Echauffement : deux algorithmes
probabilistes

Les meilleurs algorithmes probabilistes (connus) sont souvent plus simples et/ou plus
efficaces que les meilleurs algorithmes déterministes (connus). On va illustrer ce principe sur
deux exemples, en utilisant le langage probabiliste («indépendance», «probabilité condi-
tionnelle» ) qui sera introduit rigoureusement dans le prochain chapitre.

0.1 Vérifier la multiplication matricielle

Soient A, B, C trois matrices n xn a coefficients dans le corps Fy = {0, 1}. Le probléme
est de déterminer si I’équation AB = C est vraie ou fausse.

Une premiére idée est de calculer le produit A - B et de vérifier si les coefficients sont
les mémes que ceux de C. L’algorithme naif qui utilise la formule

(AB)ij = > AiBy;
k

a une complexité ©(n?). Des algorithmes plus sophistiqués basés sur une idée de STRASSEN
améliorent la complexité en O(n®) pour 2 < a < 3 (le record actuel est o = 2,37 et on
conjecture que la valeur optimale est o = 2).
Une autre idée est de vérifier la formule & travers le prisme probabiliste, c’est-a-dire de
vérifier si ’équation
ABz =Cx
est satisfaite pour un vecteur € F4 choisi au hasard. Une telle vérification s’effectue en

O(n?), qui est clairement la complexité optimale de la multiplication matrice x vecteur.
La clé est le lemme suivant.

Lemme. Soit D € M, (F2) une matrice non nulle et x € FY choisi uniformément au
hasard. Alors
P(Dx #0)>1/2.

Démonstration. 1l existe un coefficient non nul dans la matrice D ; sans perte de généralité
supposons que c’est le coefficient Dq,,. On a alors

n n—1
(Dl‘)l = Zdljl’j = Zdljfj + xp.
j=1 j=1

On remarque alors que quels que soient (x1,...,z,—1) fixés, il y a probabilité % (sur le
choix de z,,) que (Dx); # 0. O



Comme conséquence du lemme, on a le résultat suivant : si AB # C et si z € F} est
choisi au hasard, alors

1
P(ABz = Cxz) < 3
Si on répéte 100 fois cette vérification pour des vecteurs x1,...,x190 choisis indépen-

demment, on a
P(ABz; = Cz; pour tout 1) < 2719 = 0 en pratique

et on obtient donc un algorithme probabiliste qui permet de vérifier la multiplication
matricielle en temps ©(n?).

Cet argument repose implicitement sur le concept d’indépendance que l'on étudiera
formellement plus tard.

0.2 Coupe minimale dans un graphe

Soit G = (V, E) un graphe non orienté sans boucle, ayant possiblement des arétes
multiples. On pose n = |V]|.

Une coupe de G est un sous-ensemble C' C E tel que (V, E '\ C) n’est pas connexe. Le
probléme est de déterminer le cardinal minimal d’une coupe de G, que 1’on note mincut(G).
Autrement dit, on cherche une partition V- = V3 UV, (avec V; et V2 non vides) qui minimise
le nombre d’arétes joignant un sommet de Vi & un sommet de V. Il existe des algorithmes
déterministes efficaces pour résoudre ce probléme. Mais il y a plus simple : Ialgorithme
probabiliste de KARGER (1993).

L’algorithme de KARGER repose sur la notion de contraction d’un graphe selon une
aréte. Etant donnée une aréte ¢ = {z,y} € E, la contraction de G selon e, notée G/e,
est le graphe obtenu en identifiant les sommets x et y (pour obtenir un nouveau sommet
noté xy), en remplacant les arétes {x, z} ou {y,z} par {zy, 2} et en effacant les boucles
éventuellement créées. Une contraction d’un graphe & n sommets peut étre implémentée
en temps O(n), par exemple en représentant le graphe par sa matrice d’adjacence.

FIGURE 1 — Un graphe G (& gauche) et sa contraction G/e pour e = {a,b} (a droite)

Pour toute aréte e de G, on a mincut(G) < mincut(G/e) puisque les coupes de G/e
correspondent aux coupes de G qui n’utilisent pas l'aréte e. L’algorithme de KARGER
consiste a effectuer des contractions au hasard.

Algorithme (Algorithme de KARGER). Tant que G contient > 2 sommets, répéter la
procédure suivante : choisir uniformément au hasard une aréte e de G et remplacer G par
G/e. On obtient ainsi un graphe a 2 sommets qui correspond a une partition V = V; UV,
et donc a une coupe du graphe initial.

Il est important de conserver les arétes multiples : par exemple, si on ’applique ’al-
gorithme au graphe qui est a droite de la figure 1, 'aréte {ab,d} est contractée avec
probabilité é puisque le graphe comprend 5 arétes.



Dans la description de l'algorithme donnée ci-dessus, on considére implicitement que
les différents choix aléatoires effectués par I’algorithme sont indépendants. Cette remarque
vaut pour tous les algorithmes probabilistes étudiés dans ce cours.

Il est clair que 'algorithme termine puisque le nombre de sommets diminue de 1 a
chaque étape. Le lemme-clé est le suivant.

Lemme. La coupe C' produite par l’algorithme de KARGER vérifie

) 2

P(|C| = mincut(G)) > 3

Si on répéte N = 50n? fois cet algorithme (tous les choix étant indépendants), et si on
note k; la coupe obtenue a la iéme exécution de l'algorithme, alors

o\ N
P ( min k; # mincut(G)) < (1 — >

1<i<N

On a donc un algorithme probabiliste de complexité O(n?T) pour trouver la coupe
minimale d'un graphe, ott T = O(n?) est la complexité d’une itération.

Preuve du lemme. Soit k = mincut(G) et C une coupe de taille k. Pour 1 < i < n —2,
considérons les événements

A; = « laréte choisie a la iéme étape est dans C »

et soit B; événement complémentaire de A;. On a P(A;) = . Mais tout sommet a degré

|E]
>k et donc |E| > % ; on a donc P(4;) < 2
Conditionnellement & Bj, le graphe obtenu aprés contraction de la premiére aréte a

aussi une coupe minimale égale a k. Ce graphe a n — 1 sommets et on a donc par le méme

argument
2

P(A5|B) < .
(A2]B1) < ——

De la méme maniére, on a

2
P(A3|B1 N By) < ——
(A3]B1NB2) < ——

P(An_2|Bl NByN... Bn_g) <

Wl N

On a donc

P(Bl NByN---N Bn_Q) = P(Bl)P(BQ|Bl)P(Bg|Bl N Bg) - P(Bn_2|Bl n---N Bn_g)

() ()

B 2

n(n—1)

s 2
Lorsque les événements Ay, As, ..., A, sont réalisés, la coupe produite par l'algorithme
de KARGER est la coupe C'. Ceci conclut la preuve du lemme. O



Chapitre 1

Evénements, probabilités, variables
aléatoires

1.1 Espaces de probabilité

Définition. Un espace de probabilité est la donnée de
— un ensemble (2,
— une famille F de parties de §2 (c’est-a-dire F C P(2)), Pensemble des événements,
— une fonction P : F — [0, 1] qui a un événement associe sa probabilité,
qui vérifie les axiomes suivants :
1. La famille F est une tribu (en anglais : o-algebra), c’est-a-dire telle que
— € est un événement,
— Si A est un événement, alors Q2 \ A est événement,
— si (An)nen est une suite d’événements, alors | A, est un événement.

2. P est une mesure de probabilité, c’est-a-dire que
— onaP(Q)=1et P(0) =0,
— 81 (An)nen est une suite d’événements deux a deux disjoints (c’est a dire que
Ap N A, =0sim#n), alors

P ( U An> = P(A4,).

neN neN
Cette propriété s’appelle la o-additivité.

Dans tout le cours, on suppose donné un espace de probabilité (€2, F,P).
Ezemple. Si Q est un ensemble fini, on peut prendre F = P(2) et définir pour A C Q
|A]
P(A) = —.
€
On dit que P est la probabilité uniforme sur €.

Exemple (généralise le précédent). Si € est un ensemble fini ou dénombrable et si (p,)wen
est une famille de réels > 0 vérifiant ) p,, = 1, on peut prendre F = P(Q2) et définir pour

AcCQ
P(A) = pr-

w€eA

Un espace de probabilité de ce type est appelé un espace de probabilité discret.



Remarquons que si A et B sont des événements tels que A C B, alors P(A) < P(B).
En effet, par o-additivité (appliquée & une suite d’événements dont tous sauf deux sont
vides) on a P(B) = P(A) + P(B\ A) > P(A). Le lemme suivant est a la fois trivial et
fondamental.

Lemme (Borne de 'union). Si (A,) est une suite finie ou dénombrable d’événements,

alors
p (U An> <3P

Démonstration. On définit B, = A, \ Upc, Ax- On a alors B, C A, et (B, = |JAn.
Puisque les événements B,, sont deux a deux disjoints, on a par o-additivité,

P (U An> =P (U Bn> = ZP(B,Z) < ZP(AR)
d’oul le résultat. ]

Une question naturelle : pourquoi ne pas toujours prendre F = P(2) 7 Quel intérét y
a-t-il a exclure des parties de ’ensemble des événements ? Il y a deux raisons sur lesquelles
on reviendra

— il y a des cas oul on ne peut pas, pour des raisons liées a I'infini.

— méme dans le cas discret, il y a parfois intérét & considérer plusieurs tribus diffé-

rentes.

1.2 Evénements
Définition. Deux événements A et B sont indépendants (A 1L B) si
P(ANB)=P(A)P(B).

Si P(B) > 0, la probabilité conditionnelle de A sachant B est définie par P(A|B) =
P(ANB)/P(B). On a donc

Al B < P(AB)=P(4)
et donc la probabilité de A «ne dépend pas» de B. Voila un autre lemme trivial.

Lemme. Soit (A,) une partition finie ou dénombrable de Q0 en événements telle que
P(A,) > 0 pour tout n. Alors pour tout événement B

P(B) =) P(BNA,) =) P(B|A,)P(A4,).

Définition. Soit (A,) une famille finie ou infinie d’événements. On dit que les événements
(Ay,) sont indépendants si pour tout ensemble I fini, on a

P <ﬂ Ai) = P(4)).

el el



Attention : soient trois événements A1, As , As. On a I'implication
A1, As, Az indépendants — P(Al NAsN Ag) = P(Al)P(AQ)P(Ag)

mais la réciproque est fausse en général, comme on s’en convainc en considérant par exemple
As = (). De méme, si (A,,) sont des événements, alors

(Ay) indépendants = (A4,) 2 & 2 indépendants

et la réciproque est fausse en général.

FEzercice. Montrer que des événements (A,,) sont indépendants si et seulement si les évé-
nements (2 \ A,) sont indépendants.

Ezercice. L’'indépendance de n événements requiert de vérifier 2" équations. Donner, pour
tout n, un exemple oul toutes ces équations sont vérifiées sauf une.

Fin cours # 1 du 12 septembre

1.3 Théorémes d’existence

Le théoréme suivant justifie 'existence de suites finies ou infinies de «bits aléatoires
indépendants», qui sont utilisées dans beaucoup d’algorithmes probabilistes, comme celui
de la multiplication matricielle.

Théoréme (Existence de bits aléatoires).

1. Pour toutn, il existe un espace de probabilité (U, Fp, Pp) et n événements Ay, ..., Ay
indépendants de probabilité 1/2.

2. Il existe un espace de probabilité (2, F,P) et une suite infinie (An)neN d’événements
indépendants de probabilité 1/2.

Démonstration. Pour le premier point, on pose €, = {0,1}", F, = P(Q,) et P, la
probabilité uniforme. On considére pour k € [n]

A = {w S {0,1}” LW = 1}.

On a alors Py,(Ay) = 3, et pour tout I C [n]
on—ll
P, nAz’ = on :ﬁ:HPn(Ai)-
i€l 1€l
Le second point est un résultat difficile que ’on admet. O

Le second point du théoréme est équivalent & ’existence d’une probabilité P sur ’en-
semble Q = {0,1}N des suites infinies de bits ayant la propriété suivante : pour tout
événement A C {0, 1}N et pour tout w € {0,1}N, on a la propriété d’invariance par
translation

P(A®w) = P(A),

ol Adw={adw : a€ A}, le symbole & désignant 1'addition modulo 2 (ou XOR)
coordonnée par coordonnée.
Supposant construite une telle probabilité, les événements (A, )nen définis par

A, ={we {0, 1}N : w, =1},



forment une suite d’événements indépendants de probabilité 1/2 (en effet, si I C N est une
partie finie de cardinal k, on peut partitionner {0,1}N en 2" translatés de B := (. Ai,
ce qui implique P(B) = 27F).

Une difficulté est que la mesure P ne peut pas étre définie sur {0, 1}N. Supposons par
I'absurde qu’elle le soit et considérons la relation d’équivalence sur {0,1}N donnée par

icl

(un) ~ (vp) <= {n : u, # vy} est fini.

Formons un ensemble B en choisissant un représentant dans chaque classe d’équivalence.
Notons @ C {0, 1}N I'ensemble (dénombrable) des suites ayant un nombre fini de 1. On a
alors la partition dénombrable

{0,1}N = UBGBw

weR

et donc, par o-additivité

P{0,1}N)=> P(Bow)=> P(B),

weR weR

ce qui est absurde car la somme d’une infinité de nombres tous égaux ne peut pas valoir 1.
La définition de ’ensemble B n’est pas constructive car elle utilise 'axiome du choix.
La tribu sur laquelle la probabilité P est définie est la plus petite tribu contenant les
événements A, ; ensemble B n’en fait pas partie.

L’existence de la probabilité P est équivalente a I’existence de la mesure de LEBESGUE
A, qui est 'unique mesure de probabilité sur [0, 1[= R/Z qui est invariante par translation
(modulo 1) et qui a la propriété que A([a,b]) = b — a pour tous a < b dans [0, 1[. Le lien
avec I’ensemble {0, 1} s’obtient en identifiant un réel 2 € [0, 1[ avec la suite de {0,1}N
donnée par son développement binaire.

En pratique, 'ensemble des algorithmes probabilistes utilisés par I’humanité n’utilisera
qu’un nombre fini de bits aléatoires, donc la version facile du théoréme d’existence suffit.

Fin cours # 1 du 29 janvier

1.4 Variables aléatoires

On note By la plus petite tribu de R qui contient les intervalles ; la tribu Br s’appelle la
tribu des boréliens de R.. Dans la suite on emploiera assez librement les concepts d’ensemble
borélien ou de fonction borélienne. L’existence d’ensembles non boréliens ou de fonctions
non boréliennes ne s’obtient qu’en utilisant ’axiome du choix ou un axiome de nature
similaire ; tout ce qui s’écrit explicitement est borélien.

Définition. Une variable aléatoire (réelle) est une fonction X : @ — R telle que, pour
tous a < b réels 'ensemble {a < X < b} = X~ 1([a,b]) est un événement (c’est-a-dire est
dans F). On dit aussi que X est F-mesurable.

Si X est une variable aléatoire réelle, on peut montrer que X ~*(B) est un événement
pour tout B € Bg.

Quand F est la tribu P(Q2), toute fonction de © dans R est F-mesurable. Quand F est
la tribu triviale {0, 2}, seules les fonctions constantes sont F-mesurables. Toute fonction
continue (ou méme continue par morceaux ou plus généralement «borélienne») d’une v.a.
est une v.a.



On définit une variable aléatoire a valeurs dans R™ (ou wecteur aléatoire) comme un
n-uplet de variables aléatoires. Si F est un ensemble fini, on définit une variable aléatoire
a valeurs dans E comme une fonction X : Q — E telle que X ~'(A) est un événement pour
tout A C E.

Exemple. Si A est un événement, la fonction indicatrice de A définie pour w € 2 par

1 siweAd
1A(W)={

0 sinon
est une variable aléatoire.

Définition. Soit X une variable aléatoire. La lo¢ ou distribution de X est la mesure de
probabilité Px définie sur (R, Br) par

Px(B)=P(X € B)
pour tout borélien B.

Si X et Y sont des v.a.,, on note X ~ Y si X et Y ont méme loi, c’est-a-dire si
Px = Py. Une idée fondamentale dans 'axiomatisation des probabilités est que seule la
loi d’une variable aléatoire X est importante. L’espace de probabilité 2 sous-jacent ainsi
que la maniére dont est définie la fonction X : 2 — R ne sont pas importants.

Ezxemple. Voici deux maniéres différentes de modéliser le lancer d'un dé

1. On peut prendre Q = {1,...,6}, X : Q@ — R la fonction définie par X (w) =w et P
la probabilité uniforme sur €.

2. On peut prendre 2 ’ensemble des conditions initiales (vitesse, force, angle du lancer)
et des paramétres (vent, température, ...) qui interviennent dans les équations phy-
siques qui sous-tendent I’expérience du lancer du dé. La mesure P et la fonction X
sont alors extrémement compliquées, mais ont la propriété que P(X = k) = % pour
tout entier k£ de 1 & 6.

Bien évidemment, les calculs que I'on peut faire sur les statistiques des lancers de dés
donneront les mémes résultats dans chacune de ces deux modélisations.

On peut aussi illustrer par un exemple informatique 'idée que seule les lois des v.a.
comptent et non les détails de leur implémentation sur un espace de probabilité : quand
un algorithme probabiliste appelle la fonction random pour générer des bits aléatoires
indépendants, il n’est pas nécessaire de connaitre les détails de I'implémentation de cette
fonction (sujet par ailleurs passionnant) pour étudier la performance de ’algorithme.

Il y a deux classes importantes de variables aléatoires réelles :

1. Les variables aléatoires discrétes, qui prennent leurs valeurs dans un ensemble fini
ou dénombrable. Soit X est une variable aléatoire & valeurs dans un sous-ensemble
fini ou dénombrable C' C R. Si pour a dans C on pose p, = P(X = a), alors on a

Zaecpa — 1

2. Les variables aléatoires continues. Etant donné une fonction fx : R — R™T continue
par morceaux vérifiant ffooo fx(s)ds =1, il existe une variable aléatoire X dont la
loi vérifie, pour tout a < b

b
Px((ab) =P(X € a8) = [ fx(s)ds =1,

On dit que X est une variable aléatoire de densité fx.



Il existe des variables aléatoires qui ne sont ni discrétes ni continues : par exemple la loi
d’un nombre aléatoire dans [0, 1] obtenu en choisissant a 1’aide d’une suite de bits aléatoires
les décimales de son développement en base 10 comme valant soit 3 soit 7.

Si un espace de probabilité admet une suite infinie de bits aléatoires, alors on peut
définir dessus une variable aléatoire ayant n’importe quelle loi prescrite.

Ezercice. Définir une variable aléatoire ayant une loi uniforme sur {1, 2,3} a partir d’'une
suite infinie de bits aléatoires. Est-ce possible a partir d’une suite finie ?
Indépendance de variables aléatoires

Définition. On dit que des variables aléatoires (X;);es sont indépendantes si, quels que
soient les réels (¢;);er, les événements {X; < ¢;} sont indépendants.

Remarque. Dans le cas discret (ou I est fini et les variables aléatoires sont a valeurs dans
un ensemble E fini ou dénombrable), les variables aléatoires (X;);er sont indépendantes si
et seulement si la relation

i€l

est vérifiée pour tous les choix de (z;) dans E.

Lemme (Lemme des coalitions). Soit (X;)icr des variables aléatoires indépendantes, I =
U, Lo une partition de I. Alors, si on pose

Yo = fol(Xi)icr,)

(les fonctions fo : RIe — R étant «boréliennes»), les variables aléatoires (Y,) sont indé-
pendantes.

En particulier, si X et Y sont indépendantes, alors des variables aléatoires de la forme
f(X) et g(Y) sont indépendantes.
Voici un dernier théoréme d’existence.

Théoréme. Etant donnée une suite () de mesures de probabilités sur R, il existe un
espace de probabilité (), et pour tout n une variable aléatoire X, : 1 — R de loi puy, tels
que les variables aléatoires (X,,) sont indépendantes.

On dira que les variables aléatoires (X,,) sont i.i.d. (indépendantes et identiquement
distribuées) si elles sont indépendantes et de méme loi.

1.5 Espérance d’une variable aléatoire

Si X est une variable aléatoire, on veut définir son espérance E[X] comme la valeur
moyenne qu’elle prend.
Dans le cas discret, si X prend les valeurs réelles z1,...,x,, on pose

k=1

Dans le cas général, on procéde en plusieurs étapes.

1. Pour tout événement A, on pose E[14] = P(A).



2. On étend cette définition par linéarité : si X = ), A\j14, (somme finie), on pose

E[X] =) AP(A).

On vérifie que cette définition est cohérente : siona » A\ila, = > p;lp;, alors on a
Y ANiP(A4;) = piP(Bj). Cette étape permet de définir I'espérance d’une variable
aléatoire prenant un nombre fini de valeurs.

3. Si X est une variable aléatoire positive, on peut I’écrire comme X = lim X, ou (X,,)
est une suite croissante de variables aléatoires prenant un nombre fini de valeurs, et

on pose alors
E[X]| =1limE[X,,]

en vérifiant que cette définition ne dépend pas du choix de la suite X,,. Cette limite
existe dans [0, +oo] comme limite d'une suite croissante.

4. Si X est une variable aléatoire telle que E[|X|] < 400 (une telle variable est dite
intégrable), on écrit X = X+ — X~ (ot X+ = max(0,X) et X~ = max(0, —X)
sont des variables aléatoires positives) et on pose

E[X]=E[XT]-E[X].
La raison pour laquelle on se restreint aux variables aléatoires intégrables pour définir

I'espérance est qu’on veut éviter d’écrire une forme indéterminée du type (4+00) — (+00).

Proposition (Linéarité de I'espérance). Si X et Y sont des variables aléatoires intégrables
et c € R, alors
E[X + Y] =E[X]|+ E[Y],

E[cX] = cE[X].
Pour les variables & valeurs dans N, on a la formule suivante.

Proposition. Soit Y une variable aléatoire a valeurs dans N. Alors
oo
EY]=) P >k).
k=1

En effet, P(Y > k) = > 72, P(Y = n) et on inverse les sommes.

Proposition. Si X et Y sont des variables aléatoires indépendantes et intégrables, alors
la variable aléatoire XY est intégrable et

E[XY] = E[X]E[Y].

Démonstration. Par approximation, il suffit de traiter le cas ott X et Y prennent un nombre

fini de valeurs. Ecrivons
X = Z)\ilAiv Y = Z,U’j]-Bj7

les événements (A;) (resp. (Bj)) étant disjoints. Quels que soient les indices i et j, les
événements 4; = X 1(\;) et Bj = Y !(u;) sont indépendants et donc P(4; N Bj) =
P(A;)P(B;). Puisque
XY =) Nipilans,,
irj
on a

E[XY] =) X\uP(AiNB;) = (Z AZ-P(AZ-)> > uP(B)) | =E[X]E[Y],

d’oul le résultat. O

10



Corollaire. Si les variables aléatoires X1, ..., X, sont indépendantes, et si fi,..., fn sont
des fonctions telles que les variables f;(X;) sont intégrables, alors

11 fi(Xi)] = [T Elf:(x).
i1 i=1

Enfin, mentionnons comment on calcule ’espérance d’une fonction d’une variable aléa-
toire continue.

E

Proposition («Formule du transfert»). Soit X une variable aléatoire continue admettant
une densité fx. Pour toute fonction h: R — R, on a

BIA(X)) = [ ha)fx(e)do

—0o0
des lors que l'intégrale a un sens.

En particulier, ’espérance d’une variable aléatoire intégrable de densité fx s’obtient
comme
o0
E[X] :/ xfx(z)dx
—0o0

Fin cours # 2 du 17 septembre

1.6 Exemple : QuickSort randomisé

Nous allons décrire un exemple qui illustre lefficacité du principe de linéarité de I'es-
pérance.

Supposons que 1'on doive trier une liste S de n nombres que ’on suppose distincts (c’est
le cas le plus dur). L’algorithme récursif QuickSort consiste & choisir un élément = de S,
que 'on compare & tous les autres éléments pour écrire la partition

S=S_uU{z}us,

ouS_={yeS :y<z}etSy={yesS : y>uz}, puisa trier S_ et S; par des appels
récursifs & QuickSort.

La complexité C,, de I'algorithme (que 'on définit comme le nombre total de compa-
raisons effectuées) dépend du choix des pivots : c’est une variable aléatoire. Dans le pire
cas, le pivot choisi est toujours le plus petit possible et alors

n(n —1)

Co=(-1+n-2)++1=—7

(toutes les comparaisons possibles ont été effectuées). Dans le meilleur cas, le pivot choisi
est toujours la médiane de I’ensemble considéré et on a

Cn:(n—1)+0[%1+CL%J,

d’ott on tire l'estimation C;,, = O(nlogn) qui est la complexité optimale d’un algorithme
de tri.

L’algorithme Randomized Quicksort est la variante de l'algorithme Quicksort ou les
pivots sont choisis au hasard & chaque étape, indépendamment et selon la loi uniforme. On
s’intéresse alors au temps moyen d’exécution E[C),]. Nous allons voir que le principe de la
linéarité de ’espérance permet un calcul élégant de la complexité moyenne.
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Théoréme. Pour Randomized Quicksort, on a E[C,] ~ 2nlogn quand n — oco.

Démonstration. Soit S = {z1,...,zy} avec 1 < x93 < -+ < x,. Remarquons que chaque
couple d’éléments distincts de S sera comparé 0 ou 1 fois au cours de l'algorithme. Pour
i < j, soit A;; I'événement «les éléments z; et x; ont été comparés au cours de I'exécution
de l'algorithme». On a

E[C,] = E|) 14,

i<j

= > P(4y).

1<j

L’observation cruciale est la suivante ; deux éléments z; < x; ont été comparés pendant
I’exécution de 'algorithme si et seulement si, la premiére fois qu un pivot est choisi parmi

{xi, xit1,..., 2}, ce pivot est x; ou ;. On a donc P(A4;;) = g z+1 On a donc
_ n—1 1
E[C,] = —k)=2m+1)Y —— —2n—1
(Gl Z]—1+1 g (n (n+ )k:1k+1 (n=1)
d’ott le résultat. O

1.7 La loi géométrique

Si a est un réel, la mesure de DIRAC en a, notée d, est la loi d’une variable aléatoire X
telle que P(X = a) = 1. On dit aussi que X est presque siirement égale a a.

Soit p € [0, 1]. La loi de BERNOULLI de paramétre p, notée B(p) est la loi pdy + (1 —p)do.
Une variable aléatoire X a pour loi B(p), ce qu'on note X ~ B(p), si et seulement si
P(X =1)=pet P(X =0) =1—p. Laloi B(3) est la loi d'un bit aléatoire.

Soient (X;)n>1 une suite de variables aléatoires i.i.d. de loi B(p). On considére la
variable aléatoire

Y=min{k >1: X,=1}
donnée comme l'indice du premier 1. On a P(Y = k) = (1 — p)*"'p. Si on suppose

0 <p<1,alors

o0 oo )

d-p)flp=p> (1-p) =1
k=1 j=0

et donc la variable aléatoire Y prend presque siirement une valeur finie. La loi de Y est
appelée loi géométrique de paramétre p et notée G(p).
Si Y ~ G(p), alors (par un calcul ou un raisonnement) P(Y > k) = (1 — p)¥. De plus,

E[Y]= ..

Proposition (Absence de mémoire de la loi géométrique). Soit Y une variable aléatoire
de loi G(p). Alors pour tous k, n >0

P(Y =n+klY > k) =P(Y =n).

Autrement dit, la loi conditionnelle de Y — k sachant que Y > k est la méme que la loi
deY.

12



Démonstration. 11 est équivalent de montrer que P(Y > n+k|Y > k) = P(Y > n) et c’est
immédiat au vu de la formule P(Y > k) = (1 — p)*. O

Ezercice. Soient Y1 ~ G(p1) et Y2 ~ G(p2) deux variables aléatoires indépendantes. Quelle
est la loi de min(Y7,Y3) 7 (Il est possible répondre sans aucun calcul.)

Voici un exemple important ot intervient la loi géométrique : le probléme du collec-
tionneur de vignettes.

Soit E un ensemble fini de cardinal N et (X,,),>1 des variables aléatoires i.i.d. de loi
uniforme sur E (penser & une collection d’images Panini). On considére

Y = mln{k . {Xl,.. . ,Xk} = E},

le nombre de vignettes qu’il faut amasser avant d’avoir une collection compléte. On veut
calculer E[Y], la valeur moyenne de Y.
Introduisons pour 1 < j < N les variables aléatoires

Ty =min{k : {X1,..., Xi}| = j},

de sorte que Y =Ty. Ona Ty =1 et Th — 1 ~ G(&2). Plus généralement, on a
Proposition. Les variables aléatoires Z1,...,Zn définies par Z1 =1 et Z; = T; —Tj_1
pour 1 < j < N sont indépendantes. De plus Z; suit la loi G(%)

Esquisse de démonstration. Nous devons montrer que pour tout choix d’entiers ko, . .., kn,
on a

P(Zy =ko,...,Zn = kn) :jli [(J_lejl (1 - j?\ﬁ)]

On peut réécrire le membre de gauche comme
P(Z2 = kz)P(Zg = kg‘ZQ = kQ) .. 'P(ZN = kN’ZQ = kQ, .. .,ZN,1 = kal)

Fixons j et soit T = (x1,...,2¢) € E* tel que |[{z1,..., 27} =j—let z; #xpsii < £ On
considére I'événement H(Z) = {X1 = x1,..., Xy =x¢}. On a

. kji—1 .
_ J—1I\""T " N—-j+1

On en déduit que pour tous ko, ..., kj_1

—j+1
N )

—1\" N
P(Z; = kj|Zy = ko, ..., Zj_1 = k;j_1) = <3N )

par la propriété élémentaire suivante des probabilités conditionnelles : si (B;) est une
famille finie d’événements disjoints tels que P(A|B;) = p pour tout ¢, alors P(A||J B;) = p.
(On utilise le fait que I'événement «Zy = kg, ..., Z; = k;» est réunion disjointe de tels
événements H (T)). O

On peut donc écrire la variable aléatoire

Y=TIn=Z1+---+...2ZN

13



comme une somme de variables aléatoires indépendantes de loi géométrique. Par linéarité
de 'espérance, on en déduit
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Chapitre 2

Moments et déviations

On a vu quelques calculs d’espérance, par exemple pour le temps d’exécution de
QuickSort ou pour le probléme du collectionneur de vignettes. Mais 'espérance d’une
variable aléatoire ne suffit bien sur pas & déterminer la loi. Par exemple, les deux variables
aléatoires suivantes ont une espérance de 1

1. une variable aléatoire X telle que P(X =1) =1,

2. une variable aléatoire Y telle que P(Y =n) =1 et P(Y =0) = 21 oun > 1.

On aimerait savoir a priori qu'une variable aléatoire est souvent proche de son espé-
rance ; c’est le cas de la variable X mais pas de la variable Y.

2.1 Les inégalités de MARKOV et de TCHEBYCHEV

Théoréme (Inégalité de MARKOV). Soit X une variable aléatoire a valeurs > 0. Alors,
pour tout a > 0,

Démonstration. On a X > alxsg, et donc E[X] > aP(X > a). O

En général, la borne donnée par I'inégalité de MARKOV est trop faible. On peut 'amé-
liorer en remplacant I’espérance par des « moment plus grands ». Soit k& € IN. Lorsque
la variable aléatoire X* est intégrable, on dit que X admet un moment d’ordre k et la
quantité E[X*¥] s’appelle le moment d’ordre k de X.

Si une variable aléatoire positive X admet un moment d’ordre k, alors pour tout a > 0,

E[X*]

ak

P(X >a) <

comme on le voit en appliquant I'inégalité de MARKOV & la variable aléatoire X*.
Les moments de différents ordres sont comparés a ’aide de I'inégalité suivante.

Lemme. Soit 1 < p < q. Alors pour toute variable aléatoire X on a
(BIX )P < (B[ X|7)"".

Démonstration. Puisque I'inégalité a montrer se réécrit en E[|Y]] < (E[[Y[")Y" avec YV =
| X|P et r = q/p, il suffit de traiter le cas ou p = 1.
Par homogénéité, on peut également supposer que E[|X|?] = 1. Par convexité de x —
x4, on a pour tout = > 0,
qgr <294 (¢ —1),
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d’ott on déduit en prenant I’espérance
¢E[IX[] <E[X]+(¢-1) =4,
puis E[| X|] < 1. O

Si X est une variable aléatoire qui admet un moment d’ordre 2, sa variance est définie
comme

Var[X] = E[(X — E[X])?] = E[X?] — (E[X])?

et son écart-type (en anglais standard deviation) comme

o(X) = +/Var[X].

La variance est homogéne d’ordre 2, au sens ot Var[s + tX| = 2 Var[X].
Si X et Y sont deux variables aléatoire définies sur le méme espace de probabilité qui
admettent un moment d’ordre 2, leur covariance est donnée par

Cov(X,Y) = E[(X — E[X])(Y — E[Y]).

L’inégalité de CAUCHY—-SCHWARZ implique que | Cov(X,Y)| < o(X)o(Y).
On a également

Var[X + Y] = Var[X]| + Var[Y] +2Cov(X,Y).
On en déduit

Proposition. Si X etY sont des variables aléatoires indépendantes, alors Var[X + Y| =
Var[X] + Var|Y]. Plus généralement, si X1,...,X, sont des variables aléatoires indépen-
dantes, alors

Var(X; + -+ + X,] = Var[X;]| + - - - + Var[X,,].

La version «moment d’ordre 2» de l'inégalité de MARKOV est connue sous le nom
d’inégalité de TCHEBYCHEV. C’est une inégalité de déviations : il est peu probable qu’une
variable aléatoire prenne ses valeurs en dehors d’un intervalle autour de sa moyenne et de
largeur proportionnelle & 1’écart-type.

Proposition (Inégalité de TCHEBYCHEV). Si une variable aléatoire X admet un moment
d’ordre 2, alors pour tout a > 0,

Var[X]

P(X - E[X]| > a) < —

a

Démonstration. On écrit P(|X —E[X]| > a) = P(|X —E[X]|? > ¢®) < E[(X — E[X])?]/a?
par l'inégalité de MARKOV. O

Revenons enfin sur le probléme du collectionneur de vignettes. On avait écrit le temps
T nécessaire pour avoir une collection compléte comme

IN=721+ -+ 2y

ou les variables aléatoires Z; sont indépendantes, et Z; ~ G(%) Le calcul de I'espérance
E[Tn] ~ Nlog N n’a utilisé que la linéarité de l'espérance. On peut exploiter I'indépen-
dance en écrivant

Var[Ty| = Var|Z] + - -- + Var[Zy].
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Si X ~ G(p), alors Var[X] = 152 (exercice) et en particulier Var[X] < 1%' On a donc

N N 2
V; — %
ar[TN]<Z<i> <CN
=1
On a donc Var[Ty]| = o(E[Tx]?) et on peut alors conclure que T est de l'ordre de
E[Ty] avec grande probabilité : pour tout € > 0

Var [TN]

P(|Ty — E[Ty]| > e E[TN]) < 2(E[Ty])?

Fin cours #3 du 24 septembre

2.2 La loi faible des grands nombres

On dit qu’une suite (X,,) de variables aléatoires converge en probabilité vers une variable
aléatoire X si
Ve >0, lim P(|X, —X|>¢)=0.
n—oo

Par exemple, si T est 'exemple donné précédemment dans le contexte du probléme
du collectionneur de coupons, alors la suite (Xy) définie par Xy = ﬁ converge en
probabilité vers la v.a. constante égale a 1.

Théoréme (Loi faible des grands nombres). Soit (X,,) une suite de variables aléatoires
1.1.d. admettant un moment d’ordre 2. Soit Y,, = %(Xl +--+X,,) la suite de ses moyennes
de CESARO. Alors (Y,) converge en probabilité vers une variable aléatoire constante égale
a E[Xq].

Démonstration. Par linéarité de 'espérance on a E[Y,] = E[X;]. Par additivité de la
variance pour des sommes indépendantes, on a VarlV,| = %Var[Xl]. On a donc, pour
tout € > 0,

Var[Y,] Var|[Xj]
2 2

P[|Y, — E[X\]| > ] = P[|V,, - E[Y,)]| > €] < ne

qui tend bien vers 0. O

Voici une conséquence de la loi des grands nombres. Soit p € (0,1) et (X,,) une suite
de variables aléatoires i.i.d. de loi de BERNOULLI B(p). La loi de la somme

s’appelle la loi binomiale de paramétres n et p et se note B(n,p). On calcule E[Y,] =
nE[X1] = np et Var[Y,] = nVar[X;] = np(1 — p). La loi binomiale est décrite plus
explicitement par la formule

P(Y,=k)= (Z)p'“(l -

Dans le cas particulier important ou p = %, on a alors P(Y,, = k) = 27" (Z) La loi
faible des grands nombres implique alors le résultat suivant : lorsque n > 1, quasiment
toute la masse dans la néme ligne du triangle de PASCAL se concentre dans les 1% de

coefficients centraux :

- <Z> = 27(1 — o(1)).

(3-e)n<hs(3+e)n
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2.3 Les inégalités de CHERNOFF

Si X est une variable aléatoire, on appelle fonction génératrice des moments de X la
fonction

Mx(t) = E[e™].
Cette fonction contient toutes les informations sur les moments de X.

Théoréme. Soit X une variable aléatoire vérifiant Mx(t) < oo pour |t| < to. Alors X
admet des moments de tous les ordres et on a la relation

0 k
Mx(t) = 3 BLX

pour tout |t| < to.

Le théoréme s’obtient en écrivant la série entiére définissant !X et en justifiant les cal-
culs a 'aide du théoréme de convergence dominée : si une suite (Z,) de variables aléatoires
converge vers Z, et s’il existe une variable aléatoire intégrable Y telle que |Z,| <Y, alors
E[Z] =lmE[Z,].

La fonction génératrice des moments permet de calculer les moments. Par exemple, si
X ~ G(p), alors

[ o0 t
EtX: 1— k‘—ltk‘: t tl_ k‘: pe
[T =D p(—p) e =pe' Y (' (1= p)* = e
k=1 k=0
des lors que |t| < |In(1—p)|. La loi géométrique admet donc des moments de tous les ordres,
que l'on peut calculer & I'aide du développement limité en 0 de la fonction ¢ — %.

Proposition. Si X et Y sont des variables aléatoires indépendantes, alors Mx y(t) =
Mx (t)My ().

Démonstration. On écrit E[e!XHY] = E[e!X] E[eY] par indépendance. O
Par exemple, si X suit la loi B(n,p), on a
Mx(t) = ((1—p) +pe")"

puisque X a la méme loi qui la somme de variables aléatoires i.i.d. de loi B(p).
Voici I'inégalité de déviation la plus importante.

Théoréme (Inégalité de CHERNOFF I). Soit X une variable aléatoire de loi B(n,%). On
note p = E[X] =n/2. Pour tout a > 0, on a

P(X > p+a) < exp(—2d°/n)
P(X < i —a) < exp(—2a®/n)

Voici une version équivalente ou les valeurs 0 et 1 des lois de BERNOULLI sont remplacées
par les valeurs —1 et 1.

Théoréme (Inégalité de CHERNOFF [, variante). Soient Y1,...,Y, des variables aléatoires
i.i.d. de loi uniforme sur {—1,1} et Y =Y1 + -+ Y,,. Pour tout x > 0, on a

P(Y > zv/n) < exp(—22/2)

P(Y < —zv/n) < exp(—2z2/2)
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Les deux versions sont équivalentes : si les variables X; et Y; sont reliées par la relation
Y, =2X,;—1, alors

Xi,..., Xy, 11d. de loi B(1/2) < Yi,...,Y, i.id. de loi unforme sur {—1,1}
Sionpose X =X;+---+X,etY =Y+ ---4Y,,alors Y =2X — n et donc
X>2pu+a =Y >2a
X<pu—a <<= Y <2
et I'on passe d’un énoncé a lautre par la formule 2a = z+/n.

Démonstration. Montrons la seconde version. L’idée est d’appliquer I'inégalité de MARKOV
a une fonction bien choisie de Y. Pour tout réel £ > 0, on a

P(Y > 2v/n) = P(exp(tY) > exp(tzy/n)) < e VP E[e!] = e V" My (t)

Par ailleurs, on a My (t) = My, (t)" = cosh(¢)". On utilise maintenant le
Lemme. Pour tout réel t, on a cosh(t) < exp(t?/2).

qui se montre en comparant terme a terme les deux séries entiéres. On a donc My (t) <
exp(nt?/2) puis
P(Y > ayv/n) < e™/2 v,

Enfin, on optimise sur t en choisissant la valeur t = z//n, d’ou le résultat. La seconde
partie du théoréme s’obtient en remarquant que ¥ ~ —Y. O

Cette majoration est BEAUCOUP plus précise que l'inégalité de TCHEBYCHEV. Par
exemple, si X ~ B(n, %), on a

P(X

WV
N
/N
Wl

n) par l'inégalité de MARKOV

P(X >

S|a

) < par I'inégalité de TCHEBYCHEV

3

L’inégalité de CHERNOFF est extrémement précise. On verra plus tard (par le théoréme
central limite) que si Y™ est une somme de n v.a. i.i.d. de loi uniforme sur {—1,1};

3

-n

4
<

exp(—n/8)  par l'inégalité de CHERNOFF I

1 >
‘ (n) - —u?
nhm P(Y"™ > z/n) \/%/x exp(—u”/2) du

et cette quantité est équivalente & exp(—z2/2)/ xv/27 lorsque x tend vers l'infini : exposant
dans I'exponentielle donné par I'inégalité de CHERNOFF est optimal.

Il existe aussi une inégalité de CHERNOFF qui couvre le cas général d’une sommes de
variables de BERNOULLI indépendantes.

Théoréme (Inégalité de CHERNOFF II). Soient X1, ..., X,, des variables aléatoires indé-
pendantes, avec X ~ B(pg). On pose X = X1+ -+ X,, et u=E[X] =p1+ -+ + pn.
Alors

19



1. Pour tout § >0, on a

P(X>(1+0)p) < (my < exp <2T5“>

2. Pour tout R > 6u, on a P(X > R) <27,
3. Pourtout0<d <1, ona

pox < (- o < (2250 ) <eo (—52“)

Démonstration. On applique la méme stratégie. Pour ¢ > 0 & déterminer, on a
P(X > (1 + 6)“) _ P(etX > et(1+6)u) < e_t(l—i_(s)’qu(t).

On a My, (t) = (1—p;) +piet = 1+pi(el —1) < exp(p;(e’ — 1)), et donc par indépendance

M(t) = [ Mx, (8) < explp(e! —1).

On choisit maintenant la valeur ¢; = In(1 4 §) pour obtenir

P(X>(1+5)u)<exp(u(6“—1)—(1+5)t1u)=( p(0) )

(14 §)t+o
Pour le dernier point, on écrit pour ¢ < 0 & déterminer
P(X < (1—08)p) =Pt > 101y L et =001 (1),

En choisissant la valeur to = In(1 — §), il vient

exXpl— K
P(X <(1-9d)p) < <(1f)(5)15)5>

Les inégalités dans le premier et dernier points découlent des lemmes suivants, qui
peuvent se démontrer par de banales études de fonctions.

Lemme. Pour tout § >0, on a §d — (1 +9)In(l+0) + % <0
Lemme. Pour tout 0 <§ <1, ona —6—(1—06)In(1 —9)+ & <o.

2
Il reste & montrer le deuxiéme point. En écrivant R = (1 + §)pu, il vient (puisque
14+6>06)

exp(d) a € (140w R -R
> < | — < < < .
P(X/R)\<(1+5)1+5> <155 < (e/6)* <2 O

Les bornes données par I'inégalité de CHERNOFF dans la cas général ne vont pas inter-
venir une décroissante sous-gaussienne (en exp(—ct?)) mais plutét sous-exponentielle (en
exp(—ct)). L’observation remarque suivant montre que c’est inévitable.

On appelle loi de PoissON de paramétre A > 0 la loi d’une variable aléatoire X a
valeurs entiéres telle que, pour tout k € N,

= A—ke_A
k!
On vérifie que > ;2 P(X = k) = 1. Dans ce cas, on note X ~ P(X).

La loi de POISSON apparait dans la limite des événements rares, comme le montre la
proposition suivante.

P(X = k)
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Proposition. Soit (X;) une suite de variables aléatoires, avec X ~ B(n;,pj), ot les para-
metre n; et p; sont tels que

lim nj =00, lim p; =0, lim njp; =\ €]0,00].
j—o0 j—00 j—o0

Soit X une variable aléatoire de loi P(\). Alors, pour tout k € N,

lim P(X; = k) = P(X = k).

J—00

Démonstration. On a, pour tout k € N,

Sous les hypothéses de la proposition, on a les équivalents

k
nj " \—k
(k)Nk‘!’ (1—}7]) ~1

et on conclut en utilisant le fait que

lim log[(1 —p;)™] = lim njlog(l —p;) = A
J—00

J]—00
puisque log(1 — ) ~ —x lorsque x tend vers 0. O

Dans 'inégalité de CHERNOFF II, considérons le cas o X; ~ B(j,1/7). On a alors
E[X;] =1 pour tout entier j. Dans ce cas, 'inégalité donnée par le théoréme s’écrit

2
P(X; >140)<exp <—2i5>

En choisissant § = t —1 pour un entier ¢, on a par la proposition précédente avec X ~ P(1)
j—00 1
PX;2140)2P(X;=t)"=> P(X=t)=— =exp ( —tlog(t)(1+ 0(1)))
e
Fin cours # 4 du ler octobre
Concluons avec un dernier résultat de concentration (dont on ne donne pas la preuve)
pour une sommes de variables aléatoires indépendants bornées.

Théoréme (Inégalité de HOEFFDING). Soient Xi,...,X,, des variables aléatoires indé-
pendantes, ot pour tout i la variable aléatoire X; est a valeurs dans un intervalle [a;, b;].
On pose X = X1+ -+ X, et u=E[X]. Alors, pour tout t > 0,

2t
P(|X —u[>1) <2exp <—W> :
i=1\0i = @

Notons ¢; = b; — a; la longueur de l'intervalle [a;, b;]. L’inégalité de HOEFFDING peut
s’'interpréter comme suit : alors que 'inégalité triangulaire permet de conclure que toutes
les valeurs prises par X sont contenues dans un intervalle de longueur £1+- - -+£,,, I'inégalité
de HOEFFDING implique qu’un intervalle de longueur O(y\/¢3 + - - - + £2) contient la tres
grande majorité des valeurs effectivement prises par X. Dans la plupart des cas d’intérét,

comme celui ot /; =1, on a
JE<yn

et I'inégalité de HOEFFDING est donc plus précise.
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2.4 Applications des inégalités de CHERNOFF

2.5 Partage équilibré

Soit A une matrice nxm a coefficients dans {0,1}. On cherche un vecteur b € {—1,1}™
qui minimise la quantité

| Abl|cc = g&};l(z‘lb)il-

Voici une interprétation. Chacune des m colonnes de la matrice correspond & un indi-
vidu d’une population et chacune des n lignes de la matrice correspond a une caractéris-
tique. La matrice A est déterminée par la condition

a;; =1 <= lindividu j posseéde la caractéristique 1.

On souhaite diviser la population en deux groupes +1 et —1, de facon aussi équilibrée
que possible pour chacune des caractéristiques. Si on identifie le partage & un vecteur
b€ {—1,1}™, minimiser || Ab|« revient & minimiser le déséquilibre de la caractéristique la
plus déséquilibrée.

Une idée naturelle est de faire un partage aléatoire. On a alors

Proposition. Si b est choisi selon la loi uniforme dans {—1,1}", alors

P(|| 4b]loo > v/Amlogn) < 2/n.

Démonstration. Par la borne de 'union,

P(||Ablloo > /4mlogn) < > P(|(Ab);| > v/4mlogn)
=1

Soit k; le nombre de 1 dans la ligne ¢ de la matrice A, ou encore le nombre d’individus
partageant la caractéristique i. Puisque |(Ab);| < k;, lorsque k; < /4mlogn, on a

P(|(Ab)|; = v/4mlogn) = 0.

Si k; > v/4mlogn, on a en utilisant I'inégalité de CHERNOFF puis le fait que k; < m

4m1 4m1 2
P(|(Ab)i| > /Amlogn) < 2exp <—m°g”> < 2exp <_m°g”> =

2k; 2m n

2.6 Reépartition entre serveurs

Cet exemple est similaire au précédent, avec un partage en plus de 2 groupes. Suppo-
sons que n taches doivent étre attribuées & k serveurs. Lorsque les taches sont attribuées
au hasard (uniformément, indépendamment), quel est la charge maximale d’un serveur ?
Cette derniére est toujours au moins n/k, mais quelle valeur prend-elle dans une situation
typique 7

Pour 1 < i < k, soit X; le nombre de taches assignées au serveur i. Chacune des
variables aléatoire X; suit la loi binomiale B(n,1/k). On notera que ces variables ne sont
pas indépendantes. On s’intéresse a la charge maximale M = max(X1, ..., X}) dans deux
régimes différents : d’abord quand n = k puis quand n > k.

Quand n = k, la charge de chaque serveur est bien approximée par une loi de POISSON
de paramétre 1. On peut montrer que le maximum des n variables aléatoires i.i.d. de loi
P(1) est de 'ordre de 10?1% avec probabilité tendant vers 1 quand n tend vers l'infini.

Méme si les charges entre serveurs ne sont pas indépendantes, cette heuristique est correcte.
On a
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Proposition. Si on note M la charge mazimale d'un serveur quand n tdches sont
affectées aléatoirement a n serveurs, alors

lim P (Mm) > fflog") 0
n—00 log logn

La preuve montre en réalité plus (exercice) : pour tout € > 0, on a

lim P [ ™ >w —0
n—00 ~ loglogn '

On peut aussi démontrer (nous ne le ferons pas) que

lim P [ ™ < w —0.
n—>00 log logn

Démonstration. Ecrivons M = max(X 1(n), e ,X,g")) ou les variables Xi(") suivent la loi

binomiale B(n,1/n) (et ne sont pas indépendantes). Pour tout entier d, on a par la borne
de 'union

d
P(M™ > d) < nP(X™ > d) < n<Z> <1> .
n

La seconde inégalité s’explique par le fait que I’événement «an) > d» est la réunion, pour

I c{1,...,n} de cardinal d, des événements «pour tout i € I, la téme tache a été affectée
. e . TR d d .
au premier serveury. On utilise ensuite les inégalités (Z) < et % < e? pour obtenir

P(M®™ > d) <n (g)d

Pour d = L(fgkffgnnw , on a donc

_elogn_
p(nm s clogn ) (loglogn’)werer
loglogn log n

< exp <10gn— elogn+e

logn - logloglogn
loglogn

et cette quantité tend vers 0 car le terme dominant dans 'exponentielle est (1—e)logn. 0O
Dans le régime ou n > k, on a par exemple le résultat suivant.

Proposition. Sin > 9klogk, alors

P (M > %—F?n/logkw/n/k:) < %

Démonstration. On utilise la borne de 'union et le fait que les variables aléatoires (X;)
sont identiquement distribuées pour écrire

P (M > 7 +3\loghy/n/k) <kP (X1 > Z(1+¢))

avec € = 3v/log k/+/n/k. Sous 'hypothése de la proposition, on a € < 1. Par I'inégalité de
CHERNOFF II, on peut donc écrire
2

P <X1 > %(1 +€)> < exp (—ZZ) =1/k3,

d’oul le résultat. O
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2.7 Graphes aléatoires

Les graphes de la vie réelle (internet, réseaux sociaux...) sont souvent trés compliqués
et peuvent étre appréhendés par ’étude de graphes aléatoires. On se contera ici du modéle
le plus simple dans lequel tous les sommets jouent un réle symétrique.

Etant donné deux paramétres n € N et p € [0,1], le graphe d’ERDOS-RENYI est
défini comme suit. On part d’une famille (X;;)1<i<j<n de variables aléatoires i.i.d. de loi
de BERNOULLI B(p) et on considére le graphe G = (V, E) ou V = {1,...,n} et E est défini
par

{i,j}EE — X@‘Zl.

Le graphe ainsi obtenu est aléatoires (c’est une variable aléatoire a valeurs dans I’ensemble
des graphes possibles) et on note G,, ; sa loi.

Remarquons que G,, 1/ est la loi uniforme sur I’ensemble de tous les graphes de sommets
{1,...,n}. Le nombre d’arétes |E| est distribué selon la loi B((}),p). Le degré de chaque
sommet est distribué selon la loi B(n — 1, p).

On étudie en général le graphe d’ERDOS—RENYI dans la limite n — oo en distinguant
plusieurs régimes, comme par exemple

— le cas ol p est constant ; on a alors un graphe dense qui contient (n?) arétes avec

grande probabilité (conséquence des inégalités de CHERNOFF)

— le cas ou p = ©(1/n); on a alors un graphe creux ou le degré d’un sommet est

approximé par une loi de POISSON.

Théoréme. Soit ¢ > 0 fizé et posons p = clog(n)/n et soit Gy, un graphe aléatoire de loi
Gy p. Alors
— Sic <1, alors

lim P(G,, a un sommet isolé) = 1
n—0o0

— Sic>1, alors

lim P(G,, a un sommet isolé) = 0
n—o0

Démonstration. Soit N le nombre de sommets isolés. Par linéarité de I’espérance

nl—c

E[N] =n(1 —p)" ' =nexp(nln(l —p)) /(1 —p) ~ 1 o exp(—clnn) ~ T
—D -p
Sic> 1, alors E[N] — 0 et donc P(N > 1) < E[N] — 0.
Si ¢ < 1, alors E[N] — oo mais cela ne suffit pas & conclure. On peut écrire par
I'inégalité de TCHEBYCHEFF
Var(N) E[N?]

P(N =0) <P (N —E[N]| > EIN) < i = Frm — !

et on est ramené & montrer que E[N?] ~ E[N]2. On calcule donc

E[NQ] =E Z 1{1 isolé etj isolé.}
Z"j

= nP(1 isolé) + n(n — 1)P(1 et 2 isolés) =n(1—p)" ' +n(n—1)(1 —p)>" 3

et donc

tend bien vers 1. O
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Fin cours #5 du 8 octobre
On peut en réalité montrer mieux.

Théoréme. Sous les hypothéses du théoréme précédent, si ¢ > 1

lim P(G,, est connexe) = 1
n— o0

Démonstration. Remarquons que G, est non connexe si et seulement si il existe un sous
ensemble S C V avec |S| < n/2 sans aréte entre S et '\ S. On a donc

Ln/2]
n k(n—k)
< —
P(G,, non connexe) < kg_l (k> (I1-p)

Pour simplifier 'analyse on suppose ¢ > 2 (exercice : montrer le résultat sous ’hypothése
¢>1). On aen écrivant 1 —z < e 7 et (Z) < nk

Ln/2)
P(G,, non connexe) < Z nk exp (—pk(n — k))
k=1 pe

«

Comme log(e) < klogn — 99" (n — k) < klogn(1 — ¢/2), on a

n

> nl—c/2
P(G), non connexe) < an‘(l—C/?) —

=— =0
_ pl—c/2
— 1 —nl=¢/

d’ou le résultat. ]
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Chapitre 3

Convergence des variables aléatoires
et théoréme central limite

3.1 Convergence presque siire et loi forte des grands nombres

Lorsque (X,,) est une suite de variables aléatoires, il y a plusieurs notions possibles de
convergence de la suite (X,,) vers une variable aléatoire X.

Il y a une notion de convergence déja rencontrée : la convergence en probabilité. On dit
que (X,) converge en probabilité vers X si

Ve >0, lim P(|X,—X|>¢)=0.
n—oo

Ainsi, lorsque (X,,) est une suite de variables aléatoires i.i.d. ayant un moment d’ordre
2, la loi faible des grands nombres s’énonce en disant que la suite (S,,) des moyennes de
CESARO converge en probabilité vers la variable aléatoire constante égale a E[X].

Un autre notion de convergence est la notion de convergence presque stire. On dit que
(X,,) converge presque strement vers X si

P({lim X, = X}) = 1.

Proposition. Si (X,,) converge vers X presque strement, alors (X,,) converge vers X en
probabilité.

Démonstration. Fixons € > 0. Pour m € N, on considére 1’événement
Ap={In>m : |X,, — X| > ¢}

C’est une suite décroissante d’événements; il découle de la o-additivité (considérer les
événements complémentaires) que

P <ﬂ Am> = lim P(Ap).

m=1
Mais
P ( ﬂ Am> < P (la suite (X,,) ne converge pas vers X) = 0.
m>1
On a donc P(|X,,, — X| > ¢) < P(4,,) — 0. O
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Pour bien comprendre la différence, voici un exemple de suite qui converge en pro-
babilité mais pas presque stirement. Soit (X;) une suite de bits aléatoires, c¢’est-a-dire de
variables aléatoires i.i.d. de loi B(1/2). On considére ’ensemble {0, 1}* des mots finis sur
l'alphabet {0,1}. C’est un ensemble dénombrable, que 'on écrit comme une suite (wy,)
en l'ordonnant de fagon arbitraire (pour fixer les idées, on peut 'ordonner par longueur
de mot, puis par ordre lexicographique pour les mots de méme longueur). On note Y;, la
variable aléatoire a valeurs {0, 1} qui vaut 1 si et seulement si w,, est un segment initial de
la suite (X;).

Alors (Y;,) converge en probabilité vers la variable aléatoire constante égale a 0, puisque

pour tout 0 < e < 1,

1
tend vers 0 quand n tend vers 'infini. Mais il n’est pas vrai que (Y;,) converge presque
strement vers 0 puisque la suite (Y},) admet une sous-suite (aléatoire) dont tous les termes
sont égaux a 1, celle obtenue en prenant comme mots les segments initiaux de la suite (X;).

Néanmoins, dans le cas de la loi des grands nombres, on a le résultat suivant.

Théoréme (Loi forte des grands nombres). Soit (X,,) une suite de variables aléatoires
i.i.d. admettant un moment d’ordre 1. Posons up = E[X1] et S, = X1 + -+ X,,. Alors la
suite (Sp/n) converge presque strement vers la variable aléatoire constante égale a .

10 2 — Simulation 1
Simulation 2
= Simulation 3
—— Simulation 4
0.8 —— Simulation 5
—— Simulation &

0.6 44

Saln

0.4 emeemees

0z

0.0

] 25 50 75 100 125 150 175 200
n

FIGURE 3.1 — Loi des grands nombres pour une somme de variables aléatoires de loi de
Bernoulli B(1/2)

La loi des grands nombres est illustrée dans la figure La loi faible des grands
nombres affirme que la proportion de simulations qui sont dans la bande délimitée par les
deux lignes pointillées d’ordonnée p — ¢ et p + € tend vers 1 quand n tend vers U'infini. La
loi forte des grands nombres affirme que (presque) toute simulation est confinée dans cette
bande pour n assez grand.

On a déja démontré la loi faible sous I’hypothése que X7 admet un moment d’ordre 2.
On va maintenant expliquer comment montrer la loi forte.

Lemme. Soient (X,,) et X des variables aléatoires. Alors

X, X < Ve>0, P(|X, — X| > ¢ pour une infinité d’indices n) = 0
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Démonstration. L’implication directe est immédiate. Pour la réciproque, on 'applique a
e = 1/k pour tout k € N* et on utilise le fait qu’une union dénombrable d’événements de
mesure nulle est de mesure nulle. O

Lemme (Lemme de BOREL-CANTELLI). Soit (A,) une suite d’événements tels que la
série Y P(Ay) converge. Alors

P( une infinité des événements (A,,) est vraie ) = 0.

Démonstration. Soit E I’événement en question. Alors

P(E)<P (ﬂ U An> ZW}E%OP<U An> < iP(An)

m=21ln>m n=m
qui tend vers 0 comme reste d’une série convergente. O

Pour résumer,

1. Si Ve > 0 on a P(|X;, — X| > ¢) — 0 alors (X,,) converge vers X en probabilité
(c’est la définition)

2. SiVe >0ona)d P(X, - X| >¢) < oo alors (X,,) converge vers X presque
strement (on peut appliquer le lemme de BOREL-CANTELLI).

En un sens, la différence entre ces deux notions de convergence est similaire a la diffé-

rence entre le fait qu'une série converge et le fait que son terme général tend vers 0.

Preuve de la loi forte des grands nombres sous l’hypothése de Jéme moment fini. On peut
(quitte a remplacer X,, par X,, — u) supposer que p = 0. On calcule alors

E[S)] = ) E[X;X;X;X|]
i,7,k,l

En utilisant I'indépendance et le fait que 1 = 0, on observe qu'un terme E[X;X; X}, X] est
nul en dehors des cas suivants

—i=5=k=1

—i=jetk=1

—i=ketj=1

—ai=letj=k
On a donc

E[S}] = nE[X]] + 3n(n — 1) E[X}]? < Cn?

pour une constante C' > 0. Ainsi, E[(S,/n)?] < C/n? et I'inégalité de MARKOV permet de
conclure que, pour tout € > 0

C
v P(|S,/n|* > ¢) < ——.
>0, P(ISu/n[" > ¢) < -

Puisque la série ) n%s est convergente, on conclut & ’aide du lemme de BOREL-CANTELLI.
O

Dans la loi des grands nombres, la limite est une variable aléatoire constante. Voici un
exemple simple de convergence presque siire vers une variable aléatoire non-constante.
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Soit U une variable aléatoire de loi uniforme sur l'intervalle [0,1]. On considére une
suite (pp) de réels dans [0, 1] qui converge vers p. Si on considére les variables aléatoires

_J1siU<pn b 1siU<p
" 0siU > pn 0siU>p

alors (X,,) converge presque strement vers X (le seul cas ot on peut avoir lim X,, # X est
le cas ot U = p, qui est un événement de probabilité nulle).

3.2 Convergence en distribution et théoréme central limite

La convergence en distribution (ou convergence en loi) s’intéresse aux variables aléa-
toires uniquement & travers leur loi.

Définition. Soient (X,,) et X des variables aléatoires. On dit que (X,,) converge vers X
en distribution si, pour tout ¢ point de continuité de ¢t — P(X < t),
lim P(X, <t)=P(X <1t).
n—o0
Remarquons que pour définir la convergence en distribution, les variables aléatoires
(Xn) et X n’ont pas besoin d’étre définies sur le méme espace de probabilité. Cette notion

dépend seulement des lois de (X,,) et X. En particulier, si (X,,) converge en distribution
vers X et si X ~ Y, alors (X,,) converge en distribution vers Y.

Lemme. Si (X,,) converge vers X en probabilité, alors (X,,) converge vers X en distribu-
tion.

Démonstration. On note Fx(t) = P(X < t). Soit ¢ un point de continuité de Fy. Pour
tout € > 0, il existe o > 0 tel que Fx(t — o) > Fx(t) —e et Fx(t +a) < Fx(t) + . Pour
n assez grand, on a P(|X,, — X| > a) < ¢, d'on

PX,<t)<PX<t+a)+P(X,— X|>a) < Fx(t)+2¢

PX,<t) 2P X <t—a)—-P(X,—X|>a) > Fx(t) —2¢
d’ou le résultat. O

Théoréme (Théoréme de LEVY, admis). Soient (X,,) et X des variables aléatoires. On a
I’équivalence entre

1. (Xy) converge vers X en distribution,

2. Pour toutt € R, on a
lim E[eXn] = B[]
n—oo
La fonction ®x : ¢t — E[eitX | s’appelle la fonction caractéristique de X ; c’est 'analogue
de la transformée de FOURIER en analyse. Elle partage cette propriétés de la fonction géné-
ratrice des moments, comme l'identité ® x 1y = ® x Py lorsque X et Y sont indépendantes,
mais elle est toujours définie méme sans aucune hypothése d’existence de moments.
Soit (X;,) une suite de variables aléatoires admettant un moment d’ordre 2 et vérifiant
E[X;] = 0. Posons S, = X1 + --- + X,,. Par la loi forte des grands nombres on a presque
stirement S, = o(n). Peut-on préciser le développement asymptotique de S,, 7 Puisque

Var(S,) = nVar(X;), on a Var(S,/y/n) = Var(X;) et on s’attend a ce que S, soit de
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lordre de y/n. C’est bien le cas, mais ce terme d’ordre y/n est aléatoire et fait intervenir
la loi gaussienne.
On appelle loi gaussienne (ou normale) standard ou N(0, 1) la loi de densité

Si X ~ N(0,1), alors E[X] = 0 et Var[X] = 02. Plus généralement, étant donnés des réels
m et o, on note N(m, %) ma loi de densité

1 —@-m)?/20?
ov2rm

T —

Si X suit la loi N(0,1), alors la variable aléatoire Y := m + ¢ X suit loi loi N(m, o?).
Fin cours #6 du 15 octobre

Théoréme (Théoréme central limite). Soit (X,,) une suite de variables aléatoires i.i.d.
admettant un moment d’ordre 2. On pose p = E[X] et 0 = \/Var(X}), supposé > 0. Soit

Sn=X1+ -+ X,. Alors, la suite
Sp — pun
ov/n

converge en distribution vers une variable de loi N(0,1).

C’est un résultat d’universalité : la limite ne dépend pas de X7 mais uniquement de sa
variance. Remarquons que la condition o > 0 équivaut a dire que X n’est pas constante.
Si Z suit la loi N(0, 1), alors la fonction

t dx
t|—>PZ<t:/ exp(—z2/2) ——
(Z<t)= | ew(-a?/2)
est continue. La conclusion du théoréme central limite peut donc s’écrire ainsi : pour tout
teR,
. Sy — un
—— < = <
nh_}n(;P( Tn \t> P(Z < t)
Un calcul élémentaire montre que la fonction caractéristique d’une variable aléatoire
Z ~ N(0,1) est donnée par
By(t) = et/

(le plus simple pour le montrer est d’observer que @ est solution de I’équation différentielle
y'(t) = —ty(y) a 'aide d’une intégration par parties).

Démonstration. On peut supposer que u = 0 et o = 1, quitte & remplacer X,, par
On effectue ensuite un développement limité de la fonction caractéristique au voisinage de
0. L’approximation e®X1 = 14t X; — %X 2 +0(t?) implique (cela ce justifie par le théoréme
de convergence dominée) que ®x, (t) = E[e?X1] =1 —t2/2 4 o(t?).

On a en utilisant I'indépendance des (X,,) que

Xn—p
-

g,/ m(t) = s, (t/v/n) = Cx, (t/Vn)" = (1 — /20 + o(1/n))" = exp(~t*/2) + o(1),

puis on conclut a ’aide du théoréme de LEVY. O
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Chapitre 4

La méthode probabiliste : exemples

La méthode probabiliste montre 'existence d’objets (souvent de nature combinatoire,
mais pas uniquement) en montrant qu'un choix aléatoire convient avec probabilité > 0.
Nous allons illustrer ce principe sur 4 exemples, de complexité croissante.

4.1 Exemple 1 : satisfiabilité

On appelle formule k-SAT une formule booléenne qui est une conjonction de clauses,
chaque clause étant la disjonction de k variables ou leur négation, ces k variables étant 2
a 2 distinctes. Une telle formule est du type

(xl \/.%'73\/.1'4)/\(.T5\/.%'6\/$78)/\...

Le probléme de satisfiabilité demande s’il existe une affectation des variables booléennes
rendant vraie la formule ci-dessous. C’est un probléme NP-difficile pour & > 3.

Une variante est de demander combien de clauses peuvent étre satisfaites. On a alors
le résultat suivant.

Proposition. Soit une formule k-SAT écrite comme la disjonction de m clauses. Il existe
une affectation des variables qui satisfait au moins m(1 —27%) des clauses.

Pour k£ = 3, cela montre qu’il est toujours possible de satisfaire une proportion 7/8 des
clauses d’une formule 3-SAT. La preuve est trés simple.

Démonstration. On affecte au hasard les valeurs des variables, indépendamment et unifor-
mément sur I'ensemble {vrai, faux}. Pour toute clause Cj, par indépendance, I’événement
«la clause C; est satisfaite» a probabilité 1 — 2%, On a donc, par linéarité de I'espérance

E[nombre de clauses satisfaites] = m(1 — 27%),
d’otu le résultat. O

La preuve utilise le principe suivant : si une variable aléatoire X intégrable a pour
espérance i, alors P(X > u) > 0 (dans notre cas, X est le nombre de clauses satisfaites).

4.2 Exemple 2 : nombres de RAMSEY

On note R(k,l) Uentier n minimal tel que tout coloriage des arétes du graphe complet
K,, en deux couleurs (rouge et bleu) contient un sous-graphe K} dont toutes les arétes sont
rouges ou un sous-graphe K; dont toutes les arétes sont bleues.
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On calcule par exemple que R(2,2) =2 et R(3,3) = 6.

Ezercice. Montrer 'inégalité R(k,l) < R(k—1,1)+ R(k,l —1) et en déduire que R(k,[) <
2k+1 et en particulier R(k, k) < 4F.

Voici une borne inférieure
Proposition. Si k > 3, alors R(k, k) > |2¥/?]

Démonstration. On considére un coloriage aléatoire du graphe complet K,, = (V,,, E,,) ou
chaque aréte est coloriée en rouge ou bleu aléatoirement, uniformément et indépendem-
ment.

Si § C V, est un sous-ensemble de taille k, alors

P(S est monochromatique) = 2 - 2=(),

Par la borne de 'union, on en déduit

P(3S C V,, monochromatique de taille k) < <Z> 21-(5)

k
n _k(k—1)
< H2 -27 72
En choisissant n = [2F/2], cette quantité est < 22%2 < 1 pour k > 3, d’ou le résultat : il
existe un coloriage de K, sans clique monochromatique de taille k. O

L’argument précédent peut étre réécrit comme un argument de comptage, mais le point
de vue probabiliste est en général plus fructueux.
Un probléme ouvert important est de déterminer la limite

(= lim R(k,k)'/*

k—o0

(il n’est pas clair que la limite existe). La proposition implique ¢ > 1/2 (ERDGOS 1947)
et I'exercice £ < 4 (RAMSEY 1929). Un progrés remarquable récent (2023) ameéliore cette
borne en ¢ < 4 — ¢ avec € de 'ordre de 2719,

4.3 Exemple 3 : borne inférieure pour le probléme de partage
équilibré

On rappelle qu’on a montré le résultat suivant : étant donnée A une matrice n X n a
coefficients dans {0, 1}, alors si b est choisi uniformément dans {—1,1}",

P(||Abl|sc < v/4nlogn) — 1.

Nous allons voir que cette estimation en y/4nlogn pour le meilleur partage équilibré
est essentiellement optimale.

Proposition. I existe une constante réelle ¢ > 0, un entier ng et pour tout n = ng une
matrice Ay, € {0,1}"*" telle que

min |40l = cv/n
be{-1,1}"

On va bien sir choisir A4,, au hasard en prenant pour coefficients des bits aléatoires!
On utilisera le lemme suivant
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Lemme. [] existe une constante réelle ¢ > 0 et un entier ng tels que, pour tout n = ng, si

bi,...,by sont dans {—1,1} (fizés) et X1,..., Xy sont i.i.d. de loi B(1/2), alors

P<._

S
=1

< c\/ﬁ> <1/2

Preuve de la proposition. Soit A = (a;j) une matrice de coefficients i.i.d. de loi B(1/2).
Pour tout b € {—1,1}", on a par indépendance des lignes de A

P (| Abloc < evit) = P(Vi, [(Ab)] < ev/it) < (1/2)"
Soit N le nombre de b € {—1,1}" tels que [|Ab||oc < cy/n. Par linéarité de 'espérance,
E[N]<2™"(1/2)" =1

et donc il existe A tel que N = 0, ce qui veut dire que ||Ab||oc = cy/n pour tout b €
(~1,1}". O

Preuve du lemme. Posons

Y, = b, X; + = ,
1—Xl' Slbi:—l

1—bi X,L Sibizl
2

et remarquons que les v.a. (Y;) sont i.i.d. de loi B(1/2). Soit S, = Y1 +---+ Y}, (qui suit
une loi binomiale B(n,1/2) et = I'entier § — w On a, pour tout entier ¢

‘Z b X;

Puisque la fonction k£ +— (Z) est croissante pour k < 5 et décroissante pour k£ > 3, la

quantité P(S € [x — £,z + {]) est maximale pour z = |n/2]. Il s’ensuit que

p (‘ZbiXi

Par le théoréme central limite, on a pour Z de loi N(0, 1)

<l = ‘—x—i—ZYi

Sl <= Selz—tz+/]

< cﬁ) <P (|S—[n/2]] <evn) = oy

¢/2 dz
li n — < = e —z?) =/
Jim P(|Z]| <c¢) /_C/2 xp(—z°) o

et cette quantité peut étre rendue < 1/2 en choisissant la constante ¢ suffisamment petite.
On a donc «a;, < 1/2 pour n assez grand. O

Fin cours #7 du 22 octobre

4.4 Le lemme local de LOVASZ

Lorsqu’on utilise la méthode probabiliste, on veut prouver que certains événements
«mauvaisy Aj, ..., A, sont simultanément évités avec probabilité non nulle. Il y a deux
idées simples pour cela

— La borne de I'union : si >, P(4;) < 1 alors P(A;N---NA4,) >0,

— L’indépendance : si les événements (A;) sont indépendants et vérifient P(A4;) < 1,

alors P(A;N---NA,) > 0.
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Le lemme local de LOVASZ combine de maniére astucieuse ces deux situations. Soient
A, Aq, ..., A, des événements. On dit que A est indépendant de {A1,..., Ay} si pour tout
I'c{l,...,n} tel que P((;c;4;) >0, on a

p A’ N A4; | =P(A).
Jel

Cette condition est satisfaite lorsque les événements A, Ay, ..., A, sont indépendants, mais
elle est plus faible : par exemple, elle n’implique pas que A; et Ay sont indépendants.

Soit (A;)iey une famille d’événements. Un graphe de dépendance est un graphe non
orienté G = (V, E) tel que, pour tout i € V, I'événement A; est indépendant de {4;
(i,j) & E}.
Théoréme (Lemme Local de LOVASZ). Soient Ay, ..., A, des événements tels que

1. Pour tout i, on a P(A;) < p,

2. Les événements (A;) admettent un graphe de dépendance dans lequel tout sommet

a degré < d,

3. 4dp < 1.

Alors P(A1N---NA,) > 0.

Commengons par donner une application du lemme local de LOVASZ.

Proposition. Soit k > 4. Une forme k-SAT ot chaque variable apparait au plus % fois
est satisfiable.

L’énoncé est trivial pour k¥ = 4 (une formule ou chaque variable n’apparait qu'une
fois est évidemment satisfiable). Pour k£ = 8, on obtient qu'une formule 8-SAT ou chaque
variable apparait au plus 8 fois est satisfiable.

Démonstration. Soient C', ..., Cy les clauses apparaissant dans la formule. On assigne les
valeurs booléennes des variables indépendamment et uniformément. Soit A; I’événement
«La clause C; n’est pas satisfaite». On a P(A;) =27%F = p.

Considérons le graphe G = (V,E)ou V = {1,..., N} et (i,7) € E siles clauses C; et C;
ont une variable en commun. C’est un graphe de dépendance pour les événements (A;)1<i<n
dont le degré est < k% = % =d.

Puisque 4pd < 1, le lemme local de LOVASZ s’applique et nous pouvons conclure que

P(A;Nn---NAy) >0,
d’ou le résultat. O
La preuve du lemme local de LOVASZ repose sur une récurrence astucieuse.

Preuwve du lemme local de LovAsz. 11 est commode de noter B; = A; et Bg = ﬂieSXi

pour S C {1,...,n}. On montre par récurrence sur s € {0,...,n} que si |S| < s alors
P(Bs) > 0 et ¥k & S, P(Ax|Bs) < 2p.

Le cas s = 0 est trivialement vrai puisque By = ). Supposons la propriété vraie au rang
s — 1 et montrons-la au rang s. Il suffit de le faire pour S = {1,...,s}. On a

P(Bgs) = P(B1)P(B2|B1)P (B3| By 2y) - - - P(Bs| By, s-1}) = (1 —=2p)* >0
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par hypothése de récurrence. Soit maintenant k € S et considérons la partition S = 51U .S
ou 57 est le sous-ensemble formé des sommets reliés & k dans le graphe de dépendance. Si
S1 =0, alors P(Ag|Bgs) = P(A;) < p < 2p. Sinon, on a |Sz| < s — 1. On écrit (’hypothese
de récurrence garantissant que P(Bg,) > 0)

P(Ak N Bs) _ P(Ak N Bg, N Bg2) _ P(Ak N Bg, ’BSQ)
P(Bs) P(BS1 mBSz) P(BSH’BSz)

P(Ax|Bs) =

On estime séparément le numérateur et le dénominateur.

P(Ax N Bs,|Bs,) < P(Ax[Bs,) = P(Ax) <p

1
P(Bs,|Bs,) < > P(Ai|Bs,) < 2p[S1| < 2pd < 5
1€ST
On a donc P(Bg,|Bs,) > 3 et donc P(Ay|B,) < 2p, concluant la récurrence. O

4.5 Application du lemme local de LOVASZ : routage de pa-
quets

On considére un graphe non orienté (V, E) et un ensemble de paquets pi,...,p,. A
chaque paquet p; est associé un itinéraire, formé d’un sommet de départ s;, d’'un sommet
d’arrivée t; et d’'un chemin dans le graphe allant de s; & ¢;. A chaque étape de temps
discret, un paquet peut attendre ou étre déplacé vers ’étape suivante de son itinéraire
avec la contrainte qu’une aréte ne peut étre empruntée a chaque étape que par un seul
paquet. Un planning de durée T est la donnée pour chaque paquet et chaque instant
t € {1,...,T} d’une instruction «avance!» ou «attends!». Le planning est valide si chaque
paquet compléte son itinéraire et si chaque aréte est utilisée par au plus un paquet a chaque
étape. On cherche & minimiser la durée d’'un planning valide.

Il y a deux paramétres pertinents : la dilatation

d = max{ longueur de l'itinéraire du paquet p;}
2
et la congestion
¢ = max{ nombre d’itinéraires utilisant l’aréte e}
&

Il est évident que tout planning valide nécessite une durée > max(c,d). Il est clair aussi
qu’il existe un planning valide de durée < cd.

Théoréme. [l existe un planning valide de temps O(max(c,d)).

Posons m = max(c,d). Nous allons montrer a 'aide du lemme local de LOVASZ une
version plus faible de ce théoréme : il existe un planning valide de temps O(mﬁlog*(m)) ol
B est une constante a déterminer et log* est le logarithme itéré (i.e. le nombre d’itérations
de la fonction logarithme nécessaires pour obtenir une valeur < 1).

On donne un algorithme récursif qui consiste & utiliser un planning arbitraire si m < mg,
et si m > myg a diviser l'intervalle {1,...,3m} en phases de longueur logm. Dans chaque
phase, chaque paquet se voit attribuer un sous-itinéraire de son itinéraire initial, de sorte
qu’on retrouve l'itinéraire initial d’'un paquet en mettant bout a bout les sous-itinéraires.
Nous allons voir que pour m > mg on peut faire en sorte que la congestion soit < logm
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pour chacune des phases. Il est évident que la dilatation dans chacune des phases est
< logm. Si on note T'(m) la durée du planning ainsi construit, on a pour m > my

et donc T'(m) = O(mpB°¢" (™). (La profondeur de la récursion est log*(m) et chaque appel
récursif multiplie la durée par un facteur j3).

On considére un planning du type suivant : chaque paquet p; recoit 'ordre d’attendre
pendant un temps X;, puis de faire toutes les étapes de son itinéraire. Posons o« = 3 — 1.
On choisit X; aléatoirement, indépendamment selon la loi uniforme sur {1,...,am}. Pour
e € FE, on note A, 'événement «il existe une phase ot I'aréte e apparait dans > logm
sous-itinéraires». Nous allons montrer que P((), 4¢) > 0, ce qui permettra de conclure.

Lemme. On peut choisir la valeur de @ de sorte que P(Ae) < ﬁ pour m assez grand.

Soit F, C E la réunion des itinéraires contenant l'aréte e. On a |F.| < ed < m?.
L’événement A, est indépendant de (Ay)rgr, et donc les événements (Ae)ecr admettent un
graphe de dépendance de degré < m?. Le lemme local de LOVASZ implique que 1’événement
M. Ae est non vide.

Preuve du lemme. Fixons une phase i € {1,..., loﬁg":n} et N ; le nombre de sous-itinéraires

utilisant I’aréte e au cours de la phase ¢. La variable aléatoire N, ; est une somme de v.a.
indépendantes de loi de BERNOULLI (chacun des < d paquets ayant 'aréte e dans leur

itinéraire ont probabilité < 1?5;” de l'inclure dans le sous-itinéraire de I’étape 1)
log(m logm
E[N.] <d- g(m) _ log

)

am «

On a vu dans la preuve de CHERNOFF II que si X est une somme de v.a. de BERNOULLI

m
indépendantes avec E[X] < p, alors pour tout § > 0ona P(X > (14+)u) < <$) .
On a donc, avec p = bim
e\ e\ logm m
Par la borne de I'union,
. (a+1)m m 1

P(A.) =P(3 : Ng; >logm) < ogm  miEe S Im?

la derniére inégalité étant vraie pour m et a suffisamment grands. O

Fin cours #8 du 12 novembre
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Chapitre 5

Chaines de MARKOV

Les chaines de MARKOV sont un exemple de suite de variables aléatoires (X,,) non
indépendantes, ot la loi de X, 11 dépend uniquement de X,,. Pour une chaine de MARKOV,
«le futur ne dépend du passé qu’a travers le présenty.

5.1 Définition

On se donne un ensemble fini ou dénombrable S, appelé 'ensemble des états. On
supposera souvent que S = {1,...,n} ou S = N.

Définition. On dit qu'une suite (X,,)n>0 de variables aléatoires a valeurs dans S est une
chaine de MARKOV s'il existe une fonction @ : S x .S — [0, 1] telle que l'on ait

P(Xn = an‘XO = aop, X = A1y ey Xp-1= anfl) = Q(anfban)
pour tous ag,...,a,—1 dans S tels que P(Xyg =ag, ..., Xp—1 =an—1) > 0.

On dit que @ est la matrice de transition de la chaine de MARKOV. Elle est & valeurs
positives et vérifie la condition

> Q(a,b) =1

besS

pour tout a € S (une matrice vérifiant ces conditions est dite stochastique). La loi de (X))
est entiérement déterminée par Q et par la donnée de la loi de Xy. On a en effet, pour tous
ag, a1, - - ., 0, dans S

P(XO = aop, X1 =aly... ,Xn = an) = P(XO = ao)Q(ao, al)Q(al, ag) Ce Q(an_l, an)

Dans le cas particulier important ou Xy est constante égale & a € S (on parle de «chaine
de MARKOV issue de a»), on a,

P(X1=a1,...,Xn = an) = Q(a,a1)Q(a1,a2) ... Q(an_1,a,)

Soit pg la loi de X, vue comme un vecteur ligne, de coefficients pp(a) = P(Xo = a)
pour a € S. Si u, est la loi de X,,, alors

p) =P(X1=b)=> P(Xi=b, Xo=a) =) Q(a,b)uo(a)
acs a€esS

et on a donc la relation pu; = pp@ au sens de la multiplication matricielle. Plus générale-
ment, si puy, est la loi de X,, on a pu, = pe@". La matrice Q™ correspond & la matrice de
transition aprés n pas de la chaine de MARKOV.
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Il est utile de représenter la matrice de transition sous forme de graphe orienté éti-
queté de sommets S, dans lequel (x,y) est une aréte si et seulement si Q(z,y) > 0. Par
exemple, voici une matrice de transition suivante pour l'espace d’états S = {1,2,3} et sa
représentation graphique.

0 1/4 3/4
1/2 1/3 1/6
0 1/2 1/2
1 1
3 2

5.2 Un algorithme probabiliste pour 2-SAT

Voici un exemple concret qui illustre I'intérét des chaines de MARKOV pour ’étude des
algorithmes probabilistes. Une formule 2-SAT est du type

(k1 VTZ2) A (@I Vas)A(x1Vas) AN(@aVTT)A...

Etant donné une formule 2-SAT en n variables, on voudrait déterminer si elle est
satisfiable, c’est-a-dire s’il existe une affectation des variables booléennes x1, ..., x, qui la
rendre vraie. Ce probléme peut résolu par un algorithme déterministe en temps polynomial,
mais on propose l'algorithme probabiliste suivant, en temps polynomial.

1. On initialise avec une affectation arbitraire des variables.
2. Répéter 200n? fois, en s’arrétant si la formule est satisfaite

(a) Choisir arbitrairement une clause non satisfaite

(b) Choisir uniformément au hasard une des deux variables apparaissant dans cette
clause, et la remplacer par sa négation.

3. Répondre «la formule est satisfiable» si I’algorithme s’est arrété au cours de I’étape 2,
et «la formule n’est pas satisfiable» sinon.

Théoréme. Cet algorithme a une probabilité d’erreur < 27100,

Le seul cas ou 'algorithme peut se tromper est si la formule est satisfiable. Traitons
donc ce cas. Soit A une affectation des variables satisfaisant la formule. Pour I'analyse de
I’algorithme, nous allons étudier une modification ou la condition d’arrét dans la boucle
est remplacée par «en s’arrétant si l'affectation coincide avec A». Nous allons montrer que
la probabilité que l'algorithme modifi¢ ne s’arréte pas est < 27109, Cela implique que la
probabilité que 1'algorithme initial ne s’arréte pas est < 27109,

On note X; le nombres des variables ayant la méme valeur que dans 'affectation A
aprés ¢ tours de boucle dans ’algorithme modifié. L’algothime s’arréte au iéme tour de
boucle si et seulement si X; = n. Dans ce cas, on pose X; = n pour tout j > 1.
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Si X; < n, la variable X; 1 est égale soit & X; + 1 soit & X; — 1, selon que la variable
remplacée par sa négation lors du iéme tour de boucle était en désaccord ou non avec S.
On a

P(X;11=1X;,=0)=1

(puisque toute clause non satisfaite a au moins une variable en désaccord avec S) et donc,
par passage & I’événement complémentaire,

PXiy1=k—-1X;=k)<1/2
Pour que (X;) soit défini méme aprés l'arrét de I'algorithme, on rajoute la condition

La suite (X;) de variables aléatoires n’est pas une chaine de MARKOV | Néanmoins, on
peut la comparer a une chaine de MARKOV qui serait une version pessimiste de (X;). Défi-
nissons une chaine de MARKOV (Y;) sur 'espace d’états {0, ...,n} de matrice de transition

Q(0,1) = Q(n,n) =1

1
Q(k:,k—i—l):Q(k,k—l):isi0</<:<n

On peut faire un couplage de (X;) et (Y;) (c’est-a-dire les définir sur le méme espace
de probabilité) de telle sorte que 'on ait Yy = X = ko et pour tout j I'inégalité Y; < X;.
Si on définit les variables aléatoires

TV =min{j >0 : X;=n}, S\ =min{j >0 : Y;=n}

on a alors presque stirement l'inégalité T,E,:) < S,gz).

Lemme. Pour tout kg € {0,...,n}, on a E[T,E?] < n?.

Démonstration. Posons uy = E[S lin)] On va montrer que uy, < n? et le lemme en découlera.
La suite (ug) vérifie la relation de récurrence u, = 0, ug = 1 + u; et

Ug+1 + Ug—1

5 si0<k<n

up =1+

Cette relation de récurrence admet la solution explicite uy, = n? — k2, d’ott le résultat. [

Par 'inégalité de Markov, on a donc P(T,E:) > 2n?) < L. Divise les 200n? itérations
de TI’algorithme en 100 blocs de longueur 2n? et pour 1 < i < 100, soit A; 1’événement

«l’algorithme s’arréte au cours du iéme bloc». Il découle de ’analyse précédente que

1
3
]

1 _ _
P(A1)>§, P(Ay|A) > =, ... PAJAN---NA_]) >

N =
N | =

et donc
P(A; NN Aj) <2710
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5.3 Classification des états

On fixe une chaine de MARKOV (X,,) de matrice de transition ) et d’ensemble d’états S.

Pour ¢,j dans S, on dit que j est accessible depuis i et on note ¢ ~» j s’il existe un
entier n > 0 tel que Q™(i,j) > 0. Cela revient a dire qu'il existe un chemin de i vers
j dans le graphe orienté associé. On dit que ¢ et j communiquent si i ~> j et j ~» 1.
Remarquons que si i ~ j et j ~» k alors i ~ k (preuve : si Q™(i,j) > 0 et Q"(j,k) > 0
alots Q™H(i, k) > Q™(i, /)Q" (7, k) > 0).

On dit qu'une chaine de MARKOV est irréductible si tous ses états communiquent.

Afin d’alléger les notations, pour z € S, on utilisera les notations P, ou E, pour
signifier que 1’on considére la chaine de MARKOV (X,,),,>0 issue de z, c’est-a-dire telle que
P(Xo = a:) =1.

Dans I'étude du comportement asymptotique d’une chaine de MARKOV (X,,), on associe
a chaque état x € S deux variables aléatoires & valeurs entiéres

— On note N, le nombre de visites en x, défini comme

Ne=> 1{x,—a}-

n=0

— On note T le temps d’atteinte de x, ou encore l'instant de premiére visite en ,

définie comme
T, =inf{n >0 : X, =z}

avec la convention habituelle T, = oo si I’ensemble est vide.
Les états d’une chaine de MARKOV se classifient selon la dichotomie suivante
— Un état x est dit récurrent si

P,(T, <o0) =1
— Un état = est dit transitoire (ou transient) si

P,(T, <o) <1

Si x est récurrent, la chaine issue de x revisite presque stirement x au bout d’un temps
fini, puis presque stirement revisite une seconde fois x au bout d’une temps fini, .... Il
s’ensuit que le nombre de visite en x est presque stirement infini : P, (N, = 0o0) = 1.

Si z est transitoire, posons p = P, (T, = oco) > 0. Pour la chaine issue de z, le nombre
de visites en x suit alors une loi géométrique de parameétre p et est donc d’espérance finie :
ona Py(Ny =00) =0 et Ez[N,]| = % < 00.

Les raisonnements ci-dessous utilisent de maniére intuitive ce que les mathématiciens
appellent la propriété de MARKOV : conditionnellement & 1'événement {7, < oo}, la loi
(XT,4n)n>0 est identique a loi de (X,,) sachant Xp = x. Ces considérations peuvent étre
rendues rigoureuses mais nous n’introduirons pas le formalisme nécessaire et nous conten-
terons de raisonnements intuitifs.

On peut montrer que deux états qui communiquent ont méme nature (ils sont soit
tous deux récurrents, soit tous deux transitoires). On peut aussi montrer qu’une chaine de
MARKOV sur un espace d’états fini admet au moins un état récurrent.
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5.4 Probabilités invariantes et convergence des chaines de
MARKOV

On considére une chaine de MARKOV (X,,) d’espace d’états S et de matrice de transi-
tion Q.

Définition. Une mesure de probabilité 7w sur S est dite invariante si elle vérifie la relation
7 = 7@, c’est-a-dire que pour tout y € 5

m(y) = 7(@)Qz,y).

zeS

L’interprétation est la suivante : si X, ~ m alors X, 11 ~ 7. On s’intéresse au compor-
tement en temps long des chaines de MARKOV & travers la quantité
7(z) = lim P(X,, = x).
n—oo
On remarque que si la limite existe et si 7 est une mesure de probabilité, alors 7
est invariante. Dans la situation idéale, il existe une unique probabilité invariante 7 qui
coincident avec le 7 ci-dessus. Mais il y a plusieurs obstructions.

— Une obstruction liée a I'infini : il peut ne pas y avoir de probabilité invariante. C’est
le cas par exemple pour la marche aléatoire sur Z. En effet, une probabilité invariante
vérifie la relation (k) = m(k+1)/2+ w(k —1)/2. Les fonction 7 : Z — R solutions
de cette équation sont de la forme m(n) = an+ 5, qui ne sont pas compatibles avec
les conditions m > 0 et w(Z) = 1. On verra le résultat suivant.

Théoréme. Une chaine de MARKOV a espace d’états fini admet une probabilité
mvariante.

— Une obstruction liée a la non-irréductibilité : il peut y avoir plusieurs probabilités
invariantes. C’est le cas par exemple de 'exemple suivant

La probabilité 7 définie par 7(0) = 7(1) = et m(2) = m(3) = 0 est invariante,
de méme que la probabilité 7 définie par 7(0) = 7(1) = 0 et 7(2) = 7(3) = 1. Plus
généralement, pour tout ¢ dans [0, 1], la probabilité tm + (1 — )T est mvarlante On
verra le résultat suivant.

— Une obstruction de nature arithmétique : il peut y avoir une unique probabilité
invariante sans que la quantité P(X,, = x) ait une limite quand n tend vers I'infini.
C’est le cas car exemple de la chaine de Markov suivante

pour laquelle I'unique probabilité invariante est la loi uniforme sur {a,b}. Si par
exemple X vaut a, alors la variable aléatoire Xy, est constante égale a a ou b selon
la parité de n. Cette obstruction liée & la parité est évidente sur cet exemple mais se
retrouve dans de nombreuses situations (par exemple considérer la marche aléatoire
d’un cavalier sur un échiquier).

Fin cours #9 du 26 novembre
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Théoréme (Existence et unicité de la probabilité invariante). Soit (X,,) une chaine de
MARKoV (X,,) irréductible a espace d’états finis S. Alors tous les états sont récurrents;
elle admet une unique mesure de probabilité invariante w, donnée pour x € S par

1

E, (7)) > 0.

m(x) =

Démonstration. Une mesure de probabilité 7 est invariante si (identifiée a un vecteur ligne)
elle vérifie 'équation 7Q) = =, autrement si c’est un vecteur propre a gauche de valeur
propre 1 pour la matrice Q).

Puisque la somme des lignes de @ vaut 1, le vecteur 1 = (1,...,1) est vecteur propre a
droite. Réciproquement, si f = (f(x))zes vérifie Qf = f, montrons que f est un multiple
de 1. Soit 2 € S tel que f(z) est maximal et soit y # x. Par irréductibilité, il existe un
entier n tel que Q™ (z,y) > 0. On a alors

fl@)=Q " f(x) =>_ Qw9 f(y) <D Q"(z,y)f(z) = f(x)

yes yes

et donc f(y) = f(x). Ainsi, tout vecteur propre a droite de valeur propre 1 est un multiple
de 1. Comme les espaces propres a droite et & gauche ont méme dimension, I’espace propre
a gauche de valeur propre 1 est aussi de dimension 1. On en déduit 'unicité (si existence)
d’une mesure de probabilité invariante. Cet argument d’algébre linéaire donne ’existence
d’un vecteur non nul 7 tel que 7@} = m, mais il n’est pas clair que ce vecteur soit &
coefficients positifs.

Pour tous z,y dans S, on note n, 4 le plus petit entier n > 0 tel que Q"(z,y) > 0 (un
tel n existe par irréductibilité ; ¢’est la longueur minimale d’un chemin de z & y). On pose
aussi N = max{n,, : x,y € S}, puis on choisit € > 0 tel que, pour tous z,y € S on ait
Q"(z,y) Zepourunn € {1,...,N}.

Fixons x,y dans S et soit I’événement

Aj = « il existe un entier n vérifiant kN <n < (k+1)N et X, =y ».

On a P.(Ag) > €, P.(A1|Ag) > ¢ et plus généralement P, (Ap1|AgNA1N---NA,) >¢
pour tout k. On en déduit que

P.(T, > kN) < (1 —¢)*

ce qui implique que Ex[Ty] = 37,0 Pu(Ty > 1) < N Y72 ,(1 )* < co. Fixons un état z
et définissons p, : S — R par la formule

T.—1 00
lu’Z(y) =E; Z 1{Xk:y} = ZPZ(Xk‘ =y, T, > k+ 1)
k=0 k=0

Autrement dit, p,(y) est le nombre moyen de visites en y entre deux visites en z. Remar-
quons que p,(y) < E.[T,], donc u, est a valeurs finies et tous les états sont récurrents.
Pour tout y € S, on a

(=@ () = > p=(2)Q(,9) = DY Po(Xp ==, T. > k+ 1)Q(x,y)

€S €S k=0

Mais on a, pour tout k > 0, puisque ’événement {7, > k + 1} peut s’exprimer en fonction
de X(),... ,Xk,

Y P.(Xp==x T.2k+1)Qx,y) =Po(Xpp1 =y, T. > k+1)
€S
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On a donc, en faisant le changement d’indice k£ + 1 — k dans la seconde somme,
o o
p(y) = Q)W) = D> Po(Xp=y, T. 2 k+1) =Y Po(Xp =y, T. > k)
k=0 k=1

=P.(Xo=y) - > P.(Xp=y, T.=k)
k=1
=0

car les deux termes de cette différence valent tous deux 1 si y = z et tous deux 0 sinon.
On a donc p,Q = p,. Puisque ZyES pz(y) = E,[T.], on en déduit que I'unique probabilité

invariante est donnée par 7(x) = ng;)]~

m(x) = m pour tout = € S. O

Puisque par ailleurs p,(z) = 1, on en déduit que

Nous allons maintenant détailler I’obstruction d’ordre arithmétique pour la convergence
en grand temps vers la mesure de probabilité invariante. Pour alléger les notations, on écrira
désormais (g, ou Q’;y plutot que Q(z,y) ou QF(x,v).

Définition. La période d’un état x est
d, =PGCD{n >1 : Q}, >0}

(rappelons que le PGCD d’un ensemble de nombres entiers est leur Plus Grand Commun
Diviseur). Une chaine de MARKOV est apériodique si tout état a période 1.

Dans ’exemple suivant, on a d, = 1 puisque Q. > 0 mais aussi d, = 1 puisque Q3, > 0
et Q1 > 0 (de méme, dy = 1). Remarquons que comme la notion d’irréductibilité, la notion
d’apériodicité de dépend pas de la valeur des étiquettes du graphe.

1 1

[N

N|—

Lemme. Dans une chaine de MARKOV, deux états qui communiquent ont méme période.
Corollaire. Dans une chaine de MARKOV irréductible, tous les états ont méme période.

Démonstration. Supposons x ~ y ~~ z. Il existe donc deux entiers m et n tels que Q3 > 0
et Qy, > 0. Soient d; et dy les périodes de z et y.
— Puisque Q" > QuyQ@ys > 0, Uentier d, divise m + n.

— Soit p un entier tel que @Y, > 0. On a Qe T > Ry 51/@7;93 > 0, ce qui fait que
I’entier d, divise m + p 4+ n, et donc également p d’aprés le point précédent.
Puisque d|p pour tout p tel que QF, > 0, on déduit de la définition du PGCD que dy|d,,.
Par symétrie, on a donc d, = d. O

Théoréme (Théoréme de convergence). Soit (X,) une chaine de MARKOV irréductible
apériodique & espaces d’états finis S, et soit w sa mesure de probabilité invariante. Alors,
pour tous x,y dans S

lim P, (X, =y) =n(y).

n—oo
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Lemme. [l existe un entier N tel que U'on ait Qy, > 0 pour tout n > N et x,y € S.

Démonstration. L’espace d’états étant fini, il suffit de voir que pour tout x,y € .9, il existe
un entier Ny, tel que @7, > 0 pour tout n > N, ,. Mais ceci est une conséquence directe
du résultat suivant, qui est un exercice d’arithmétique : étant donnés des entiers naturels
ni,...,n; tels que PGCD(nq,...,n;) =1, il existe un entier N tel que tout entier n > N
s’écrit comme n = ajny + - - - + apny avec ay,...,a, dans N. O

Preuve du théoréme de convergence. Il faut montrer que pour tous x,y dans S, on a

lim Q7 = m(y).

n—oo

On utilise un argument de couplage en définissant une nouvelle chaine de MARKOV d’espace
d’états S x S et de matrice de transition ) donnée par

@(y z),(y’,2") Qy y’sz

Si (Yy,, Zy,) est une chaine de MARKOV de matrice de transition Q issue de (y, z), alors (Y;,)
et (Zy) sont deux chaines de MARKOV de matrice de transition ) issues respectivement
de y et z; de plus (Y,) et (Z,) sont indépendantes.

La chaine de MARKOV de matrice de transition @ est irréductible. C’est ici qu’on utilise
I’apériodicité de @Q : si N est donné par le lemme, alors pour n > N

a(yz ),y 2") — ny sz’ > 0.

En tant que chaine de MARKOV irréductible a espaces d’états fini, cette chaine est récur-
rente. La mesure de probabilité 7 définie sur S x S par 7(y, z) = w(y)7(2z) (c’est-a-dire,
c’est la loi d’un couple de deux variables aléatoires indépendantes de loi 7) est invariante
pour Q.

Prouvons maintenant le théoréme. Fixons (w,x) € S x S et soit (Y, Z,) la chaine de
MARKOV de matrice de transition @Q issue de (w,z). Pour alléger les notations, on notera
P, = P(,)). Fixons un état arbitraire z € S et considérons

T=inf{n >0 : (Y, Z,) = (2,2)}.

Puisque la chaine est irréductible et récurrente, on a P, (7 < o0) = 1. Pour tout y dans S,
on a

N Ertin rem oo o
k=0

—ZP Zn=y, T=k)-P(Z,=y, T>n)

Par symétrie (i.e., 7(s,t) = 7(t, s) pour tous s et ¢ dans S), on a pour tout k < n 1'égalité
P.(Yoa=y, 1=k)=P.(Z,=y, T=kF).
On en conclut que

|Quy — SIPi(Yon=y, 7>n)-Pu(Zn =y, 7>n)|<P(1>n)

44



et donc limy, oo |Q;‘y — Qg,y\ = 0. Finalement, on utilise I’égalité 7Q™ = w pour écrire

m(y) — @y = (Z m(w) ?Uy> - Q=) m(w) (4, — Qi)

weS wesS

et cette quantité tend vers 0. [l

Fin cours #10 du 28 novembre

5.5 Calcul de la probabilité invariante

On se donne une chaine de MARKOV irréductible a espace d’états finis, qui admet
donc une unique probabilité invariante. Le calcul de la mesure invariante peut toujours se
ramener a une résolution de systéme linéaire. Par exemple, pour la chaine de matrice de
transition

1/2 0 1/2
Q=11/4 1/2 1/4
1/3 1/6 1/2
la mesure invariante m vérifie ’équation 7Q = 7, donc est solution du systéme
1 1 1
(1) = §7T(1) + 177(2) + §7r(3)

7(2) = 0m(1) + %77(2) 4 éﬁ(?))

1 1 1
(1) + -7(2) + =7(3
57(1) + m(2) +57(3)

Ces trois équations ne sont pas linéairement indépendantes (leur somme donne 1 = 1,
puisque la somme des lignes de @ vaut 1) mais il faut rajouter la condition

m(3) =

(1) + 7(2) + 7(3).

La résolution de tels systémes est vite fastidieuse, et donc on préfére I’éviter si possible.
Une alternative possible est celle de la méthode des coupes, qui se base sur I’équation
suivante : étant donné une partition S = S; U Sy de I'espace des états, on a I’équation

DD m@)Qy) =Y Y m(y)Qy, ).
zeS1 yeS2 zeS1 yeS2

Cette équation s’interpréte ainsi : puisque la probabilité invariante correspond & un état
d’équilibre, le flux sortant de S; vers Sy (terme de gauche) est égal au flux entrant de S
vers S7 (terme de droite).

Démontrons ’égalité : on calcule

Z (%) Quy = Z (%) Quy — Z (%) Quy = Z m(x) — Z 7(2)Quy

x€S1,yES2 z€S1,yeS z€S1,y€51 €S z,YyE€ST

Yo W= Y TWQu— Y. TWQu= D wa)— Y 7()Qu

TE€S1,yES2 z€S1,yeS r€S1,yEST TES z,yEST

ol on a utilisé la relation 7Q) = ) dans la derniére égalité.
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Exemple. Considérons un modéle de file d’attente de longueur maximale L. Etant donné
deux paramétres p,q > 0 tels que p+q < 1, le systéme évolue selon la dynamique suivante.
A chaque instant n € N,
1. silafile d’attente est de longueur < L, un nouveau client d’y installe avec probabilité
p,
2. si la file d’attente est de longueur > 0, un client est servi (et quitte la file) avec
probabilité q.

C’est une chaine de MARKOV d’espace d’états S = {0, ..., L}, donc la matrice de transition
est donnée par Q(i,i+1) =p (si0<i< L), Q(i—i—1)=¢q(si0<i< L), Q(0,0) =1—p,
Q(L,L)=1—-qet Q(i,i)) =1—p—q (si0< i< L), les autres termes étant nuls. Cette
chaine est irréductible et apériodique et admet donc une unique probabilité invariante .
Pour calculer cette derniére, on considére pour chaque sommet 0 < ¢ < L la partition
S={0,...,i}U{i+1,...,L}. L’équation de coupe s’écrit alors simplement

() Qiiv1 = (i + 1)Qiy1,
et donc pr(i) = qm(i+1). En posant a = p/q, on a donc 7(i+1) = an(i) puis 7 (i) = a'n(0).
Si a = 1, la mesure invariante est la mesure uniforme sur S'; sinon on a
o ad(l-a)

T <L 1 _AL+l"
pPpmye! l1-a

(1)

Remarquons que si a < 1, on obtient la loi géométrique de parameétre o dans la limite
L — oc.

5.6 La marche aléatoire sur un graphe

On se donne un graphe fini G = (V, E') non orienté, sans boucle ni aréte multiple. On
suppose de plus qu’aucun sommet n’est isolé. On appelle marche aléatoire sur G la chaine
de MARKOV d’espace d’états V' et de matrice de transition donnée par

1

Q(z,y) = {deg‘"’”

six ~y

0 sinon.

Remarquons que

— la marche aléatoire sur G est irréductible si et seulement si GG est connexe,

— la marche aléatoire sur G est apériodique si et seulement si G est non bipartite.
Pour justifier ce dernier point, remarquons que la période de tout sommet vaut 1 ou 2, et
qu’elle vaut 1 si et seulement si ce sommet est contenue dans un cycle de longueur impaire ;
or les graphes bipartites sont les graphes sans cycle de longueur impaire.

Dans la suite on suppose que le graphe G est connexe et fini. La marche aléatoire sur
G admet donc une unique probabilité invariante.
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Proposition. La probabilité invariante pour la marche aléatoire sur G est donnée par

_ deg(v)
m(v) = 2E]

Démonstration. C’est bien une probabilité puisque la sommet de tous les degrés vaut 2|E|.
On calcule, pour y € V

degx 1 degy

zeV T~y
ce qui montre que 7 est invariante. O
q q
. _ 2|E]|
Corollaire. Pour tout sommet v, on a Ey[T,] = g7

Ezercice. Une piéce d’échecs (fou, tour, cavalier, reine ou roi) se déplace aléatoirement sur
un échiquier. Quels choix de piéce et de case de départ maximisent/minimisent le nombre
moyen de déplacements nécessaires pour revenir sur la case de départ ?

On s’intéresse maintenant au temps de recouvrement d’un graphe, qui est défini par

Tree(G) = max E, [max Ty]
zeV yev

C’est le temps moyen nécessaire, partant du pire point, pour que la marche aléatoire soit
passée par tous les sommets du graphe.

Proposition. Pour un graphe connexe G, on a Tr..(G) < 4|V] - |E|.
On commence par montrer un lemme
Lemme. Siz ~y alors E4[T,] < 2|E].

Démonstration. Soit A I’ensemble des voisins de y. On a

2|E] 1 1
= —E,[T,] =1 E,[T,] =1 E.[T,
On en tire I'inégalité >, , Ey[Ty] < 2|E] et le lemme en découle puisque les quantités
sommeées sont positives. [l

Preuve de la proposition. Soit n = |V| et fixons z € V. On se donne un arbre couvrant de
G (qui a donc n — 1 arétes, énuméré selon 'ordre de parcours comme)

=T~ Ty~ T2~ ~Ioap-3 "~ TL2apn-2 = L.

Soit 7 le premier instant ou les sommets de I’arbre couvrant ont été visités dans cet ordre,
c’est & dire

r=inf{N : 0<tr<t;1 <...tap2 <N : X4y =20, X4, =21,...,Xty, » = Ton—2}
On a max,cy Ty, < 7. En utilisant la propriété de MARKOV, on a
E, [7'] < Em[Tm] + Ez1 [sz] +o+ Ex2n73[Tw2n72]'

Par le lemme, chacun de termes de la somme est majoré par 2|E|. On a donc Tpe.(G)
(2n —2)|E| < 4V||E|

O A
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Il est découle de la proposition que si G est un graphe connexe & n sommets, alors
Tree(G) < 2n3. Donnons quelques exemples de temps de recouvrement.

1. Le calcul du temps de recouvrement du graphe complet se raméne au probléme du
collectionneur de vignettes : on a Tye.(Ky) ~ nlogn.

2. Si G = L, est le graphe linéaire & n sommets (ou les seules arétes sont {i,7 4 1},
on a déja considéré ce probléme dans I’étude du probléme 2-SAT ; on peut montrer
que Treo(G) = O(n?).

3. On peut combiner les exemples précédent pour former le graphe «sucette» obtenu
en recollant K,, et L,. Le temps de recouvrement est alors ©(n?), ce qui montre
que la proposition précédente ne peut pas étre améliorée.

Comme application de la notion de temps de recouvrement, on donne un algorithme
probabiliste de mauvaise complexité mais extrémement économe en mémoire pour le pro-
bléme suivant. On se donne un graphe G' & n sommets, de degré borné. Etant donnés deux
sommets x et y, il faut décider s’ils sont reliés dans le graphe. Ce probléme a une solution
déterministe simple de complexité O(n) et de mémoire O(n) qui consiste a effectuer en
parcours du graphe en profondeur (par exemple).

Pour réduire la mémoire utilisée, on suppose qu’on a acces & un oracle qui, interrogé sur
un sommet du graphe, renvoie la liste de ses voisins. On peut alors considérer 1'algorithme
probabiliste suivant : on effectue la marche aléatoire sur G issue de x pendant 4n? étapes.
Si la marche passe par y, on répond que x et y sont reliés dans G (et on ne se trompe pas).
Sinon, on répond que x et y ne sont pas reliés. La probabilité d’erreur est alors majorée
par l'inégalité de MARKOV

P.(T, > 4n®) < TTZ‘;@ < %
et peut étre rendue arbitrairement petite en répétant I’algorithme. La complexité est O(n?)
et I'algorithme nécessite une mémoire O(logn). En effet il suffit de stocker uniquement le
sommet actuellement visité par la marche aléatoire, et cette information peut étre encodée
sur logn bits.

5.7 Vitesse de convergence vers la probabilité invariante
Soit S un ensemble fini. On définit la distance en variation totale entre deux probabilités

w1 et po sur S par

v (1, m2) = 5 3 () — o).
zeS

o . b—|a—b
On a aussi, via la formule min(a, b) = ﬁfw,

drv (p1, po) = 1=y min(u (2), pa(x)).
z€eS

Remarquons que dpy (u1, u2) = 1 si et seulement si pq et po sont a supports disjoints.
Cette quantité s’interpréte en termes de couplages de w1 et pso.

Proposition. Etant données deux probabilités p1 et po sur un ensemble fini S, on a
drv(p1, p2) = inf P(X #Y)
ot la borne inférieure porte sur ’ensemble des couples (X,Y') de variables aléatoires, tels

que X ~ py etY ~ pa.
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Démonstration. Pour tout x dans S, on a

P(X =Y =) <min(p (), p2(z))

et donc en sommant sur x

= y) < Zmin(ul({t),ug(l’)) =1- dTV(Mln“Q)
T€S

On a donc l'inégalité dpy (p1, p2) < P(X # Y). Pour montrer 'inégalité, il suffit de donner
une loi pour (X, Y) telle que P(X =Y = z) = min(p(z), p2(x)) =: m(x) pour tout x € S.
Le choix

m(x) sizx=y

PX=2zY=y) = - . m )
( ) {( Do) iy 2

répond aux conditions voulues. O

Considérons une chaine de MARKOV irréductible apériodique (X,) & espace d’états
finis, de matrice de transition ) et de probabilité invariante 7. Pour étudier la convergence
vers ’équilibre, on introduit

A = d P
(n) max v (Py, )

ou P! = (Q"(x,y))y est la loi de X, sachant Xy = . On définit aussi le temps de mélange
d’ordre € > 0 par
tmiz(e) =inf{n : A(n) <e}

I1 découle du théoréme de convergence que lim, ,~, A(n) = 0. Vérifions d’abord que la
convergence vers ’équilibre est monotone.

Proposition. La suite (A(n)), est décroissante.

Démonstration. On a

dry (PP m) = 5 30 1Q" (2, 2) — 7(2)]

z€S
Z*ZZQny"y, =) Q(z,y)x(
zeS |yes yeS
1 n
<D Q@) 5 10"y 2) —n(2)]
yes z€S
<3 Q@AM = A)
yeS
et il suffit de prendre la borne supérieure sur x. O

Fin cours #11 du 3 décembre

Un couplage pour une chaine de MARKOV (X;,) de matrice de transition @ (sur un
espace d’états S) es la donnée d’une chaine de MARKOV (Y,,, Z,,) d’espace d’états S x S
dont la matrice de transition R vérifie

Vy.u'h 2 Y R((y,2), (Y, 7)) = Qy,y)

z'eS
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Vy.z, 2 Y R((y,2): (v, 7)) = Q=)

y'es
, Qz,y) siy =2
R((z,2),(y', 7)) = .
0 sinon

Les deux premiéres conditions peuvent se réécrire comme
P(Yori =y | (Ya, Zn) = (y,2)) = Qy,Y)

P(Znpr =72 | (Y, Zn) = (y,2)) = Q(z,2).

La derniére condition revient & demander qu’une fois que les deux coordonnées de la chaine
de MARKOV sont égales, elles le demeurent pour tout le futur.

Un exemple de couplage utilisé dans la preuve du théoréme de convergence est de faire
évoluer les deux coordonnées indépendamment jusqu’a ce qu’elles se rencontrent. Cela
correspond & demander que lorsque y # z

R((y,2), (v, #)) = Qy,y")Q(z, ).

Lemme (Lemme de couplage). Si (Yy,, Z,) est un couplage pour la chaine de MARKOV
(X,) tel que
Vy,Z,GS P(YN#ZN‘YE):yaZO:Z)ggv

alors A(N) < e.

Démonstration. Considérons la chaine avec Yy = y et Zy ~ 7. Alors

P(Yy #2Zy) =Y w(2)P(Yn # Zn[Yo =y, Z0 = 2) <.

z
Comme Yy ~ P;V et Zy ~m,on a dTV(P;V,W) < g, d’on le résultat. dJ

Nous allons montrer que la convergence vers 1’équilibre est toujours exponentiellement
rapide.

Proposition. [l existe des constantes C > 0 et o < 1 telles que A(n) < Ca™.

Démonstration. Supposons d’abord que tous les coefficients de la matrice @) soient > 0.
Soit ji, laloi de Xy sachant X = x. Cest la ligne = de la matrice Q. On a dpy (py, 1) < 1;
posons

o= IgazxdTv(uyyﬂz) <1

Par un lemme précédent, pour tous y, 2 dans S, il existe une loi p, . sur S x S telle que si
(Y, Z) ~ Hy,z,
P(Y # Z) = drv(py, pz) <

On définit un couplage (Yy, Z,,) par

P((YnJrla Zn+1) = (y,a Z,) | (Yna Zn) = (y7 Z)) = /L%Z(y/v Z/)

de telle sorte que, quels que soient (y, 2)

P(Yni1 # Zn=1| (Yn, Zn) = (z,y)) <«

et donc
P(Yn—H 7é Zn+1 | Yn 7é Zn) Sgye!
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Puisque Yy = Zj, implique Yj11 = Z41, on a alors
P(Yn 7é ZTL|Yb =y,20= Z) = P(Yn 7& Zny Yn—1 7é Zn—1y--, Y1 # Z1|Yb =y, Zo = Z)
= P(Xn # Yn’Xn—l #* Yn—l) T P(Xl # le’XO =uz,Yp = $) <a”

et donc, par le lemme de couplage, on a A(n) < o”.

Pour le cas général, soit p un entier telle que tous les coefficients de QP soient > 0 (un
tel entier existe par apériodicité, cf. preuve du théoréme de convergence). Le raisonnement
précédent appliqué & QP montre que

A(pn) < a”
et la décroissance de A permet de conclure que
A(n) < Alpln/p]) < o™ < Op"
pour B =a'/P et C =1/a. O]

Montrons enfin que la valeur de € n’a pas grande importance lorsqu’on définit le temps
de mélange

Proposition. Pour tout 0 < e < 1/4, on a
tmix(€) < [logy 1/€]tmiz(1/4).
Démonstration. Soit N = tnz(1/4). On a alors, pour tout x,y dans S
drv(PY,P)) < dpy (P, 7) + dry(m, P)) < 1/2.

On peut donc appliquer 'argument de la proposition précédente a la matrice QY pour
obtenir
A(kN) < (1/2)F

d’ou le résultat. O

5.7.1 Exemple : mélange de cartes

On considére un paquet de N cartes que 'on mélange en itérant 'opération suivante :
on choisit uniformément au hasard une des cartes du paquet, et on la place au-dessus du
paquet. Au bout de combien d’étapes est-ce que le jeu est mélangé ?

On peut voir ce processus comme une chaine de MARKOV d’espaces d’états S = Gy
et de matrice de transition

1
Q(UaT)_N
si o = (r1,22,...,2N) et T = (T4, X1, .., Ti—1,Tit1,.--,2N) pour ¢ € {1,...,N}. La

chaine de MARKOV est irréductible et apériodique et la mesure invariante est donnée par
la mesure uniforme sur Gy.

Définir un couplage revient a faire la chose suivante : on a deux paquets de N cartes
et on fait une opération qui revient pour chaque paquet a faire un pas de la chaine de
MARKOV ci-dessous.

Une idée nalve est de tirer au sort un entier i, et mettre sur le dessus la iéme carte du
premier paquet ainsi que la iéme carte du second paquet. Ce couplage n’est pas intéressant
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pour étudier la convergence : si on note (YéN), Z7(1N)) la chaine de MARKOV correspondant,

alors on a P(Y,\Y) = 20 = p(;i™) = z(M).

Une meilleure idée est de tirer au sort un entier ¢, de mettre sur le dessus la ¢éme carte
du premier paquet, et de mettre sur le dessus du second paquet la carte de méme valeur
que celle-ci. Notons (YAN), Z7(LN)) cette chaine de MARKOV. C’est bien un couplage (chaque
carte du second paquet a probabilité 1/N d’étre choisie). On peur remarquer que les cartes
qui ont été manipulées resteront toujours dans la méme position dans les deux paquets. Si
on pose

TN = inf{n : toutes les cartes du paquet ont été vues entre les temps 1 et n}
Alors n > TW) implique Y,SN) = ZT(LN) et donc

PV £ Zi0) <P(TW) > n)
L’étude de T se raméne au probléme du collectionneur de vignettes, on a vu que

lim P(T™) > (1+a)NlogN) =0

N—oo

(N)

pour tout & > 0 et donc t, .- (¢) < (1 +0(1))N log N pour tout € > 0.

5.7.2 Exemple : marche aléatoire sur I’hypercube

Soit (X,,) la marche aléatoire sur le graphe de ’hypercube Gy = (V, Ex) ou Vy =
{0,1}V et ol deux sommets sont reliés si et seulement si ils ne différent que d’une coor-
donnée. Comme le graphe de I’hypercube est bipartite, cette chaine de MARKOV n’est pas
apériodique. On peut définir une variante, la marche aléatoire paresseuse, qui se déplace
avec probabilité 1/2 selon la marche aléatoire et ne se déplace pas avec probabilité 1/2.
C’est la chaine de MARKOV donnée par la matrice de transition

% six =1y
Qx,y) = ﬁ siz~y
0 sinon

Elle est irréductible et apériodique. La probabilité invariante est la probabilité uniforme
sur V.

Pour estimer le temps de mélange de cette chaine de MARKOV, on définit un couplage
(Y, Zy) de la fagon suivante. A chaque étape de temps, on choisit i, € {1,...,N} et
en = {0,1} indépendemment et uniformément, et on définit Y, 41 (resp. Z,,11) en effagant
la coordonnée i,, de Y, (resp. de Z,) et en la remplagant par &,. C’est bien un couplage.
Comme précédemment, si on note

T =inf{n : card{i1,...,in} = N}

alors 'événement {7 > n} est inclus dans 'événement {Y,, = Z, }. On se raméne a nouveau
au probléme de collectionneur de vignettes et donc tmix(e) < (1 +o0(1))Nlog N.
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Chapitre 6

Statistiques et compléments sur les
gaussiennes

6.1 Estimation de paramétres

En statistiques, on suppose qu’observe souvent des variables aléatoires i.i.d. (X,,) dont
on ne connait pas la loi, mais qu’on aimerait essayer d’identifier.

On se donne en général une famille paramétrée de mesures de probabilités (soit dis-
crétes, soit continues) (ug)geo. Par exemple :

1. Les variables X,, sont a valeurs dans {0, 1}. Dans ce cas, la famille paramétrée est
la famille des lois de BERNOULLI (B(0))gc(o,1]-

2. On fait I'hypothése que les variables X, suivent une loi géométrique. Dans ce cas,
la famille paramétrée est la famille (G(6))geo,1)-

3. On fait 'hypothése que les variables X,, suivent une loi gaussienne. Dans ce cas, la
famille paramétrée est la famille N(m, 02)eR 020

On appelle échantillons une suite de variables aléatoires (X,,) i.i.d. de loi inconnue
parmi une famille (ug)peco, discrétes ou continues; on notera Py la mesure de probabilité
correspondant au cas ot la loi est pg. Dans le cas continu, on note fy la densité de la loi pg.
Un probléme fondamental est le probléme d’estimation de paramétres : on souhaite définir
une pour tout n une fonction F,, : R — © de sorte que la variable aléatoire

0=F,(X1,...,X,)

soit aussi proche de 6 que possible. On dit que la variable aléatoire 0 est un estimateur.

Un principe général pour définir des estimateurs est le maximum de vraisemblance. La
vraisemblance (en anglais : likelihood) d’un paramétre 6 connaissant les échantillons est
dans le cas discret

LO|z1,...,xn) = Po(Xi=21,...,Xn =2xy)

n

= [Lre@)

i=1
et dans le cas continu

L(Olzy,. .., 2n) =[] foli).
=1

93



On définit 'estimateur par maximum de vraisemblance comme

On(X1,...,Xp) = argmaxL(0| X1,...,X,)
Il est souvent plus simple de maximiser log L, ce qui est bien siir équivalent.
Voici une justification informelle du principe du maximum de vraisemblance. Le prin-
cipe d’agnosticisme consiste & dire tous les choix de paramétres jouent le méme réle; par
exemple si © = [0, 1] on peut supposer que le parameétre € est choisi a priori selon la loi

uniforme. On a («formule de BAYES»)
_ PX[O)P()
POIX) = =5

et si on suppose que P(6) est constant par le principe d’agnosticisme, le maximum de
vraisemblance revient & maximiser 6§ — P(X|0), c’est-a-dire a choisir le paramétre qui
rend les données observées les plus vraisemblables.

Fin cours #12 du 10 décembre

6.2 Exemples

Etudions en détail le cas de I’estimation du parameétre d’une loi de BERNOULLI. La
vraisemblance est

L(O|Xy, ..., X)) = [0 —0) % =65 (1 —6)" 5"
i=1

oul'onaposé¢S,=X1+---+X, Ona
log L = Sy logf + (n — Sy,) log(1 — 0)

et cette fonction est maximale si

S, n-—25,

9 1-0
ou encore (1—6)S,, = 6(n—=S,,) soit # = S,,/n. L’estimateur par maximum de vraisemblance
est donc la moyenne empirique

=0

Sn
n

HA:

Etudions I'erreur commise par cette estimation. Etant donné 6 > 0, on a en utilisant
I'inégalité de CHERNOFF II

POZ[O—06,04+6]) = POZ[O—06,0+0)
= P(S, <nb(1—6/0) +P(S, <nb(1—5/0)
52 /02
< 2exp<—2+5/90n)

52
= 2exp (20+5n)

2
2 exp (—Zn)

On en déduit que si n > 3log(2/v)/62, alors
POc[d—0,0+6])>1—~

N

est vérifiée. On dit que 'on a déterminé un intervalle de confiance pour le paramétre 6.
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Ezercice. Quel est I'estimateur par maximum de vraisemblance pour le paramétre d’une
loi géométrique ?

Voici un exemple dans le cas continu. On considére la famille des lois gaussiennes

N(u,0?), de densité
_ 1 (z —p)?
Juo2 = o exp < 5,2

Le paramétre est un couple 6 = (u,v) € R x Ry (on pose v = 02). La vraisemblance vaut

L(p, v X1, Xp) = ] fun(X0)
=1

S SN (D BTG, R D
(27mv)n/2 2v
On a donc . )
N0 o
log L = _W _ glog(27rv)
v
Les conditions 81§E L _ algfL donnent
n
_ S(Xi—p)? n

1=1

On en déduit que 'estimateur par maximum de vraisemblance 6 = (f1,0) est donné par la
moyenne et la variance empirique

6.3 Vecteurs aléatoires gaussiens

On appelle vecteur aléatoire une variable aléatoire & valeurs dans R"™. Soit X =
(X1,...,X,) un vecteur aléatoire. On dit que X a une densité s'il existe une fonction
f:R"™ — R telle que pour tout partie (borélienne) A C R"

P((Xl,...,Xn)eA):/f(a:l,...,xn),dxl,...da:n
A
et on dit que f est la densité du vecteur (Xi,...,X,)

Notons que si X est une variable aléatoire a densité, le vecteur aléatoire (X, X) n’est
pas & densité.

Si X1,..., X, sont des variables aléatoires continues indépendantes, de densités respec-
tives fi,..., fn, alors le vecteur aléatoire X = (Xi,...,X,) a pour densité¢ la fonction
(X1, ) = fi(x1) ... fulzn)
Si X = (X1,...,Xp) est un vecteur aléatoire de densité fx : R™ — Ry, alors pour

tout 1 < ¢ < n, la variable aléatoire X; est continue, et sa densité fx, est donnée par
o o
in(t):/ / fx(.%'l,...,$171,t,$i+1,...,J?n)d$1...dxifldl‘prl...dl’n
0 0
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On dit que fx,,..., fx, sont les densités marginales de fx.
Soit X = (Xi,...,X,) un vecteur aléatoire telle que chaque variable aléatoire X;
admette un moment d’ordre 2. L’espérance de X est

EX] = (E[X4],...,E[X,]) € R"
et la matrice de variance-covariance est de X est la matrice Cov(X) = (3;;) donnée par
Zij = COV(Xi,Xj) = E[(XZ — E[Xl])(X] — E[XJ])

Autrement dit, ¥ = (3;;) est la matrice E[(X —m)(X —m)'] avec m = E[X].
La matrice de covariance est une matrice symétrique et positive. On peut se ramener

au cas ot E[X] = 0. Ensuite, pour tout ¢t = (t1,...,t,) € R? on a
n
<t, COV(X)t) = Z titj E[XZXJ]
ij=1

N 2

- E (Z tiX,-)
=1

> 0

Soit X = (X1,...,X,) un vecteur aléatoire de moyenne p € R? et de matrice de

covariance 3. Pour toute matrice A € M, (R) et pour tout b € R", le vecteur aléatoire
Y = A(X) + b a pour moyenne A(u) + b et pour matrice de covariance A¥ A’
C’est une simple conséquence de la linéarité de I’espérance. Pour la moyenne on a :

E[AX] = AE[X]| = Am
et pour la matrice de covariance :

E[(AX — Am)(AX — Am)"] = E[A(X — m)(X —m)"A"]
= AE[(X —m)(X —m)" A"
= AT A

Définition. On dit qu'un vecteur aléatoire (Xi,...,X,) est un vecteur gaussien, si pour
tout ¢t € R"™ la variable aléatoire

(4 X) = 3 hX;
=1

suit une loi gaussienne (éventuellement constante).

I1 ne suffit pas que chacune des coordonnées suive une loi gaussienne pour qu’un vecteur
soit gaussien. Voici un exemple qui illustre ce point : si X ~ N(0,1) et € est une variable
aléatoire indépendante de X et vérifiant P(e = 1) = P(e = —1) = 1, alors (X,eX) n’est
pas un vecteur gaussien (puisque P(X + X = 0) = 1/2) bien que les variables aléatoires
X et €X soient toutes deux gaussiennes.

Si X = (X1,...,X,) est un vecteur gaussien, pour toute matrice A € M, (R) et tout

vecteur b € R", le vecteur aléatoire AX + b est un vecteur gaussien.

Proposition. Soit m € R" et 3 une matrice symétrique positive n xn. Il existe un vecteur
gaussien d’espérance m et de matrice de covariance X.
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Démonstration. Commengons par remarquer que si X1, ..., X, sont des variables aléatoires
i.i.d. de loi N(0, 1), alors le vecteur aléatoire (X1,..., X,,) est un vecteur aléatoire gaussien
d’espérance 0 et de matrice de covariance la matrice identité I,,.

Pour le cas général, on utilise le fait que tout matrice symétrique positive X peut s’écrire
comme ¥ = AA! pour A € M,(R). On peut alors vérifier que le vecteur aléatoire AX + b
est un vecteur gaussien d’espérance m et de matrice de covariance X. O

Théoréme (admis). Deuz vecteurs gaussiens ont méme loi si et seulement si ils ont la
méme espérance et la méme matrice de covariance.

On note N(m,X) la loi d’un vecteur gaussien de moyenne m € R et de matrice de
covariance X. On dit que la loi N(0,Id) est la loi d’un vecteur gaussien standard. Si X
est un vecteur gaussien standard dans R", ses coordonnées sont des variables aléatoires
i.i.d. de loi N(0,1). De plus, si O est un matrice orthogonale (donc vérifiant OO* = 1d),
le vecteur gaussien O(X) est un vecteur gaussien standard puisque sa covariance vaut
O-1,-0O! = I,. On dit que la loi gaussienne est invariante par rotation. Une autre maniére
de dire les choses est que les coordonnées d’un vecteur gaussien standard calculées dans
une base orthonormale quelconque de R"™ sont indépendantes de loi N(0, 1)

Si ¥ est inversible, on peut calculer que la loi N(m, X)) a une densité donnée par

1
(2m)"72(det 2)

x> 17 ©XP (—(x—m,Z_l(:L'—m») dxy . ..dzy,

Les lois gaussiennes sont omniprésentes dans I’étude des phénoménes de grande dimen-
sion, en particulier & cause du théoréme central limite. Nous allons étudier deux problémes
qui illustrent ce phénomeéne.

6.4 Comment tirer une direction uniformément au hasard en
grande dimension ?

On cherche a tirer dans I’espace euclidien R™ avec n > 1 une direction «uniformément

au hasard». Cela revient a choisir un point sur la sphére "' = {z € R" : |jz|| = 1} (ou
Pon note ||z|| = (23 + -+ 22) Y2 1a norme euclidienne) selon la «mesure de probabilité

uniforme». Nous ne définirons pas exactement cette derniére; c’est I'unique mesure de
probabilité invariante par rotation.
Un algorithme naif est de choisir un Y7,...,Y,, i.i.d. de loi uniforme dans l'intervalle

[—1,1]. Conditionnellement & l'événement E = {||Y|| < 1}, le vecteur ﬁ est de loi

uniforme sur S™ L.
L’inconvénient de cet algorithme est que son temps d’exécution est exponentiel! En
effet, son temps d’exécution suit une loi géométrique de paramétre P(E) et a donc pour

espérance P(E)~1. On a
n
P(E)=P (ZYf < 1)
i=1

On est dans le cadre d’application des inégalités de HOEFFDING puisque les variables
aléatoires Y2 sont indépendantes et & valeurs dans [0, 1]. On calcule que p = E[Y2 + -+ +
Y2 =nEY? =n/3. On a donc pour n > 6

P(E) <P (Z Y2 < n/6> - P <Z Y2 < - n/ﬁ) < exp(—n/3)
=1 i=1
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et le temps moyen d’exécution est donc > exp(n/3).
La bonne méthode est de choisir (z1, ..., z,) i.i.d. de loi N(0, 1) ; alors le vecteur renor-
malisé ﬁ est de loi uniforme sur S"~! et cette méthode prend un temps O(n).

6.5 Lemme de JOHNSON—LINDENSTRAUSS

Théoréme (Lemme de JOHNSON-LINDENSTRAUSS). Soit ¢ € (0,1/2), @ € R un en-
semble de N points et k = [201og(N)/e?]. Il existe une application linéaire f : R — RF
telle que, pour tous u et v dans QQ

(1= e)lu—v* < [If () = f)I* < (1 +e)]lu—v]*.

Ce lemme permet de compresser la géométrie de ’ensemble () dans un ensemble simi-
laire de beaucoup plus petite dimension. Il est extrémement utilisé, par exemple dans des
problémes d’apprentissage.

L’idée du lemme est de choisir f au hasard et de montrer qu’elle convient avec grande
probabilité. C’est a nouveau une illustration de la méthode probabiliste.

Soit X = (Xj,...,X%). Un vecteur gaussien standard dans R¥. La loi de || X||? =
X2 +.. .X]f s’appelle loi du chi-deur a k degrés de liberté et se note x?(k). On utilise le
lemme suivant

Lemme. Soit Z une variable aléatoire de loi Xz(p). Alors pour tout 0 < e < 1/2,

(—k(e* = %)/4)

(—k(e* = £%)/4)

Preuve du lemme de JOHNSON-LINDENSTRAUSS. Soit A une matrice de taille k x d dont
les coefficients sont i.i.d. de loi N(0,1). Il découle de la propriété d’invariance par rotation

des vecteurs gaussiens que pour tout vecteur X € R? de norme 1, le vecteur AX est un
vecteur gaussien standard dans R”.

On pose f = A/VE et on calcule

P(f ne convient pas) < Z P (|[f(w) = f))* > (1 +&)|u—v|?)
UAVEQR

+ > P(If (@)~ fO))° < (1 =e)u—vl?)

UAVEQR
2
> (1 +5)>

< <uf>
u#veQ w—v
2
<(1- e))

f(u) — f(v)
23 | EASZAT A v
vy e (]
et on vérifie que cette derniére quantité est < 1 pour le choix k = 20log N/£2. 0

P(Z>(1+ < exp
P(Z < (1—¢e)k) <exp

UFVEQR
< 2N? exp(—k(e* — %) /4)

Enfin, le lemme se prouve de la méme maniére que les inégalités de CHERNOFF. On
montre seulement la premiére inégalité, la seconde étant similaire. On peut écrire Z =
X2+ -+ X? avec (X, ..., X)) un vecteur gaussien standard. On a, pour tout 0 < A < 1/2

P(Z > (1+e)k) < exp(~A(L + k) B [exp(AXT + - + AX2)]
= exp(=A(1 + e)k) E [exp(AX )]
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On calcule ensuite

Elexp(AX?)] :/ exp(—x2/2)\(/i%
dx
/exp 1—2/\)/2)m

\/ V1-2\
par le changement de variables y = x+/1 — 2A. On a donc

exp(—A(1+ 5))>k .

P(Z>(1+2)k) < (

V1—2\
On choisit finalement la valeur A = ﬁ, ce qui donne

P(Z>(1+e)k)<[(1+¢) eXP(—E)]k/Q

et on conclut & 'aide de I'inégalité (1 + ) exp(—¢) < exp(—(e? —£%)/2).

Fin du cours
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