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On pourra utiliser les variantes suivantes des inégalités de CHERNOFF.

(I) Si X est la somme de n variables aléatoires i.i.d. de loi de BERNOULLI de paramétre 1/2, alors

pour tout a > 0
P(X > — +a) < exp(—2a?/n)

P(X < = —a) < exp(—2a?/n)

oS ]S

(IT) Si X est une somme de variables aléatoires indépendantes ayant chacune une loi de BERNOULLI,
alors en posant u = E[X], pour tout > 0,

P(X < (1—0)p) <exp (—6°u/2)

2
P(X > (1+0)p) <exp (—2(15;4)

Exercice 1 Dans ’ascenseur

Un groupe de n personnes rentre dans un ascenseur situé au rez-de-chaussée d’'un immeuble a k étages.
Chaque personne appuie sur un des boutons 1 & k aléatoirement, indépendamment, selon la loi uniforme
sur {1,...,k}. Quelle est Pespérance du nombre d’arréts que fera l’ascenseur ?

Linéarité de 'espérance! Soit A; ’événement « une des personnes a appuyé sur le bouton i ». Par
indépendance P(4;) = (1—1/k)™ et donc P(4;) = 1—(1—1/k)™. Le nombre X d’arréts est X = 31 14,
a pour espérance

Exercice 2 Records d’une permutation aléatoire
Pour un entier n, soit o, une permutation aléatoire de {1,...,n}, choisie uniformément parmi les n!

permutations possibles. On dit que i € {1,...,n} est un record de o, si on a o,(j) < o,(i) pour tout
j < i. On note A; I’événement « ¢ est un record de o, ».

1. Pour i € {1,...,n}, calculer P(4;).
2. Montrer que les événements (A;)1<i<n sont indépendants.

3. On note R(c,,) le nombre de records de o,,. Montrer que

P(R(o,) = 3logn+3) <

S|

On pourra utiliser I'inégalité logn < 1+ % 4+ -+ % <logn—+1

Pour traiter les questions 1 et 2, on peut introduire r; € {1,...,i} comme étant le rang de o, (i)
parmi ’ensemble (0,,(1),...,0,(i)); ainsi r; = 1 si et seulement si r; est un record de o,,. L’application
on — (71,...,7) est une bijection de &,, dans E = {1} x {1,2} x --- x {1,...,n}. En particulier, la
variable aléatoire (71, ...,r,) suit la loi uniforme sur E. Cela revient a dire que les variables aléatoires r;
sont indépendantes et que r; suit la loi uniforme sur {1,...,4}. Ainsi, les événements A; = {r; = 1} sont
indépendants et vérifient P(4;) = 1/i.

Pour la question 3, soit X; = 14,. Alors R(o,) = X7 + -+ X, est une somme de v.a. indépendantes
ayant chacune une loi de Bernoulli. On a

n

B[R(o,)] = S EIX) = 3 5 =i h
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2 2
P(R(o,) = (14 6)(1 +log(n))P(R(oy) = (1 +0)hy,) < exp (25—5—5hn> < exp (2(3_ 5 log n)

et on choisit 6 = 2.

Exercice 3 Analyse plus fine de Randomized Quicksort

On étudie plus en détail I'algorithme Randomized Quicksort vu en cours pour montrer que le temps
d’exécution pour trier un ensemble S de cardinal n est O(nlogn) avec grande probabilité.

Quand un pivot est choisi aléatoirement au sein d’un ensemble S’ C S, on dit que le choix est chanceuz
si le pivot p partage S’ \ {p} en deux sous-ensembles de cardinal < %|S’ |, et malchanceuz sinon.

1. Montrer que la probabilité qu'un choix de pivot soit chanceux est > 2/3. Cet énoncé est faux,
comme vous étes beaucoup a l'avoir remarqué. La probabilité qu’un choix soit chanceux est > 1/3
et cette valeur ne peut pas étre amélioré.

Si §|V| < rg(p) < 2|Y]| alors le choix de p est chanceux, donc la probabilité qu'un choix de pivot
soit chanceux est > %

2. Dans une suite de IV choix de pivots indépendants, soit X le nombre de choix chanceux. Montrer
avec une inégalité de CHERNOFF que

P(Xn < N/2) < exp(—cN)

pour une constante ¢ > 0 a déterminer. Il faut changer I’énoncé en (par exemple) P(Xny < N/4) <
exp(—cN). Je vous présente mes excuses pour cette erreur et félicite les étudiants qui ont réussi a
corriger ’énoncé pour traiter ’exercice.

On utilise CHERNOFF IT avec X; ~ B(p;), Xy = >, X;. Par la question 1, p; > % donc E[Xy] >
. Aussi, P (Xy < (1 -¢)) <P(Xn <E[Xn](1—¢)).

2 N
P (Xy < (1- OE[Xy]) < exp (;E[XNQ < exp (6) 1)
Pour retrouver P(Xy < &), on pose € = 1 et on trouve ¢ = ;1 = &.

3. Soit & € S. Montrer qu’au cours de toute exécution de I’algorithme Quicksort (aléatoire ou déter-
ministe), parmi les choix de pivots effectués dans un ensemble contenant z, au plus C'log(n) sont
chanceux (pour une constante C' & déterminer). Soit x € X. Soit ¥}* 'ensemble contenant x juste
aprés le kéme pivot chanceux. Y =Y.

€T 2 x
Vi) < SV 2

Si K est le nombre de choix de pivots chanceux, on a donc , [YZ| < (2)" n. Comme |[YZ| > 1, on

a K < Clog(n) pour C' = 1/log(3/2).

4. Conclure que le temps d’exécution de l'algorithme Randomized Quicksort est O(nlogn) avec
grande probabilité. Pour z € S, on note R, la variable aléatoire donnant le nombre de comparaisons
impliquant = dans une exécution de Randomized Quicksort. Le nombre total de comparaisons est
majoré par nmax;ecs R,. Soit A, l'événement «R, > kC'logn» pour une constante k > 4 &
déterminer. Si 'événement A, est vrai, alors parmi les kC'logn premiers choix de pivots dans

2
3

un ensemble contenant x, au plus C'logn étaient chanceux (par la question précédente, sinon
Palgorithme se serait arrété). On a donc pour N = kC'logn, avec les notations de la question 2

P(A,) < P(Xny < Clogn) < P(Xny < N/4) < exp(—cN) = exp(—kcClogn)

Si on choisit k tel que keC' = 2, alors P(A,) < n~2. Par la borne de I'union, P(max, R, >
kClogn) < 1/n et donc le temps d’exécution est majoré par Cknlogn avec probabilité > 1 —1/n.



Exercice 4 MAX-CUT

Soit G = (V, E) un graphe (non-orienté, sans boucle ni aréte multiple). Pour A C V', on note Cut(A)
la coupe selon A, c’est a dire 'ensemble des arétes reliant un sommet de A & un sommet de V' \ A. On
considére la coupe maximale de G définie comme

MAXCUT(G) = max |Cut(A)|
ACV

(on note |X| le cardinal d’un ensemble X).
1. Montrer par la méthode probabiliste I'inégalité MAXCUT(G) > |E|/2.

On considére Palgorithme glouton suivant pour approximer MAXCUT(G) (on suppose que l’ensemble
V des sommets de G est muni d’un ordre total). On note GreedyMAXCUT(G) le cardinal de la coupe
produite par cet algorithme. Il est évident que GreedyMAXCUT(G) < MAXCUT(G).

A« 0, B«

Pour i dans V
Soit a; le nombre de voisins de i dans A et b; le nombre de voisins de i dans B
Si a; > b; alors B < B U {i}
Sinon, A + AU {i}

Renvoyer la coupe selon A.

2. A Taide de cet algorithme, donner une autre preuve de I'inégalité MAXCUT(G) > |E|/2.

3. On considére le graphe H,, de sommets {1,...,2n} et ayant pour arétes
{1,2},{2,3},...,{n —1,n}; ainsi que {4,j} pour tousi € {1,...,n} et j€{n+1,...,2n}.

Montrer que le rapport MAXCUT(H,,)/GreedyMAXCUT(H,,) tend vers 2 quand n tend vers
Iinfini. L’algorithme glouton met tous les sommets de n 4+ 1 & 2n dans le méme ensemble A ou
B et produit donc une coupe de taille (n — 1) + [n/2] - n = (3 + o(1)) n%. La coupe donnée car
A={1,...,n} a cardinal n?, d’ou le résultat.

Dans la suite de 'exercice, on suppose que G, est un graphe aléatoire de loi G(n, 1/2), c’est-a-dire qu'il a
pour ensemble de sommets {1,...,n} et que chaque aréte est présente indépendamment avec probabilité
1/2.

4. Pour A C {1,...,n}, quelle est la loi de [Cut(A)|? C’est la loi binomiale B(k(n — k), 3) ot k = | A

5. Montrer que pour une constante C' a déterminer,

2
lim P (MAXCUT(Gn) < % + Cn3/2> —1

n—o0

Indication. On pourra combiner une inégalité de CHERNOFF avec la borne de l’union. Par la
borne de 'union,

2 2
P(MAXCUT(G,,) < % +Cn®?) < 3 P(ICut(4)] > % +Con®/?)
AeV

Pour 1 < k < n, on a k(n — k) <n?/4 (en supposant n pair) et donc
n2 m2
P(|Cut(A)| > %+Cn3/2) < P(B(n?/4,1/2) > %JrCn‘?'/Q) < exp(—2C*n?/(n*/4)) = exp(—8nC?)
d’aprés CHERNOFF I. On a donc
n? 2 2
P(|Cut(A)| > rl + Cn®/?) < 2" exp(—8nC?)

qui tend vers 0 lorsque n tend vers l'infini.
6. Soit k un entier. Soient X et Y deux variables i.i.d. de loi B(k,1/2).



(a) Calculer E(X —Y)2 et E(X —Y)%.
(b) En déduire que E[|X — Y] > ¢;vk pour une constante ¢; > 0.

1
Indication. On pourra démontrer et utiliser l’inégalité P (Z > §E[Z]) >

pour une v.a. Z & valeurs positives.

On peut réaliser X et Y comme X = X; + -4+ X et Y =Y; + -+ Y, avec X;,Y; ii.d. de
loi B(1/2). Les v.a. W; = X; — Y; sont i.i.d. et vérifient E[W;] = 0, E[W?] =
particulier, Var[W;] = 1/2. On a par additivité de la variance pour des sommes indépendantes
E[(X —Y)?] = Y Var[W,;] = k/2. Par ailleurs, comme dans la preuve de la loi forte des grands

nombres

E[(X —Y)’]

11,12,13,04

Z E[Wilwiz Wi, Wi4]

= KE[W} + 3k(k — 1)E[W2W2]

k 3k(k—1)
I R
_ 3k2—k

n 4

L’inégalité appliquée 4 Z = (X — Y)? donne

P((X -~ Y) > k/4)

et donc E|X — Y| > ¢;Vk pour ¢; =
Enfin, démontrons 'inégalité suggérée en notant A I’événement «Z >

1 k2/4

= ! >1

Tﬁ'

Z1GR - k)4

4(3-1/k) T

1
2

1
4

/8

E[Z]»

B[Z] = BlZ14] + B[Z15] < (B[7%) * P(4)* + [B[Z]

d’otu le résultat en réarrangeant.

7. Montrer que si A et B sont des v.a. indépendantes de lois respectives B(a, 1/2) et B(b,1/2), alors

pour une constante ca > 0.

a-+b

E[max(A, B)] >

+cava+b

Sans perte de généralité supposons a > b. Si a > 2b on peut écrire

E[max(4, B)] > B[] g>agb>“1b Vi;@

Sib< a<2b, écrivons A = Ay + Ay avec Ay ~ B(a—0,1/2) et Ay ~B(b,1/2). On a

Par symétrie, E(A; — B)y = E(B — A3); et donc E(4; — B); = 1E[4; — B| > %\/B On a donc

Emax(A4, B) >

a+b

+%w@>

A+B+|A-B
Bmax(4,8)] > B0 CAZE
a+b 1
- “E|A-B
a+b 1
> -E(A -
24 SB(A-B),
a+b 1
> LB, -
1 T 3E(A2—B):

G+b C1
+

va+b
4 4\/§a

E[W# = 1/2. En



8. En déduire que pour une constante c3 > 0

2
E[CreedyMAXCUT(G,)] > % +egn®2.

On peut de maniére équivalente générer le graphe aléatoire "en temps réel" au cours de I'exécution
de Talgorithme glouton. Au iéme tour de boucle, on a |A| 4+ |B| =i — 1; les variables aléatoires
a; et b; sont indépendantes et de lois respectives B(|A|,1/2) et B(|B|,1/2). Le nombre d’arétes
ajoutées est max(a;, b;). D’apres la question précédente,

p— 1
Emax(ai,bl-) > ZT +C3\/’i — 1.

Par linéarité de 'espérance, la coupe produite a un cardinal supérieur a

(i1
(’4 +03\/i—1>,
=1

7

d’ou le résultat



