
Chapitre 1

Géométrie affine

On travaille sur un corps K. Dans la plupart des cas, ce sera R mais on pourra par-
fois considérer d’autres corps comme C, Q ou les corps finis. Tous les espaces vectoriels
considérés seront sur le corps K et de dimension finie.

1.1 Sous-espaces affines d’un espace vectoriel

Avant de définir les espaces affines abstraits, revenons sur le cas plus concret des sous-
espaces affines d’un espace vectoriel. Soit E un espace vectoriel. Pour tout x dans E, la
translation de vecteur x est l’application τx : E → E définie par y 7→ x+ y. L’application
τx est bijective et τ−1

x = τ−x. Elle est linéaire uniquement dans le cas x = 0. On a de plus
τx ◦ τy = τx+y : l’ensemble des translations forme un groupe isomorphe à (E,+).

On dit qu’une partie F ⊂ E est un sous-espace affine (s.e.a.) s’il existe x ∈ E et un
sous-espace vectoriel F ⊂ E tels que

F = τx(F ) = x+ F = {x+ y : y ∈ F}.

Dans ce cas, on a nécessairement x ∈ F puisque 0 ∈ F . Si x1 et x2 sont dans F , alors
x1 − x2 ∈ F : on retrouve F comme l’ensemble des différences entre éléments de F . En
particulier, le sous-espace vectoriel F est unique. On dit que F est le sous-espace affine de
direction F passant par x. Bien sûr, x n’est pas uniquement déterminé par cette condition :
pour tout x′ dans F , on a F = x′ + F .

Si (Ei) est une famille quelconque de sous-espaces vectoriels de V , leur intersection
⋂

Ei

est aussi un sous-espace vectoriel. On peut donc définir le sous-espace vectoriel engendré
par une partie A ⊂ V , noté Vect(A), comme l’intersection de la famille de tous les sous-
espaces vectoriels contenant A.

Un sous-espace vectoriel E ⊂ V est stable par combinaisons linéaires : pour des familles
finies (xi)i∈I dans E et (λi)i∈I dans K on a∑

i∈I
λixi ∈ E

(cela se démontre par récurrence sur |I| ; pour |I| = 2 c’est la définition de sous-espace
vectoriel). Les combinaisons linéaires permettent d’expliciter la notion d’espace vectoriel
engendré : pour A ⊂ V , on a

Vect(A) =

{∑
i∈I

λixi : I fini , λi ∈ K, xi ∈ A

}
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puisque le membre de droite forme un sous-espace vectoriel qui est inclus dans tout sous-
espace vectoriel contenant A.

De la même manière, on peut définir le sous-espace affine engendré par une partie A ⊂
V . On pourrait rester dans le cadre "concret" des sous-espaces affines d’un espace vectoriel,
mais pour des applications ultérieures il est utile de disposer d’une notion abstraite d’espace
affine.

1.2 Espaces affines abstraits

Dans l’exemple d’un sous-espace affine F = x + F ⊂ E du paragraphe précédent, les
points (les éléments du sous-espace affine F) et les vecteurs (les éléments du sous-espace
vectoriel F ) sont tous deux inclus dans E. Dans la définition d’un espace affine abstrait,
ce n’est pas le cas ; il n’est pas possible de définir 2M où M + N pour des points M,N
de F .

[faire un dessin]
Rappelons le vocabulaire des actions de groupes. Une action d’un groupe G (d’élément

neutre e) sur un ensemble X est la donnée d’une fonction µ : G × X dans X qui vérifie
les axiomes µ(e, x) = x et µ(g, µ(h, x)) = µ(gh, x) pour tous g, h dans G et x ∈ X. Il est
habituel d’écrire g · x plutôt que µ(g, x), voire x+ g lorsque le groupe G est abélien.

On dit qu’une action est simplement transitive si pour tous x, y dans X, il existe un
unique g ∈ G tel que g · x = y. Autrement dit, pour tout x dans X, l’application g 7→ g · x
est une bijection de G sur X.

Définition. On appelle espace affine la donnée d’un ensemble E non vide et d’une action
simplement transitive de (E,+) sur E , où E est un espace vectoriel. On dit que E est la
direction de E . On appelle dimension de E la dimension de E. On appelle droite affine un
espace affine de dimension 1, plan affine un espace affine de dimension 2.

Dans ce contexte, les éléments de E sont appelés les points et sont habituellement notés
par des lettres majuscules A,B,C,M, . . . . Les éléments de E sont appelés les vecteurs et
habituellement notés par des symboles comme

−→
0 , −→u . L’action est notée additivement :

A+−→u est un point.

Exemple. L’action de (E,+) sur E par translation µ(x, y) = x+y est simplement transitive
(comme pour tout groupe) : tout espace vectoriel peut donc être vu comme un espace affine.

Étant donnés deux points A et B de E , on note
−−→
AB l’unique élément de E tel que

A+
−−→
AB = B. L’axiome d’action de groupe donne immédiatement la relation de Chasles

−−→
AB +

−−→
BC =

−→
AC.

On a également
−→
AA =

−→
0 et

−−→
AB = −

−−→
BA.

Un espace affine est un espace vectoriel qui a oublié son origine. On a vu que tout
espace vectoriel peut naturellement être vu comme un espace affine. Réciproquement, si E
est un espace affine d’espace directeur E, tout choix d’un point O ∈ E induit une bijection
E → E

M →
−−→
OM

On peut via cette bijection munir E d’une structure d’espace vectoriel (le «vectorialisé en
O»), dans lequel le zéro est O, mais ce choix n’est pas canonique. Dans les preuves, on
commence souvent par choisir une origine O pour remplacer tous les points M par les
vecteurs

−−→
OM .
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On appelle sous-espace affine de E l’orbite d’un sous-espace vectoriel de E, c’est à dire
un sous-ensemble de la forme

F = {M +−→u : −→u ∈ F}

où M ∈ E et F un sous-espace vectoriel de E. On a alors

F = {
−−→
AB : A,B ∈ F}

et même pour tout choix de O ∈ F

F = {
−−→
OM : M ∈ F}.

En particulier, le sous-espace vectoriel F est unique, on l’appelle la direction de F . On
dit que deux sous-espaces affines sont parallèles (symbole �) s’ils ont même direction (en
particulier, cette définition impose qu’ils ont même dimension : une droite ne peut pas être
parallèle à un plan). Dans le cas d’un espace vectoriel vu comme espace affine, on retrouve
la définition précédente. On dira aussi qu’un sous-espace affine E1 (de direction E1) est
faiblement parallèle à un sous-espace affine E2 (de direction E2) si E1 ⊂ E2.

Exercice. Soient A, B, C, D quatre points distincts d’un espace affine. Vérifier que l’on a−−→
AB =

−−→
DC si et seulement si

−−→
AD =

−−→
BC. Dans ce cas, on dit que ABCD est un parallélo-

gramme.

Exercice. Dans un espace affine, montrer que deux hyperplans affines disjoints sont paral-
lèles.

Exercice. Soient E1 = A1 + E1 et E2 = A2 + E2 deux sous-espaces affines. Montrer qu’ils
ont un point en commun si et seulement si

−−−→
A1A2 ∈ E1 + E2. Montrer qu’ils sont égaux si

et seulement si E1 = E2 et
−−−→
A1A2 ∈ E1.

Exercice. Soit E un plan affine sur le corps {0, 1}. Quel est le cardinal de E ? Combien
contient-il de droites affines ? Faire un dessin. Quelles droites sont parallèles ?

1.3 Barycentres

Proposition. Soit E un espace affine. Soient A1, . . . , Am des points de E et λ1, . . . , λm

dans K tels que s = λ1 + · · ·+ λm ̸= 0. Il existe un unique point B de E tel que

m∑
i=1

λi
−−→
BAi =

−→
0 . (1.1)

Ce point B est appelé barycentre du système pondéré ((A1, λ1), . . . , (Am, λm)) et noté

B =

(
A1 . . . Am

λ1 . . . λm

)
ou parfois bar((A1, λ1), . . . , (Am, λm)).

Exercice. Montrer que si la fonction de E dans E donnée par B 7→
∑m

i=1 λi
−−→
BAi est bijective

si s ̸= 0 et constante si s = 0.
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Démonstration. Fixons un point O ∈ E . Pour tout B ∈ E , on a

m∑
i=1

λi
−−→
BAi =

m∑
i=1

λi(
−−→
BO +

−−→
OAi) = s

−−→
BO +

m∑
i=1

λi
−−→
OAi.

La condition (1.1) est donc satisfaite si et seulement si

−−→
OB =

1

s

m∑
i=1

λi
−−→
OAi, (1.2)

ce qui est le cas pour un unique B ∈ E .

L’équation (1.2) permet de montrer que si A1, . . . , Am appartiennent à un sous-espace
affine F ⊂ E , c’est aussi le cas de leur barycentre.

Par exemple, étant donné deux points A et B de E , on appelle milieu du segment AB

le barycentre de (A, 1), (B, 1). C’est le point M défini par la relation
−−→
MA+

−−→
MB =

−→
0 .

Quand tous les poids sont égaux 1, on parle d’isobarycentre. Il faut faire attention quand
on travaille avec des corps de caractéristique non nulle : par exemple, en caractéristique 2,
un segment n’a pas de milieu...

On peut vérifier les propriétés suivantes des barycentres.
— Pour tout α ̸= 0 (

A1 A2 . . . An

λ1 λ2 . . . λn

)
=

(
A1 A2 . . . An

αλ1 αλ2 . . . αλn

)
On peut ainsi se ramener au cas λ1 + · · ·+ λn = 1.

— Pour toute permutation σ ∈ Sn(
A1 A2 . . . An

λ1 λ2 . . . λn

)
=

(
Aσ(1) Aσ(2) . . . Aσ(n)

λσ(1) λσ(2) . . . λσ(n)

)
— On peut retirer les points de poids nuls(

A1 . . . An−1 An

λ1 . . . λn−1 0

)
=

(
A1 . . . An−1

λ1 . . . λn−1

)
— On peut regrouper les points identiques(

A1 . . . An B B
λ1 . . . λn µ ν

)
=

(
A1 . . . An B
λ1 . . . λn µ+ ν

)
— On a la propriété d’associativité : si m < n et si λ1+· · ·+λm ̸= 0 et λ1+· · ·+λn ̸= 0,

alors (
A1 . . . An

λ1 . . . λn

)
=

(
H Am+1 . . . An

λ1 + · · ·+ λm λm+1 . . . λn

)
où H =

(
A1 . . . Am

λ1 . . . λm

)
.

Dans le cas d’un sous-espace affine d’un espace vectoriel, la notion de barycentre peut
s’écrire à l’aide de la structure vectorielle : si λ1 + · · ·+ λn = 1, alors(

x1 . . . xn
λ1 . . . λn

)
=

n∑
i=1

λixi
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1.4 Indépendance et engendrement affines

Les notions de familles libres et génératrices sont fondamentales en algèbre linéaire.
Nous allons développer l’analogue affine de ces notions.

Proposition. Soit E un espace affine et (Fi) une famille de sous-espaces affines telle que⋂
Fi ̸= ∅. Alors

⋂
Fi est un sous-espace affine de E.

La preuve montrera aussi que l’intersection des directions est la direction de l’intersec-
tion.

Démonstration. Soit O ∈
⋂
Fi. Soit E la direction de E . Pour tout i, on peut trouver un

sous-espace vectoriel Fi ⊂ E tel que Fi = O + Fi. On a donc⋂
Fi =

⋂
(O + Fi) = O +

⋂
Fi

qui est bien un sous-espace affine de E .

On peut donc définir le sous-espace affine aff(A) engendré par une partie non vide A ⊂
E comme l’intersection de la famille de tous les sous-espaces affines de E qui contiennent
A (cette famille est non vide car elle contient E ; l’intersection est non vide car A ≠ ∅).

Proposition. Si A est une partie non vide de E, l’ensemble aff(A) est l’ensemble de tous
les barycentres d’éléments de A.

Fin cours # 1 du 15 janvier

Démonstration. Notons B l’ensemble des barycentres d’éléments de A. On a vu qu’un
sous-espace affine est stable par barycentres : ceci implique l’inclusion B ⊂ aff(A).

Pour l’autre inclusion, on vectorialise : soit O ∈ A. Un sous-espace affine contenant O
est de la forme O + F où F est un sous-espace vectoriel de E. Puisque A ⊂ O + F si et
seulement si

−→
OA ∈ F pour tout A ∈ A, on en déduit donc que

aff(A) = O +Vect{
−→
OA : A ∈ A}

= {O +
n∑

i=1

λi
−−→
OAi : n ∈ N, (λi) ∈ K, Ai ∈ A}

Un élément M de aff(A) s’écrit M = O +
∑

λi
−−→
OAi. On a donc

−−→
OM =

∑
λi
−−→
OAi =

(
∑

λi)
−−→
OM +

∑
λi
−−−→
MAi. Ainsi, (1−

∑
λi)

−−→
MO +

∑
λi
−−−→
MAi =

−→
0 , donc

M =

(
O A1 . . . An

1−
∑

λi λ1 . . . λn

)
∈ B. (1.3)

ce qui montre aff(A) ⊂ B.

Soient A1, . . . , Ap des points de E . On dit que les points A1, . . . , Ap sont affinement
indépendants si les vecteurs

−−−→
A1A2,

−−−→
A1A3, . . . ,

−−−→
A1Ap sont linéairement indépendants ; quand

ce n’est pas le cas, on dit que les points A1, . . . , Ap sont affinement liés.

Proposition. Soient O,A1, . . . , Ap des points de E. Les points A1, . . . , Ap sont affinement
liés si et seulement si il existe des scalaires λ1, . . . , λp non tous nuls tels que λ1+· · ·+λp = 0

et λ1
−−→
OA1 + · · ·+ λp

−−→
OAp =

−→
0 .
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Démonstration. Il suffit de remarquer, en écrivant
−−−→
A1Ai =

−−→
OAi −

−−→
OA1, que la relation

λ2
−−−→
A1A2+· · ·+λp

−−−→
A1A2 =

−→
0 équivaut à −(λ2+· · ·+λp)

−−→
OA1+λ2

−−→
OA2+· · ·+λp

−−→
OAp =

−→
0 .

Cette proposition montre que la définition d’indépendance affine ne dépend pas de
l’ordre des points. Deux points sont affinement indépendants si et seulement si ils sont
distincts (on note (AB) la droite engendrée par deux points A ̸= B) ; trois points sont affi-
nement indépendants si et seulement si ils sont non alignés ; quatre points sont affinement
indépendants si et seulement si ils sont non coplanaires, etc.

On dit qu’une famille de points (A1, . . . , Ap) est une base affine de E si c’est une famille
affinement indépendante et affinement génératrice (au sens où E = aff(A1, . . . , Ap)). Cela
équivaut à dire que les vecteurs

−−−→
A1A2,

−−−→
A1A3 . . . ,

−−−→
A1Ap forment une base de l’espace vectoriel

E. Si (A1, . . . , Ap) est une base affine de E , alors nécessairement dim E = p− 1. Tout point
M ∈ E s’écrit comme barycentre

M =

(
A1 . . . Ap

λ1 . . . λp

)
et cette écriture est unique si on impose λ1 + · · ·+λp = 1. On dit que (λ1, . . . , λp) sont les
coordonnées barycentriques de M dans la base affine (A1, . . . , Ap).

Il existe une autre manière de paramétrer les points d’un espace affine. On appelle
repère affine de E la donnée d’un point O ∈ E et d’une base (−→e1 , . . . ,−→en) de E. On obtient
alors une bijection de Kn dans E donnée par

(α1, . . . , αn) 7→ O + α1
−→e1 + · · ·+ αn

−→en

Exercice. (K = R). Soient ABC 3 points non alignés du plan affine. Les trois droites (AB),
(AC) et (BC) délimitent 7 régions du plan. Connaissant les coordonnées barycentriques
d’un point dans la base affine (A,B,C), comment déterminer à quelle région il appartient ?

Exercice. Soient A,B,C trois points non alignés du plan affine. Définir les médianes du
triangle ABC et montrer qu’elles s’intersectent en un unique point.

Exercice. Soient A,B,C,D quatre points non coplanaires d’un espace affine de dimension 3.
On appelle bimédiane du tétraèdre ABCD les droites passant par les milieux de deux arêtes
disjointes du tétraèdre. Montrer que les trois bimédianes s’intersectent en un unique point.

Exercice difficile («théorème de Sylvester–Gallai»). Soit un ensemble fini de points du plan
affine R2 ayant la propriété suivante : toute droite qui contient deux des points en contient
au moins trois. Montrer que tous les points sont alignés. Donner un exemple de corps pour
lequel l’énoncé analogue est faux.

1.5 Convexité

Dans cette section, on suppose K = R. On va utiliser de manière cruciale les notions
d’ordre et de positivité. Si A et B sont deux points d’un espace affine réel. Ils définissent
un segment

[AB] =

{(
A B
s t

)
: s, t ⩾ 0, s+ t > 0

}
=

{(
A B
λ 1− λ

)
: λ ∈ [0, 1]

}
.

On dit qu’une partie C ⊂ E est convexe si on a [AB] ⊂ C pour tous A et B dans C.
Il est élémentaire de voir que l’intersection d’une famille quelconque de parties convexes

est convexe. On peut donc définir l’enveloppe convexe d’une partie A d’un espace affine
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réel, notée conv(A), comme l’intersection de toutes les parties convexes contenant A. On
a la caractérisation équivalente suivante de l’enveloppe convexe comme l’ensemble des
barycentres à poids positifs d’éléments de A (on parle parfois de combinaisons convexes).

Proposition. Si A est une partie d’un espace affine réel, alors

conv(A) =

{(
A1 . . . Am

λ1 . . . λm

)
: m ∈ N∗, Ai ∈ A, λi ⩾ 0, λ1 + · · ·+ λm = 1

}
.

Démonstration. Soit B le membre de droite dans l’équation précédente. Une partie convexe
est stable par barycentres à poids positif (cela se démontre par récurrence sur le nombre
de points en utilisant la propriété d’associativité des barycentres). On en déduit que toute
partie convexe contenant A contient B, d’où l’inclusion conv(A) ⊃ B.

Par ailleurs, il découle aussi de la propriété d’associativité du barycentre que B est
convexe, et donc que conv(A) ⊂ B.

A priori, la description précédente nécessite de considérer des combinaisons convexes
de longueur arbitrairement grande. Le résultat suivant permet de préciser ce point.

Théorème (Carathéodory). Soit A une partie d’un espace affine réel de dimension n.
Alors

conv(A) =

{(
A1 . . . An+1

λ1 . . . λn+1

)
: Ai ∈ A, λi ⩾ 0, λ1 + · · ·+ λn+1 = 1

}
.

Démonstration. Soit A ∈ conv(A). Soit p ∈ N minimal tel que A s’écrive

A =

(
A1 . . . Ap

λ1 . . . λp

)
avec Ai ∈ A, λi ⩾ 0 et

∑
λi = 1. La minimalité de p implique que λi > 0. En fixant une

origine O ∈ A, on a
−→
OA =

p∑
i=1

λi
−−→
OAi

Supposons p > n+ 1. Alors les points A1, . . . , Ap sont affinement liés, et donc il existe des
scalaires non tous nuls (µi) vérifiant µ1 + · · ·+ µp = 0 et µ1

−−→
OA1 + · · ·+ µp

−−→
OAp =

−→
0 . On

a donc, pour tout t ∈ R,

A =

(
A1 . . . Ap

λ1 + tµ1 . . . λp + tµp

)
Les hypothèses impliquent qu’on moins l’un des nombres µi est < 0. Lorsque µi ⩾ 0, la
fonction t 7→ λi+ tµi est positive sur R+. Lorsque µi < 0, la fonction t 7→ λi+ tµi s’annule
au point ti = −λi/µi ⩾ 0 et est positive pour 0 ⩽ t ⩽ ti. Si on note t le minimum de ces
nombres ti, les scalaires λi + tµi sont positifs et au moins l’un d’entre eux est nul, ce qui
permet d’écrire A comme barycentre de longueur < p, contredisant la minimalité de p.

Exercice. Soit A une partie compacte de l’espace affine Rn. Montrer que conv(A) est
compact.

Exercice. (Théorème de Radon) Dans un espace affine réel de dimension n, on considère
une partie A de cardinal n + 2. Montrer qu’il existe une partition A = B ∪ C telle que
conv(B) ∩ conv(C) ̸= ∅.
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Exercice difficile. (Théorème de Helly) Soit (Ci)1⩽i⩽n une famille de parties convexes d’un
espace affine réel de dimension d, avec n ⩾ d + 1. On suppose que toute sous-famille de
cardinal d+1 a une intersection non vide. Montrer que

⋂
1⩽i⩽nCi est non vide. Indication :

Montrer le résultat par récurrence sur n en appliquant le théorème de Radon.

Fin cours #2 du 22 janvier

1.6 Applications affines

Une application de Rm dans Rn est dite affine si elle est de la forme x 7→ Ax+ b pour
b ∈ Rn et A : Rm → Rn une application linéaire. Nous allons étendre ce concept au cadre
des espaces affines abstraits.

Soient E et F deux espaces affines de directions respectives E et F . On dit qu’une
application f : E → F est affine si il existe une application linéaire ϕ : E → F telle que,
pour tous points M , N de E on ait

ϕ(
−−→
MN) =

−−−−−−−→
f(M)f(N).

De manière équivalente, pour tous M ∈ E et −→u ∈ E, on a

f(M +−→u ) = f(M) + ϕ(−→u ).

Si f est affine, l’application linéaire ϕ vérifiant cette condition est unique et appelée
partie linéaire de f . Elle est notée

−→
f .

Il est parfois utile, quand il n’y a pas d’ambiguïté, de noter M ′ l’image d’un point M
par un application affine.

Exemple. Si −→u ∈ E, la translation de vecteur −→u est l’application affine τ−→u : M 7→ M ′

définie par M ′ = M + −→u ou encore
−−−→
MM ′ = −→u . Les translations sont les applications

affines dont la partie linéaire est l’identité.

Exemple. Soit O un point de E et λ ∈ K. On appelle homothétie de centre O et de rapport λ
l’application affine hM,λ : M 7→ M ′ définie par la relation

−−−→
OM ′ = λ

−−→
OM . Quand λ = −1,

on parle plutôt de symétrie centrale.

Soit f : E → F une application affine et
−→
f sa partie linéaire. Pour tout sous-espace

affine E1 ⊂ E de direction E1, l’image f(E1) est un sous-espace affine de F de direction
−→
f (E1).

On peut caractériser les applications affines comme celles préservant les barycentres.

Théorème. Soient f : E → F une application entre espaces affines. Les propriétés sui-
vantes sont équivalentes :

1. L’application f est affine.

2. Pour A1, . . . , An dans E et λ1, . . . , λn dans K tels que λ1 + · · ·+ λn ̸= 0

si M =

(
A1 . . . An

λ1 . . . λn

)
alors f(M) =

(
f(A1) . . . f(An)
λ1 . . . λn

)
.

Démonstration. On note M ′ l’image par f d’un point M . Supposons f affine. Si on suppose
que

n∑
i=1

λi
−−−→
MAi =

−→
0
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alors par linéarité de la partie linéaire de f , on a

n∑
i=1

λi

−−−→
M ′A′

i =
−→
0

d’où 1 =⇒ 2.
Pour la réciproque, soit M 7→ M ′ une application qui préserve les barycentres. Il faut

montrer que l’application
−−→
MN 7→

−−−→
M ′N ′ est bien définie (c’est-à-dire que si

−−−→
M1N1 =

−−−→
M2N2

alors
−−−→
M ′

1N
′
1 =

−−−→
M ′

2N
′
2) et linéaire. Fixons un repère affine (O,−→e1 , . . . ,−→en) de E . Posons

Ai = O +−→ei . Un point quelconque M ∈ E s’écrit M = O + λ1
−→e1 + · · ·+ λn

−→en. On a donc

−−→
OM =

n∑
i=1

λi
−−→
OAi

en on déduit (cette équation pouvant se réécrire comme un barycentre, cf (1.3)) que

−−−→
O′M ′ =

n∑
i=1

λi

−−→
O′A′

i.

Soit N = O + µ1
−→e1 + · · ·+ µn

−→en un autre point. On a donc

−−→
MN =

−−→
ON −

−−→
OM =

n∑
i=1

(µi − λi)
−→ei

et
−−−→
M ′N ′ =

−−−→
O′N ′ −

−−−→
O′M ′ =

n∑
i=1

(µi − λi)
−−−→
AiA

′
i.

Il s’ensuit que l’application
−−→
MN 7→

−−−→
M ′N ′ est bien définie et linéaire (c’est l’unique appli-

cation linéaire envoyant −→ei sur
−−−→
AiA

′
i), d’où le résultat.

Exercice. Soit f : E → F une application affine entre espaces affines et A ⊂ E une partie
de E . Montrer que f(aff(A)) = aff(f(A)).

Proposition. Soient E et F deux espaces affines, de directions respectives E et F .

1. Soient (O,−→e1 , . . . ,−→en) un repère affine de E, P un point de F et et
−→
f1 , . . . ,

−→
fn des

vecteurs de F . Il existe une unique application affine de E dans F qui envoie O sur
P et dont la partie linéaire envoie −→ei sur

−→
fi .

2. Soient A1, . . . , Ap une base affine de E et B1 . . . , Bp des points de F . Il existe une
unique application affine de E dans F qui envoie Ai sur Bi.

Le premier point se déduit de l’énoncé analogue en algèbre linéaire : si (e1, . . . , en) est
une base d’un espace vectoriel E et f1, . . . , fn sont des éléments quelconques d’un espace
vectoriel F , il existe une unique application linéaire qui envoie ei sur fi. Le second point
se déduit du premier.

Exercice. Montrer qu’une application affine possède un unique point fixe si et seulement
si 1 n’est pas valeur propre de sa partie linéaire.
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Une application affine préserve l’alignement (puisqu’elle préserve les barycentres). La
réciproquement est partiellement vraie et connue sous le nom de théorème fondamental de
la géométrie affine : une bijection d’un espace affine réel de dimension ⩾ 2 qui préserve
l’alignement est affine. Pour se convaincre de la nécessité des hypothèses, on remarquera
que toute fonction de R dans R préserve l’alignement, et que toute fonction entre espace
affines sur le corps {0, 1} préserve l’alignement puisqu’une droite ne contient que deux
points.

Problème. (Théorème «fondamental» de la géométrie affine) Soit f : R2 → R2 une bijec-
tion qui préserve l’alignement (c’est-à dire que si A, B, C sont trois points alignés, leurs
images f(A), f(B), f(C) sont alignées). On veut montrer que f est affine.

1. Montrer que l’image d’une droite est une droite ; que les images de deux droites
parallèles sont deux droites parallèles ; que l’image d’un parallélogramme est un
parallélogramme.

2. Soit M un point −→u ̸= −→
0 un vecteur et −→v défini par la relation f(M + −→u ) =

f(M) + −→v . Montrer que l’on peut définir une fonction λ : R → R par la formule
f(M + t−→u ) = f(M) + λ(t)−→v . Montrer que pour tous réels s, t on a λ(s + t) =
λ(s) + λ(t) et λ(st) = λ(s)λ(t) (autrement dit, λ : R → R est un automorphisme
de corps). En déduire que λ = idR, puis que f est affine.

3. Donner un exemple de bijection du plan affine complexe C2 qui préserve l’alignement
mais qui n’est pas affine.

1.7 Le groupe affine

Rappelons que si E est un espace vectoriel, on désigne par GL(E) le groupe des appli-
cations linéaires bijectives de E dans E. Si E est un espace affine de direction E, on note
GA(E) l’ensemble des applications affines bijectives de E dans E .

Proposition. Soient E, F , G des espaces affines. Si f1 : E → F et f2 : F → G sont des
applications affines, alors f2 ◦ f1 est affine et on a

−−−−→
f2 ◦ f1 =

−→
f2 ◦

−→
f1.

L’ensemble GA(E) est un groupe pour la loi de composition. L’application f 7→
−→
f est

un morphisme de groupes de GA(E) dans GL(E).

Démonstration. Pour A, B dans E , on a

−−−−−−−−−−−−−−→
f2(f1(A))f2(f1(B)) =

−→
f2(

−−−−−−−−→
f1(A)f1(B)) =

−→
f2(

−→
f1(

−−→
AB))

donc f2 ◦ f1 est affine, et sa partie linéaire est
−→
f2 ◦

−→
f1 .

Soit f : E → E une application affine. Fixons O ∈ E . Alors f est l’application M 7→
f(O) +

−→
f (

−−→
OM) et donc f est bijective si et seulement si

−→
f est bijective ; dans ce cas

l’application réciproque, donnée par N 7→ O + (
−→
f )−1(

−−−−→
f(O)N) est affine.

On dit qu’une transformation affine f ∈ GA(E) est une dilatation (on dit parfois : une
homothétie-translation) si sa partie linéaire est λId pour λ ∈ K∗ (on dit que λ est le rapport
de f). L’image d’un sous-espace affine par une dilatation est un sous-espace affine parallèle.

Proposition. 1. L’ensemble des dilations forme un sous-groupe de GA(E).
2. Une dilatation f : E → E de rapport 1 est une translation.

3. Une dilatation f : E → E de rapport λ ̸= 1 a un unique point fixe M ∈ E. On a
f = hM,λ.
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Démonstration. Le seul point qui n’est pas évident est le dernier. Soit M 7→ M ′ une
dilatation de rapport λ ̸= 1. Fixons O ∈ E . Pour M ∈ E , on a M ′ = O′+λ

−−→
OM . On a donc

M = M ′ ⇐⇒ M = O′ + λ
−−→
OM ⇐⇒

−−−→
O′M = λ

−−→
OM ⇐⇒

−−→
OO′ = (1− λ)

−−→
OM

ce qui est le cas si et seulement si M = O+ 1
1−λ

−−→
OO′. Dans ce cas f , on a bien f = hM,λ.

Exercice. Déterminer la table du multiplication du groupe des dilatations en calculant
τx ◦ τy, τx ◦ hM,λ, hM,λ ◦ τx, hM,λ ◦ hN,µ.

Exercice. Déterminer le centre du groupe GA(E).
Exercice. Montrer que l’application de E × GL(E) dans GA(E) donnée par (x, ϕ) 7→ τx ◦ ϕ
est une bijection. Est-ce que les groupes E × GL(E) et GA(E) sont isomorphes ?

Fin cours # 3 du 29 janvier

1.8 Les théorèmes classiques de géométrie affine

Si A, B, C sont trois points alignés de E tels que A ̸= C, il existe un unique λ ∈ K tel
que

−−→
AB = λ

−→
AC. On définit alors

AB

AC
= λ.

Plus généralement, si A,B,C,D sont des points tels que A ̸= C et
−−→
BD = λ

−→
AC, on pose

BD
AC

= λ.

Théorème (Thalès). Dans un espace affine, soient D1 et D2 deux droites distinctes s’in-
tersectant en A. Soit A,B1, C1 des points distincts de D1 et A,B2, C2 des points distincts
de D2. Alors

AB1

AC1

=
AB2

AC2

⇐⇒ (B1B2) � (C1C2)

Quand ces conditions sont vérifiées, on a aussi

AB1

AC1

=
B1B2

C1C2

A B1 C1

B2

C2

Démonstration. Puisque A,B1, C1 (et également A,B2, C2) sont alignés et distincts, il
existe λ1, λ2 dans K tels que

−−→
AB1 = λ1

−−→
AC1 et

−−→
AB2 = λ2

−−→
AC2. Alors

−−−→
B1B2 =

−−→
B1A +−−→

AB2 = λ1
−−→
C1A+λ2

−−→
AC2 = (λ1−λ2)

−−→
C1A+λ2

−−−→
C1C2. Puisque

−−→
C1A et

−−−→
C1C2 sont linéairement

indépendants (s’ils étaient liés on aurait D1 = D2), on a (C1C2)� (B1B2) si et seulement si
λ1 = λ2. Si c’est le cas, on a aussi

−−−→
B1B2 =

−−→
B1A+

−−→
AB2 = λ1

−−→
C1A+ λ1

−−→
AC2 = λ1

−−−→
C1C2.
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Proposition. Dans un espace affine, soient D et D′ deux droites parallèles distinctes,
B ̸= C deux points de D et B′ ̸= C ′ deux points de D′. Il existe une (unique) dilatation
f telle que f(B) = B′ et f(C) = C ′. C’est une translation si (BB′) ∩ (CC ′) = ∅ et sinon
une homothétie de centre A, où (BB′) ∩ (CC ′) = {A}.

B

B′

C

C ′

Démonstration. P = aff(D∪D′) = aff(B,C,B′) est un plan ; dans ce plan les deux droites
distinctes (BB′) et (CC ′) sont soit disjointes et donc parallèles, soit d’intersection réduite
à un point.

Supposons d’abord (BB′)�(CC ′). Il existe donc λ ∈ K tel que
−−→
CC ′ = λ

−−→
BB′. De même,

comme D�D′, il existe µ ∈ K tel que
−−→
B′C ′ = µ

−−→
BC. On a

−−→
BC ′ =

−−→
BB′+µ

−−→
BC =

−−→
BC+λ

−−→
BB′.

Puisque
−−→
BC et

−−→
BB′ sont linéairement indépendants (s’ils étaient liés on aurait D = D′),

on en déduit que λ = µ = 1. Si on pose −→v =
−−→
BB′ =

−−→
CC ′, alors la translation τ−→v convient.

Sinon, on a (BB′)∩ (CC ′) = {A} avec A ̸= B et A ̸= B′. Puisque D �D′, le théorème
de Thalès implique que AB′

AB
= AC′

AC
. Si on note λ ce scalaire, l’homothéroie hA,λ envoie

B sur B′ et C sur C ′.
Pour l’unicité, voir l’exercice suivant.

Exercice. Soient A,B deux points distincts d’un espace affine E et soient f, g deux dilata-
tions de E vérifiant f(A) = g(A) et f(B) = g(B). Montrer que f = g.

Théorème (Pappus, version affine). Soient D et D′ deux droites distinctes d’un espace
affine. Soient A, B, C trois points distincts de D et A′, B′, C ′, trois points distincts de
D′. On suppose qu’aucun de ces points n’est commun à D et D′. Si (AB′) � (A′B) et
(BC ′) � (B′C) alors (AC ′) � (A′C).

A

A′

B

B′

C

C ′

Démonstration. On utilise la proposition précédente. Soit f la dilatation qui vérifie f(A) =
B et f(B′) = A′, et soit g la dilatation qui vérifie g(B) = C et g(C ′) = B′. Ce sont soit deux
translations, soit deux homothéties de même centre. Dans les deux cas, elles commutent.
Si on pose h = g ◦ f = f ◦ g, alors h(A) = C et h(C ′) = A′. Comme h est une dilatation,
on a donc (AC ′) � (A′C).

Théorème (Desargues, version affine). Soient A,B,C,A′, B′, C ′ six points distincts d’un
espace affine tels que A,B,C et A′, B′, C ′ soient affinement indépendants. On suppose que
(AB) � (A′B′), (BC) � (B′C ′) et (AC) � (A′C ′). Alors les trois droites (AA′), (BB′) et
(CC ′) sont soit concourantes, soit parallèles.
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A

A′

B

B′

C

C ′

Démonstration. Soit f la dilatation qui vérifie f(A) = A′ et f(B) = B′. Alors (AC) �
(A′f(C)) et (BC) � (B′f(C)) puisque l’image d’une droite par une dilation est une droite
parallèle. On a donc (A′C ′) = (A′f(C)) et (B′C ′) = (B′f(C)). Puisque A′, B′, C ′ sont
affinement indépendants, on a (A′B′) ∩ (B′C ′) = {C ′} et donc f(C) = C ′. Si f est une
translation, les trois droites sont parallèles ; si f est une homothétie de centre M , les trois
droites s’intersectent en M .

Théorème (Ménélaüs). Soient A, B, C trois points affinement indépendants d’un espace
affine. Soit A′ ∈ (BC), B′ ∈ (AC) et C ′ ∈ (AB) trois points distincts de A, B, C. Les
points A′, B′, C ′ sont alignés si et seulement si A′C

A′B
B′A
B′C

C′B
C′A

= 1.

Vérifiez que vous savez construire la figure suivante qui illustre de théorème de Ménélaüs
avec les valeurs

A′C

A′B
= 2,

B′A

B′C
= −1,

C ′B

C ′A
= −2

A

A′

B

B′

C

C ′

Pour démontrer le théorème de Ménélaüs, il est utile de déterminer quelles homothéties
préservent une droite. Soit hM,λ l’homothétie de centre M et de rapport λ (on a donc
hM,1 = id) et D une droite affine. Alors (exercice)

hM,λ(D) = D ⇐⇒ M ∈ D ou λ = 1 (1.4)

Démonstration. Soit h1 l’homothétie de centre A′ vérifiant h1(B) = C, soit h2 l’homothétie
de centre B′ vérifiant h2(C) = A et soit h3 l’homothétie de centre C ′ vérifiant h3(A) = B.
Si on note λi le rapport de hi, alors

λ1 =
A′C

A′B
, λ2 =

B′A

B′C
, λ3 =

C ′B

C ′A

et ces rapports sont distincts de 1 puisque les points A,B,C sont distincts. La dilatation
h = h3 ◦ h2 ◦ h1 a B comme point fixe et est donc une homothétie de rapport λ = λ1λ2λ3.
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L’application h2 ◦ h1 préserve la droite (A′B′) puisqu’elle passe par le centre des deux
homothéties. Ainsi h préserve (A′B′) si et seulement si h3 préserve (A′B′), ce qui revient
à dire (par (1.4), puisque λ3 ̸= 1) que C ′ ∈ (A′B′) ou encore que les points A′, B′, C ′ sont
alignés.

Comme B ̸∈ (A′B′), par (1.4), l’homothétie h de centre B préserve (A′B′) si et seule-
ment si son rapport est 1, d’où le résultat.

On énonce sans preuve un dernier théorème.

Théorème (Céva). Soient A, B, C trois points affinement indépendants. Soit A′ ∈ (BC),
B′ ∈ (AC) et C ′ ∈ (AB) trois points distincts de A, B, C. Les droites (AA′), (BB′) et
(CC ′) sont concourantes ou parallèles si et seulement si A′C

A′B
B′A
B′C

C′B
C′A

= −1.

Fin cours #4 du 5 février
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