
ENS LYON Probabilités, L3 Informatique Fondamentale
L3 Probabilités

Examen partiel
19 novembre 2025

On pourra utiliser les variantes suivantes des inégalités de Chernoff.

(I) Si X est la somme de n variables aléatoires i.i.d. de loi de Bernoulli de paramètre 1/2, alors
pour tout a > 0

P(X ⩾
n

2
+ a) ⩽ exp(−2a2/n)

P(X ⩽
n

2
− a) ⩽ exp(−2a2/n)

(II) Si X est une somme de variables aléatoires indépendantes ayant chacune une loi de Bernoulli,
alors en posant µ = E[X], pour tout δ > 0,

P(X ⩽ (1− δ)µ) ⩽ exp
(
−δ2µ/2

)
P(X ⩾ (1 + δ)µ) ⩽ exp

(
− δ2

2 + δ
µ

)
Exercice 1 Dans l’ascenseur

Un groupe de n personnes rentre dans un ascenseur situé au rez-de-chaussée d’un immeuble à k étages.
Chaque personne appuie sur un des boutons 1 à k aléatoirement, indépendamment, selon la loi uniforme
sur {1, . . . , k}. Quelle est l’espérance du nombre d’arrêts que fera l’ascenseur ?

Linéarité de l’espérance ! Soit Ai l’événement « une des personnes a appuyé sur le bouton i ». Par
indépendance P(Ai) = (1−1/k)n et donc P(Ai) = 1−(1−1/k)n. Le nombre X d’arrêts est X =

∑k
i=1 1Ai

a pour espérance

E[X] =

n∑
i=1

P(Ai) = n (1− (1− 1/k)n)

Exercice 2 Records d’une permutation aléatoire
Pour un entier n, soit σn une permutation aléatoire de {1, . . . , n}, choisie uniformément parmi les n!

permutations possibles. On dit que i ∈ {1, . . . , n} est un record de σn si on a σn(j) < σn(i) pour tout
j < i. On note Ai l’événement « i est un record de σn ».

1. Pour i ∈ {1, . . . , n}, calculer P(Ai).
2. Montrer que les événements (Ai)1⩽i⩽n sont indépendants.
3. On note R(σn) le nombre de records de σn. Montrer que

P(R(σn) ⩾ 3 log n+ 3) ⩽
1

n

On pourra utiliser l’inégalité log n ⩽ 1 + 1
2 + · · ·+ 1

n ⩽ log n+ 1

Pour traiter les questions 1 et 2, on peut introduire ri ∈ {1, . . . , i} comme étant le rang de σn(i)
parmi l’ensemble (σn(1), . . . , σn(i)) ; ainsi ri = 1 si et seulement si ri est un record de σn. L’application
σn 7→ (r1, . . . , rn) est une bijection de Sn dans E = {1} × {1, 2} × · · · × {1, . . . , n}. En particulier, la
variable aléatoire (r1, . . . , rn) suit la loi uniforme sur E. Cela revient à dire que les variables aléatoires ri
sont indépendantes et que ri suit la loi uniforme sur {1, . . . , i}. Ainsi, les événements Ai = {ri = 1} sont
indépendants et vérifient P(Ai) = 1/i.

Pour la question 3, soit Xi = 1Ai
. Alors R(σn) = X1+ · · ·+Xn est une somme de v.a. indépendantes

ayant chacune une loi de Bernoulli. On a

E[R(σn)] =

n∑
i=1

E[Xi] =

n∑
i=1

1

i
=: hn



On a par Chernoff II

P(R(σn) ⩾ (1 + δ)(1 + log(n))P(R(σn) ⩾ (1 + δ)hn) ⩽ exp

(
− δ2

2 + δ
hn

)
⩽ exp

(
− δ2

2 + δ
log n

)
et on choisit δ = 2.

Exercice 3 Analyse plus fine de Randomized Quicksort
On étudie plus en détail l’algorithme Randomized Quicksort vu en cours pour montrer que le temps

d’exécution pour trier un ensemble S de cardinal n est O(n log n) avec grande probabilité.
Quand un pivot est choisi aléatoirement au sein d’un ensemble S′ ⊂ S, on dit que le choix est chanceux

si le pivot p partage S′ \ {p} en deux sous-ensembles de cardinal ⩽ 2
3 |S

′|, et malchanceux sinon.

1. Montrer que la probabilité qu’un choix de pivot soit chanceux est ⩾ 2/3. Cet énoncé est faux,
comme vous êtes beaucoup à l’avoir remarqué. La probabilité qu’un choix soit chanceux est ⩾ 1/3
et cette valeur ne peut pas être amélioré.
Si 1

3 |Y | ⩽ rg(p) ⩽ 2
3 |Y | alors le choix de p est chanceux, donc la probabilité qu’un choix de pivot

soit chanceux est ⩾ 1
3 .

2. Dans une suite de N choix de pivots indépendants, soit XN le nombre de choix chanceux. Montrer
avec une inégalité de Chernoff que

P(XN ⩽ N/2) ⩽ exp(−cN)

pour une constante c > 0 à déterminer. Il faut changer l’énoncé en (par exemple) P(XN ⩽ N/4) ⩽
exp(−cN). Je vous présente mes excuses pour cette erreur et félicite les étudiants qui ont réussi à
corriger l’énoncé pour traiter l’exercice.
On utilise Chernoff II avec Xi ∼ B(pi), XN =

∑
i Xi. Par la question 1, pi ⩾ 1

3 donc E[XN ] ⩾
N
3 . Aussi, P

(
XN ⩽ N

3 (1− ϵ)
)
⩽ P(XN ⩽ E[XN ](1− ϵ)).

P (XN ⩽ (1− ϵ)E[XN ]) ⩽ exp

(
−ϵ2

2
E[XN ]

)
⩽ exp

(
−ϵ2N

6

)
(1)

Pour retrouver P(XN ⩽ N
4 ), on pose ϵ = 1

4 et on trouve c = 1
6×16 = 1

96 .
3. Soit x ∈ S. Montrer qu’au cours de toute exécution de l’algorithme Quicksort (aléatoire ou déter-

ministe), parmi les choix de pivots effectués dans un ensemble contenant x, au plus C log(n) sont
chanceux (pour une constante C à déterminer). Soit x ∈ X. Soit Y x

k l’ensemble contenant x juste
après le kème pivot chanceux. Y x

0 = Y .

|Y x
k | ⩽

2

3
|Y x

k−1| (2)

Si K est le nombre de choix de pivots chanceux, on a donc , |Y x
K | ⩽

(
2
3

)K
n. Comme |Y x

K | ⩾ 1, on
a K ⩽ C log(n) pour C = 1/ log(3/2).

4. Conclure que le temps d’exécution de l’algorithme Randomized Quicksort est O(n log n) avec
grande probabilité. Pour x ∈ S, on note Rx la variable aléatoire donnant le nombre de comparaisons
impliquant x dans une exécution de Randomized Quicksort. Le nombre total de comparaisons est
majoré par nmaxx∈S Rx. Soit Ax l’événement «Rx > kC log n» pour une constante k > 4 à
déterminer. Si l’événement Ax est vrai, alors parmi les kC log n premiers choix de pivots dans
un ensemble contenant x, au plus C log n étaient chanceux (par la question précédente, sinon
l’algorithme se serait arrêté). On a donc pour N = kC log n, avec les notations de la question 2

P(Ax) ⩽ P(XN ⩽ C log n) ⩽ P(XN ⩽ N/4) ⩽ exp(−cN) = exp(−kcC log n)

Si on choisit k tel que kcC = 2, alors P(Ax) ⩽ n−2. Par la borne de l’union, P(maxx Rx ⩾
kC log n) ⩽ 1/n et donc le temps d’exécution est majoré par Ckn log n avec probabilité ⩾ 1−1/n.
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Exercice 4 MAX-CUT
Soit G = (V,E) un graphe (non-orienté, sans boucle ni arête multiple). Pour A ⊂ V , on note Cut(A)

la coupe selon A, c’est à dire l’ensemble des arêtes reliant un sommet de A à un sommet de V \ A. On
considère la coupe maximale de G définie comme

MAXCUT(G) = max
A⊂V

|Cut(A)|

(on note |X| le cardinal d’un ensemble X).

1. Montrer par la méthode probabiliste l’inégalité MAXCUT(G) ⩾ |E|/2.

On considère l’algorithme glouton suivant pour approximer MAXCUT(G) (on suppose que l’ensemble
V des sommets de G est muni d’un ordre total). On note GreedyMAXCUT(G) le cardinal de la coupe
produite par cet algorithme. Il est évident que GreedyMAXCUT(G) ⩽ MAXCUT(G).

A← ∅, B ← ∅
Pour i dans V

Soit ai le nombre de voisins de i dans A et bi le nombre de voisins de i dans B
Si ai > bi alors B ← B ∪ {i}
Sinon, A← A ∪ {i}

Renvoyer la coupe selon A.

2. A l’aide de cet algorithme, donner une autre preuve de l’inégalité MAXCUT(G) ⩾ |E|/2.
3. On considère le graphe Hn de sommets {1, . . . , 2n} et ayant pour arêtes

{1, 2}, {2, 3}, . . . , {n− 1, n} ; ainsi que {i, j} pour tous i ∈ {1, . . . , n} et j ∈ {n+ 1, . . . , 2n}.

Montrer que le rapport MAXCUT(Hn)/GreedyMAXCUT(Hn) tend vers 2 quand n tend vers
l’infini. L’algorithme glouton met tous les sommets de n + 1 à 2n dans le même ensemble A ou
B et produit donc une coupe de taille (n − 1) + ⌈n/2⌉ · n =

(
1
2 + o(1)

)
n2. La coupe donnée car

A = {1, . . . , n} a cardinal n2, d’où le résultat.
Dans la suite de l’exercice, on suppose que Gn est un graphe aléatoire de loi G(n, 1/2), c’est-à-dire qu’il a
pour ensemble de sommets {1, . . . , n} et que chaque arête est présente indépendamment avec probabilité
1/2.

4. Pour A ⊂ {1, . . . , n}, quelle est la loi de |Cut(A)| ? C’est la loi binomiale B(k(n−k), 1
2 ) où k = |A|

5. Montrer que pour une constante C à déterminer,

lim
n→∞

P

(
MAXCUT(Gn) ⩽

n2

8
+ Cn3/2

)
= 1

Indication. On pourra combiner une inégalité de Chernoff avec la borne de l’union. Par la
borne de l’union,

P(MAXCUT(Gn) ⩽
n2

8
+ Cn3/2) ⩽

∑
A∈V

P(|Cut(A)| ⩾ n2

8
+ Cn3/2)

Pour 1 ⩽ k ⩽ n, on a k(n− k) ⩽ n2/4 (en supposant n pair) et donc

P(|Cut(A)| ⩾ n2

8
+Cn3/2) ⩽ P(B(n2/4, 1/2) ⩾

n2

8
+Cn3/2) ⩽ exp(−2C2n3/(n2/4)) = exp(−8nC2)

d’après Chernoff I. On a donc

P(|Cut(A)| ⩾ n2

8
+ Cn3/2) ⩽ 2n exp(−8nC2)

qui tend vers 0 lorsque n tend vers l’infini.
6. Soit k un entier. Soient X et Y deux variables i.i.d. de loi B(k, 1/2).
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(a) Calculer E(X − Y )2 et E(X − Y )4.
(b) En déduire que E[|X − Y |] ⩾ c1

√
k pour une constante c1 > 0.

Indication. On pourra démontrer et utiliser l’inégalité P

(
Z ⩾

1

2
E[Z]

)
⩾

1

4

(E[Z])2]

E[Z2]
valable

pour une v.a. Z à valeurs positives.
On peut réaliser X et Y comme X = X1 + · · · + Xk et Y = Y1 + · · · + Yk avec Xi, Yi i.i.d. de
loi B(1/2). Les v.a. Wi = Xi − Yi sont i.i.d. et vérifient E[Wi] = 0, E[W 2

i ] = E[W 4
i ] = 1/2. En

particulier, Var[Wi] = 1/2. On a par additivité de la variance pour des sommes indépendantes
E[(X − Y )2] =

∑
Var[Wi] = k/2. Par ailleurs, comme dans la preuve de la loi forte des grands

nombres

E[(X − Y )4] =
∑

i1,i2,i3,i4

E[Wi1Wi2Wi3Wi4 ]

= kE[W 4
1 ] + 3k(k − 1)E[W 2

1W
2
2 ]

=
k

2
+

3k(k − 1)

4

=
3k2 − k

4

L’inégalité appliquée à Z = (X − Y )2 donne

P((X − Y )2 ⩾ k/4) ⩾
1

4

k2/4

(3k2 − k)/4
=

1

4(3− 1/k)
⩾ 1/8

et donc E|X − Y | ⩾ c1
√
k pour c1 = 1

16 .
Enfin, démontrons l’inégalité suggérée en notant A l’événement «Z ⩾ 1

2E[Z]»

E[Z] = E[Z1A] +E[Z1A] ⩽
(
E[Z2]

)1/2
P(A)1/2 +

1

2
E[Z]

d’où le résultat en réarrangeant.
7. Montrer que si A et B sont des v.a. indépendantes de lois respectives B(a, 1/2) et B(b, 1/2), alors

E[max(A,B)] ⩾
a+ b

4
+ c2
√
a+ b

pour une constante c2 > 0.
Sans perte de généralité supposons a ⩾ b. Si a ⩾ 2b on peut écrire

E[max(A,B)] ⩾ E[A] =
a

2
⩾

a+ b

3
⩾

a+ b

4
+

√
a+ b

12
.

Si b ⩽ a < 2b, écrivons A = A1 +A2 avec A1 ∼ B(a− b, 1/2) et A2 ∼ B(b, 1/2). On a

E[max(A,B)] ⩾ E[
A+B + |A−B|

2
]

=
a+ b

4
+

1

2
E|A−B|

⩾
a+ b

4
+

1

2
E(A−B)+

⩾
a+ b

4
+

1

2
E(A2 −B)+

Par symétrie, E(A2 −B)+ = E(B −A2)+ et donc E(A2 −B)+ = 1
2E|A2 −B| ⩾ c1

2

√
b. On a donc

Emax(A,B) ⩾
a+ b

4
+

c1
4

√
b ⩾

a+ b

4
+

c1

4
√
3

√
a+ b

4



8. En déduire que pour une constante c3 > 0

E[GreedyMAXCUT(Gn)] ⩾
n2

8
+ c3n

3/2.

On peut de manière équivalente générer le graphe aléatoire "en temps réel" au cours de l’exécution
de l’algorithme glouton. Au ième tour de boucle, on a |A| + |B| = i − 1 ; les variables aléatoires
ai et bi sont indépendantes et de lois respectives B(|A|, 1/2) et B(|B|, 1/2). Le nombre d’arêtes
ajoutées est max(ai, bi). D’après la question précédente,

Emax(ai, bi) ⩾
i− 1

4
+ c3
√
i− 1.

Par linéarité de l’espérance, la coupe produite a un cardinal supérieur à

n∑
i=1

(
i− 1

4
+ c3
√
i− 1

)
,

d’où le résultat
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