

L(θ|x1, . . . , xn) = Pθ(X1 = x1, . . . , Xn = xn)

=

n∏
i=1

µθ(xi)

et dans le cas continu

L(θ|x1, . . . , xn) =
n∏

i=1

fθ(xi).
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On définit l’estimateur par maximum de vraisemblance comme

θ̂n(X1, . . . , Xn) = argmaxL(θ|X1, . . . , Xn)

Il est souvent plus simple de maximiser logL, ce qui est bien sûr équivalent.
Voici une justification informelle du principe du maximum de vraisemblance. Le prin-

cipe d’agnosticisme consiste à dire tous les choix de paramètres jouent le même rôle ; par
exemple si Θ = [0, 1] on peut supposer que le paramètre θ est choisi a priori selon la loi
uniforme. On a («formule de Bayes»)

P(θ|X) =
P(X|θ)P(θ)

P(X)

et si on suppose que P(θ) est constant par le principe d’agnosticisme, le maximum de
vraisemblance revient à maximiser θ 7→ P(X|θ), c’est-à-dire à choisir le paramètre qui
rend les données observées les plus vraisemblables.

Fin cours #12 du 10 décembre

6.2 Exemples

Étudions en détail le cas de l’estimation du paramètre d’une loi de Bernoulli. La
vraisemblance est

L(θ|X1, . . . , Xn) =

n∏
i=1

θXi(1− θ)1−Xi = θSn(1− θ)n−Sn

où l’on a posé Sn = X1 + · · ·+Xn. On a

logL = Sn log θ + (n− Sn) log(1− θ)

et cette fonction est maximale si
Sn

θ
− n− Sn

1− θ
= 0

ou encore (1−θ)Sn = θ(n−Sn) soit θ = Sn/n. L’estimateur par maximum de vraisemblance
est donc la moyenne empirique

θ̂ =
Sn

n

Étudions l’erreur commise par cette estimation. Étant donné δ > 0, on a en utilisant
l’inégalité de Chernoff II

P(θ ̸∈ [θ̃ − δ, θ̃ + δ]) = P(θ ̸∈ [θ̃ − δ, θ̃ + δ])

= P(Sn < nθ(1− δ/θ) +P(Sn < nθ(1− δ/θ)

⩽ 2 exp

(
− δ2/θ2

2 + δ/θ
θn

)
= 2 exp

(
− δ2

2θ + δ
n

)
⩽ 2 exp

(
−δ2

3
n

)
On en déduit que si n ⩾ 3 log(2/γ)/δ2, alors

P(θ ∈ [θ̃ − δ, θ̃ + δ]) > 1− γ

est vérifiée. On dit que l’on a déterminé un intervalle de confiance pour le paramètre θ.
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Exercice. Quel est l’estimateur par maximum de vraisemblance pour le paramètre d’une
loi géométrique ?

Voici un exemple dans le cas continu. On considère la famille des lois gaussiennes
N(µ, σ2), de densité

fµ,σ2 =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
Le paramètre est un couple θ = (µ, v) ∈ R×R+ (on pose v = σ2). La vraisemblance vaut

L(µ, v|X1, . . . , Xn) =
n∏

i=1

fµ,v(Xi)

=
1

(2πv)n/2
exp

(
−
∑n

i=1(Xi − µ)2

2v

)
On a donc

logL = −
∑n

i=1(Xi − µ)2

2v
− n

2
log(2πv)

Les conditions ∂ logL
∂µ = ∂ logL

∂v donnent

n∑
i=1

(Xi − µ) = 0 et
∑

(Xi − µ)2

2v2
− n

2v
= 0

On en déduit que l’estimateur par maximum de vraisemblance θ̂ = (µ̂, v̂) est donné par la
moyenne et la variance empirique

µ̂ =
1

n

n∑
i=1

Xi

v̂ =
1

n

n∑
i=1

(Xi − µ̂)2

6.3 Vecteurs aléatoires gaussiens

On appelle vecteur aléatoire une variable aléatoire à valeurs dans Rn. Soit X =
(X1, . . . , Xn) un vecteur aléatoire. On dit que X a une densité s’il existe une fonction
f : Rn → R+ telle que pour tout partie (borélienne) A ⊂ Rn

P((X1, . . . , Xn) ∈ A) =

∫
A
f(x1, . . . , xn), dx1, . . .dxn

et on dit que f est la densité du vecteur (X1, . . . , Xn)
Notons que si X est une variable aléatoire a densité, le vecteur aléatoire (X,X) n’est

pas à densité.
Si X1, . . . , Xn sont des variables aléatoires continues indépendantes, de densités respec-

tives f1, . . . , fn, alors le vecteur aléatoire X = (X1, . . . , Xn) a pour densité la fonction

(x1, . . . , xn) 7→ f1(x1) . . . fn(xn)

Si X = (X1, . . . , Xn) est un vecteur aléatoire de densité fX : Rn → R+, alors pour
tout 1 ⩽ i ⩽ n, la variable aléatoire Xi est continue, et sa densité fXi est donnée par

fXi(t) =

∫ ∞

0
· · ·
∫ ∞

0
fX(x1, . . . , xi−1, t, xi+1, . . . , xn) dx1 . . . dxi−1dxi+1 . . . dxn
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On dit que fX1 , . . . , fXn sont les densités marginales de fX .
Soit X = (X1, . . . , Xn) un vecteur aléatoire telle que chaque variable aléatoire Xi

admette un moment d’ordre 2. L’espérance de X est

E[X] = (E[X1], . . . ,E[Xn]) ∈ Rn

et la matrice de variance-covariance est de X est la matrice Cov(X) = (Σij) donnée par

Σij = Cov(Xi, Xj) = E[(Xi −E[Xi])(Xj −E[Xj ])

Autrement dit, Σ = (Σij) est la matrice E[(X −m)(X −m)t] avec m = E[X].
La matrice de covariance est une matrice symétrique et positive. On peut se ramener

au cas où E[X] = 0. Ensuite, pour tout t = (t1, . . . , tn) ∈ R2, on a

⟨t,Cov(X)t⟩ =

n∑
i,j=1

titj E[XiXj ]

= E

(
N∑
i=1

tiXi

)2

⩾ 0

Soit X = (X1, . . . , Xn) un vecteur aléatoire de moyenne µ ∈ Rd et de matrice de
covariance Σ. Pour toute matrice A ∈ Mn(R) et pour tout b ∈ Rn, le vecteur aléatoire
Y = A(X) + b a pour moyenne A(µ) + b et pour matrice de covariance AΣAt.

C’est une simple conséquence de la linéarité de l’espérance. Pour la moyenne on a :

E[AX] = AE[X] = Am

et pour la matrice de covariance :

E[(AX −Am)(AX −Am)t] = E[A(X −m)(X −m)tAt]

= AE[(X −m)(X −m)t]At

= AΣAt.

Définition. On dit qu’un vecteur aléatoire (X1, . . . , Xn) est un vecteur gaussien, si pour
tout t ∈ Rn la variable aléatoire

⟨t,X⟩ =
n∑

i=1

tiXi

suit une loi gaussienne (éventuellement constante).

Il ne suffit pas que chacune des coordonnées suive une loi gaussienne pour qu’un vecteur
soit gaussien. Voici un exemple qui illustre ce point : si X ∼ N(0, 1) et ε est une variable
aléatoire indépendante de X et vérifiant P(ε = 1) = P(ε = −1) = 1

2 , alors (X, εX) n’est
pas un vecteur gaussien (puisque P(X + εX = 0) = 1/2) bien que les variables aléatoires
X et εX soient toutes deux gaussiennes.

Si X = (X1, . . . , Xn) est un vecteur gaussien, pour toute matrice A ∈ Mn(R) et tout
vecteur b ∈ Rn, le vecteur aléatoire AX + b est un vecteur gaussien.

Proposition. Soit m ∈ Rn et Σ une matrice symétrique positive n×n. Il existe un vecteur
gaussien d’espérance m et de matrice de covariance Σ.
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Démonstration. Commençons par remarquer que si X1, . . . , Xn sont des variables aléatoires
i.i.d. de loi N(0, 1), alors le vecteur aléatoire (X1, . . . , Xn) est un vecteur aléatoire gaussien
d’espérance 0 et de matrice de covariance la matrice identité In.

Pour le cas général, on utilise le fait que tout matrice symétrique positive Σ peut s’écrire
comme Σ = AAt pour A ∈ Mn(R). On peut alors vérifier que le vecteur aléatoire AX + b
est un vecteur gaussien d’espérance m et de matrice de covariance Σ.

Théorème (admis). Deux vecteurs gaussiens ont même loi si et seulement si ils ont la
même espérance et la même matrice de covariance.

On note N(m,Σ) la loi d’un vecteur gaussien de moyenne m ∈ Rn et de matrice de
covariance Σ. On dit que la loi N(0, Id) est la loi d’un vecteur gaussien standard. Si X
est un vecteur gaussien standard dans Rn, ses coordonnées sont des variables aléatoires
i.i.d. de loi N(0, 1). De plus, si O est un matrice orthogonale (donc vérifiant OOt = Id),
le vecteur gaussien O(X) est un vecteur gaussien standard puisque sa covariance vaut
O · In ·Ot = In. On dit que la loi gaussienne est invariante par rotation. Une autre manière
de dire les choses est que les coordonnées d’un vecteur gaussien standard calculées dans
une base orthonormale quelconque de Rn sont indépendantes de loi N(0, 1)

Si Σ est inversible, on peut calculer que la loi N(m,Σ) a une densité donnée par

x 7→ 1

(2π)n/2(detΣ)1/2
exp

(
−⟨x−m,Σ−1(x−m)⟩

)
dx1 . . . dxn

Les lois gaussiennes sont omniprésentes dans l’étude des phénomènes de grande dimen-
sion, en particulier à cause du théorème central limite. Nous allons étudier deux problèmes
qui illustrent ce phénomène.

6.4 Comment tirer une direction uniformément au hasard en
grande dimension ?

On cherche à tirer dans l’espace euclidien Rn avec n ≫ 1 une direction «uniformément
au hasard». Cela revient à choisir un point sur la sphère Sn−1 = {x ∈ Rn : ∥x∥ = 1} (où
l’on note ∥x∥ =

(
x21 + · · ·+ x2n

)1/2 la norme euclidienne) selon la «mesure de probabilité
uniforme». Nous ne définirons pas exactement cette dernière ; c’est l’unique mesure de
probabilité invariante par rotation.

Un algorithme naïf est de choisir un Y1, . . . , Yn i.i.d. de loi uniforme dans l’intervalle
[−1, 1]. Conditionnellement à l’événement E = {∥Y ∥ ⩽ 1}, le vecteur Y

∥Y ∥ est de loi
uniforme sur Sn−1.

L’inconvénient de cet algorithme est que son temps d’exécution est exponentiel ! En
effet, son temps d’exécution suit une loi géométrique de paramètre P(E) et a donc pour
espérance P(E)−1. On a

P(E) = P

(
n∑

i=1

Y 2
i ⩽ 1

)
On est dans le cadre d’application des inégalités de Hoeffding puisque les variables
aléatoires Y 2

i sont indépendantes et à valeurs dans [0, 1]. On calcule que µ = E[Y 2
1 + · · ·+

Y 2
n ] = nEY 2

1 = n/3. On a donc pour n ⩾ 6

P(E) ⩽ P

(
n∑

i=1

Y 2
i ⩽ n/6

)
= P

(
n∑

i=1

Y 2
i ⩽ µ− n/6

)
⩽ exp(−n/3)
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et le temps moyen d’exécution est donc ⩾ exp(n/3).
La bonne méthode est de choisir (z1, . . . , zn) i.i.d. de loi N(0, 1) ; alors le vecteur renor-

malisé z
∥z∥ est de loi uniforme sur Sn−1 et cette méthode prend un temps O(n).

6.5 Lemme de Johnson–Lindenstrauss

Théorème (Lemme de Johnson–Lindenstrauss). Soit ε ∈ (0, 1/2), Q ⊂ Rd un en-
semble de N points et k = ⌈20 log(N)/ε2⌉. Il existe une application linéaire f : Rd → Rk

telle que, pour tous u et v dans Q

(1− ε)∥u− v∥2 ⩽ ∥f(u)− f(v)∥2 ⩽ (1 + ε)∥u− v∥2.

Ce lemme permet de compresser la géométrie de l’ensemble Q dans un ensemble simi-
laire de beaucoup plus petite dimension. Il est extrêmement utilisé, par exemple dans des
problèmes d’apprentissage.

L’idée du lemme est de choisir f au hasard et de montrer qu’elle convient avec grande
probabilité. C’est à nouveau une illustration de la méthode probabiliste.

Soit X = (X1, . . . , Xk). Un vecteur gaussien standard dans Rk. La loi de ∥X∥2 =
X2

1 + . . . X2
k s’appelle loi du chi-deux à k degrés de liberté et se note χ2(k). On utilise le

lemme suivant

Lemme. Soit Z une variable aléatoire de loi χ2(p). Alors pour tout 0 < ε < 1/2,

P(Z ⩾ (1 + ε)k) ⩽ exp
(
−k(ε2 − ε3)/4

)
P(Z ⩽ (1− ε)k) ⩽ exp

(
−k(ε2 − ε3)/4

)
Preuve du lemme de Johnson–Lindenstrauss. Soit A une matrice de taille k × d dont
les coefficients sont i.i.d. de loi N(0, 1). Il découle de la propriété d’invariance par rotation
des vecteurs gaussiens que pour tout vecteur X ∈ Rd de norme 1, le vecteur AX est un
vecteur gaussien standard dans Rk.

On pose f = A/
√
k et on calcule

P(f ne convient pas) ⩽
∑

u̸=v∈Q
P
(
∥f(u)− f(v)∥2 > (1 + ε)∥u− v∥2

)
+
∑

u̸=v∈Q
P
(
∥f(u)− f(v)∥2 < (1− ε)∥u− v∥2

)
⩽
∑

u̸=v∈Q
P

(∥∥∥∥f(u)− f(v)

u− v

∥∥∥∥2 > (1 + ε)

)

+
∑

u̸=v∈Q
P

(∥∥∥∥f(u)− f(v)

u− v

∥∥∥∥2 < (1− ε)

)
⩽ 2N2 exp(−k(ε2 − ε3)/4)

et on vérifie que cette dernière quantité est < 1 pour le choix k = 20 logN/ε2.

Enfin, le lemme se prouve de la même manière que les inégalités de Chernoff. On
montre seulement la première inégalité, la seconde étant similaire. On peut écrire Z =
X2

1+· · ·+X2
k avec (X1, . . . , Xk) un vecteur gaussien standard. On a, pour tout 0 < λ < 1/2

P(Z ⩾ (1 + ε)k) ⩽ exp(−λ(1 + ε)k)E
[
exp(λX2

1 + · · ·+ λX2
n)
]

= exp(−λ(1 + ε)k)E
[
exp(λX2

1 )
]k
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On calcule ensuite

E[exp(λX2
1 )] =

∫
R
exp(λx2) exp(−x2/2)

dx√
2π

=

∫
R
exp(−x2(1− 2λ)/2)

dx√
2π

=
1√

1− 2λ

par le changement de variables y = x
√
1− 2λ. On a donc

P(Z ⩾ (1 + ε)k) ⩽

(
exp(−λ(1 + ε))√

1− 2λ

)k

.

On choisit finalement la valeur λ = ε
2(1+ε) , ce qui donne

P(Z ⩾ (1 + ε)k) ⩽ [(1 + ε) exp(−ε)]k/2

et on conclut à l’aide de l’inégalité (1 + ε) exp(−ε) ⩽ exp(−(ε2 − ε3)/2).
Fin du cours

59


	Vérifier la multiplication matricielle
	Coupe minimale dans un graphe
	Événements, probabilités, variables aléatoires
	Espaces de probabilité
	Événements
	Théorèmes d'existence
	Variables aléatoires
	Espérance d'une variable aléatoire
	Exemple : QuickSort randomisé
	La loi géométrique

	Moments et déviations
	Les inégalités de Markov et de Tchebychev
	La loi faible des grands nombres
	Les inégalités de Chernoff
	Applications des inégalités de Chernoff
	Partage équilibré
	Répartition entre serveurs
	Graphes aléatoires

	Convergence des variables aléatoires et théorème central limite
	Convergence presque sûre et loi forte des grands nombres
	Convergence en distribution et théorème central limite

	La méthode probabiliste : exemples
	Exemple 1 : satisfiabilité
	Exemple 2 : nombres de Ramsey
	Exemple 3 : borne inférieure pour le problème de partage équilibré
	Le lemme local de Lovász
	Application du lemme local de Lovász : routage de paquets

	Chaînes de Markov
	Définition
	Un algorithme probabiliste pour 2-SAT
	Classification des états
	Probabilités invariantes et convergence des chaînes de Markov
	Calcul de la probabilité invariante
	La marche aléatoire sur un graphe
	Vitesse de convergence vers la probabilité invariante
	Exemple : mélange de cartes
	Exemple : marche aléatoire sur l'hypercube


	Statistiques et compléments sur les gaussiennes
	Estimation de paramètres
	Exemples
	Vecteurs aléatoires gaussiens
	Comment tirer une direction uniformément au hasard en grande dimension ?
	Lemme de Johnson–Lindenstrauss


