Chapitre 1

(Géomeétrie affine

On travaille sur un corps K. Dans la plupart des cas, ce sera R mais on pourra par-
fois considérer d’autres corps comme C, Q ou les corps finis. Tous les espaces vectoriels
considérés seront sur le corps K et de dimension finie.

1.1 Sous-espaces affines d’un espace vectoriel

Avant de définir les espaces affines abstraits, revenons sur le cas plus concret des sous-
espaces affines d’un espace vectoriel. Soit E un espace vectoriel. Pour tout x dans F, la
translation de vecteur x est 'application 7, : £ — F définie par y — x + y. L’application
7, est bijective et 7,1 = 7_,. Elle est linéaire uniquement dans le cas z = 0. On a de plus
Ty O Ty = Ty4y : I'ensemble des translations forme un groupe isomorphe a (E, +).

On dit qu'une partie F C FE est un sous-espace affine (s.e.a.) s’il existe x € E et un
sous-espace vectoriel F' C E tels que

F=n(F)=c+F={x+y : yerF}

Dans ce cas, on a nécessairement = € F puisque 0 € F. Si x1 et xo sont dans F, alors
r1 — 29 € F : on retrouve I' comme 'ensemble des différences entre éléments de F. En
particulier, le sous-espace vectoriel F' est unique. On dit que F est le sous-espace affine de
direction F' passant par x. Bien sfiir, x n’est pas uniquement déterminé par cette condition :
pour tout 2’ dans F, on a F =’ + F.

Si (E;) est une famille quelconque de sous-espaces vectoriels de V', leur intersection () E;
est aussi un sous-espace vectoriel. On peut donc définir le sous-espace vectoriel engendré
par une partie A C V', noté Vect(A), comme Uintersection de la famille de tous les sous-
espaces vectoriels contenant A.

Un sous-espace vectoriel E C V est stable par combinaisons linéaires : pour des familles
finies (z;)ier dans E et ()\;);er dans K on a

Z )\ia:i ek
el

(cela se démontre par récurrence sur |I]; pour |I| = 2 c’est la définition de sous-espace
vectoriel). Les combinaisons linéaires permettent d’expliciter la notion d’espace vectoriel
engendré : pour A C V, on a

Vect(A) = {Z ANz - I fini N\ e K x; € A}
el



puisque le membre de droite forme un sous-espace vectoriel qui est inclus dans tout sous-
espace vectoriel contenant A.

De la méme maniére, on peut définir le sous-espace affine engendré par une partie A C
V. On pourrait rester dans le cadre "concret" des sous-espaces affines d’un espace vectoriel,
mais pour des applications ultérieures il est utile de disposer d’une notion abstraite d’espace
affine.

1.2 Espaces affines abstraits

Dans 'exemple d’un sous-espace affine F = z + F' C E du paragraphe précédent, les
points (les éléments du sous-espace affine F) et les vecteurs (les éléments du sous-espace
vectoriel F') sont tous deux inclus dans E. Dans la définition d’un espace affine abstrait,
ce n'est pas le cas; il n’est pas possible de définir 2M ot M + N pour des points M, N
de F.

[faire un dessin|

Rappelons le vocabulaire des actions de groupes. Une action d'un groupe G (d’élément
neutre e) sur un ensemble X est la donnée d’une fonction p : G x X dans X qui vérifie
les axiomes (e, z) = x et u(g, p(h,z)) = p(gh, x) pour tous g, h dans G et z € X. Il est
habituel d’écrire g - & plutot que u(g, x), voire x + g lorsque le groupe G est abélien.

On dit qu’'une action est simplement transitive si pour tous z, y dans X, il existe un
unique g € G tel que g -z = y. Autrement dit, pour tout  dans X, 'application g — g - x
est une bijection de G sur X.

Définition. On appelle espace affine la donnée d’un ensemble £ non vide et d’une action
simplement transitive de (F,+) sur £, ou E est un espace vectoriel. On dit que E est la
direction de £. On appelle dimension de £ la dimension de E. On appelle droite affine un
espace affine de dimension 1, plan affine un espace affine de dimension 2.

Dans ce contexte, les éléments de £ sont appelés les points et sont habituellement notés
par des lettres majuscules A, B,C, M, .... Les elementb de E sont appelés les vecteurs et
habituellement notés par des symboles comme 0 . L’action est notée additivement :
A+ est un point.

Ezemple. L’action de (E, +) sur E par translation u(x,y) = x4y est simplement transitive
(comme pour tout groupe) : tout espace vectoriel peut donc étre vu comme un espace affine.

Etant donnés deux points A et B de &, on note ﬁ I'unique élément de E tel que
A+ 1@ = B. L’axiome d’action de groupe donne immédiatement la relation de CHASLES

AB+ BC = AC.

On a également ﬂ = 6> et xﬁ = —B71.

Un espace affine est un espace vectoriel qui a oublié son origine. On a vu que tout
espace vectoriel peut naturellement étre vu comme un espace affine. Réciproquement, si £
est un espace affine d’espace directeur F/, tout choix d’un point O € £ induit une bijection
E—FE _

M — OM

On peut via cette bijection munir £ d’une structure d’espace vectoriel (le «vectorialisé en
O»), dans lequel le zéro est O, mais ce choix n’est pas canonique. Dans les preuves, on
commence souvent par choisir une origine O pour remplacer tous les points M par les
vecteurs OM.



On appelle sous-espace affine de £ I'orbite d’un sous-espace vectoriel de E, c¢’est a dire
un sous-ensemble de la forme

F={M+74 : W eF}
ol M € £ et F' un sous-espace vectoriel de . On a alors
F={AB : A,Bc F}
et méme pour tout choix de O € F
F={OM : MeF}

En particulier, le sous-espace vectoriel F' est unique, on l'appelle la direction de F. On
dit que deux sous-espaces affines sont paralléles (symbole j/) s’ils ont méme direction (en
particulier, cette définition impose qu’ils ont méme dimension : une droite ne peut pas étre
paralléle & un plan). Dans le cas d'un espace vectoriel vu comme espace affine, on retrouve
la définition précédente. On dira aussi quun sous-espace affine & (de direction Ej) est
faiblement paralléle & un sous-espace affine & (de direction Es) si Ey C Es.

Ezercice. Soient A, B, C, D quatre points distincts d’un espace affine. Vérifier que 1’'on a
zﬁ = ]_78 si et seulement si E = B? Dans ce cas, on dit que ABCD est un parallélo-
gramme.

Ezercice. Dans un espace affine, montrer que deux hyperplans affines disjoints sont paral-

leles.

Ezxercice. Soient & = A1 + Eq et & = Ay + Es deux sous-espaces affines. Montrer qu’ils

ont un point en commun si et seulement si A1 Ay € Ey + E5. Montrer qu’ils sont égaux si
. —_—

et seulement si F1 = FEy et A1 Ay € E.

Ezercice. Soit £ un plan affine sur le corps {0,1}. Quel est le cardinal de £?7 Combien
contient-il de droites affines ? Faire un dessin. Quelles droites sont paralléles ?

1.3 Barycentres

Proposition. Soit £ un espace affine. Soient Ay, ..., Ay, des points de £ et A1, ..., Ap
dans K tels que s = A1 + - - - + Ay # 0. 1l existe un unique point B de &€ tel que

\BA, = 0.

i=1

(1.1)

Ce point B est appelé barycentre du systéme pondéré ((Ai, A1), ..., (Am, Am)) et noté

(A A,
B= <)\1 . )\m>
ou parfois bar((A1, A1), ..., (Am, Am)).

—
Exercice. Montrer que si la fonction de £ dans E donnée par B — > | \;BA; est bijective
si s # 0 et constante si s = 0.



Démonstration. Fixons un point O € €. Pour tout B € £, on a

ixiﬂi - ixz BO + OA) = S%JFZMO_AZ.
i=1 =1

La condition (|1.1)) est donc satisfaite si et seulement si

e, =
OB = L2 NOAL, (1.2)
=1
ce qui est le cas pour un unique B € £. O
L’équation ((1.2) permet de montrer que si Ay, ..., A, appartiennent & un sous-espace

affine F C &, c’est aussi le cas de leur barycentre.

Par exemple, étant donné deux points A et B de &£, on appelle milieu du se ment AB
le barycentre de (A4, 1), (B, 1). C’est le point M défini par la relation MA Y MB=10.

Quand tous les poids sont égaux 1, on parle d’isobarycentre. Il faut faire attention quand
on travaille avec des corps de caractéristique non nulle : par exemple, en caractéristique 2,
un segment n’a pas de milieu...

On peut vérifier les propriétés suivantes des barycentres.

— Pour tout o # 0
Ay Ay 0 A\ (A Ay Lo Ay
M A oA/ \ad ady ... ad,
On peut ainsi se ramener au cas A1 + -+ + A, = 1.
— Pour toute permutation o € G,,

A Ay ... A, N Ag(l) Ag(g) Ag(n)
Mo o AN

— On peut retirer les points de poids nuls

Ar oo A An\ (AL L A
A e At 0\ A
— On peut regrouper les points identiques
A ... A, B BY (A ... A, B
M oo X v) O \M o AN ptv
— On a la propriété d’associativité : sim <mnetsi \i+-- -+, #0et \y+-- -+ A, #0,
alors
Ay o Ay H Api1 .. A
Al . A o M+ + A A1 -0 A
g (A An
o H = ()\1 )\m>'

Dans le cas d’un sous-espace affine d’un espace vectoriel, la notion de barycentre peut
s’écrire a ’aide de la structure vectorielle : si \; +--- + A, = 1, alors

1y ... Tp\ - o
<)\1 A)‘EMZ



1.4 Indépendance et engendrement affines

Les notions de familles libres et génératrices sont fondamentales en algébre linéaire.
Nous allons développer ’analogue affine de ces notions.

Proposition. Soit £ un espace affine et (F;) une famille de sous-espaces affines telle que
(\Fi # 0. Alors (F; est un sous-espace affine de E.

La preuve montrera aussi que 'intersection des directions est la direction de 'intersec-
tion.

Démonstration. Soit O € (| F;. Soit E la direction de €. Pour tout i, on peut trouver un
sous-espace vectoriel F; C E tel que F; = O + F;. On a donc

F=O0+F)=0+F
qui est bien un sous-espace affine de &£. O

On peut donc définir le sous-espace affine aff (A) engendré par une partie non vide A C
& comme l'intersection de la famille de tous les sous-espaces affines de £ qui contiennent
A (cette famille est non vide car elle contient £ ; 'intersection est non vide car A # ().

Proposition. Si A est une partie non vide de £, l’ensemble aff (A) est l'ensemble de tous
les barycentres d’éléments de A.

Fin cours # 1 du 15 janvier

Démonstration. Notons B ’ensemble des barycentres d’éléments de A. On a vu qu'un
sous-espace affine est stable par barycentres : ceci implique l'inclusion B C aff(A).

Pour 'autre inclusion, on vectorialise : soit O € A. Un sous-espace affine contenant O
est de la forme O + F ou F' est un sous-espace vectoriel de E. Puisque A C O + F si et
seulement si O—A)A € F pour tout A € A, on en déduit donc que

aff(A) = O—&—Vect{O—zZl : Ae A}

— {0+3 NO4; : neN,(\) €K, A € A}
i=1
Un élénﬂt M de aff(A) s’écrit M = O + ZA,TAI On a donc OM = z/\ZO—AZ =
(S A)OM + S N MA,. Ainsi, (1 — S A\)MO + S AMMA, = 0, done

_ O A o Ap
M_<1—Z>\¢ N )\n>€l’>’. (1.3)

ce qui montre aff (A) C B. O

Soient Ap,..., A, des points de £. On dit que les points Aq,..., A, sont affinement

indépendants si les vecteurs A1 Asg, A1As, ... ,AlAll, sont linéairement indépendants ; quand
ce n’est pas le cas, on dit que les points Ay,..., A, sont affinement liés.

Proposition. Soient O, Ay, ..., A, des points de €. Les points Ay, ..., A, sont affinement

liés si et seulement si il existe des scalaires A1, . .., Ap non tous nuls tels que A\i+-- -+, =0

et MOA; + -+ A04, = 0.



\

Démonstration. 11 suffit (E remarquer, en écrivant A1A; = OA; — OAq, que la rgl)ation
A A1 Ag+- - ~+)\pA1A2 = 0 équivaut a —(>\2+~ . '+)\p)OA]_+)\20A2+' . -+)\pOAp =0. O

Cette proposition montre que la définition d’indépendance affine ne dépend pas de
I’ordre des points. Deux points sont affinement indépendants si et seulement si ils sont
distincts (on note (AB) la droite engendrée par deux points A # B) ; trois points sont affi-
nement indépendants si et seulement si ils sont non alignés ; quatre points sont affinement
indépendants si et seulement si ils sont non coplanaires, etc.

On dit qu’une famille de points (A1, ..., A,) est une base affine de € si c’est une famille
affinement indépendante et affinement génératrice (au sens ot £ = aff (Ay,..., 4p)). Cela

équivaut a dire que les vecteurs A1 A, A1 A3 ..., A1 A), forment une base de 'espace vectoriel
E.Si(Ai,...,Ap) est une base affine de &, alors nécessairement dim & = p — 1. Tout point
M € £ s’écrit comme barycentre

A oA
v=( oY)
et cette écriture est unique si on impose A; +---+ A, = 1. On dit que (A1,...,A,) sont les
coordonnées barycentriques de M dans la base affine (Ay,...,4,).

Il existe une autre maniére de paramétrer les points d’un espace affine. On appelle
repéere affine de £ la donnée d’un point O € £ et d’une base (e_f, ey a;) de E. On obtient
alors une bijection de K" dans F donnée par

(041’---70471)'—>O+061€_1)+"'+04n51>

Ezercice. (K = R). Soient ABC' 3 points non alignés du plan affine. Les trois droites (AB),
(AC) et (BC) délimitent 7 régions du plan. Connaissant les coordonnées barycentriques
d’un point dans la base affine (A, B, C'), comment déterminer a quelle région il appartient ?

Exercice. Soient A, B, C trois points non alignés du plan affine. Définir les médianes du
triangle ABC' et montrer qu’elles s’intersectent en un unique point.

Ezercice. Soient A, B, C, D quatre points non coplanaires d’'un espace affine de dimension 3.
On appelle bimédiane du tétraédre ABC D les droites passant par les milieux de deux arétes
disjointes du tétraédre. Montrer que les trois bimédianes s’intersectent en un unique point.

Ezxercice difficile («théoréme de Sylvester—Gallai» ). Soit un ensemble fini de points du plan
affine R? ayant la propriété suivante : toute droite qui contient deux des points en contient
au moins trois. Montrer que tous les points sont alignés. Donner un exemple de corps pour
lequel I’énoncé analogue est faux.

1.5 Convexité

Dans cette section, on suppose K = R. On va utiliser de maniére cruciale les notions
d’ordre et de positivité. Si A et B sont deux points d’un espace affine réel. Ils définissent
un segment

[AB]:{(’;1 f) :s,t>o,s+t>o}={<f 11_3A> :)\6[0,1]}.

On dit qu’une partie C C £ est convexe si on a [AB] C C pour tous A et B dans C.
Il est élémentaire de voir que l'intersection d’une famille quelconque de parties convexes
est convexe. On peut donc définir I’enveloppe convexe d’une partie A d’un espace affine



réel, notée conv(A), comme l'intersection de toutes les parties convexes contenant A. On
a la caractérisation équivalente suivante de ’enveloppe convexe comme l’ensemble des
barycentres a poids positifs d’éléments de A (on parle parfois de combinaisons convexes).

Proposition. Si A est une partie d’un espace affine réel, alors

conv(A)z{(i\ll i\lm> :meN*, A;e A N\ >0, )\1—1—--'+)\m:1}.
1 .- m

Démonstration. Soit B le membre de droite dans I’équation précédente. Une partie convexe
est stable par barycentres a poids positif (cela se démontre par récurrence sur le nombre
de points en utilisant la propriété d’associativité des barycentres). On en déduit que toute
partie convexe contenant A contient B, d’ou 'inclusion conv(A) D B.

Par ailleurs, il découle aussi de la propriété d’associativité du barycentre que B est
convexe, et donc que conv(A) C B. O

A priori, la description précédente nécessite de considérer des combinaisons convexes
de longueur arbitrairement grande. Le résultat suivant permet de préciser ce point.

Théoréme (Carathéodory). Soit A une partie d’un espace affine réel de dimension n.
Alors

conv(.A)z{(j;\ll1 f::;) A e A N >0, )\1+--'+/\n+1:1}.

Démonstration. Soit A € conv(A). Soit p € N minimal tel que A s’écrive

A ... A
A= P
v
avec A; € A, \; = 0 et > \; = 1. La minimalité de p implique que A; > 0. En fixant une
origine O € A, on a
— s
OA=> XOA;
i=1
Supposons p > n + 1. Alors les points Ay, ..., A, sont affinement liés, et donc il existe des

scalaires non tous nuls (y;) vérifiant pg +--- 4+ pp =0 et pOA; + -+ + p,0OA, = 0. On
a donc, pour tout t € R,

L, < A4 )

D ST ak 775 HD W o 7
Les hypothéses impliquent qu’on moins I'un des nombres u; est < 0. Lorsque u; = 0, la
fonction t — \; +tu; est positive sur Ry . Lorsque p; < 0, la fonction t — A; + tp; s’annule
au point t; = —\;/p; > 0 et est positive pour 0 < ¢ < ¢;. Si on note ¢ le minimum de ces
nombres t;, les scalaires A\; + tu; sont positifs et au moins I'un d’entre eux est nul, ce qui
permet d’écrire A comme barycentre de longueur < p, contredisant la minimalité de p. [

Ezercice. Soit A une partie compacte de l'espace affine R™. Montrer que conv(A) est
compact.

Ezercice. (Théoréeme de Radon) Dans un espace affine réel de dimension n, on considére
une partie A de cardinal n + 2. Montrer qu’il existe une partition A = B UC telle que
conv(B) N conv(C) # 0.



Ezercice difficile. (Théoréme de Helly) Soit (C;)1<i<n une famille de parties convexes d'un
espace affine réel de dimension d, avec n > d + 1. On suppose que toute sous-famille de
cardinal d+1 a une intersection non vide. Montrer que (), ;,, Ci est non vide. Indication :
Montrer le résultat par récurrence sur n en appliquant le théoréme de Radon.

Fin cours #2 du 22 janvier

1.6 Applications affines

Une application de R™ dans R est dite affine si elle est de la forme z — Ax + b pour
be R"et A: R™ — R'™ une application linéaire. Nous allons étendre ce concept au cadre
des espaces affines abstraits.

Soient £ et F deux espaces affines de directions respectives E et F'. On dit qu’une
application f : & — F est affine si il existe une application linéaire ¢ : E — F' telle que,
pour tous points M, N de £ on ait

6(MN) = F(M)F(N).
De maniére équivalente, pour tous M € £ et U €E,ona
F(M +7) = f(M) + ¢(0).

Si f est affine, 'application linéaire ¢ vérifiant cette condition est unique et appelée
partie linéaire de f. Elle est notée f .

Il est parfois utile, quand il n’y a pas d’ambiguité, de noter M’ I'image d’un point M
par un application affine.
Ezemple. Si U € E., la translation de vecteur U est lapplication affine 7o : M — M’
définie par M’ = M + W ou encore W = 7. Les translations sont les applications
affines dont la partie linéaire est 'identité.
Ezxemple. Soit O un point de £ et A € K. On appelle homoth%de C€TL’F€>O et de rapport
I'application affine hpsy : M — M’ définie par la relation OM’ = AOM. Quand X = —1,
on parle plutét de symétrie centrale.

Soit f : & — F une application affine et ? sa partie linéaire. Pour tout sous-espace
affine & C & de direction Ej, 'image f(&1) est un sous-espace affine de F de direction

7(31)-
On peut caractériser les applications affines comme celles préservant les barycentres.

Théoréme. Soient f : £ — F une application entre espaces affines. Les propriétés sui-
vantes sont équivalentes :

1. L’application f est affine.

2. Pour Ay,..., Ay dans € et A1,..., Ap dans K tels que A\ + -+ A, #0

ar= (3 ) o san = (TG0 TG,

Démonstration. On note M’ I'image par f d’un point M. Supposons f affine. Si on suppose
que

i NMA =0
=1



alors par linéarité de la partie linéaire de f, on a

n
SONMA =T
i=1

dou 1l = 2.

Pour la réciproque, soit M +— M’ une application qui préserve les barycentres. Il faut
montrer que ’application m — M'N’ est bien définie (¢’est-a-dire que si m = J\TNQ)
alors M{N| = M}N}) et linéaire. Fixons un repére affine (O,ef,...,e.) de £. Posons
A, =0+ a?. Un point quelconque M € £ s’écrit M = O + )\1?1 + 4 )\ne_n>. On a donc

o8 = AOA
=1

en on déduit (cette équation pouvant se réécrire comme un barycentre, cf (1.3])) que
— . =
O'M' = NO'A,
i=1

Soit N = O + p1ef + - - - + piné, un autre point. On a donc

MN =ON —OM =3 (i — \)e!
=1
et

N n
M'N'=O'N'—O'M' = Z(ﬂi — N)AAL

)
i=1

Il s’ensuit que Papplication M N — M’'N’ est bien définie et linéaire (c’est 'unique appli-

N TP — N /
cation linéaire envoyant e; sur A;A;), d’ou le résultat. O

Ezxercice. Soit f : £ — F une application affine entre espaces affines et A C & une partie
de €. Montrer que f(aff(A)) = aff(f(.A)).

Proposition. Soient £ et F deux espaces affines, de directions respectives E et F.

— —

1. Soient (O,e_f,...,e_n)) un repére affine de £, P un point de F et et f1,..., fn des
vecteurs de F'. Il existe une unique applicat_i)on affine de £ dans F qui envoie O sur
P et dont la partie linéaire envoie el sur fi

2. Soient Ay, ..., Ay une base affine de £ et By ..., B, des points de F. Il existe une
unique application affine de £ dans F qui envoie A; sur B;.

Le premier point se déduit de I’énoncé analogue en algébre linéaire : si (e, ..., e,) est
une base d’un espace vectoriel F et f1,..., f, sont des éléments quelconques d’un espace
vectoriel F', il existe une unique application linéaire qui envoie e; sur f;. Le second point
se déduit du premier.

Ezercice. Montrer qu'une application affine posséde un unique point fixe si et seulement
si 1 n’est pas valeur propre de sa partie linéaire.



Une application affine préserve 'alignement (puisqu’elle préserve les barycentres). La
réciproquement est partiellement vraie et connue sous le nom de théoréme fondamental de
la géométrie affine : une bijection d’un espace affine réel de dimension > 2 qui préserve
I’alignement est affine. Pour se convaincre de la nécessité des hypothéses, on remarquera
que toute fonction de R dans R préserve 'alignement, et que toute fonction entre espace
affines sur le corps {0, 1} préserve l'alignement puisqu'une droite ne contient que deux
points.

Probleme. (Théoréme «fondamental» de la géométrie affine) Soit f : R? — R? une bijec-
tion qui préserve l'alignement (c’est-a dire que si A, B, C sont trois points alignés, leurs
images f(A), f(B), f(C) sont alignées). On veut montrer que f est affine.

1. Montrer que I'image d’une droite est une droite; que les images de deux droites
paralléles sont deux droites paralléles; que I'image d’un parallélogramme est un
parallélogramme.

2. Soit M un point ¥ # 6} un vecteur et ¢ défini par la relation f(M + 7) =
f(M) + 7. Montrer que l'on peut définir une fonction A : R — R par la formule
f(M +td) = f(M)+ A¢t)V. Montrer que pour tous réels s,t on a A(s +t) =
A(s) + A(t) et A(st) = A(s)A(t) (autrement dit, A : R — R est un automorphisme
de corps). En déduire que A = idR, puis que f est affine.

3. Donner un exemple de bijection du plan affine complexe C? qui préserve 1’alignement
mais qui n’est pas affine.

1.7 Le groupe affine

Rappelons que si E est un espace vectoriel, on désigne par GL(F) le groupe des appli-
cations linéaires bijectives de F dans E. Si £ est un espace affine de direction F, on note
GA(E) l'ensemble des applications affines bijectives de £ dans £.

Proposition. Soient £, F, G des espaces affines. Si f1 : € — F et fo: F — G sont des
o — = =
applications affines, alors fo o fi est affine et on a foo f1 = foo f1.
L’ensemble GA(E) est un groupe pour la loi de composition. L’application f ? est
un morphisme de groupes de GA(E) dans GL(E).

Démonstration. Pour A, B dans £, on a

(AN R(AB) = B(AA)AB) = B(HAD)

- =

donc fo o f1 est affine, et sa partie linéaire est fs o fy.
Soit f : & — & une application affine. Fixons O € £. Alors f est 'application M +—
f(O) + ?(OM ) et donc f est bijective si et seulement si est bijective; dans ce cas

—
Papplication réciproque, donnée par N — O + (7)*1(f(O)N) est affine. O]

On dit qu'une transformation affine f € GA(E) est une dilatation (on dit parfois : une
homothétie-translation) si sa partie linéaire est \XId pour A € K* (on dit que A est le rapport
de f). L’image d’un sous-espace affine par une dilatation est un sous-espace affine paralléle.
Proposition. 1. L’ensemble des dilations forme un sous-groupe de GA(E).

2. Une dilatation f: E — £ de rapport 1 est une translation.

8. Une dilatation f : € — & de rapport A # 1 a un unique point fivre M € £. On a
J = ha

10



Démonstration. Le seul point qui n’est pas évident est le dernier. Soit M — M’ une
dilatation de rapport A # 1. Fixons O € €. Pour M € £, ona M' = O’ + AOM On a donc

— —
M=M < M=0 +X M < OM=)0M < 00 = (1 - \)OM

—
ce qui est le cas si et seulement si M = O—{—ﬁOO’. Dans ce cas f, on a bien f = hpy. O
Ezercice. Déterminer la table du multiplication du groupe des dilatations en calculant
Tz © Ty, T © hprn, Rara © Tay hary o hyy.
Ezercice. Déterminer le centre du groupe GA(E).

FEzercice. Montrer que l'application de E x GL(FE) dans GA(E) donnée par (x, @) +— 7, 0 ¢
est une bijection. Est-ce que les groupes F x GL(E) et GA(E) sont isomorphes ?

Fin cours # 3 du 29 janvier

1.8 Les théorémes classiques de géométrie affine

Si A, B, C sont trois points alignés de & tels que A # C, il existe un unique A € K tel
que zﬁ = )\zﬁ . On définit alors

v
AC
Plus généralement, si A, B,C, D sont des points tels que A # C' et ﬁ = )\ﬁ, on pose
BD
== =\
AC

Théoréme (Thaleés). Dans un espace affine, soient Dy et Dy deux droites distinctes s’in-
tersectant en A. Soit A, By, C1 des points distincts de Dy et A, By, Cy des points distincts
de Do. Alors

ABq ABy
= —— < (BB C.C
ic, i, (B1B2) J (C1Cs)
Quand ces conditions sont vérifiées, on a aussi
AB1 BB
AC, G0y

Démonstration. Puisque A, By, Ch (et également A, By, C3) sont ahgnesLt> dlstlncts il
existe A1, Ao dans K tels que A31 = MACT et ABy = MACs. Alors B1By = BlA +
ABy = M C1A+ X ACy = (M —)\g)m—i—)\gm. Puisque CTZX et CTC; sont linéairement
indépendants (s’ils étaient liés on aurait Dy = Dy), on a (C1Cy) / (B1Bs) si et seulement si
A1 = Xo. Si cest le cas, on a aussi B1By = B1A+ ABy = AM{C1 A+ M ACy, = \C1Cy. O

11



Proposition. Dans un espace affine, soient D et D' deux droites paralleles distinctes,
B # C deuz points de D et B' # C' deux points de D'. Il existe une (unique) dilatation
[ telle que f(B) = B’ et f(C) =C". C’est une translation si (BB") N (CC") =0 et sinon
une homothétie de centre A, ou (BB') N (CC") = {A}.

B’ c’

B c

Démonstration. P = aff(DUD') = aff (B, C, B') est un plan; dans ce plan les deux droites

distinctes (BB') et (CC") sont soit disjointes et donc paralléles, soit d’intersection réduite
a un point.

e

Supposons d’abord (BB') J/ (CC’). Il existe donc A € K tel que CC" = ABB’. De méme,

s e T ——

comme D/ D', il existe 1 € K tel que B'C’ = uBC.Ona BC' = BB'+uBC = BO+ABB.

Puisque B? et BB’ sont linéairement indépendants (s’ils étaient liés on aurait D = D'),

e
on en déduit que A = = 1. Si on pose ¥ = BB’ = CC’, alors la translation T convient.
Sinon, on a (BB') N (CC") = {A} avec A # B et A # B'. Puisque D /D', le théoréme

< . . / / . . . . .
de Thalés implique que ‘% = %. Si on note A ce scalaire, ’homothéroie h4 ) envoie
B sur B et C sur C'.

Pour I'unicité, voir 'exercice suivant. O

Exercice. Soient A, B deux points distincts d’un espace affine £ et soient f, g deux dilata-
tions de & vérifiant f(A) = g(A) et f(B) = g(B). Montrer que f = g.

Théoréme (Pappus, version affine). Soient D et D' deux droites distinctes d’un espace
affine. Soient A, B, C trois points distincts de D et A, B, C', trois points distincts de
D'. On suppose qu’aucun de ces points n'est commun a D et D'. Si (AB') || (A'B) et
(BC") J (B'C) alors (AC") J] (A'C).

Démonstration. On utilise la proposition précédente. Soit f la dilatation qui vérifie f(A) =
Bet f(B') = A, et soit g la dilatation qui vérifie g(B) = C et g(C’) = B’. Ce sont soit deux
translations, soit deux homothéties de méme centre. Dans les deux cas, elles commutent.
Sion pose h =go f = fog,alors h(A) = C et h(C") = A’. Comme h est une dilatation,
on a donc (AC") J (A'C). O

Théoréme (Desargues, version affine). Soient A, B,C, A', B',C" six points distincts d’un
espace affine tels que A, B,C et A, B',C’ soient affinement indépendants. On suppose que
(AB) J (A’B"), (BC) JJ (B'C") et (AC) JJ (A'C"). Alors les trois droites (AA’), (BB') et

(CC") sont soit concourantes, soit paralléles.
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Démonstration. Soit f la dilatation qui vérifie f(A) = A" et f(B) = B'. Alors (AC) /|
(A'f(C)) et (BC) ) (B'f(C)) puisque I'image d’une droite par une dilation est une droite
parallele. On a donc (A'C’) = (A'f(C)) et (B'C’) = (B'f(C)). Puisque A’, B',C" sont
affinement indépendants, on a (A'B") N (B'C") = {C'} et donc f(C) = C’. Si f est une
translation, les trois droites sont paralléles; si f est une homothétie de centre M, les trois
droites s’intersectent en M. O

Théoréme (Ménélaiis). Soient A, B, C trois points affinement indépendants d’un espace
affine. Soit A" € (BC), B' € (AC) et C' € (AB) trois points distincts de A, B, C. Les
AC B'A OB _ 1.
A'B B'C C'A

Vérifiez que vous savez construire la figure suivante qui illustre de théoréme de Ménélaiis
avec les valeurs

points A, B',C" sont alignés si et seulement si

AC B’A C'B

S § =—1, — =-2
A'B C’A

B'C

Pour démontrer le théoréeme de Ménélaiis, il est utile de déterminer quelles homothéties
préservent une droite. Soit hpz I'homothétie de centre M et de rapport A (on a donc
har1 = id) et D une droite affine. Alors (exercice)

hapr(D) =D <= M cDouli=1 (1.4)

Démonstration. Soit hy ’homothétie de centre A’ vérifiant hy(B) = C, soit he 'homothétie
de centre B’ vérifiant ha(C') = A et soit hs 'homothétie de centre C” vérifiant h3(A) = B.
Si on note A; le rapport de h;, alors
A'C B'A C'B
Alzj’ )\2:j’ )\SZj
A'B B'C C'A
et ces rapports sont distincts de 1 puisque les points A, B, C sont distincts. La dilatation
h = hgohgoh; a B comme point fixe et est donc une homothétie de rapport A = A AgA3.
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L’application hg o hy préserve la droite (A’B’) puisqu’elle passe par le centre des deux
homothéties. Ainsi h préserve (A'B’) si et seulement si hs préserve (A’B’), ce qui revient
a dire (par (L.4), puisque A3 # 1) que C’ € (A’B’) ou encore que les points A, B’,C’ sont
alignés.

Comme B ¢ (A'B’), par (L.4), 'homothétie i de centre B préserve (A'B’) si et seule-
ment si son rapport est 1, d’ou le résultat. O

On énonce sans preuve un dernier théoréme.

Théoréme (Céva). Soient A, B, C trois points affinement indépendants. Soit A’ € (BC),
B’ € (AC) et C'" € (AB) trois points distincts de A, B, C. Les droites (AA’), (BB') et
AC A OB
A'B B'C C'A ’

(CC") sont concourantes ou paralléles si et seulement si

Fin cours #4 du 5 février
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